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Abstract
Behavioral programming is a recently proposed approach for non-
intrusive incremental software development. We propose that be-
havioral programming concepts, such as behavioral decomposition,
synchronized execution of independent behaviors, and event block-
ing, can help in the incremental and natural coding of complex
decentralized systems, complementing actor-oriented and agent-
oriented approaches. We also contribute to the existing research on
behavioral programming a method for coordinating behaviorally-
programmed components which, due to different time scales or in-
teraction with the external environment, cannot synchronize and
thus cannot employ event blocking. We show that the resulting
decentralized system retains many of the advantages present in a
purely behavioral, fully synchronized system.

Categories and Subject Descriptors D.1.3 [Programming Tech-
inques]: Concurrent Programming

General Terms Design, Languages

Keywords Decentralized Control, Behavioral Programming, LSC,
Java, Erlang, BPJ, Multiple Times Scales

1. Introduction
In the context of software engineering, the term decentralized con-
trol is sometimes used (see, e.g., the call-for-papers of the AGERE!
workshop [1]) for approaches to programming focused on compo-
sition of independent control structures. This decentralization does
not imply that software components be physically distributed, but
rather that the software be organized in components that represent
different facets of the system. A key motivation is to leverage de-
centralization towards ease in development and maintainability.

We start this paper by presenting the recently proposed ap-
proach of behavioral programming[27, 32], which we believe re-
flects many decentralized-control traits, and may contribute to the
quest for useful decentralized programming metaphors, languages,
and tools. As described in Section 2, the approach is based on
programming software components, called behavior threads (b-
threads), which specify system behavior as desired and forbidden
sequences of events. The b-threads are composed at run-time us-
ing a simple, yet powerful, execution mechanism, without requir-
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ing direct message exchanges between them. Thus, behavioral pro-
gramming may complement or serve as an alternative to actor-
oriented and agent-oriented approaches to decentralized control.As
we show, the main benefits of the proposed approach are alignment
of components with requirements and the ability to add or remove
inter-object behaviors by incorporating b-threads that specify the
change directly.

We then focus on the topic of synchronization in behavioral pro-
gramming. The execution mechanism applies a high rate of syn-
chronization between b-threads, which may be a problem in real-
time and distributed systems. Based on the observation that the
term “high rate” in the preceding sentence is relative, we propose
that breaking the system into groups of b-threads that synchronize
at different rates enables scaling the behavioral programming ap-
proach to systems with many heterogeneous, possibly distributed,
behaviors.

The paper is organized as follows. Section 2 provides an
overview and formal definitions for behavioral programming, as
well as small annotated examples in Java and Erlang. It also dis-
cusses how behavioral programming deals with conflicts between
independently programmed behaviors. In Section 3 we discuss
challenges that the fully synchronized behavioral programming
approach faces when applied to complex decentralized control
problems. Section 4 describes the solutions we propose to these
challenges. Sections 5–7 contain examples that illustrate how these
solutions fit in the design of decentralized reactive systems for
real-world control problems, and enable the natural and incremen-
tal development style of behavioral programming.

2. Behavioral Programming
2.1 Overview
Behavioral programming is an approach that advocates that desired
and undesired scenarios need not be composed along the lines of
system structure. The approach stems from research in the area of
software for reactive systems, i.e., programs that constantly inter-
act with their environment. Specifically, behavioral programming
is based on languages for capturing formal requirements of reac-
tive systems in a way that allows their execution. Initially, the pur-
pose of execution was to create the possibility of simulations that
facilitate early feedback from users for refining the requirements.
Later, the ideas and tools were enhanced to facilitate construction
of final systems from modules aligned with requirements. The con-
cepts were first introduced with the (visual) language of live se-
quence charts (LSC) [17, 23], and were recently integrated into
general purpose programming languages, such as Java [32] and Er-
lang [51]. Additional implementations include SBT [39] and in the
PiCos env. [48].

To illustrate the naturalness of constructing systems from be-
haviors, consider how children may be taught, step by step, to play
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strategy games. For example, in teaching the game of Tic-Tac-Toe,
we need to describe rules, such as:

1. To play, one player marks a square with X, then the other player marks
a square with O, then it is X’s turn again, and so on;

2. Once a square is marked, it cannot be marked again;

3. When one of the players places three of his or her marks in a horizontal,
vertical, or diagonal line, the player wins.

Now we may already start playing. Later, the child may infer, or
the teacher may suggest, some tactics:

4. After marking two Os in a line, the O player should try to mark the
third square (to win the game);

5. After the X player marks two squares in a line, the O player should try
to mark the third square (to foil the attack);

6. When other tactics are not applicable, the player should prefer the
center square, then the corners, and mark an edge square only when
there is no other choice.

Such required behaviors can be coded in executable software mod-
ules using behavioral programming idioms and infrastructure, as
detailed in Section 2. Full implementations of behavioral Java and
Erlang programs playing Tic-Tac-Toe, coded in this manner, are
described in [32] and [51], respectively. In [33], it is shown how
model-checking technologies allow discovery of unhandled scenar-
ios, enabling the user to incrementally develop behaviors for new
tactics (and forgotten rules) until a software systems is achieved
that plays legally, and assures that the computer never loses (which,
in the case of Tic-Tac-Toe, is indeed possible).

This example, and the more detailed ones in the rest of the pa-
per, highlight the following advantages of behavioral programming.
First, we were able to code the Tic-Tac-Toe application in mod-
ules that are aligned with the requirements (rules and tactics) as
users and programmers perceive them. Second, we added new tac-
tics and rules (and even more can be added) without changing, or
even looking at, existing code. Third, the resulting product is mod-
ular, in the sense that tactics and rules can be flexibly added and
removed to create versions with different functionality; e.g., ver-
sions that play at different expertise levels. Since programming of-
ten begins before all requirements are stabilized, we believe that the
ability to implement new requirements without modifying (or even
accessing) existing code, and the alignment of code with require-
ments, are significant advantages, especially in projects involving
autonomous development groups.

The versatility of the LSC language and of the Java and Er-
lang implementation versions has been demonstrated in several
ways including: the Play-Engine and PlayGo development envi-
ronments [23, 31], language packages [32, 51]; application in var-
ious domains, including hardware, telecommunication, production
control, tactical simulators, and biological modeling [6, 15, 16, 21,
29, 47]; tools for compilation [30]; smarter execution using look-
ahead [25, 28]; learning [19], model-checking (for discovering and
handling conflicts and underspecification in incremental develop-
ment) [33]; and, trace visualization and comprehension [20, 43].

2.2 The computation model
In this section we formalize the computation model of behavioral
programming. Specifically, a behavior thread is a deterministic
transition system and we apply a version of the product construc-
tion of automata to define the composition operator that yields an
interleaved execution of a system of b-threads. This continues the
discussion in [32] where Definitions 1 and 2 were introduced.

A deterministic labeled transition system is a quadruple 〈S,E,→
, init〉, where S is a set of states, E is a set of events,→ is a (pos-
sibly partial) function from S × E to S, and init ∈ S is the initial
state. The runs of such a transition system are sequences of the

form s0
e1−→ s1

e2−→ · · · ei−→ si · · · , where s0 = init, and for all
i = 1, 2, · · · , si ∈ S, ei ∈ E, and the function→ maps the pair
〈si−1, ei〉 to si, written as si−1

ei−→ si. We say that 〈S,E,→, init〉
is total if the transition function→ is a total function.

Each behavior thread is modeled as a transition system, in which
states are associated with event sets:

Definition 1 (behavior thread [32]). A behavior thread (abbr.
b-thread) is a tuple 〈S,E,→, init, R,B〉, where 〈S,E,→, init〉
forms a deterministic total labeled transition system, R : S →
2E is a function that associates each state with the set of events
requested by the b-thread when in that state, and B : S → 2E is a
function that associates each state with the set of events blocked by
the b-thread when in that state.

The set of all possible collective, interlaced runs of a set of
behaviors threads is formalized as a composition operator:

Definition 2 (runs of a set of b-threads [32]). We define the
runs of a set of b-threads {〈Si, Ei,→i, initi, Ri, Bi〉}ni=1 as the
runs of the labeled transition system 〈S,E,→, init〉, where S =
S1 × · · · × Sn, E =

⋃n
i=1Ei, init = 〈init1, . . . , initn〉, and→

includes a transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉 if and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

. (1)

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s
′
i)︸ ︷︷ ︸

affected b-threads move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads don’t move

)
(2)

These definitions are an abstraction. In practice, we propose
that b-threads use the full power of programming languages such
as Java, Erlang and LSC to encode the logic succinctly and use
appropriate software interfaces to (a) indicate when the program
is “in a state” of the transition system; (b) assign requested and
blocked events to each state; and (c) define transitions by assigning
to each state a set of waited-for events. See Section 2.3 below for
more details.

Note that while each b-thread is deterministic in its reaction to
events, Definition 2 does not specify how events are selected, and
thus there may be more than one run for a given set of b-threads.
In execution, there could be multiple ways to select events and
runs including random or planned selection. In this paper we focus
on an approach guided by the desire to maintain simplicity and
repeatability of computations. Specifically, we propose to add a
priority scheme, in which the b-threads and the events are linearly
ordered — inducing a lexicographic order also on the runs.

The default behavioral execution infrastructure of LSC (in the
Play-Engine and PlayGo), the Java package (BPJ) and the Erlang
module (bp) execute a set of b-threads by choosing, at each state
of the composite system, the first event that is requested and is not
blocked. More generally:

Definition 3 (behavioral execution mechanism). For a given
set of b-threads, let T be the transition system defined in Defini-
tion 2. A (deterministic) behavioral execution mechanism for T is
an event selection function f : S → E, such that for each s ∈ S
there exists a transition s

f(s)−−−→ s′ of T (where S and E are as in
Definition 2).

Figure 1 illustrates such an execution mechanism. The single
run, induced by the single event that exits the sieve at each synchro-
nization point, is as in Definition 2, with the added requirement that
in each state the event selected is the one specified by f .

Priority-based selection is just one implementation of event
selection. We can also introduce application-specific intelligence,
or use various forms of look-ahead, as is done in the LSC-based
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Figure 1. Collective execution of behavior threads using an en-
hanced publish/subscribe protocol: (a) all b-threads place their
“bids”, specifying requested events and blocked events; (b) a syn-
chronization mechanism chooses an event that is requested but is
not blocked; (c) b-threads waiting for the event are notified; (d) the
notified b-threads progress to their next states, where they can place
new bids.

techniques of smart play-out [28] and planned play-out [25], or
adaptivity and learning as in [19].

2.3 Programming behaviorally in Java and Erlang
The implementation we propose for the computation model dis-
cussed in the previous subsection consists of software libraries
and a methodology for building behavioral programs using them.
Specifically, we now describe packages for behavioral program-
ming in the Java and Erlang languages introduced in [32] and [51],
respectively, and briefly review how the objects and functions of
these packages can be used to construct systems from behaviors.

In a behavioral Java or Erlang program, each behavior thread is
implemented as a Java thread or an Erlang process. The behavior
threads synchronize by invoking a library method called bSync that
takes the request, wait, and block bids as arguments (in Erlang,
using the record type rwb). Invoking bSync first causes the b-thread
to wait until all other b-threads invoke bSync. Then, the next event
is selected (one that is requested and not blocked), b-threads that
requested or waited for it are resumed, they proceed to their next
bSync, and the process repeats. The selected event is passed to the
b-threads via a field called lastEvent in Java and as a return value
in Erlang.

This allows coding b-threads using the full power of the host
language for control flow, such as loops and conditions, and for
the logic that decides and constructs the bid at each synchroniza-
tion point (represented as an invocation of bSync). From the pro-
grammer perspective, each behavior thread is a procedure that im-
plements an aspect of the system’s desired or undesired behavior
(positive or negative scenario) by listening to (specific sequences
of) events and by requesting and blocking events.

To illustrate this coding technique, consider a b-thread that
increases water flow in a hot water tap by requesting five times
the event AddHot of turning the tap anticlockwise some small
fixed amount. Another b-thread performs a similar action, with
the event AddCold, on the cold water tap. To increase the wa-
ter flow in both taps in parallel, as may be desired for keeping
the temperature stable, we activate the above b-threads along-
side a third one, which forces the interleaving of events in the
two scenarios. The third b-thread, for example, can be coded
as “repeatedly: {block AddCold until AddHot; block
AddHot until AddCold}”. This pseudo code maps to a transi-
tion system with two states q1, q2 where R(q1) = R(q2) = ∅,

requestFiveAddHotEvents() ->
[bp:bSync(#rwb{request=[addHot]}) || _ <- seq(1,5)].

requestFiveAddColdEvents() ->
[bp:bSync(#rwb{request=[addCold]}) || _ <- seq(1,5)].

interleave() ->
bp:bSync(#rwb{wait=[addHot], block=[addCold]}),
bp:bSync(#rwb{wait=[addCold], block=[addHot]}),
interleave().

display() ->
Event = bp:bSync(#rwb{wait=[addHot, addCold]}),
io:format("Event: ~w~n", [Event]),
display().

test() ->
bp:init(),
bp:add(spawn(fun requestFiveAddHotEvents/0), 1),
bp:add(spawn(fun requestFiveAddColdEvents/0), 2),
bp:add(spawn(fun interleave/0), 3),
bp:add(spawn(fun display/0), 4),
bp:start().

Figure 2. An example of using the bp module in Erlang.

B(q1) = {AddCold}, B(q2) = {AddHot}, q1
AddHot−−−−→ q2, and

q2
AddCold−−−−→ q1.
Figure 2 illustrates how to implement such a system in Erlang,

using the bp module. The behavior threads are implemented as four
functions that are spawned to run in separate processes. The behav-
ior thread requestFiveAddHotEvents, for example, calls bSync
five times1 and, in all of them, passes addHot as the only requested
event and blocks nothing. The requestFiveAddColdEvents is
similar and the interleave behavior takes care of keeping the
temperature stable, as detailed above, by waiting for and blocking
alternating events. The wait clause may also use a filter function
for events, instead of an explicit list. The macro ?ALL is shorthand
for waiting for all possible events. The display behavior thread
generates textual output for illustration purposes. In real applica-
tions it would be replaced by an actuator that translates the events
into physical outputs, as we elaborate later in this paper. Note also
the second parameter to the bp:add function representing the prior-
ity of the behavior thread, as discussed in the previous subsection.
To see the role of priority consider, for example, what would hap-
pen if we didn’t have the interleave behavior thread. In this case,
because the priority of requestFiveAddHotEvents is higher than
the priority of requestFiveAddColdEvents, we would get the
five addHot events before the five addCold Events.

In Java, the same program can be coded as shown in Figure 4.
Each behavior thread is an instance of a class that extends BThread.
A Java thread is created for each behavior thread and the method bp
.startAll starts all these threads. The method bSync implements
the synchronization protocol, as described above. Its three param-
eters are the set of requested events, the set of waited-for events,
and the set of blocked events. For programming convenience, us-
ing standard Java programming techniques, we allowed an event
to also be treated as a (singleton) set containing only the event,
and created the special event sets none and all with their obvious
meaning.

1 Throughout the paper we use list comprehensions for loops in Erlang. The
expression [X || _ <- seq(1,N)] is a shorthand for “perform X for N
times”. For more details, see the official Erlang documentation.
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Event: addHot
Event: addCold
Event: addHot
Event: addCold
Event: addHot
Event: addCold
Event: addHot
Event: addCold
Event: addHot
Event: addCold

Figure 3. Output of both the Erlang and the Java programs listed
in Figures 2 and 4.

static class requestFiveAddHotEvents extends BThread {
public void runBThread() {
for (int i = 1; i <= 5; i++) {
bp.bSync(addHot, none, none);

}
}

}
static class requestFiveAddColdEvents extends BThread {
public void runBThread() {
for (int i = 1; i <= 5; i++) {
bp.bSync(addCold, none, none);

}
}

}
static class Interleave extends BThread {
public void runBThread() {
while (true) {
bp.bSync(none, addHot, addCold);
bp.bSync(none, addCold, addHot);

}
}

}
static class Display extends BThread {
public void runBThread() {
while (true) {
bp.bSync(none, all, none);
System.out.println("Event: " + lastEvent);

}
}

}
public static void main(String[] args) {
bp.add(new requestFiveAddHotEvents(), 1.0);
bp.add(new requestFiveAddColdEvents(), 2.0);
bp.add(new Interleave(), 3.0);
bp.add(new Display(), 4.0);
bp.startAll();

}

Figure 4. An example of using the bpj package in Java.

2.4 Dealing with conflicting behaviors
A concern often associated with coding and composing require-
ments in separate modules without special dependency consider-
ations, is that conflicts may emerge, yielding undesired joint be-
havior or system failures. In [33] we presented a verification tool
for behavioral programs written in Java. It enables early discovery
of conflicts and under-specification in the requirements, and facil-
itates the usage of counterexamples in incremental development.
Using (explicit-state) model checking, behavioral Java programs
are verified directly, without being translated first into a language
specific to the model-checker. We use an abstraction that focuses on
program states at synchronization points, and treats the transitions
between the states as atomic. Synthesis techniques have also been

applied to behavioral programs in LSC [26, 38], to check for con-
flicts and, when possible, generate a deterministic automaton that
implements the specification.

Moving from development to run-time, model-checking and
planning algorithms [25, 28] can be used to look ahead and avoid
conflicts where applicable. Deadlocks in which all requested events
are blocked can be detected using designated low priority events
which may trigger alerts or recovery actions. Divergent, i.e., run-
away b-threads, which fail to synchronize, can be detected at run
time using timers calibrated according to the different timescales
(discussed in the coming sections) which are expected of the
b-threads. Race condition are avoided in behavioral programming
when behaviors communicate only through events, and do not use
host language facilities to share data.

When a conflict actually exists and application changes are
mandated, we can resolve conflicts and under-specification by cod-
ing refinements as if they are new requirements, in new behavior
threads. E.g., when two (individually correct) behavior specifica-
tions mandate that opposing actions take place following a given
event sequence, a conflict-resolving refinement scenario (or a pri-
ority setting) may guide the choice. When b-thread code must be
changed (e.g., to handle code errors or changes in requirements, as
in any other software), the task may be easier in behavioral pro-
gramming, as b-threads are expected to be short and self contained,
and when needed, are often also readily replaceable.

3. How Small is Your Zero Time?
The collective-execution mechanism of behavioral programming
calls for the synchronization of all b-threads prior to triggering an
event. This synchronization simplifies programming by avoiding
race conditions and, combined with event blocking, facilitates the
incrementality and naturalness of behavioral programming. How-
ever, such synchronization implies that system performance is con-
strained by the time it takes, at each step, for the slowest behavior
to reach the synchronization point.

Thus, in behavioral programming there is a convention that
b-threads are allowed to take only a small amount of time between
synchronization points. Note that this is a rather standard conven-
tion used, e.g., for listeners in GUI frameworks and interrupt han-
dlers, where callback routines are expected to complete quickly.
When interaction with the physical world is involved, we advocate
using the concept of logical execution time (LET) proposed in [34],
which relies on a “fast execution” assumption for separation of ob-
servable external behavior of a task from its physical execution.

When the application has a large number of such “fast” routines
(as, e.g., in behavioral programming where “everything is a behav-
ior”) the question of how small the processing time should be is cru-
cial. In way of dealing with this question, we observe that smallness
is relative, and an application may contain behaviors that operate at
different time scales. Examples of these include, among others, (1)
handling external events whose source is not synchronized with the
application; (2) interacting with (and waiting for) resources whose
response time (including communications time) is slower than the
internal event-rate of other behaviors; (3) a physically distributed
multi-agent application, where constant, mandatory, full synchro-
nization is counter-intuitive or impractical. Implementing solutions
for these cases in the context of behavioral programming will be
exemplified in Sections 5, 6, and 7, respectively.

A related, commonly asked, question regarding behavioral pro-
gramming is: “what happens if a b-thread never reaches its next
synchronization point, thus stalling the entire application?”.

While answers to the multi-time-scale challenges are discussed
at length in the coming sections — the answer to this second
question is simple and immediate: This is indeed an application
bug just like any other bug! The situation may be compared to that
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of a standard, non-behavioral, application where an infinite loop in
a high priority process causes it to monopolize all system resources,
stalling other processes. Nevertheless, the architecture proposed
for addressing the first two questions may mitigate the disastrous
effects of such an application error, allowing the system as a whole
to continue operating, and perhaps even recover. Also, tools like the
model checker presented in [33] and the trace visualizer presented
in [20] help in catching such bugs.

In the next section, we propose ways to program behavioral ap-
plications at multiple time scales. While the issue is, of course,
dealt with in other contexts, our challenge is to solve it while main-
taining the naturalness and incrementality facilitated by behavioral
programming, allowing behavioral systems where behaviors are
not required to synchronize with all other behaviors at every step.

4. Dealing with Multiple Time Scales
In this section we present technical solutions that allow for cod-
ing all significant application logic only in well-encapsulated
b-threads. The solutions are mostly adapted from established tech-
niques and designs — some general, e.g., agent-based program-
ming [36] and some specific to behavioral programming, including
especially the Interplay method [7] for connecting multiple LSC
Play-Engines via external events. Our goal is to benefit from nat-
ural and incremental development using behavioral programming,
while accomplishing a level of decentralization, and possibly phys-
ical distribution, where not all behaviors need to be fully synchro-
nized.

4.1 Handling external events
For synchronization with an external environment, we propose a so-
lution based on the super-step approach, as in statecharts [24] (used
also in, e.g., LSC execution [23]) and on the logical execution time
(LET) concept used, e.g., in GIOTTO [34]. This solution is im-
plemented by the behavioral programming infrastructure, assum-
ing only that the application complies with simple rules, without
application-specific programming. Specifically, we propose that
behavioral program execution be divided into cycles called super-
steps, where external events are introduced only at the beginning of
a super-step. The philosophy is that all internal events in the body
of a super-step are perceived as happening in the same physical
time but are ordered, i.e., there is a sequence of events (not associ-
ated with meaningful time-stamps) between the beginning and end
of each super-step (c.f. hybrid time-set [42]).

According to this philosophy, it is sufficient to consider a real-
world occurrence of an external event only in relation to when
super-steps begin and end (only these points in the computation
have meaningful time-stamps). When sampling times need to be
equidistant, as is the case when implementing algorithms that come
from control theory, one can program the systems such that all
super-steps take a constant amount of time, by adding delays (under
an assumption that the sequence of internal events runs fast enough
to always complete within the time frame).

One initial approach (which we modify later) to the imple-
mentation of the above philosophy is to let a lowest-priority,
dynamically-added b-thread introduce the external event. For ex-
ample, consider the implementation of the Tic-Tac-Toe game
in [32]. An independent, non-behavioral Java thread controls the
GUI. Whenever the player clicks a board square, the GUI process
creates a new lowest priority b-thread which requests a correspond-
ing behavioral click event. The request occurs in the first and only
synchronization point of the b-thread, after which the b-thread ter-
minates. Since the added b-thread is assigned the lowest priority, it
is active only when no internal event is enabled. Even when multi-
ple external arrive in close succession, they are always introduced
into the behavioral process in successive, distinct, super-steps.

This approach is general and simple, though, depending on the
implementation, it may present performance issues related to the
creation of threads. Also note that the semantic definition in Sec-
tion 2, as well as the model-checking tool, BPmc, presently assume
that the set of b-threads is constant throughout the execution.

We thus modify the approach to allow the b-threads that intro-
duce external events to participate in the entire run, in a manner
similar to the way LSC execution is open to handle user interac-
tions and other external events only at the end of a super-step:

• External events are first captured by non behavioral processes
and are placed in a common queue, using standard (non-
behavioral) programming constructs.
• A lowest priority b-thread repeatedly requests a predesignated

event, called, say idle, which by convention (which can be
enforced), is never blocked by other b-threads. This event marks
the end of a super-step.
• A designated b-thread repeatedly waits (behaviorally) for the

event idle, and then ”peeks” at the external event queue using
standard programming constructs. This peeking may be slightly
delayed by other queue accesses but the delay is acceptable, as
no internal events are enabled. If no new external event is found,
the b-thread waits for another idle event. If an external event
is found, the b-thread requests a corresponding behavioral event
that represents the external one.

Alternatively, the first and third points above can be replaced by
allowing a single b-thread to behaviorally wait for an idle event,
and then using existing language constructs to wait for external
events, deferring indefinitely the next synchronization point.

We suggest announcing the conclusion of a super-step using the
idle event, rather than performing the activities directly at the low-
est priority b-thread, to allow a richer variety of actions in separate
b-threads. Such actions may include super-step logging, deadlock
handling, blocking of external events, and additional peeking at ex-
ternal event queues.

4.2 Accommodating behaviors at different time scales
Many applications that include behaviors of different time-scales
can be decomposed as follows.

The application is decomposed into groups of behaviors, such
that all the behaviors in a group are on the same time-scale. If
necessary or desired, such groups can be still broken down into sub-
groups, say according to physical components or relevant events.
Note that the behaviors in each such sub-group are, by definition, of
the same time-scale. We call such a group of behaviors a behavior
node, or b-node, for short.

All the b-threads in each b-node run in a synchronized manner
as described in Section 2. Note that the b-threads in a b-node may
run on multiple cores or computers, where the operating system,
JVM, Erlang, etc., facilitate the constant inter-b-thread synchro-
nization implemented in the behavioral programming collective-
execution mechanism. This paper is focused on inter-b-node coor-
dination and not on intra-b-node parallelism.

Communication between b-nodes is only through external
events.

External events can be sent and received by all behavioral pro-
grams in a consistent and standard way as follows:

Send: In each b-node, a designated b-thread waits for certain inter-
nal behavioral events, and then transmits a corresponding exter-
nal event to the desired destination (or broadcast it to all other
b-nodes) using some agreed upon protocol. The protocol can be
either general for all behavioral applications in a given host lan-
guage (and perhaps supplied with the behavioral programming
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infrastructure), or domain specific (e.g. for wireless sensor net-
works of some kind), or even application-specific.

Receive: Per the design in Section 4.1, for each b-node a desig-
nated non-behavioral process listens to all external events di-
rected at that b-node, and places them in b-node-specific queue.
A designated b-thread peeks at this queue at the end of each
super-step and requests a corresponding behavioral event.

B-threads that depend on external events, are programmed to wait
(behaviorally) for the corresponding behavioral event.

When the desired behavior of a b-node is not naturally associ-
ated with super-steps, the b-node may “open a window” for accept-
ing external events in other ways, e.g., by periodically requesting
an event that replaces the idle event above, and is waited for by
the b-thread responsible for peeking at the external-event queue.

Note that the result of an incoming external event could be
that some of the b-node’s b-threads decide to block certain events
(internally to the node), until some specific other external event
arrives. This allows one b-node to cause the blocking of events in
other b-nodes. As blocking is a key enabler of incrementality in
behavioral programming, the ability to propagate event-blocking is
an important feature of the proposed decentralized architecture.

This design for communication between behavioral program re-
flects several assumptions that we believe are common and natu-
ral in development situations. First, consider a decentralized node
busily working autonomously. When an external event arrives that
is expected to change the behavior of the node, it is acceptable that
one or more autonomous events be triggered, before the new course
of action is taken. This form of inertia is commonly observable not
only in the physical world and in typical human handling of inter-
rupts (“please just let me finish sending this email, and I’ll be right
with you”), but also in the delays that are tolerated when sensing
events or handling interrupts in computer systems.

The second assumption is that even a node that wishes to be
extremely attentive to external events should not be synchronized
with the source of these events, say, as b-threads are synchronized
within a b-node. Consider a manager-employee analogy for the re-
lationship between two b-nodes. Employees that follow their man-
agers everywhere are inefficient and disruptive. Put in other words,
excessive synchronization between b-nodes reduces parallelism in
the system. We believe that the proposed design nicely balances
the usage of autonomous behavioral components withf efficiency.
In particular we expect that the delay in reacting to messages is tol-
erable in a computer application that is decomposed according to
behaviors, as it is in the life of a corporation.

5. Example 1: Synchronizing Behavioral
Programs with an External Environment

To demonstrate how a behavioral program handles external events,
we describe now the architecture and implementation of a small
computer game. Its goal is to land a rocket back on its landing
pad. The rocket descends from the top of the screen towards the
bottom. The player can move the rocket left and right, or fire a
short exhaust burst, that delays the fall. The player cannot, however,
move the rocket upward. The landing pad is located on the ground,
and moves left and right randomly. If the player manages to place
the rocket on top of the landing pad, he or she wins. If the rocket
hits the ground, the player loses. Figure 5 shows the player interface
of the game.

5.1 Game Architecture
We implemented the game application in Erlang, using WxErlang
as the GUI toolkit, and the bp module as the behavioral program-

Figure 5. The computer game. The rocket, shown on the top part,
should land on the pad, shown at the bottom. The player may move
the rocket sideways, or fire a short burst that suspends its fall.

ming library. This single b-node application consists of the pro-
cesses described below and is depicted in Figure 6.

• The rocket and landing_pad processes maintain and draw
the positions of the rocket and the landing pad as determined
by rocket and pad motions.
• A user-interface controller process, implemented by extending

the generic module wx_object, reacts to the player’s clicking
rocket-control buttons by sending native (not behavioral) events
user_right, user_left and user_up to the queue process.
• The ticker process sends the native event tick to the queue

process every N milliseconds.
• The idler b-thread process detects the ending of super-steps

by repeatedly requesting the idle event, while running at the
lowest priority.
• The queue b-thread waits for the idle event, reads its native

messages mailbox (or waits for a message if it is empty), and
broadcasts the external event to the other b-threads by request-
ing a corresponding behavioral event, using the following loop:

dispatch_loop() ->
bp:bSync(#rwb{wait=[?IDLE]}),
receive E -> bp:bSync(#rwb{request=[E]}) end,
dispatch_loop().

• B-threads such as on_tick or go_left enforce the game rules
and control the actual movement of the rocket and the landing
pad. These are described in further detail below.

5.2 Game Behaviors
Each behavior matches a single requirement, and is implemented as
an Erlang function. The behavior functions are spawned to create
the various b-threads. For readability, we tried to keep the code
of the functions simple and straightforward. All the events are
atoms. Each function fulfills a single role. We deliberately avoided
generalizing several similar functions into a single parameterized
function, in order not to burden the reader with a non-trivial design.
Functions that were similar to ones listed below are omitted, and are
replaced with a textual description. The full code for the example
can be found at http://www.cs.bgu.ac.il/~geraw.

The first behavior reacts to events representing the user’s actions
by requesting events that represent rocket moves in the desired
direction. In our example, it translates the event, e.g., user_left,
to left. However, in the general case the translation may be more
complex, e.g., requesting several events per user command.
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queue b-thread1
. . . b-threadn
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rocket
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commands

redraw

Figure 6. Handling external events in the game application. Solid
arrows mark native Erlang messages. Dashed arrows mark trigger-
ing and waiting for behavioral events. Boxes are processes. The
processes inside the b-node box are b-threads.

The following set of behaviors is responsible for actuating the
movement of the rocket. The listing of the go_left b-thread below
describes how the rocket is moved to the left. The scenario repeat-
edly waits for the behavioral event left, and once it is triggered
(i.e., the operation is allowed), calls the function rocket:left().
Moving to the right, or down, is performed in a similar manner.

go_left() ->
bp:bSync(#rwb{wait=[left]}),
rocket:left(),
go_left().

The on_tick behavior below repeatedly waits for a tick and
then requests the event representing the rocket moving down.

on_tick() ->
bp:bSync(#rwb{wait=[tick]}),
bp:bSync(#rwb{request=[down], wait=?ALL}),
on_tick().

In addition to moving the rocket sideways, we also want to allow
the player to suspend the fall for one turn, simulating an exhaust
burst. The go_up behavior responds to the up event, and suspends
the rocket by blocking its downwards movement until the next tick.

go_up() ->
bp:bSync(#rwb{wait=[up]}),
bp:bSync(#rwb{wait=[tick]}),
bp:bSync(#rwb{wait=[tick], block=[down]}),
go_up().

Now, we would like to add some restrictions to the game. The
following behavior prevents the rocket from moving beyond the
left side of the game board. Preventing the rocket from crossing the
right border is done in the same way, replacing the 0 coordinate
with some right limit M , and changing event names accordingly.
Preventing the rocket from moving below the lower border is done
similarly, by checking the vertical, rather than horizontal position
of the rocket, and blocking the down event when it reaches 0.

on_left_bound(X) -> % X: rocket’s horizontal location
if
X == 0 ->
bp:bSync(#rwb{wait=[right], block=[left]}),
on_left_bound(1);

true ->
case bp:bSync(#rwb{wait=[left, right]}) of
left -> on_left_bound(X-1);
right -> on_left_bound(X+1)

end
end.

To make the game less trivial, we want to prevent the rocket
from making too many maneuvers. To this end, we limit the move-
ment of the rocket to either one step left or right per turn.

block_mult_moves(Block) ->
Moves = [user_left, user_right],
case bp:bSync(#rwb{wait=[tick|Moves], block=Block}) of
user_left -> block_mult_moves(Moves);
user_right -> block_mult_moves(Moves);
tick -> block_mult_moves([])

end.

The behaviors that control the movement of the landing pad are
similar to the ones handling the rocket, with one difference: the
landing pad is not controlled by the player, but is random. After
each tick, it requests that the pad be moved in a random direction,
or not at all. This behavior is achieved by picking a random element
E, that is either pad_left, pad_right or an empty list, and call-
ing bp:bSync(#rwb{wait=[tick], request=E}), followed by
waiting for a tick if the pad moved before the end of the turn.

Finally, the following behaviors are responsible for detect-
ing and handling winning or losing the game. Note that the
detect_win_lose function below keeps track of the entire game
board soley by listening to movement events. While this might
seem somewhat wasteful, it prevents potential race conditions, due
to accessing shared resources, such as the current positions of game
elements.

detect_win_lose(P, X, Y) ->
case bp:bSync(#rwb{wait=[pad_left, pad_right, left,

right, down]}) of
pad_left -> detect_win_lose(P-1, X, Y);
pad_right -> detect_win_lose(P+1, X, Y);
left -> detect_win_lose(P, X-1, Y);
right -> detect_win_lose(P, X+1, Y);
down ->
Y1 = Y-1,
if
Y1 == 1 andalso X == P ->
bp:bSync(#rwb{request=[win]});

Y1 == 0 ->
bp:bSync(#rwb{request=[lose]});

true ->
detect_win_lose(P, X, Y1)

end
end.

Another b-thread (not shown) ends the game by waiting for the
above win or lose events, and then blocking all movement events
indefinitely. The example program ends when the user closes the
application window.

Summary This illustrates the decomposition of the game into
separate, independently programmed behaviors, and the introduc-
tion of external events at the end of super-steps. The power of
behavioral programming in handling rich scenarios can be further
demonstrated in this example, by replacing the short b-thread im-
plementing the random move of the pad, by a long sequence of pre-
determined right- and left-moves of the landing pad, that represent
the secret plan of an adversary played by the computer.

6. Example 2: Coordinating behaviors with
different time scales

In this section we demonstrate how an application can be composed
of behavioral components that operate on different time scales
and communicate via events. The example is part of the control
software for a quadrotor, a flying vehicle powered by four rotors
(see schematic drawing in Figure 7). The behaviorally-programmed
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Roll = TR − TL

Pitch = TF − TB

Left

Right

Back

Front

Thrust = TF + TR + TB + TL

Yaw = λ(TF − TR + TB − TL)

Figure 7. A schematic view of a quadrotor. Four rotors are
mounted rigidly in a single plane and control is achieved only by
varying their speeds. The designation of rotor labels is arbitrary,
and the rotational forces of roll, pitch, and yaw are defined rela-
tive to them. The thrusts generated by the rotors are denoted by
TF , TR, TB and TL for the front, right, back, and left rotors, re-
spectively. The relation between these thrusts and the forces are
indicated as the four formulas near each force. The coefficient λ
marks the ratio between the vertical thrust of a rotor and the rota-
tional (yaw) force that the rotor generates (neighboring rotors rotate
in opposite directions to balance the yaw force when all rotate at the
same RPM).

A simulation of
quadrotor, sensor, and

actuator dynamics

Forces
to RPMs

(∼1K events
per sampling)

b-node

High-Level
Control

(∼10 events
per sampling)

b-node

RPMs
Rthrust,
Rpitch,
Rroll,
Ryaw

Errors
∆thrust,
∆pitch,
∆roll,

∆yaw

Forces
Fthrust, Fpitch,
Froll, Fyaw

Figure 8. Block diagram for the quadrotor case-study. A simula-
tion of the quadrotor is composed with two behavioral components.
The first component, High-Level Control takes the differences be-
tween actual and desired thrust, pitch, roll and yaw and dynamically
translates them to forces that are needed to be applied for correcting
the displacements. The second component, Forces to RPMs, trans-
lates these forces to rotor speeds (RPMs) that should generate such
forces. The dotted line indicates the boundaries of the behavioral
program that we developed for this paper (the two behavioral mod-
ules, their interaction with the environment, and the communication
between them.

piece is responsible for stabilizing the aircraft. It was experimen-
tally tested by plugging behavioral modules into the comprehen-
sive quadrotor-control simulation model developed by Bouabdal-
lah et al. [10, 11]. This model is based on MATLAB/Simulink and
simulates full control of the quadrotor flight including physical as-
pects.

The model of Bouabdallah et al. is modified, as illustrated in
Figure 8. The b-node High-Level Control translates measured dif-
ferences between actual and desired flight parameters (e.g., orienta-
tion, altitude) into four forces (thrust, roll, pitch and yaw - see Fig-

do forever {
event = waitFor(an event with desired roll force);
attainTarget(event.val,

{RightRPMAdd, LeftRPMSub},
{RightRPMSub, LeftRPMAdd}

);
}

Figure 9. Pseudo-code for a force-control b-thread for roll. The
b-thread waits for an event that indicates a desired (target) force
in a particular direction (roll, in this case). It then calls a method
attainTarget with parameters that indicate the events that in-
crease the controlled force (second parameter: {RightRPMAdd
, LeftRPMSub} and events that decrease it (third parameter:
{RightRPMSub, LeftRPMAdd}). The events represent adding to or
subtracting from the RPM of the front, back, right or left rotors
as their names suggest. Three additional b-threads (not shown),
PitchBT, YawBT and ThrustBT, control the three other forces
in a similar manner. They are identical except for the parameters
to attainTarget. The events that increase the controlled forces are:
for pitch: {FrontRPMAdd, BackRPMSub}; for yaw: {FrontRPMAdd
, BackRPMAdd, RightRPMSub, LeftRPMSub}, and for thrust:
{FrontRPMAdd, RightRPMAdd, BackRPMAdd, LeftRPMAdd}. In
all cases, the events that decrease the controlled force are the oppo-
site events.

ure 7). It consists of four b-threads: one for each of the yaw, pitch
and roll axis and one for trust. Each of these b-threads computes
the respective force by applying a standard Proportional Integral
Derivative control based on the differences between measurements
and desired value as given, e.g, from the remote control or dictated
by a higher level navigation algorithm.

The b-node Forces to RPMs, operates at a higher frequency
than the High-Level Control. This component receives the four
desired forces as external input events and translates them into rotor
RPMs, via a fast coordinated sequence of events where different b-
threads balance the competing needs. For illustration, the reader
may think of how sound-mixing is done towards many competing
goals, such as balancing the guitar and the piano, and controlling
overall volume. This is done by small adjustments of the available
controls (without attempting to solve mathematical equations).

Each of the four forces is independently interpreted by a ded-
icated b-thread as a target, and is translated to desired changes to
RPM of the various rotors. The b-threads attempt to attain their tar-
gets by requesting events that represent (small) increase or decrease
of individual rotor RPM towards the target and, blocking events
that work away from it, as shown in Figures 9 and 10. The com-
posite behavioral execution mechanism interlaces the execution of
all b-threads transforming their possibly-conflicting requests into
integrated control.

For example, to increase the pitch (raise the front), the system
requests the events of increasing the front rotors RPM and decreas-
ing the back rotors RPM, while blocking the opposite (comple-
mentary) events. Note that desired flight results depend only on
the total numbers of events that increase or decrease the controlled
value, and the difference between their numbers, while the actual
mix of events may vary. Specifically in this example (see the code
in Figure 10), in order to allow finer control, the b-threads trans-
late the input force into a sequence of events that affect the rotor
speed by smaller increments. Furthermore, to accommodate behav-
iors that require concurrent actions on multiple rotors, all behaviors
entertain a slack, in which they allow a small number of undesired
events to occur before blocking them completely. In this manner,
the ThrustBT can increase the RPM of all rotors equally, one at a
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attainTarget(
target, // Desired number of steps to target
positiveE, // Events that go towards target
negativeE, // Events that go against target

) {
// Initially we are -target away from target
delta = -target;

do {
requestedE = blockedE = emptySet;

// Request the events that will fix the
// current deviation
if delta < 0 then requestedE=positiveE;
if delta > 0 then requestedE=negativeE;

// If deviation exceeds slack,
// block further deviations
if delta < -SLACK then blockedE = negativeE;
if delta > SLACK then blockedE = positive;

// Place new bids and synchronize with the
// other b-threads
bSync(

request = requestedE,
wait = positiveE ∪ negativeE ∪ {Output},
block = blockedE

);

if lastEvent in positiveE then delta++;
if lastEvent in negativeE then delta--;

} until (lastEvent is Output)
}

Figure 10. Pseudo code for the method attainTarget This is a
common function that attains a desired difference between positive
and negative events. It continuously requests and blocks events
depending on the current deviation.

time, without interference from b-threads that try to create a differ-
ence between certain rotor RPMs.

The super-step is orchestrated as follows. A lowest-priority
b-thread repeatedly waits for RPM-change events, as described
above, and keeps track of all desired rotor RPMs by changing in-
memory values by fixed amounts. This b-thread repeatedly requests
an Output event that contains these values, but due to its low pri-
ority, Output is triggered only when there are no other events to
trigger (i.e., the four force-control b-threads have attained their tar-
gets). The Output event marks the completion of a super-step. Four
inputs (target forces) are then presented again (by a high priority
b-thread that polls an external queue), marking the beginning of the
next super-step. Throughout, an actuator b-thread waits for Output
events and transmits the required signals to the rotors. The detailed
simulations we carried out show that his behavioral solution indeed
stabilizes the quadrotor, as can be seen in Figure 11.

Summary The quadrotor application uses very local behaviors,
like controlling roll and pitch, in creating composite behaviors, like
maintaining stability. Longer term behaviors such as traveling be-
tween cities in a multi-stop trip, or a keeping maintenance and re-
fueling schedules, can be constructed from similar elements. While
all these facets can be programmed as compositions of b-threads,
gluing them together is easier with an infrastructure that can sup-
port multiple time scales. Clearly, a b-thread that controls a multi-
stop navigation itinerary can suffice with occasionally changing
the required speed and direction, and does not require the constant
synchronization and attentiveness of the stabilization modules de-
scribed above.

 

  

   

 

 

Figure 11. Simulated spatial path of the quadrotor, and plots of
roll, pitch and yaw during the first 20 seconds of a behaviorally-
controlled flight, as generated by the MATLAB model and tools of
Bouabdallah et al. [10, 11].

The quadrotor also shows how behavioral programming can
be used in developing hybrid control, i.e., a combination of dis-
crete logic and actuation with sensing of continuous system vari-
ables [41]. In future work we will discuss the usage of behavioral
programming in hybrid control, specifically, using fuzzy logic to
translate continuous information into discrete categories that can
be refereed to in naturally-programmed scenarios.

7. Example 3: Incremental development of a
multi-agent application

In this section we demonstrate how multiple behavioral programs
coordinated only by external events can retain much of the incre-
mentality of a single fully synchronized behavioral system. We
present the development of a multi-agent application where agents
include vehicles traveling in open terrain, and advisors affecting
the vehicles. First, we list the behaviors that are responsible for the
movement of a vehicle. Then, we add to each vehicle behaviors that
allow it to interact with external systems. Finally, again, incremen-
tally, we program the vehicle agents to react to an advisor agent
responsible for directing particular aspects of the vehicles’ travel.
The communication between the vehicles and the advisor uses the
architecture for external events described in Section 4. This small
example can be readily extended for adding additional agents (vehi-
cles, advisors) as well as new kinds of interactions among existing
agents (inter-vehicle or inter-advisor).
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7.1 Vehicle Motion
For brevity, we list only a minimalistic scenario: moving towards a
given goal. The movement is performed by the following processes.
A ticker process sends an external tick event every N millisec-
onds, as in the example in Section 5. The b-thread on_tick (not
shown) repeatedly waits for this event, samples the current posi-
tion, say, using a GPS, and broadcasts the position by requesting the
event {pos, X, Y}. This event is also a form of feeding external
information into the behavioral system. The behavior head_north
repeatedly compares the current position with the location of the
goal, and decides if to request the event of moving north or not.
Similar behaviors are responsible for moving south, west and east,
all quite obliviously of each other. The is function matches all
events of a given record type (all pos records in this case).

head_north() ->
{pos, _, Y} = bp:bSync(#rwb{wait=is(pos)}),
{_, Y1} = goal(),
if
Y < Y1 ->
bp:bSync(#rwb{request=[north]}),
move_north(); % Request granted, move north

true -> ok % Don’t move north
end,
head_north().

7.2 Enabling External Communication
The behaviors listed above will cause the vehicle to move towards
its goal uninterrupted. We would like to allow an external coordi-
nator agent to affect this movement. However, unlike in the game
and quadrotor examples, here there is no natural super-step break-
point within the internal events where the external environment can
intervene. To modify the vehicle software for creating such a break-
point we add two b-threads. One b-thread counts N1 advancement
steps of the vehicle and then sends an external event containing the
current position of the vehicle to an external process.

report(S, P, N1) ->
{pos, X, Y} = bp:bSync(#rwb{wait=is(pos)}),
S ! {pos, P, X, Y},
[bp:bSync(#rwb{wait=is(pos)}) || _ <- seq(1,N1-1)],
report(S, P, N).

Another b-thread countsN2 steps and peeks the communication
channel for any external incoming communication. If the channel
is empty the process continues.

listen(N2) ->
bp:bSync(#rwb{wait=is(pos)}),
receive E -> bp:bSync(#rwb{request=[E]})
after 10 -> ok % Timeout after 10 milliseconds
end,
[bp:bSync(#rwb{wait=is(pos)}) || _ <- seq(1,N2-1)],
listen(N).

To demonstrate a possible external command, we assume that
advisors may warn the vehicle, upon arriving at a certain line in its
northward path, that there are too many vehicles beyond that line.
To allow the vehicle to react, we add a new b-thread to the vehicle
b-node. If the vehicle crossed the line, it calls the hold function.

on_warning()->
{warn, T} = bp:sync(#sync{wait=is(warn)}),
{pos, _, Y} = bp:sync(#sync{wait=is(pos)}),
if
Y >= T -> hold();
true -> on_warning()

end.

The implementation of hold listed below blocks the movement
north, as may be requested by any b-thread - current or future, for
10 steps. The added behavior on_warning represents the policy
of the vehicle’s reaction to the warn event. It could be easily
replaced by other policies, such as blocking the movement north
until notified otherwise, or even to move southward.

hold() ->
[bp:sync(#sync{wait=[tick], block=[north]}) ||
_ <- seq(1,10)],
on_warning().

7.3 Adding an Advisor Agent
We are now ready to add advisors that will monitor and try to
affect the movement of several vehicles. For example, the following
behaviors first reports when a vehicle crosses a line, and later ask
vehicles at the line to stall if there are more than N vehicles north
of the line. The first advisor b-thread, monitor_line, deals only
with behavioral events. It waits for any vehicle position event, and
requests an event, internal to the advisor that will eventually lead to
inter-agent messages.

monitor_line(Y1) ->
{pos, P, _, Y} = bp:sync(#sync{wait=is(pos)}),
if
Y >= Y1 -> % Report crossing
bp:sync(#sync{request=[{cross, P}]});

true -> ok
end,
monitor_line(Y1).

The second behavior listed below mixes behavioral and native
communication methods. It maintains a list L of vehicles that have
crossed the bound. Each vehicle is represented by the address of
its listening process. When another vehicle crosses (i.e., its address
is not in the list), it checks if there are too many vehicles north of
the line. If so, it sends an Erlang message to the crossing vehicle.
This message is received by the listen behavior in the b-node
that controls the vehicle. For brevity, we omit the full function of
the wait clause. Figure 12 outlines the complete architecture of the
vehicles application.

monitor_crossing(N, Y1, L) ->
{cross, P} = bp:sync(#sync{wait=P is not in L }),
if
length(L) >= N ->
P ! {warn, Y1},
monitor_crossing(N, Y1, L);

true -> monitor_crossing(N, Y1, [P|L]) % Add P to L
end.

Summary In this example we demonstrated the construction of
different b-nodes, each comprised of a set of constantly synchro-
nized b-threads. The communication between the b-threads is car-
ried out according to the methodology discussed in Section 4. All
agents are incrementally programmed to communicate, interpret
each other’s messages and react as desired by the developer, only
by the addition of new, independently programmed b-threads.

8. Related Work
The approach presented here for using behavioral programming in
rich decentralized control, coexists with, complements, and lever-
ages many actor-oriented and agent-oriented concepts and mod-
els presented to-date. In comparing pure behavioral programming
(without b-nodes) to the actor model of Agha [3], we observe that
(a) generally, b-threads are not explicitly aware of each other, and
communicate not via explicit messages but indirectly using the re-
quest/wait/block idioms; (b) behavioral programming focuses on
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Figure 12. Multi-agents architecture for vehicles. The behavior
report of each vehicle sends the current position every few steps
to interested advisors. The listen behavior checks for a new
warning, and may block specific events if it receives one.

interweaving independent behaviors towards a desired sequence of
events, and is less focused on issues related to the parallel execu-
tion of any part of the independent behaviors (in fact, some im-
plementations of the behavioral execution mechanism are single-
threaded; e.g. the model-checker in [33]); (c) in behavioral pro-
gramming, asynchrony is allowed only between b-nodes, while
within a b-node, behavior coordination imposes full synchroniza-
tion (c.f., statecharts [24]). Further, In Agha [3, Chapter 6], there is
a discussion of how the problems of deadlocks and divergence are
dealt with the in the actor model, and why the problem of shared
memory is a non-issue. In Section 2 we have a similar discussion
for behavioral programming.

Behavioral programming principles have been implemented al-
ready in several environments and languages. It would be inter-
esting to explore the synergy between behavioral programming
and agent-oriented-specific languages, such as AgentSpeak and
Jason [8], 2APL [18], GOAL [35], SIMPA [46], Indigolog [9],
JIAC [9], and Axum [2]. Such synergy could emerge from inter-
facing agents and behavioral programs, from turning b-nodes into
agents and using agent programming languages to handle commu-
nications between behavioral nodes, or from introducing blocking
idioms into agent-oriented languages.

It should be noted that the proposed decomposition of complex
systems into asynchronous b-nodes, each of which being comprised
of synchronized b-threads, is targeted mainly at the logical orga-
nization of the system, towards manageable, incremental develop-
ment. Performance gains that may emerge from parallel distributed
execution are a secondary focus in the current context

In [5], Armstrong discusses the Erlang view of the world: “Ev-
erything is a process that lacks shared memory and influences one
another only by exchanging asynchronous messages”. As emerges
from the our implementation in Erlang, the great possibilities in
scalability and ease of programming stemming from implementing
b-threads with Erlang processes are obvious. As to shared mem-
ory, indeed some of our analysis here and developments such as
the BPmc model checker [33] assume that b-threads communicate
only via events. Nevertheless, the usage of other host languages
such as Java, does enable the developer to use shared memory and
related features when desired.

Agents are often portrayed with human-like cognitive capabili-
ties; e.g., Belief-Desire-Intention designs [13, 18, 45], goal oriented
agents [35], autonomous agents with mental states [49], and agents
with purpose and emotions [50]. Since the intelligence of an entity
is often described through its handling of a given scenario, based
on our experience so far we believe that behavioral programming

idioms can support the programming of rich cognitive concepts in
a simple, natural way.

In [37], Alan Kay highlights the naturalness of programming
with rules. Behavioral programming is often reminiscent of rule-
based systems but it extends the concept by allowing the ability
to easily monitor, and react to, whole scenarios without requiring
complex state management in the rules. Further, in behavioral pro-
gramming event-blocking facilitates expressiveness and behavior
composition.

Other behavior-based decomposition can be seen in behavior-
based architectures in robotics and in hybrid-control, including
Brooks’s subsumption architecture [14], Branicky’s behavioral pro-
gramming [12], and leJOS [40], (see review in [4]) which construct
systems from behaviors. Our behavioral programming approach
may serve as a formalism, implementation or possible extension,
of elements of such architectures.

The appendix of Bordini et al. [9] contains criteria for compar-
ing agent-oriented platforms and languages. It would be interesting
to check if and how the behavioral programming approach can be
assessed subject to these criteria.

A coordination mechanism similar to behavioral programming
(however without the crucial event-blocking) which also uses the
term super-step, is proposed in [44].

9. Conclusion and Future Work
We have shown that connecting behaviorally programmed nodes
using a simple messaging infrastructure, is a promising approach
to the incremental development of complex systems.

The proposed architecture and our examples may also support
a slightly different claim about behavioral programming. Compos-
ing a system purely from behavior threads raises concerns about
efficiency and possible disastrous effects of small delays, emanat-
ing from the need to frequently synchronize all behaviors. We be-
lieve that many complex systems that may be originally conceived
as purely behavioral, can be also nicely decomposed into b-nodes,
such that the run-time synchronization requirements are substan-
tially reduced. Further, we believe that this decomposition can pre-
serve the natural, incremental development and the alignment of
behavior modules with requirements.

Future work can progress in several directions: studying the im-
pact of behavioral programming in large realistic case studies; ex-
ploring ways to automatically partition large, fully behavioral sys-
tems into non-synchronized nodes; developing formal methods and
tools to verify (e.g., model-check) behavioral programs constructed
in this manner wholly or compositionally; and, leveraging behav-
ioral programming concepts in an effort to advance general decen-
tralized control metaphors.
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