Decimal representation, Cantor set, p-adic numbers and Ostrowski Theorem.

A. Aizenbud

Weizmann Institute of Science
http://www.wisdom.weizmann.ac.il/~aizenr

Approaches to the real numbers

Approaches to the real numbers

- axiomatic approach

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- Hard to perform simple operations:

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- Hard to perform simple operations:

$$
0.666 \cdots+0.33 \cdots 33233 \cdots=0 . \cdots
$$

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- Hard to perform simple operations:

$$
\begin{gathered}
0.666 \cdots+0.33 \cdots 33233 \cdots=0 . \cdots \\
\text { but } \\
0.666 \cdots+0.33 \cdots 33433 \cdots=1 . \cdots
\end{gathered}
$$

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- Hard to perform simple operations:

$$
\begin{gathered}
0.666 \cdots+0.33 \cdots 33233 \cdots=0 . \cdots \\
\text { but } \\
0.666 \cdots+0.33 \cdots 33433 \cdots=1 . \cdots
\end{gathered}
$$

- Multiple representation:

Approaches to the real numbers

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- Hard to perform simple operations:

$$
\begin{gathered}
0.666 \cdots+0.33 \cdots 33233 \cdots=0 . \cdots \\
\text { but } \\
0.666 \cdots+0.33 \cdots 33433 \cdots=1 . \cdots
\end{gathered}
$$

- Multiple representation:

$$
0.9999 \cdots=1.000 \cdots
$$

Decimal representation

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1] .
$$

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1]
$$

This map is

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1]
$$

This map is

- Onto

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1]
$$

This map is

- Onto
- Continuous

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1] .
$$

This map is

- Onto
- Continuous
- A topological quotient

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1]
$$

This map is

- Onto
- Continuous
- A topological quotient
BUT NOT 1-1

Decimal representation

Decimal representation can be viewed as a map

$$
D:\{0, \ldots, 9\}^{\mathbb{N}} \rightarrow[0,1]
$$

This map is

- Onto
- Continuous
- A topological quotient
BUT NOT 1-1

If it would be 1-1 it would be an homeomorphism.

The Cantor set

The Cantor set

Exercise
 $\{0, \ldots, 9\}^{\mathbb{N}} \cong$

The Cantor set

Exercise
 $\{0, \ldots, 9\}^{\mathbb{N}} \cong\{0, \ldots, n\}^{\mathbb{N}} \cong$

The Cantor set

Exercise
 $\{0, \ldots, 9\}^{\mathbb{N}} \cong\{0, \ldots, n\}^{\mathbb{N}} \cong \Pi F_{i} \cong$

The Cantor set

Exercise
 $\{0, \ldots, 9\}^{\mathbb{N}} \cong\{0, \ldots, n\}^{\mathbb{N}} \cong \Pi F_{i} \cong\left\{\left(0 . a_{1} \cdots\right)_{3} \mid a_{i} \in\{0,1\}\right\}$

The Cantor set

Exercise
 $\{0, \ldots, 9\}^{\mathbb{N}} \cong\{0, \ldots, n\}^{\mathbb{N}} \cong \Pi F_{i} \cong\left\{\left(0 . a_{1} \cdots\right)_{3} \mid a_{i} \in\{0,1\}\right\} \cong$

 Cantor set
The Cantor set

Exercise

$\{0, \ldots, 9\}^{\mathbb{N}} \cong\{0, \ldots, n\}^{\mathbb{N}} \cong \Pi F_{i} \cong\left\{\left(0 . a_{1} \cdots\right)_{3} \mid a_{i} \in\{0,1\}\right\} \cong$

Cantor set
$--\quad--\quad--$
— - - - -

- - - -

\square
\qquad

p-adic numbers

p-adic numbers

Definition

$$
\mathbb{Q}_{p}=\left\{\left(\cdots a_{0} \cdot a_{1} \cdots a_{n}\right) \mid a_{i} \in\{0, \ldots, p-1\}\right\}
$$

p-adic numbers

Definition

$$
\mathbb{Q}_{p}=\left\{\left(\cdots a_{0} \cdot a_{1} \cdots a_{n}\right) \mid a_{i} \in\{0, \ldots, p-1\}\right\}
$$

-,,+- are easy to define

p-adic numbers

Definition

$$
\mathbb{Q}_{p}=\left\{\left(\cdots a_{0} \cdot a_{1} \cdots a_{n}\right) \mid a_{i} \in\{0, \ldots, p-1\}\right\}
$$

-,,+- are easy to define

Exercise

One can define ":" iff p is prime.

p-adic numbers

Definition

$$
\mathbb{Q}_{p}=\left\{\left(\cdots a_{0} \cdot a_{1} \cdots a_{n}\right) \mid a_{i} \in\{0, \ldots, p-1\}\right\}
$$

-,,+- are easy to define

Exercise

One can define ":" iff p is prime.
Definition (p -adic absolute value)
$\left|p^{n} \cdot \frac{a}{b}\right|_{p}:=p^{-n}$, where $(a, p)=(b, p)=1$

p-adic numbers

Definition

$$
\mathbb{Q}_{p}=\left\{\left(\cdots a_{0} \cdot a_{1} \cdots a_{n}\right) \mid a_{i} \in\{0, \ldots, p-1\}\right\}
$$

-,,+- are easy to define

Exercise

One can define ":" iff p is prime.
Definition (p -adic absolute value)
$\left|p^{n} \cdot \frac{a}{b}\right|_{p}:=p^{-n}$, where $(a, p)=(b, p)=1$

Exercise

Equivalent definition of \mathbb{Q}_{p} : Completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$

Absolute Value

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t. - $|a|=0$ iff $\mathrm{a}=0$,

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $a=0$,
- $|a b|=|a||b|$,

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $a=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $a=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $\mathrm{a}=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $\mathrm{a}=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a}=|\cdot|_{\beta}$

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $\mathrm{a}=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a}=|\cdot|_{\beta}$
- We have the following dichotomy

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $\mathrm{a}=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a}=|\cdot|_{\beta}$
- We have the following dichotomy
- Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $a=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a}=|\cdot|_{\beta}$
- We have the following dichotomy
- Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded
- Or $|\cdot|$ is non-Archimedean, i.e. $|a+b| \leq \max (|a|,|b|)$.

Absolute Value

Definition (absolute value)

- absolute value on a field F is a map $|\cdot|: F \rightarrow \mathbb{R}_{\geq 0}$ s.t.
- $|a|=0$ iff $a=0$,
- $|a b|=|a||b|$,
- $|a+b| \leq|a|+|b|$.
- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a}=|\cdot|_{\beta}$
- We have the following dichotomy
- Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded
- Or $|\cdot|$ is non-Archimedean, i.e. $|a+b| \leq \max (|a|,|b|)$.
- Show that if $|\cdot|$ is non-Archimedean then $|\cdot|^{a}$ is also a (non-Archimedean) absolute value

Ostrowski Theorem

Ostrowski Theorem

Theorem (Ostrowski)

the possible (up to equivalence) absolute values on \mathbb{Q} are:

Ostrowski Theorem

Theorem (Ostrowski)

the possible (up to equivalence) absolute values on \mathbb{Q} are:

- Archimedean: the usual one $-|\cdot|_{\infty}$.

Ostrowski Theorem

Theorem (Ostrowski)

the possible (up to equivalence) absolute values on \mathbb{Q} are:

- Archimedean: the usual one $-|\cdot|_{\infty}$.
- non-Archimedean: the p-adic ones $-|\cdot|_{p}$.

Ostrowski Theorem

Theorem (Ostrowski)

the possible (up to equivalence) absolute values on \mathbb{Q} are:

- Archimedean: the usual one $-|\cdot|_{\infty}$.
- non-Archimedean: the p-adic ones $-|\cdot|_{p}$.

Exercise

What powers of $|\cdot|_{\infty}$ are absolute value

Local Fields

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$
- zero Characteristic:

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$
- zero Characteristic:
- non-Archimedean: finite extortions of \mathbb{Q}_{p}

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$
- zero Characteristic:
- non-Archimedean: finite extortions of \mathbb{Q}_{p}
- Archimedean:

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$
- zero Characteristic:
- non-Archimedean: finite extortions of \mathbb{Q}_{p}
- Archimedean:
- \mathbb{R}

Local Fields

Definition (Local Field)

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_{q}((t))$
- zero Characteristic:
- non-Archimedean: finite extortions of \mathbb{Q}_{p}
- Archimedean:
- \mathbb{R}
- \mathbb{C}

