Decimal representation, Cantor set, p-adic numbers and Ostrowski Theorem.

A. Aizenbud

Weizmann Institute of Science

http://www.wisdom.weizmann.ac.il/~aizenr

・ 戸 ・ ・ 三 ・ ・

・ 同 ト ・ ヨ ト ・ ヨ ト

axiomatic approach

・ 回 ト ・ ヨ ト ・ ヨ ト

- axiomatic approach
- Cauchy sequences

(< ∃) < ∃)</p>

- axiomatic approach
- Cauchy sequences
- Dedekind sections

→ E → < E →</p>

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

크 > < 크

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

- < ≣ → <

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

• Hard to perform simple operations:

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

• Hard to perform simple operations:

 $0.666 \cdots + 0.33 \cdots 33233 \cdots = 0. \cdots$

・過 と く ヨ と く ヨ と

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

• Hard to perform simple operations:

 $0.666\cdots+0.33\cdots 33233\cdots=0.\cdots$

but
$$0.666 \cdots + 0.33 \cdots 33433 \cdots = 1 \cdots$$

・過 と く ヨ と く ヨ と

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

• Hard to perform simple operations:

 $0.666\cdots + 0.33\cdots 33233\cdots = 0.\cdots$

but
$$0.666 \cdots + 0.33 \cdots 33433 \cdots = 1 \cdots$$

Multiple representation:

・過 と く ヨ と く ヨ と

- axiomatic approach
- Cauchy sequences
- Dedekind sections
- decimal representations

The last is the most elementary but have some problems:

• Hard to perform simple operations:

 $0.666 \cdots + 0.33 \cdots 33233 \cdots = 0. \cdots$

```
but 0.666 \cdots + 0.33 \cdots 33433 \cdots = 1 \cdots
```

Multiple representation:

 $0.9999\cdots = 1.000\cdots$

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Decimal representation

< 🗇 ▶

ъ

_ৰ ≣ ► ৰ

$$D: \{0,\ldots,9\}^{\mathbb{N}}
ightarrow [0,1].$$

< 回 > < 三 > < 三

$$D: \{0,\ldots,9\}^{\mathbb{N}} \rightarrow [0,1].$$

This map is

< 回 > < 三 > < 三

$$D: \{0,\ldots,9\}^{\mathbb{N}} \to [0,1].$$

This map is

Onto

・ 同 ト ・ ヨ ト ・ ヨ ト

$$D: \{0,\ldots,9\}^{\mathbb{N}} \rightarrow [0,1].$$

This map is

- Onto
- Continuous

・ 回 ト ・ ヨ ト ・ ヨ ト

```
D: \{0,\ldots,9\}^{\mathbb{N}} \rightarrow [0,1].
```

This map is

- Onto
- Continuous
- A topological quotient

ヘロト 人間 ト ヘヨト ヘヨト

æ

```
D: \{0,\ldots,9\}^{\mathbb{N}} \rightarrow [0,1].
```

This map is

- Onto
- Continuous
- A topological quotient

BUT NOT 1-1

ヘロト ヘアト ヘビト ヘビト

$$D: \{0,\ldots,9\}^{\mathbb{N}} \rightarrow [0,1].$$

This map is

- Onto
- Continuous
- A topological quotient

BUT NOT 1-1

If it would be 1-1 it would be an homeomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Cantor set

A. Aizenbud Decimal representation, Cantor set and p-adic numbers. 4/8

イロン イロン イヨン イヨン

 $\{0,\ldots,9\}^{\mathbb{N}}\cong$

ヘロト 人間 とくほとくほとう

$$\{0,\ldots,9\}^{\mathbb{N}}\cong\{0,\ldots,n\}^{\mathbb{N}}\cong$$

イロン イロン イヨン イヨン

ъ

$$\{0,\ldots,9\}^{\mathbb{N}}\cong\{0,\ldots,n\}^{\mathbb{N}}\cong\prod F_{i}\cong$$

イロン イロン イヨン イヨン

$\{0,\ldots,9\}^{\mathbb{N}} \cong \{0,\ldots,n\}^{\mathbb{N}} \cong \prod F_i \cong \{(0.a_1\cdots)_3 | a_i \in \{0,1\}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$\{0, \dots, 9\}^{\mathbb{N}} \cong \{0, \dots, n\}^{\mathbb{N}} \cong \prod F_i \cong \{(0.a_1 \cdots)_3 | a_i \in \{0, 1\}\} \cong$ *Cantor set*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$\{0, \dots, 9\}^{\mathbb{N}} \cong \{0, \dots, n\}^{\mathbb{N}} \cong \prod F_i \cong \{(0.a_1 \cdots)_3 | a_i \in \{0, 1\}\} \cong$ *Cantor set*

A. Aizenbud Decimal representation, Cantor set and p-adic numbers. 4/8

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

A. Aizenbud Decimal representation, Cantor set and p-adic numbers. 5/8

ヘロト ヘ回ト ヘヨト ヘヨト

ъ

Definition

$$\mathbb{Q}_p = \{(\cdots a_0.a_1 \cdots a_n) | a_i \in \{0, \dots, p-1\}\}$$

イロン イロン イヨン イヨン

Definition

$$\mathbb{Q}_p = \{(\cdots a_0.a_1 \cdots a_n) | a_i \in \{0, \ldots, p-1\}\}$$

•
$$+, -, \cdot$$
 are easy to define

イロン イロン イヨン イヨン

Definition

$$\mathbb{Q}_p = \{(\cdots a_0.a_1 \cdots a_n) | a_i \in \{0, \ldots, p-1\}\}$$

• $+, -, \cdot$ are easy to define

Exercise

One can define ":" iff p is prime.

Definition

$$\mathbb{Q}_p = \{(\cdots a_0.a_1 \cdots a_n) | a_i \in \{0, \dots, p-1\}\}$$

• $+, -, \cdot$ are easy to define

Exercise

One can define ":" iff p is prime.

Definition (p-adic absolute value)

 $|p^{n} \cdot \frac{a}{b}|_{p} := p^{-n}$, where (a, p) = (b, p) = 1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definition

$$\mathbb{Q}_p = \{(\cdots a_0.a_1 \cdots a_n) | a_i \in \{0, \dots, p-1\}\}$$

• $+, -, \cdot$ are easy to define

Exercise

One can define ":" iff p is prime.

Definition (p-adic absolute value)

$$|p^n \cdot rac{a}{b}|_{
ho} := p^{-n}$$
, where $(a, p) = (b, p) = 1$

Exercise

Equivalent definition of \mathbb{Q}_p : Completion of \mathbb{Q} w.r.t. $|\cdot|_p$

э

A. Aizenbud Decimal representation, Cantor set and p-adic numbers. 6/8

イロン イロン イヨン イヨン

æ

Definition (absolute value)

• absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.

ヘロン 人間 とくほ とくほ とう

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |a| = 0 iff a=0,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition (absolute value)

• absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.

•
$$|ab| = |a||b|,$$

ヘロン 人間 とくほ とくほ とう

= 990

Definition (absolute value)

• absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.

•
$$|ab| = |a||b|,$$

•
$$|a+b| \le |a|+|b|$$
.

ヘロン 人間 とくほ とくほ とう

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|$.
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|$.
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|$.
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

•
$$|\cdot|_{\alpha}$$
 and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a} = |\cdot|_{\beta}$

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|.$
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a} = |\cdot|_{\beta}$
- We have the following dichotomy

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|.$
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a} = |\cdot|_{\beta}$
- We have the following dichotomy
 - Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|$.
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

Exercise

• $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a} = |\cdot|_{\beta}$

• We have the following dichotomy

- Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded
- Or $|\cdot|$ is non-Archimedean, i.e. $|a + b| \le \max(|a|, |b|)$.

Definition (absolute value)

- absolute value on a field *F* is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ s.t.
 - |*a*| = 0 iff a=0,

•
$$|ab| = |a||b|,$$

- $|a+b| \le |a|+|b|.$
- |·|_α and |·|_β are equivalent iff they define the same topology (i.e. the same notion of convergence)

- $|\cdot|_{\alpha}$ and $|\cdot|_{\beta}$ are equivalent iff $|\cdot|_{\alpha}^{a} = |\cdot|_{\beta}$
- We have the following dichotomy
 - Either $|\cdot|$ is Archimedean, i.e. $|\mathbb{Z}|$ is unbounded
 - Or $|\cdot|$ is non-Archimedean, i.e. $|a + b| \le \max(|a|, |b|)$.
- Show that if | · | is non-Archimedean then | · |^a is also a (non-Archimedean) absolute value

Ostrowski Theorem

<ロ> (四) (四) (日) (日) (日)

the possible (up to equivalence) absolute values on \mathbb{Q} are:

イロト イポト イヨト イヨト

э

the possible (up to equivalence) absolute values on \mathbb{Q} are:

• Archimedean: the usual one $-|\cdot|_{\infty}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

the possible (up to equivalence) absolute values on $\mathbb Q$ are:

- Archimedean: the usual one $-|\cdot|_{\infty}$.
- non-Archimedean: the p-adic ones − | · |_p.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

the possible (up to equivalence) absolute values on $\mathbb Q$ are:

- Archimedean: the usual one $-|\cdot|_{\infty}$.
- non-Archimedean: the p-adic ones $-|\cdot|_p$.

Exercise

What powers of $|\cdot|_{\infty}$ are absolute value

イロト イポト イヨト イヨト 三日

Local Fields

A. Aizenbud Decimal representation, Cantor set and p-adic numbers. 8/8

イロン イロン イヨン イヨン

∃ 𝒫𝔄𝔅

A local field is a locally compact non-discrete topological field.

ヘロト 人間 ト ヘヨト ヘヨト

э

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

ヘロト ヘアト ヘビト ヘビト

э

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

• positive Characteristic: $\mathbb{F}_q((t))$

ヘロト ヘアト ヘビト ヘビト

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_q((t))$
- zero Characteristic:

ヘロン 人間 とくほ とくほ とう

э

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_q((t))$
- zero Characteristic:
 - non-Archimedean: finite extortions of Qp

イロト イ押ト イヨト イヨトー

-

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_q((t))$
- zero Characteristic:
 - non-Archimedean: finite extortions of Qp
 - Archimedean:

イロト イポト イヨト イヨト 一臣

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_q((t))$
- zero Characteristic:
 - non-Archimedean: finite extortions of Qp
 - Archimedean:

• R

イロト イポト イヨト イヨト 一臣

A local field is a locally compact non-discrete topological field.

Theorem (Classification of Local Fields)

The possible local fields are:

- positive Characteristic: $\mathbb{F}_q((t))$
- zero Characteristic:
 - non-Archimedean: finite extortions of Qp
 - Archimedean:
 - R
 - C

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ