
Towards Behavioral Programming in Distributed Architectures1

David Harela, Amir Kantorb, Guy Katza, Assaf Marrona, Gera Weissc, Guy Wienerd

aWeizmann Institute of Science, Rehovot, Israel
bIBM Research, Haifa Lab, Mt. Carmel, Israel

cBen-Gurion University, Beer-Sheva, Israel
dHP Labs, Haifa, Israel

Abstract
As part of expanding the implementation and use of the behavioral programming (BP) ap-
proach in a variety of languages and configurations, we tackle some of the challenges as-
sociated with applying the approach in a truly distributed, decentralized manner, where
different modules run on separate machines. BP supports the development of reactive ap-
plications from modules that are aligned with the desired and undesired scenarios of system
behaviors as described, say, in a requirements document, in an enhancement request, or a
field problem report. A key advantage of this approach is that it facilitates incremental
development where loosely coupled modules are added as requirements are introduced, and
meaningful prototype execution can be carried out from early stages of development. In
BP, each behavioral module (called a behavior thread) takes care of a separate facet of
the requirements, thus control is conceptually decentralized. However, as the underlying
principles of BP call for constant synchronization of, and “consultation” with, all behav-
ior threads, efficient implementation in a physically distributed environment is a significant
challenge on the road to broader acceptance of BP as a viable new way to develop systems.
We begin by describing an implementation of BP in Erlang, where the coordination proto-
col is implemented via message passing. We demonstrate through examples how developing
distributed systems in Erlang can benefit from BP advantages of incremental development
and alignment of the code modules with the requirements. Next, we propose general BP
design patterns (not limited to Erlang) for using BP in distributed applications, showing
how to design applications using BP without forcing full synchronization among all threads
at each step of the execution. This allows modules to run at different time scales and to wait
for external input without stalling the entire system. Finally, we propose ways to alter the
execution mechanism of BP so that execution can progress without necessarily waiting for
the synchronization of all the threads. The enhanced execution algorithm has the potential
of accelerating the distributed execution of behavioral programs.

1Preliminary versions of parts of the material in this paper appeared in D. Harel, A. Marron, G. Weiss,
and G. Wiener, “Behavioral programming, decentralized control, and multiple time scales”, Proc. AGERE!,
2011, G. Wiener, G. Weiss, and A. Marron, “Coordinating and Visualizing Independent Behaviors in Erlang”,
Proc. ACM SIGPLAN Erlang Workshop, 2010, D. Harel, A. Kantor, G. Katz, “Relaxing Synchronization
Constraints in Behavioral Programs”, Proc. LPAR, 2013.

Preprint submitted to Journal of Science of Computer Programming March 13, 2014

1. Introduction

Behavioral Programming (BP), also termed scenario-based programming, is an approach
for the incremental development of reactive systems based on decentralized control and inter-
woven modules of behavior. A basic tenet of BP is the constant cross-consultation among
parallel processes, prior to each system action. In this paper we address the challenge
of achieving the implied synchronization in physically distributed environments, avoiding
performance degradations that could put into question the viability of BP as a system de-
velopment approach. Specifically, we show that it is possible to achieve correct and efficient
behavioral execution with parallel distributed scenarios that run with hard-to-predict net-
work delays, or are clocked at very different time scales, or wait for external events that
cannot be synchronized.

The principles of BP were first introduced in the visual language of live sequence charts
(LSC) [14, 21], where parallel processes represent multi-modal scenarios of desired, manda-
tory or forbidden behavior of the system. These principles were later implemented in other
programming languages and frameworks, such as Java [23], JavaScript with Blockly [38],
SBT [35], and in the C language in the PiCos environment [42]. As part of this extension
the term behavior threads or b-threads, defined formally below, was introduced. For an exten-
sive review of the BP approach see [27]. In this paper, we begin the handling of distributed
environments by describing, in Section 2, the BP development approach as a design pattern
in Erlang [4]. Erlang was chosen because its entire architecture and development mindset is
based on decomposing the application into relatively independent parallel processes, which
indeed fits well with the basic principles of BP. We then explore how the two paradigms
coexist. We demonstrate how enabling behavioral programming in Erlang enhances the
capabilities for incremental development and how it allows alignment of the code with the
scenarios described in the requirements documents. BP will thus join and complement other
design patterns and packages in Erlang, such as gen_server or gen_fsm, aimed to assist in
coordinating distributed processes (gen_server is an Erlang package for implementing the
server of a client-server relation, and gen_fsm is a package for implementing a finite state
machine). Specifically, we propose to implement b-threads as Erlang processes. The system
is executed using an infrastructure module that uses standard Erlang message passing to
constantly synchronize and coordinate the b-threads. We also introduce a proof-of-concept
mechanism for visualizing the flow of individual scenarios coded in Erlang as self-explanatory
transition systems, aimed at improving the comprehension of applications written in this
manner. That section thus shows that the natural, incremental development facilitated by
BP applies also in the context of distributed architectures based on message passing.

The second part of the answer comes in Section 3, where we present general BP design
patterns that allow applications to deal with the challenges imposed by the requirement for
constant synchronization. Basically, in that section we describe how to design b-threads to

Email addresses: david.harel@weizmann.ac.il (David Harel), amirka@il.ibm.com (Amir Kantor),
guy.katz@weizmann.ac.il (Guy Katz), assaf.marron@weizmann.ac.il (Assaf Marron),
geraw@cs.bgu.ac.il (Gera Weiss), guy.wiener@hp.com (Guy Wiener)

2

wait for external events without suspending the entire application. We propose to decompose
the system into groups of b-threads that synchronize only internally within the groups and
use asynchronous events to communicate with each other and with the external environment,
relaxing the strict synchronization requirements. Through examples we show that these
design patterns, although somewhat constraining, retain the naturalness and incrementality
of development with BP.

Finally, the third element of the answer comes in Section 4, where we explore automatic
ways for dealing with the above challenges. Specifically, we propose enhancements to the BP
event-selection algorithm that take into account additional information about the internal
structure of b-threads. This information can be used to perform early event selection,
without necessarily waiting for all b-threads to synchronize. The non-synchronized threads
are notified of the relevant events that they have missed via a queuing mechanism, which is
provided by the BP infrastructure.

The application designs of Section 3 and the enhanced algorithms of Section 4 are lan-
guage independent, and are not restricted to Erlang. Further, they can serve as alternatives
to each other, or can complement each other in a single application, thus helping to acceler-
ate the distributed execution of behavioral programs. In Section 5 we compare and contrast
the solutions of these two sections.

In Section 6 we discuss how BP coexists with and complements actor-oriented, agent-
oriented and aspect-oriented programming, as well as other decentralized control develop-
ment approaches.

The code for the example applications as well as the infrastructure modules is available
online at http://www.b-prog.org.

2. Behavioral Programming in Erlang

In this section we introduce BP directly, without referring to prior implementations, by
describing in detail the proposed Erlang design pattern and the Erlang code module that
implements it. The subsections below follow largely the section structure used by “The Gang
of Four” for documenting design patterns[19] , including sections such as intent, motivation,
applicability, structure, sample code, and related patterns. The description of BP as an Er-
lang design pattern is followed by the main formal definitions for BP as adopted from [23, 24],
showing the same principles as composition of transition systems, in a language-independent
manner. The section then concludes with a description of a visualization tool that translates
individual scenarios coded in Erlang into drawings of transition systems, in support of the
comprehension both of the individual scenarios themselves and of their composition in the
integrated application.

2.1. Intent
We propose a design pattern called BP, and an associated module called bp (whose

operation is described in subsequent subsections), for iteratively creating a sequence of
events, where the next event is chosen with the help of the bidding protocol described

3

http://www.b-prog.org

below. The bidders are Erlang processes registered as behavior threads (b-threads). In each
iteration:

1. Each b-thread places a bid consisting of:

Requested events: events that the b-thread proposes to be considered for triggering.
Waited-for events: other events that the b-thread asks to be notified of if and when

triggered.
Blocked events: events that the b-thread forbids.

2. When all b-threads place their bids, an auction takes place: an evaluation mechanism
chooses an event that is requested by some b-thread and not blocked by any b-thread.

3. B-threads are notified of the auction’s outcome: the b-threads that requested or waited
for the event are notified and resumed.

4. Resumed b-threads can execute arbitrary computations before placing their next bid
in the subsequent iteration.

5. B-threads that were not resumed remain suspended, and their bid is considered again
when all resumed b-threads complete their computations and place new bids.

In the auction step, if there are multiple requested events that are not blocked, the design
pattern allows the designer to specify the event selection algorithm. Among the selection
techniques we have implemented to-date are priority-based selection, random selection, prob-
abilistic with reinforcement learning, and look-ahead subject to feedback regarding success
or failure. In the remainder of the paper, we assume the priority-based selection, where
b-threads are ordered subject to fixed priorities and all the requests of a given b-thread are
ordered as well. The first event that is requested and not blocked is selected for triggering.

2.2. Motivation
The motivation for proposing this design pattern is to provide a simple mechanism,

through which systems can be constructed from software components, each of which con-
trols and coordinates a particular aspect of desired system behavior. Such construction
complements the traditional approach to software development where program modularity
revolves around objects and data-structures, and simplifies the programming of required
behaviors whose intuitive description involves multiple objects and is not anchored on one
“classical” object. Using events as markers of system behavior, and applying the proposed
bidding mechanism for choosing events, the resulting integrated system behavior is an event
sequence that reflects, at each step, every b-thread’s view of how the system should proceed.

The BP design pattern helps programmers maintain b-thread independence by unifying
the occurrence of events requested by several b-threads into a single occurrence, and by the
fact that b-threads can block events regardless of whether other b-threads request them or
not. As in standard publish-subscribe protocols, b-threads do not communicate with each
other directly, and they are not notified of events that they do not request or wait for.

4

2.3. Applicability
BP is best used when the decomposition of system’s behavior into independent scenarios

is natural. For example, in automated transportation, it is natural to separate navigation,
speed control, and stabilization into parallel scenarios, and in a game-playing application
each game rule and each player strategy can be described in a separate scenario. Since inter-
esting system behaviors can be observed in early stages of software design and specification,
with only a few b-threads, BP is valuable in experimenting with for obtaining feedbacks
from stakeholders and validating the understanding of requirements.

More generally, the BP design pattern is suitable for incremental development, as it
allows adding and removing system behaviors with little or no change to existing code (if
that code was developed with BP).

BP is also applicable in end-user customization, where end -users can add or remove
behaviors in an existing application, say, to simplify activities or avoid mistakes, by adding
b-threads that handle specific sequences of events.

Clearly, the apparent ease of incremental development comes with a price. For example,
after a long period of development an application may appear as a loosely coupled collec-
tion of base scenarios, exceptions and exceptions to exceptions. It is then the role of the
developers to determine whether to add a new requirement as a new scenario or to modify
existing scenarios, and to decide when restructuring is desired. Another concern is the secu-
rity controls over incremental development and end-user customization. With idioms such
as priorities and event blocking at their disposal, incremental additions can have vast effects
over the behavior of the application. Developers may wish to certify sources of such updates,
or to introduce explicit permission mechanisms controlling what newly added b-threads are
allowed to do.

There are, of course, cases where BP may not be the first choice. One such situation
is when there are hard-to-achieve performance constraints for which the general solutions
offered here and elsewhere are not sufficient, and application-specific and/or optimized al-
gorithms are needed. Another case is where the requirements scenarios are already provided
as a well documented algorithm, or can be readily combined into one easy to maintain
scenario. Consider for example a robot navigating a maze using the well-known left-wall
rule. In [23] it is shown how the robot’s behavior can be decomposed into three scenarios
(described in priority order): (1) repeatedly wait for a move forward and turn left, (2) re-
peatedly move forward (3) repeatedly turn right. While this decomposition is attractive in
that it avoids any conditions in the scenarios, one may argue that it is excessive, and that
the single scenario ‘repeatedly do the following: turn left; if the robot is facing a wall turn
right; otherwise, move forward’ is preferable. In fact, there may be cases where replacing
the parallel coordinated b-threads with a sequential procedure containing a few conditions
may provide the necessary performance advantage. In development scenarios where incre-
mentality is not needed, the arguments for using BP are further weakened. Nevertheless, we
are interested in finding ways for optimizing performance of parallel execution of behavioral
scenario bringing it as close as possible to that of more standard applications. Techniques
include, among others, relaxing the synchronization requirements (as described in Sections 3
and 4), optimizing the data structures and algorithms for carrying out synchronization, de-

5

signing operating systems and hardware geared explicitly to efficient execution of behavioral
programs, and, synthesizing single-threaded controllers from behavioral specifications with
parallel scenarios.

As for BP implementations in Erlang, it should be noted that Erlang is able to handle
numerous processes [4], and indeed, in our test of thousands of Erlang b-threads randomly
exchanging events at a high rate, we did not observe slowdown due to the required coordi-
nation.

2.4. Structure
In the BP design pattern a system is constructed from independent b-threads that syn-

chronize constantly and communicate indirectly using agreed-upon events, with the help of
the coordination module.

2.5. Participants
In this design pattern, the participants are:

• The b-threads: The work-doing processes, each responsible for an aspect of the appli-
cation/system behavior. Repeatedly, they

– bid for the next event by sending a synchronization request to the BP con-
troller with the following parameters: (a) requested events, (b) waited-for events,
(c) blocked events;

– wait until the BP controller sends them an event they are requesting or waiting
for.

• The BP controller: A central server process. Repeatedly, it

– receives synchronization messages from b-threads until all b-threads are synchro-
nized,

– decides on the next event,
– sends the next event to the b-threads requesting it or waiting for it.

2.6. Collaboration
The collaboration between the BP controller and the b-threads is as follows (also depicted

in Figure 1):
1. The BP controller is initialized.
2. B-thread processes are spawned and the method bp:add is called to register them at

the controller.
3. The BP controller is started.
4. B-threads call bp:bSync to send their requests to the BP controller, and are suspended

until they receive a response from the controller.
5. The BP controller waits until all the active registered b-threads send their requests.

6

6. The BP controller decides on the next event and sends responses to the b-threads
requesting it or waiting for it.

7. The b-threads that receive the new event continue their computation until they call
bp:bSync again.

8. When a b-thread exits, it is deregistered from the BP controller.

main BP controller

init

b-thread

P=spawn()

remove(P)

add(P)

bSync(#rwb{request, wait, block})

 All active b-threads

{bSync, e}

 All b-threads waiting for e

 Event selection loop

{exit, P}

X

Figure 1: A sequence diagram depicting the collaboration between the BP controller and
the b-threads. See detailed explanation of the steps in the text.

2.7. Code structure
Our implementation of the BP design pattern is based on a supporting module, bp. The

bp module exports the following functions:

init/0 : Initialize the BP controller.

add/2 : Register a process with a given priority.

start/0 : Start the controller.

7

sync/1 : Send a synchronization request that includes requested, waited-for and blocked
events to the controller and wait until one of the requested or waited-for events is
selected. This function takes a record as an argument. The record definition is
-record(rwb, {request, wait, block}), where rwb is the chosen record name and
with record fields matching the respective event sets, each having an empty list as
its default value. For example, the code below invokes bp:bSync, passing to it a rwb
record (referenced as #rwb), where it requests the event E1, waits in addition also for
E2 and E3, and blocks E4 until one of the events E1,E2, or E3 occurs:
bp: bSync (# rwb{

request =[E1],wait =[E2 ,E3], block =[E4]})

remove/1 : Deregister a process from the controller.

It is the programmer’s responsibility to initialize the bp process and spawn the b-threads
as processes. There are no constraints on the calculations that b-threads perform before or
after the calls to bp:bSync. However, when b-threads perform heavy calculations or wait for
external events, they affect synchronization of all participating b-threads. Design patterns
for addressing this kind of issue are presented in Section 3.

2.8. A simple example
To illustrate this coding technique, consider a system for controlling the water level

in a tank with hot and cold water sources (the example is borrowed from [26]). One of
the b-threads in the system requests the event addHot five times. Another b-thread adds
five quantities of cold water, by similarly requesting the event addCold five times. After
observing a run in which the five addHot events occurred before the first addCold event, a
new requirement is introduced by the developer, to the effect that water temperature should
be kept relatively stable. The developer then adds a b-thread that interleaves addHot and
addCold events, using the event-blocking idiom, by repeatedly performing the steps of first
waiting for addHot while blocking addCold and then waiting for addCold while blocking
addHot. In this example, the interleaving b-thread was added without changing existing
b-threads and without specifying in the new b-thread direct interactions with the existing
ones.

The code below illustrates how to implement this system in Erlang, using the bp module.
Detailed explanation of the code then follows.
requestFiveAddHotEvents () ->

[bp: bSync (# rwb{ request =[addHot]}) || _ <- seq (1 ,5)].

requestFiveAddColdEvents () ->
[bp: bSync (# rwb{ request =[addCold]}) || _ <- seq (1 ,5)].

interleave () ->
bp: bSync (# rwb{wait=[addHot], block =[addCold]}),
bp: bSync (# rwb{wait=[addCold], block =[addHot]}),
interleave ().

display () ->
Event = bp: bSync (# rwb{wait =? ALL}),

8

io: format (" Event : ˜w˜n", [Event]),
display ().

test () ->
bp:init (),
bp:add(spawn (fun requestFiveAddHotEvents /0) , 1),
bp:add(spawn (fun requestFiveAddColdEvents /0) , 2),
bp:add(spawn (fun interleave /0) , 3),
bp:add(spawn (fun display /0) , 4),
bp: start ().

and the resulting event log is
Event : addHot
Event : addCold
Event : addHot
Event : addCold
Event : addHot
Event : addCold
Event : addHot
Event : addCold
Event : addHot
Event : addCold

The behavior threads are implemented as four functions that are spawned to run in
separate processes. The b-thread requestFiveAddHotEvents, for example, calls sync five
times. The loop is implemented using Erlang list comprehensions where the expression
[X || _ <- seq(1,N)] is shorthand for “perform X N times”. In each iteration of the loop
the process passes addHot as the only requested event and blocks nothing. The b-thread
requestFiveAddColdEvents is similar, and the b-thread interleave repeatedly waits for
and blocks alternating events. The infinite loop of this b-thread is implemented by a recursive
call to itself. The wait and block clauses may also use filter functions for events instead of
an explicit list. For example, the macro ?ALL brings a filter for all possible events.

The display behavior thread waits for all events and for each received event it generates
textual output for illustration purposes. It then invokes itself recursively. In real applications
this b-thread would be replaced by an actuator that translates the events into physical
outputs, such as tap opening (see more about sensors and actuators in [38] or in [5] in this
journal issue).

Note also the second parameter of the bp:add function, which represents the priority of
the b-thread, as discussed in Section 2.1. To appreciate the role of priority, consider, for
example, the water tap application without the interleave b-thread. Because the priority
of requestFiveAddHotEvents is higher than that of requestFiveAddColdEvents, we would
get the five addHot events before the five addCold Events.

2.9. Formal Definitions
For completeness of the exposition of BP we include here the formal definition of behav-

ioral programming as transition systems.

2.9.1. B-Threads
In the following definitions we implicitly assume a given set Σ of events. A behavior

thread (b-thread) BT is defined to be a tuple BT = 〈Q, q0, δ, R,B〉, where Q is a set of
9

states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a transition function, R : Q → P(Σ)
assigns to each state a set of requested events, and B : Q→ P(Σ) assigns to each state a set
of blocked events.

Note that in these definitions, a b-thread’s transition rules are given as a determinis-
tic, single valued, function δ, assigning the next state given a state and an event triggered
in that state. A natural variant in which the transitions are nondeterministic, is defined
analogously; see Appendix C. Since behavioral programs may contain rich functionality be-
yond their state transitions, the nondeterministic transitions can be a useful abstraction
for describing transitions that are based on auxiliary information. For instance, consider
a b-thread currently in state s1, waiting for event e1 which represents a temperature mea-
surement by a sensor. When e1 is observed, the thread transitions into either state s2 or s3
based on the actual value of the measurement. The abstraction of the transition as nonde-
terministic, is thus a convenience, where the alternatives include distinguishing events with
different temperatures as totally different events, or adding guard conditions to the transi-
tions, as is common in other formalisms, such as statecharts [20]. Abstracting transitions
as nondeterministic is also useful when a thread chooses the next state at random; say, to
create a mix of certain actions.

Also note that in the formal definition of a b-thread, there is no need to distinguish
between events that are waited-for by the thread, and those that are not. In any of the
thread’s states, an event that is not waited-for can be captured by a transition that forms
a self-loop; i.e., a transition that does not leave the state.

2.9.2. Behavioral Programs
Observe a set {BT 1, . . . , BT n} of b-threads, where n ∈ N and each BT i =

〈Qi, qi0, δ
i, Ri, Bi〉 is a distinct b-thread. A behavioral program P comprised of these threads

is a deterministic labeled transition system (LTS) [33], defined as follows. P = 〈Q, q0, δ〉,
where Q := Q1 × · · · × Qn is the set of states, q0 := 〈q1

0, . . . , q
n
0 〉 ∈ Q is the initial state,

δ : Q × Σ → 2Q is a deterministic transition function (i.e., one whose range includes only
singletons and the empty set), defined for all q = 〈q1, . . . , qn〉 ∈ Q and a ∈ Σ, by

δ(〈q1, . . . , qn〉, a) :=

{ 〈δ1(q1, a), . . . , δn(qn, a)〉 } if a ∈ E(q)
∅ otherwise

Here E(q) = ⋃n
i=1R

i(qi) \ ⋃ni=1B
i(qi) is the set of enabled events at state q.

An execution of the behavioral program P is an execution of the induced LTS. The latter
is executed starting from the initial state q0. In each state q ∈ Q, an enabled event a ∈ Σ
is selected for triggering if such an event exists (i.e., an event a ∈ Σ for which δ(q, a) 6= ∅).
Then, the system moves to the next state q′ ∈ δ(q, a), and the execution continues. Such an
execution can be recorded as a possibly infinite sequence of triggered events, called a run.
The set of all complete runs is denoted by L(P). It contains either infinite runs, or finite
ones that terminate in a state in which no event is enabled, called a terminal state.

As noted in subsection 2.1, when multiple events are requested and not blocked, the
semantics does not specify which one will be chosen and a variety of techniques can be

10

implemented. Further, in Section 3.2 we discuss why the chosen semantics does not allow
the simultaneous triggering of multiple events.

2.10. Visualization
The bp module can work with main programs and b-threads, regardless of the structure

of their code, as long as they use the interface methods described above. Nevertheless, as
the b-thread in fact implements a transition system, it is natural to try and create a mental
image of this transition system. The resulting representation of the logic can then be useful
to developers and other stakeholders in maintaining the software of individual b-threads
or in thinking about the collective execution of a set of b-threads. To this end we have
developed a proof-of-concept tool (a module named bp_vis) that automatically produces a
visual representation of a b-thread’s behavior as a transition system.

The code visualizer assumes that the code is structured as a state machine, following the
method described in [2]. The code for each b-thread is contained in a separate module, and
the states of the b-thread are represented as functions in the module. The function start is
the first state of the b-thread. The body of each function associated with a b-thread state
is written as follows:
case bp: bSync (# rwb {...}) of

x -> state1 ();
y -> state2 ();
...

end.

The function body consists of a case statement where the evaluated expression is a call
to bp:bSync, and where each clause maps the returned event to another function call, which
represents transitioning into the next state. The diagram is generated as a Graphviz file
(see http://graphviz.org), with the following format:

• State functions appears as ellipses with multi-line labels. The first line is the function
signature and the subsequent lines show the content of the request, wait and block
arguments of the call to bp:bSync in the state function.

• An edge from ellipse A to ellipse B appears if one of the clauses in the case statement
in the state function A is a function call to B.

• Each edge has a label “Event (when Guard) / Call”. The Event is the head of the
case clause whose body is the function call to B. The Guard is the guard part of
the head of the clause, which is optional. The call is the exact function call to B,
including arguments.

• If one of the state functions is called “start”, it is emphasized by a small arrow,
emanating from a black dot.

For example, suppose that some device can print, scan, send a fax and stop. Consider
the following single b-thread:

11

-module (printjob).
-compile ([{ parse_transform , bp_vis }]).
-include ("bp.hrl").
-define (LIMIT , 3).

pending (N) ->
case bp: bSync (# rwb{ request =[print],

wait =[print , scan , fax],
block =[stop]}) of

print -> working ();
_ when N < ? LIMIT -> pending (N+1);
_ when N >= ? LIMIT -> idle ()

end.

working () ->
case bp: bSync (# rwb{wait =[finish],

block =[stop]}) of
finish -> idle ()

end.

idle () ->
case bp: bSync (# rwb{wait =[stop]}) of

stop -> ok
end.

This module has the following behavior. It tries to print three times. If the printing
starts, it waits for it to end. If it fails more then three times, it gives up. When waiting
for printing, it prevents the machine from stopping. The output of the visualization tool for
this module is depicted in Figure 2. Since this b-thread does not have a designated start
function, the diagram does not include a corresponding initial state arrow.

����������
	�
���
���	��
�

���
���	��
����������
��������
���

������������
����������!�"�

��	������
���
���������
��������
���

�	��

��	������

������
���
���
���

���������#���
������

������
������

Figure 2: Visualization tool output. The transition diagram of a single b-thread

As another example, we developed a behavioral application in Erlang for playing Tic-
12

Tac-Toe. Figure 3 illustrates two b-threads of this application.

�������
���	
����
�
����������

�����������
���	
������
��������
�

������
�����������

������
�������

(a) Enforce Turns

������������	
��
�����������
�������������	�
������

��
������������	
�����

�������������������
��
����������	��������

�
����
����
��
���
�������������������

(b) Detect Win

Figure 3: Visualization of sample b-threads in an Erlang application for playing Tic-Tac-
Toe. Two players, X and O, try to complete a line with marks of Xs and Os on a 3 by 3 grid.
In the b-thread enforce_turns, AllO and AllX are lists of all the O events and all the X
events, respectively. Turn enforcement is achieved by alternately blocking all events in one
set while waiting for the events in the other. An instance of the detect_win b-thread is
spawned for each of the six permutation of the three events that comprise one of the eight
winning lines (3 vertical, 3 horizontal, and 2 diagonal) for each of the two players (yielding
a total of 96 instances).

2.11. Consequences
In this subsection we discuss some (possibly negative) consequences and implications of

the usage of BP, and ways to mitigate them.
Behavioral programming is based on consensus: It requires all participating processes to

agree on the next step. It thus requires a synchronization point for all b-threads that are
not waiting. To exit the blocking call to bp:bSync, each active b-thread must wait until
all other active b-threads call bp:bSync. Although this is a reasonable requirement for an
agreement protocol, a specialized protocol for a specific problem can be more efficient.

Reaching an agreement also requires sharing information between processes. In our
implementation, we use a central process (the BP controller) to collect and handle the
requests from all participating b-threads. This process is thus critical to the operation of
the system. In mission critical real-world systems, special attention should be given to such
potential single-point-of-failure.

Several properties of the BP architecture and its semantics can be exploited in design-
ing the desired recovery capabilities, especially when combined with Erlang/OTP built-in
recovery facilities. First, we observe that the state of the BP controller that must be saved
or made redundant to enable recovery is quite minimal. It consists of the most recent dec-
larations of all the b-threads that are presently at a synchronization point. In fact, in the

13

absence of redundancy and state saving, a simple protocol can be established, by which a
recovered BP controller inquires of all synchronized b-threads as to their most recent dec-
larations of requested, waited for and blocked events. As to recovering a failed b-thread,
all standard ways of saving a process’s state during execution and using system restart and
recovery capabilities, are obviously available. In addition, one way to restore the state of
a restarted b-thread that is application agnostic can be as follows: During the run, make
sure that the log, or trace, of triggered events is saved; start a failed b-thread at its ordi-
nary initial state; run it in a closed “sandbox”, such that it does not interfere with other
b-threads; execute it in “monitoring mode”, i.e., interpret all its requested events only as
waited for; select at each synchronization point the event that was selected in the real run,
and feed it to the recovered b-thread, until the trace is exhausted. The restarted b-thread
is now in synchronization with the rest. Another recovery option is to have b-threads de-
signed specifically for this purpose. That is, when such a b-thread starts, in an analogy to
a player joining a soccer game in the middle, it explores the present configuration, and/or
some limited recent history of events, and determines its own desired state.

2.12. Example: Coordinated sequential processing
To illustrate one of the ways in which the BP design pattern can be used, we discuss in

Appendix A an example involving applications that require bulk processing of a large num-
ber of records to perform business operations, and where multiple, independent sequential
processes need to be interwoven.

2.13. Known uses and related design patterns
The event-based and state-like nature of BP makes b-threads similar to the generic finite

state machine (gen_fsm) module (http://www.erlang.org/doc/man/gen_fsm.html) from
the Erlang standard library. Both the gen_fsm and bp modules deal with a state-based
reaction to events. However, there are several differences between the two:
• gen_fsm does not provide the option to block events.
• gen_fsm does not deal with coordinating several instances.
• gen_fsm does not distinguish between events that are waited for and other events. It

will handle any call to gen_fsm:send_event.
One can view the bp module as an extension of gen_fsm, designed for coordinating several
processes.

The synchronization and event selection driven by the bp module uses and hides the
robust underlying Erlang message passing, thus creating the higher level of abstraction in
the form of behavioral events. Such hiding of the underlying messaging is done also in many
other Erlang generic modules.

In addition to the general capabilities and broad usage of Erlang in concurrent process-
ing, particular attention to programming independent behaviors in Erlang can be observed
in systems such as ERES rule-production [45] or eXat agent programming [44]. What
distinguishes b-thread synchronization in our pattern from the classical programming of
concurrent behaviors in Erlang is the ability of one process to prevent the occurrence of an

14

http://www.erlang.org/doc/man/gen_fsm.html

event requested by another process, without any party being explicitly aware of even the
existence of the other.

3. Application Designs for Dealing with Asynchrony and Different Time Scales

In this section we propose design patterns for dealing with the synchronization challenges
arising from the distributed orientation of Erlang, and which would exist in other languages
too. The solutions are mostly adapted from established techniques and designs — some
general, e.g., agent-based programming [30], and some specific to BP, notably including the
Interplay method [6] for connecting multiple LSC Play-Engines via external events. Our
goal is to benefit from the ability to carry out natural and incremental development in BP,
while accomplishing a level of decentralization, and possibly physical distribution, where not
all behaviors need to be fully synchronized.

3.1. How short is your zero time?
The collective-execution mechanism of BP calls for the synchronization of all b-threads

prior to triggering an event. This, combined with event blocking, facilitates the incre-
mentality and the ability to handle different aspects of behavior separately, as afforded by
BP. However, such synchronization implies that system performance is constrained by its
“weakest link”; i.e., by the time it takes, at each step, for the slowest behavior to reach the
synchronization point.

Thus, In the BP design pattern there is a convention that b-threads are allowed to take
only a small amount of time between synchronization points. This is a rather standard
convention. It is used, e.g., for listeners in GUI frameworks and interrupt handlers, where
callback routines are expected to complete quickly. Also, in the logical execution time (LET)
approach proposed in [28], the design pattern relies on a “fast execution” assumption for
interfacing with a physical environment in a deterministic manner.

The question of how small the processing time should be may sometimes be crucial. In
way of dealing with this issue, and since smallness is relative, an application may contain be-
haviors that operate at different time scales. Examples include (1) handling external events
whose source is not synchronized with the application; (2) interacting with (and waiting
for) resources whose response time (including communications) is slower than the internal
event-rate of other behaviors; and (3) a physically distributed multi-agent application, where
constant, mandatory, full synchronization is counter-intuitive or impractical. Implementing
solutions for these cases in the context of BP is exemplified in Sections 3.4, 3.5, and 3.6,
respectively.

A related, and often-asked, question regarding BP is: “what happens if a b-thread never
reaches its next synchronization point, thus stalling the entire application?”.

This is indeed is a real concern. However, there are several approaches to addressing
it. One kind of answer is closely related to the architecture proposed in Section 3.2 for
handling external events: design the b-threads so that they do not wait for external, non-
behavioral events, and do not perform heavy calculations, thus eliminating a major source

15

of potential delay, and, of course, run the system on an infrastructure that guarantees suffi-
cient allocation of processor resources to all b-threads. Another approach (elaborated upon
in Section 3.3) is based on dividing the application into groups (nodes) of synchronized
b-threads that communicate with each other only asynchronously, thus limiting the inter-
b-thread dependencies. Yet another partial solution to the problem of indefinite delay in
b-thread synchronization comes from the relaxed synchronization design approach described
in 4. Still, we should remember that a situation where a b-thread never reaches (or is signif-
icantly delayed in reaching) its next synchronization point is often a “normal” application
bug like any other. The situation may be compared to that of a standard (non-BP) appli-
cation, where an infinite loop in a high priority process causes it to monopolize all system
resources, stalling other processes. Tools like the model checker presented in [24] and the
trace visualizer presented in [16] can help in catching such bugs.

3.2. Handling external events
The external environment is an essential element in the design of reactive systems. It is

the source of the events that the system needs to react to, and is the target of the actions
taken by the system. The actual occurrence of events in the environment, e.g., temperature
rising, cannot be synchronized with the processing done by the system, and the arrival of
such events, e.g., when and how a sensor reading is processed, requires special handling. In
our case, for coordinating the synchronized processing of BP with an external environment,
we propose a solution based on the super-step approach, as in statecharts [22] (and which is
used also in, e.g., LSC execution [21]) and on the logical execution time concept used, e.g.,
in GIOTTO [28].

This solution is implemented by the BP infrastructure, assuming only that the applica-
tion complies with simple rules, without application-specific programming. Specifically, we
propose that behavioral program execution be divided into cycles, called super-steps, and
external events are introduced only at the beginning of a super-step. The philosophy is
that all internal events in the body of a super-step are perceived as happening in the same
physical time unit but they are nevertheless ordered; i.e., there is a sequence of events (not
associated with meaningful time-stamps) between the beginning and end of each super-step
(c.f. hybrid time-set [37]). Thus, they are viewed as all taking place in zero time.

According to this convention, it is sufficient to consider a real-world occurrence of an
external event only in relation to when super-steps begin and end; i.e., only external events
have meaningful time-stamps. When sampling times need to be equidistant, as is the case
when implementing algorithms for certain kinds of real time systems and in control theory,
one can program the system such that all super-steps take a constant amount of time, by
adding delays (under the assumption that the super-step’s internal events runs fast enough
to always complete within the time frame).

One initial approach to the implementation of the above philosophy is to have a non-
behavioral process handle the external event by dynamically creating a lowest-priority
b-thread that will join the next synchronization point and request a corresponding be-
havioral event. While this approach is general and simple, it may — depending on the

16

implementation platform and language — present performance issues related to the creation
of threads and processes.

We thus propose the following design:

• External events are first captured by non-BP processes and are placed in a common
queue, using standard programming constructs.

• A lowest priority b-thread repeatedly requests a predesignated event, called, say idle,
which by convention is never blocked by other b-threads (which can be enforced).
Since this event can occur only when there are no other events that are requested and
not blocked, its triggering marks the end of a super-step.

• A designated b-thread repeatedly waits for the event idle, and then “peeks” at the
external event queue using standard programming constructs. This peeking may be
slightly delayed, as the queue may be temporarily locked by other processes during
an atomic operation. However, this kind of delay is acceptable, since no internal
events other than idle can become enabled in the next synchronization point. If
no new external event is found, the b-thread proceeds to its next iteration where it
waits for another idle event. If an external event is found, the b-thread requests a
corresponding behavioral event that represents the external one, and proceeds to its
next iteration, waiting again for the idle event.

Actually, the first and third points above can be replaced by allowing a single b-thread to
wait for an idle event, and then, wait for external events using standard (non behavioral)
language constructs, such as receive in Erlang or wait in Java. This will in fact stall the
process and cause the next synchronization point to be delayed until the waiting process also
synchronizes, which will happen only after the next external event arrives. It does not stall
the system’s operation, however, since by convention no internal events can be triggered
between the idle event and the next external event. The three-point design above allows a
richer variety of actions in separate b-threads, such as super-step logging, deadlock handling,
blocking of external events, and additional peeking at external event queues, while replacing
the first two points as suggested may be simpler and more suitable for small applications.

This approach, based on logical execution time, also explains why the BP semantics does
not allow for simultaneous triggering of multiple events. On the one hand, allowing only a
single event to be triggered at each synchronization point makes it possible for every b-thread
to react to the triggered event and change states as needed; e.g., for subsequent requesting,
waiting, or blocking events. Debugging and formal analysis of this semantics is much simpler
than when simultaneous triggering is allowed. On the other hand, event sequences that do
not require such strict sequencing, possibly benefiting from simultaneous event triggering, do
not generally suffer from the sequencing, as all the events indeed occur within the same time
slot, marked by two time ticks or two other external events. The relaxed synchronization
techniques described in Section 4 also assist in enabling the desired parallel execution, when
applicable. We should also note that when, for some reason, simultaneous event triggering is
desired, it can be partially implemented in application-specific ways by enriching the event

17

objects to represent sets of more primitive events. Finally, if desired, an implementation of
BP can easily allow for simultaneous event triggering, for example by triggering all (or some)
of the events that were requested and not blocked, notifying all b-threads that requested or
waited for any of them, and returning to each of the notified b-threads either the entire set
of triggered events or just those relevant to it.

3.3. Accommodating behaviors at different time scales
Many applications that include behaviors of different time-scales can be decomposed as

follows. The application is divided into groups of behaviors, with all behaviors in a group
being on the same time-scale. If desired, such groups can be further broken down into sub-
groups; e.g., by physical components or specific relevant events. Note that the behaviors in
each such sub-group are, by definition, of the same time-scale. In the context of BP we call
such a group of behaviors a behavior node, or b-node, for short. The work shown here is a
continuation and generalization of the InterPlay tool that was designed to allow coordinated
execution of multiple LSC and statechart specifications [6].

All the b-threads in each b-node run in a synchronized manner, as described in Section 2.
In actuality, the b-threads in a b-node may run on multiple cores or, when the time scale
allows, on multiple computers, where the execution environment (e.g., native operating sys-
tem, JVM, Erlang, etc.) facilitates the constant inter-b-thread synchronization implemented
in the BP collective-execution mechanism. Here we focus on inter-b-node coordination and
not on intra-b-node parallelism.

Each event generated by the environment is processed by a designated b-node, as de-
scribed in Section 3.2. Communication between b-nodes is carried out only through external
events, which can be sent and received by all behavioral programs in a consistent and stan-
dard way, as follows:

• Send: In each b-node, a designated b-thread waits for certain internal behavioral
events, and then transmits a corresponding external event to the desired destination,
or broadcasts it to all other b-nodes using some (non BP) protocol.

• Receive: Per the design in Section 3.2, for each b-node, a designated non-behavioral
process listens to all external events directed at that b-node, and places them in a sin-
gle queue associated with this receiving b-node. A designated b-thread in this b-node
peeks at the queue at the end of each super-step and requests a corresponding behav-
ioral event. B-threads that depend on external events are programmed (behaviorally)
to wait for the corresponding behavioral event.

Note that the result of an incoming external event could be that some of the b-node’s
b-threads decide to block certain events internal to the node, until some specific other
external event arrives. This allows one b-node to cause the blocking of events in other
b-nodes. Since blocking is central to the incrementality afforded by BP, the ability to
propagate event-blocking is an important feature of the proposed decentralized architecture.

This design for communication between behavioral programs reflects several choices that
we believe are common and natural in development situations. First, consider a b-node busily

18

working autonomously. When an external event arrives, which is expected to change the
behavior of the node, it is acceptable that one or more events of the b-thread’s autonomous
behavior be triggered before the new course of action is taken. This form of inertia is
commonly observable not only in the physical world and in typical human handling of
interrupts (“please just let me finish sending this email, and I’ll be right with you”), but
also in the delays tolerated when sensing events or handling interrupts in computer systems.

The second choice is that even a node that wishes to be extremely attentive to ex-
ternal events should not be synchronized with the source of those events, the way, e.g.,
that b-threads are synchronized within a b-node. Consider a corporation, and a manager-
employee analogy for the relationship between two b-nodes. Employees who follow their
managers everywhere in order to be ready to respond quickly to new requests may be ineffi-
cient and disruptive. Put differently, excessive synchronization between b-nodes can greatly
increase the computational overhead in the system. We believe that the proposed design
nicely balances the use of autonomous behavioral components with efficiency. In particular,
we expect that the delay in reacting to messages will be tolerable in a computer application
that is properly decomposed according to behaviors (similarly to the case of a corporation).

We believe that this combination of (1) synchrony within a b-node, (2) asynchronous
communication between b-nodes, and (3) translation of asynchronous messages and events
back into behavioral events in each receiving b-node, allows one to retain the natural and in-
cremental application development offered by BP, while overcoming some of the performance
constraints associated with synchronizing many b-threads.

3.4. Example 1: Synchronizing with an external environment
To demonstrate how a behavioral program handles external events, we describe the

architecture and implementation of a modest computer game. Specifically, we decompose
the game into separate, independently programmed behaviors (all in a single b-node), and
show how external events are introduced at the end of super-steps.

In this game, the goal is to land a rocket which descends vertically from the top of the
screen back on its landing pad which is located on the ground, and moves left or right at
random. The player can nudge the descending rocket left or right (but not upwards), and
can fire a short exhaust burst to delay the fall. The player wins if the rocket ends up on the
landing pad, and loses if it hits the ground. Figure 4 shows the player interface of the game.

3.4.1. Game architecture
We implemented this game in Erlang, using WxErlang as the GUI toolkit, and the bp

module as the behavioral programming library. The application consists of the following
processes:

• The rocket and landing_pad maintain and draw the positions of the rocket and the
landing pad as determined by rocket and pad motions.

• A user-interface controller, implemented by extending the generic module wx_object,
reacts to the player’s clicking rocket-control buttons by sending native (not behavioral)
events user_right, user_left and user_up to the queue process.

19

Figure 4: The computer game. The rocket, shown on the top part, should land on the pad,
shown at the bottom. The player may move the rocket sideways, or fire a short burst that
delays the rocket’s descent.

• The ticker sends the native event tick to the queue process every N milliseconds.

• The idler b-thread detects the termination of super-steps by repeatedly requesting
the idle event, while running at the lowest priority.

• The queue b-thread waits for the idle event, reads (using receive) its native message
mailbox (waiting for a message if the queue is empty), and broadcasts the external
event to the other b-threads by requesting a corresponding behavioral event using
bp:bSync. This is done with the loop:
dispatch_loop () ->

bp: bSync (# rwb{wait=[?IDLE]}),
receive E -> bp: bSync (# rwb{ request =[E]}) end ,
dispatch_loop ().

• B-threads like on_tick or go_left enforce the game rules and control the actual
movement of the rocket and the landing pad. These are described in further detail
below.

These processes are depicted in Figure 5.

3.4.2. Game behaviors
Each behavior matches a single requirement, and is implemented as an Erlang function.

The behavior functions are spawned to create the various b-threads. For readability, we tried
to keep the code of the functions simple and straightforward. All the events are atoms. Each
function fulfills a single role. We deliberately avoided generalizing several similar functions
into a single parameterized function, in order not to burden the reader with a non-trivial
design. Functions that were similar to ones listed below are omitted, in favor of a textual
description.

The first behavior reacts to events representing the user’s actions by requesting events
representing rocket moves in the desired direction. For example, it translates the event

20

queue b-thread1 . . . b-threadn

behavioral events
for player’s actionsidler

idle

behavioral events

b-node

GUI

ticker

player’s ac-
tions

ticks

landing pad

rocket

motion
commandsredraw

Figure 5: Architecture of the rocket game application. Solid arrows mark native Erlang
messages. Dashed arrows mark triggering and waiting for behavioral events. Boxes are
processes. The processes inside the b-node box are b-threads.

user_left, to left. (In the general case the translation may be more complex, e.g., re-
questing several events per user command.)

The following set of behaviors is responsible for actuating the movement of the rocket.
The go_left b-thread describes how the rocket is moved to the left. The scenario repeatedly
waits for the behavioral event left, and once triggered (i.e., the operation is allowed), it
calls the function rocket:left(). Moving right or down are similar.
go_left () ->

bp: bSync (# rwb{wait=[left]}),
rocket :left (),
go_left ().

The on_tick behavior below repeatedly waits for a tick and then requests the event
representing the rocket moving down, while also waiting for tick events in order to detect
the case where the down event could not be triggered.
on_tick () ->

bp: bSync (# rwb{wait=[tick]}),
bp: bSync (# rwb{ request =[down], wait=[tick]}),
on_tick ().

In addition to moving the rocket sideways, we also want to allow the player to simulate
an exhause burst that delays the fall, by suspending the movement for one turn. The
go_up behavior responds to the up event, and suspends the rocket by blocking its downward
movement until the next tick.
go_up () ->

bp: bSync (# rwb{wait=[up]}),
bp: bSync (# rwb{wait=[tick]}),
bp: bSync (# rwb{wait=[tick], block =[down]}),
go_up ().

21

We would now like to add some restrictions to the game. The following behavior prevents
the rocket from moving beyond the left-hand side of the game board.
on_left_bound (X) -> % X: rocket ’s horizontal location

if
X == 0 ->

bp: bSync (# rwb{wait=[right], block =[left]}),
on_left_bound (1);

true ->
case bp: bSync (# rwb{wait=[left , right]}) of

left -> on_left_bound (X -1);
right -> on_left_bound (X+1)

end
end.

When the rocket is at the left bound it blocks the left event until the rocket moves
right. Otherwise the b-thread tracks the rocket’s location based on the left and right
events it observes.

The right-hand border is similar, with the 0 coordinate being replaced by some limit
M , and changing event names accordingly. Preventing the rocket from moving below the
bottom border is done by checking the vertical, rather than horizontal, position of the rocket
and blocking the down event when 0 is reached.

To make the game less trivial, we want to prevent the rocket from making too many
maneuvers. To this end, we limit its movement to at most one step left or right per turn. It
waits for a tick and any move. After a move, other moves are blocked until a tick occurs
again. Once a tick occurs, both moves are re-allowed (the blocked events set is empty).
block_mult_moves (Block) ->

Moves = [user_left , user_right],
case bp: bSync (# rwb{wait=[tick| Moves], block = Block }) of

user_left -> block_mult_moves (Moves);
user_right -> block_mult_moves (Moves);
tick -> block_mult_moves ([])

end.

The behaviors that control the movement of the landing pad are similar to the ones
handling the rocket, with one difference: the landing pad is not controlled by the player, but
moves at random. After each tick, it requests that the pad be moved in a random direction,
or not at all. This behavior is achieved by picking a random element E, that is pad_left,
pad_right or an empty list, and calling bp:bSync(#rwb{wait=[tick], request=[E]}),
followed by waiting for a tick if the pad moved before the end of the turn.

Finally, the following behaviors deal with the winning or losing. Note that the
detect_win_lose function below keeps track of the entire game board solely by listen-
ing out for movement events. This redundancy with the tracking of rocket and landing
pad positions in the b-threads rocket and landing_pad might seem wasteful, and one may
prefer to encapsulate this functionality. However this design prevents potential race condi-
tions associated to accessing shared resources (see additional discussion of race conditions
in Section 6). This choice reflects the preference, in BP, to have b-threads depend as much
as possible on events that are meaningful in the overall external behavior of the system, as
opposed to requiring specialized inputs from internal components. Nevertheless, it may be
fully desirable and appropriate to create such special events, by a central service, and broad-

22

cast them for use by all interested b-threads. This can be done for object tracking in our
case, and especially, for example, when communicating exact positions that are determined
and updated by a GPS.
detect_win_lose (P, X, Y) ->

case bp: bSync (# rwb{wait=[pad_left , pad_right , left , right , down]}) of
pad_left -> detect_win_lose (P-1, X, Y);
pad_right -> detect_win_lose (P+1, X, Y);
left -> detect_win_lose (P, X-1, Y);
right -> detect_win_lose (P, X+1, Y);
down ->

Y1 = Y-1,
if

Y1 == 1 andalso X == P ->
bp: bSync (# rwb{ request =[win]});

Y1 == 0 ->
bp: bSync (# rwb{ request =[lose]});

true ->
detect_win_lose (P, X, Y1)

end
end.

Another b-thread (not shown) ends the game by waiting for the win or lose events, and
then blocking all movement events indefinitely. The program ends when the user closes the
application window.

Summary. We have illustrated an application being decomposed into b-threads, using the
super-step idea, where external events were triggered as behavioral events after all the inter-
nal events of a super-step were completed. The power of BP in handling rich scenarios can
be further demonstrated in this example, by replacing the short b-thread implementing the
random move of the pad by a lengthy sequence of predetermined right- and left-moves of
the landing pad, which represent some covert plan of an adversary played by the computer.

For simplicity, this example is implemented in a single b-node. In a richer game, compo-
nents like the rocket and the pad could be programmed in separate b-nodes. Nevertheless,
note that some of the game rules do require synchrony between different behaviors with
regard to time ticks, and this was readily implemented in the single b-node setup.

3.5. Example 2: Coordinating behaviors with different time scales
In this section we demonstrate how an application can be composed of behavioral com-

ponents, namely b-nodes, that operate on different time scales and communicate via events.
The example is part of the control software for a quadrotor, a flying vehicle powered by four
rotors (see schematic drawing in Figure 6). The behaviorally-programmed piece is responsi-
ble for stabilizing the aircraft. It was experimentally tested by plugging behavioral modules
written in Java into the comprehensive quadrotor-control simulation model developed by
Bouabdallah et al. [9, 10]. This model is based on MATLAB/Simulink and simulates full
control of the quadrotor flight including physical aspects. A high-level description of this
use-case appeared also in [27].

The model of Bouabdallah et al. is modified, as illustrated in Figure 7. The b-node High-
Level Control translates measured differences between actual and desired flight parameters
(e.g., orientation, altitude) into four forces (thrust, roll, pitch and yaw — see Figure 6). It

23

Roll = TR − TLPitch = TF − TB

Left

Right

Back

Front

Thrust = TF + TR + TB + TL

Yaw = λ(TF − TR + TB − TL)

Figure 6: A schematic view of a quadrotor. Four rotors are mounted rigidly in a single
plane and control is achieved only by varying their speeds. The designation of rotor labels
is arbitrary, and the rotational forces of roll, pitch, and yaw are defined relative to them.
The thrusts generated by the rotors are denoted by TF , TR, TB and TL, for the front, right,
back, and left rotors, respectively. The relationships between these thrusts and the forces
are indicated as the four formulas appearing in the figure near each force. The coefficient λ
marks the ratio between the vertical thrust of a rotor and the rotational (yaw) force that the
rotor generates (neighboring rotors rotate in opposite directions to balance the yaw force
when all rotate at the same RPM).

A simulation of quadrotor,
sensor, and actuator dynamics

Forces to RPMs
High frequency

b-node

High-Level Control
Low frequency

b-node

RPMs
Rthrust,

Rpitch,

Rroll,

Ryaw

Errors
∆thrust,
∆pitch,
∆roll,

∆yawForces
Fthrust, Fpitch,

Froll, Fyaw

Figure 7: Block diagram for the quadrotor example. A controller for the quadrotor is
composed of two behavioral components. The first, High-Level Control, takes the differences
between actual and desired thrust, pitch, roll and yaw and dynamically translates them
into the forces that have to be applied in order to correct the displacements. The second
component, Forces to RPMs, translates these forces into the rotor speeds (RPMs) that will
generate them. The behavioral program that we developed for this paper consists of the
two b-nodes on the bottom, their interaction with the environment, and the communication
between them.

consists of four b-threads: one for each of the yaw, pitch and roll axis and one for thrust. Each
of these b-threads computes the respective force by applying a standard Proportional Integral

24

Derivative control based on the differences between measurements and desired value, as
obtained, e.g, from the remote control or as dictated by a higher level navigation algorithm.

The b-node ‘Forces to RPMs’ operates at a higher frequency than the ‘High-Level Con-
trol’. This component receives the four desired forces as external input events and translates
them into rotor RPMs, via a fast coordinated sequence of events, where different b-threads
balance the competing needs. For illustration, the reader may compare the action of our b-
thread with the way sound-mixing is where a sound engineer deals with competing goals, such
as balancing the guitar and the piano, and controlling overall volume by small adjustments
of the available controls (without attempting to solve complex mathematical equations).

In the ‘Forces to RPMs’ b-node, each of the four forces is independently interpreted by a
dedicated b-thread as a target, and is translated to desired changes to RPM of the various
rotors. The b-threads attempt to attain their targets by requesting events that represent
(small) increases or decreases of individual rotor RPM towards the target and, blocking
events that work away from it, as shown in Figure 8. The composite behavioral execution
mechanism interlaces the execution of all b-threads, transforming their possibly-conflicting
requests into integrated control.

For example, to increase the pitch (raise the front), the system requests the events
of increasing the front rotor’s RPM and decreasing the back rotor’s RPM, while blocking
the opposite (complementary) events. Note that desired flight results depend only on the
total numbers of events that increase or decrease the controlled value, and the difference
between their numbers, while the actual mix of events may vary. Specifically in this example
(see Figure 8), in order to allow finer control, the b-threads translate the input force into
a sequence of events that affect the rotor speed by smaller increments. Furthermore, to
accommodate behaviors that require concurrent actions on multiple rotors, all behaviors
entertain a “slack”, in which they allow a small number of undesired events to occur before
blocking them completely. In this manner, the ThrustBT can increase the RPM of all rotors
equally, one at a time, without interference from b-threads that try to create a difference
between certain rotor RPMs.

In our simulation, the super-step is orchestrated as follows. A lowest-priority b-thread
repeatedly waits for RPM-change events, as described above, and keeps track of all desired
rotor RPMs by changing in-memory values by fixed amounts. This b-thread repeatedly
requests an output event that contains those values, but due to its low priority, output is
triggered only when there are no other events to trigger (i.e., the four force-control b-threads
have attained their targets). The output event marks the completion of a super-step. Four
inputs (target forces) are then presented again (by a high priority b-thread that polls an
external queue), marking the beginning of the next super-step. Throughout, an actuator
b-thread waits for output events and transmits the required signals to the rotors. The
detailed simulations we carried out show that his behavioral solution indeed stabilizes the
quadrotor, as can be seen in Figure 9.

Subsequently, we have begun to implement a behavioral programming environment writ-
ten in C that can run directly on a quadrotor, and have shown that the design and the
b-threads shown above indeed can stabilize a UAV. In fact, initial versions of this are al-
ready flying in our lab.

25

start

CMD(delta)

decr_with_no_slack

req=NEG_EVENTS

block=POS_EVENTS

incr_with_no_slack

req=POS_EVENTS

block=NEG_EVENTS

delta > SLACK

delta < -SLACK

POS_EVENTS : delta ∶= delta + 1

output

decr_with_slack

req=NEG_EVENTS

incr_with_slack

req=POS_EVENTS

0 ≤ delta < SLACK

-SLACK< delta < 0

NEG_EVENTS : delta ∶= delta -1

Figure 8: A template for the yawBT, pitchBT, rollBT, and thrustBT b-threads, written in
a parametric manner. Each b-thread is instantiated with different values of the parameters:
CMD(delta) indicates a command to change the force that this b-thread is responsible for (i.e.
CMD is ChangeYaw for yawBT,ChangePitch for pitchBT, etc.). POS_EVENTS and NEG_EVENTS
are the events that increase and decrease, respectively, this force. For example for pitch
(and thus for pitchBT), POS_EVENTS is {FrontRPMAdd, BackRPMSub}. SLACK defines a range
close to the b-thread’s target where the b-thread allows the occurrence of events that conflict
with its goal to allow for other b-threads to work towards their goals. We use statechart-like
notations to allow for a compact and readable diagram. The initial state is start where the
b-thread waits for a CMD(delta) event. It then transitions into one of the four other states
depending on the sign of the change in force and whether it is within the slack value or not,
as marked on the arrows going into the states. If the desired change in force is positive, and
its absolute value is larger than SLACK then the b-thread requests the positive events and
blocks the negative events. If the desired change is negative, the b-thread requests the events
that decrease the force, and blocks the ones that increase it. If the absolute value of delta is
smaller than SLACK the same events are requested, but no events are blocked. Once an event
occurs, regardless of the state, the transitions on the container state show that the value
of delta is modified according to the event, and the b-thread transitions into a new state
according to the new conditions. When no events are requested by any of these b-threads
an output event requested by another b-thread (not shown) is triggered transferring the
actual RPM speeds to actuator b-threads, and all four b-threads in this diagram transition
back to their initial state, waiting for the next command. The remaining POS_EVENTS
are {RightRPMAdd, LeftRPMSub} for rollBT, {FrontRPMAdd, BackRPMAdd, RightRPMSub,
LeftRPMSub} for yawBT, and {FrontRPMAdd, RightRPMAdd, BackRPMAdd, LeftRPMAdd} for
the thrustBT. The NEG_EVENTS are the complementary ones.

When proceeding on the actual implementation in a flying quadrotor, additional consid-
erations of course emerge in order to meet the real-time constraints. The first and foremost
consideration for BP in this regard is having efficient processing at the underlying BP in-
frastructure, controlling the synchronization of b-threads, collection of their declarations,

26

Figure 9: Simulated spatial path of the quadrotor, and plots of roll, pitch and yaw during
the first 20 seconds of a behaviorally-controlled flight, as generated by the MATLAB model
and tools of Bouabdallah et al. [9, 10].

event selection, and b-thread resumption. One such approach is to turn events into bits and
event sets into easily managed bit vectors. Then come the additional real-time consider-
ations of ensuring that the infrastructure and application allow the non-behavioral sensor
and actuator processes to interact with the real world at the desired frequency, and that
the b-threads of system behavior are efficient and predictable in completing their reactive
scenarios before arrival of the next environment-driven event. For example, towards pre-
dictability, in our experimentation on the real quadrotor, we initiate the output event at a
fixed time frequency, regardless of whether the b-threads have completed their negotiations
over the right changes to all RPM values or not. Both the BP infrastructure optimization
and more comprehensive design guidelines regarding real time behavioral applications are
the subject of future research and are outside of the scope of the present paper.

Summary. In creating composite behavior, the quadrotor application uses very local behav-
iors, such as controlling roll and pitch, to achieve higher level goals such as maintaining
stability. Longer term behaviors, such as traveling between stations in a multi-stop trip,
or keeping maintenance and refueling schedules, can be constructed from similar elements.
While all these facets can be programmed as compositions of b-threads, gluing them to-
gether is easier with an infrastructure that can support multiple time scales. Clearly, a

27

b-thread that controls a multi-stop navigation itinerary can suffice with occasional changing
of the required speed and direction, and does not require the constant synchronization and
attentiveness of the stabilization modules described above.

The quadrotor application also shows how behavioral programming can be used in devel-
oping hybrid control, i.e., a combination of discrete logic and actuation with the sensing of
continuous system variables [36]. In [26] we discuss the application of BP to hybrid control,
by using fuzzy logic to translate continuous information into discrete categories that can be
refereed to in naturally-programmed scenarios.

3.6. Example 3: Incremental development of a multi-agent application
In this section we demonstrate how multiple behavioral programs coordinated only by

external events can retain much of the incrementality of a single fully synchronized behavioral
system, i.e., that functionality can be enhanced by adding b-threads and b-nodes.

We present the development of a multi-agent application, where agents include vehicles
traveling in open terrain and advisors affecting the vehicles. First, we list the behaviors
that are responsible for the movement of a vehicle. To each vehicle we then add behaviors
that allow it to interact with external systems. Finally, again incrementally, we program
the vehicle agents to react to an advisor agent responsible for directing particular aspects
of the vehicles’ travel. The communication between the vehicles and the advisor uses the
architecture for external events described in Section 3.2. This small example can be readily
extended to make it easily possible to add agents (vehicles, advisors), as well as new kinds
of interactions among existing agents (inter-vehicle or inter-advisor).

3.6.1. Vehicle motion
For brevity, we list only a minimalistic scenario: moving towards a given goal. The

movement is performed by the following processes. A ticker process sends an external
tick event every N milliseconds, as in the example of Section 3.4. The b-thread on_tick
(not shown) repeatedly waits for this event, samples the current position, say, using a GPS,
and broadcasts the position by requesting the event {pos, X, Y}. This event also captures
a form of feeding external information into the behavioral system. The behavior head_north
repeatedly compares the current position with the location of the goal, and decides whether
to request the event of moving north or not. Similar behaviors are responsible for moving
south, west and east, all quite obliviously of each other. The is function matches all events
of a given record type (all pos records in this case).
head_north () ->

{pos , _, Y} = bp: bSync (# rwb{wait=is(pos)}),
{_, Y1} = goal (),
if

Y < Y1 ->
bp: bSync (# rwb{ request =[north]}),
move_north (); % Request granted , move north

true -> ok % Don ’t move north
end ,
head_north ().

28

3.6.2. Enabling external communication
The behaviors listed above will cause the vehicle to move towards its goal uninterrupted.

We would like to allow an external coordinator agent to affect this movement, but, unlike
the game and quadrotor examples, here there is no natural super-step breakpoint within
the internal events where the external environment can intervene. To modify the vehicle
software for creating such a breakpoint we add two b-threads. One counts N1 advancement
steps of the vehicle and then sends an external event containing the current position of the
vehicle to an external process.
report (S, P, N1) ->

{pos , X, Y} = bp: bSync (# rwb{wait=is(pos)}),
S ! {pos , P, X, Y},
[bp: bSync (# rwb{wait=is(pos)}) || _ <- seq (1,N1 -1)],
report (S, P, N).

Another b-thread counts N2 steps and peeks at the communication channel for any
external incoming communication. If the channel is empty the process continues.
listen (N2) ->

bp: bSync (# rwb{wait=is(pos)}),
receive E -> bp: bSync (# rwb{ request =[E]})
after 10 -> ok % Timeout after 10 milliseconds
end ,
[bp: bSync (# rwb{wait=is(pos)}) || _ <- seq (1,N2 -1)],
listen (N).

To demonstrate a possible external command, we assume that advisors may warn the
vehicle, upon arriving at a certain line in its northward path, that there are too many vehicles
beyond that line. To allow the vehicle to react, we add a new b-thread to the vehicle b-node.
If the vehicle crossed the line, it calls the hold function.
on_warning () ->

{warn , T} = bp: bSync (# rwb{wait=is(warn)}),
{pos , _, Y} = bp: bSync (# rwb{wait=is(pos)}),
if

Y >= T -> hold ();
true -> on_warning ()

end.

The implementation of hold listed below blocks the movement north, as may be requested
by any b-thread, current or future, for 10 steps. The added behavior on_warning represents
the policy of the vehicle’s reaction to the warn event. It could be easily replaced by other
policies, such as blocking the movement north until notified otherwise, or even to move
southward.
hold () ->

[bp: bSync (# rwb{wait=[tick], block =[north]}) ||
_ <- seq (1 ,10)],

on_warning ().

3.6.3. Adding an advisor agent
We are now ready to add advisors that will monitor and try to affect the movement of

several vehicles. For example, the following behaviors first report when a vehicle crosses a

29

line, and later ask vehicles positioned at the line to stall if there are more than N vehicles
north of the line. The first advisor b-thread, monitor_line, deals only with behavioral
events. It waits for any vehicle position event, and requests an event, internal to the advisor,
that will eventually lead to inter-agent messages.
monitor_line (Y1) ->

{pos , P, _, Y} = bp: bSync (# rwb{wait=is(pos)}),
if

Y >= Y1 -> % Report crossing
bp: bSync (# rwb{ request =[{cross , P}]});

true -> ok
end ,
monitor_line (Y1).

The second behavior listed below mixes behavioral and native communication methods.
monitor_crossing (N, Y1 , L) ->

{cross , P} = bp: bSync (# rwb{wait=P is not in L }),
if

length (L) >= N ->
P ! {warn , Y1},
monitor_crossing (N, Y1 , L);

true -> monitor_crossing (N, Y1 , [P|L]) % Add P to L
end.

It maintains a list L of vehicles that have crossed the line. Each vehicle is represented by
the address of its listening process. When another vehicle crosses (i.e., its address is not in
the list), it checks if there are too many vehicles north of the line. If so, it sends an Erlang
message to the crossing vehicle. This message is received by the listen behavior in the
b-node that controls the vehicle. For brevity, we omit describing the full function of the
wait clause. Figure 10 outlines the complete architecture of the vehicles application.

report listen
movement behaviors

block move north

vehicle b-node

advisor b-node

send pos every N1
steps check for warn every N2

steps

Figure 10: Multi-agent architecture for vehicles. The behavior report of each vehicle sends
the current position to interested advisors every few steps. The listen behavior checks for
a new warning, and may block specific events if it receives one.

Summary. In this example we demonstrated the construction of different b-nodes, each
comprised of a set of constantly synchronized b-threads. The communication between the
b-threads is carried out according to the methodology discussed in Section 3.2. All agents

30

are incrementally programmed to communicate, to interpret each other’s messages and to
react as desired by the developer, only by the addition of new, independently programmed
b-threads.

4. Relaxing Synchronization Constraints through Eager Execution

In this section we propose an extension of BP that is an alternative to the one proposed
in Section 3, termed eager execution. The idea is to achieve benefits similar to those afforded
by using b-nodes and external event queues, but in a way that is automated and concealed
from the user. In particular, programs that were written using the traditional execution
mechanism can be run without any change under the eager execution mechanism, and this
may result in improved performance.

At the core of the eager execution approach is the realization that it is often possible to
predict the outcome of a synchronization point even without waiting for slower threads to
synchronize. Through this, we may tackle the difficulties imposed by multiple time scales,
asynchronous input or a distributed setting. Deciding which events may be triggered while
some threads have not yet synchronized is achieved by using (at run time) information
about these threads, which was generated automatically before the run. For example, if
all unsynchronized threads are known to never block a particular event, and the currently
synchronized threads request and do not block this event — then it can immediately be
triggered, without waiting for the rest of the threads to synchronize.

In the remainder of this section we rigorously define and characterize the eager execution
mechanism. For a comparison between the strengths and weaknesses of eager execution and
the approach presented in Section 3, see Section 5.

4.1. Relaxing Synchronization Constraints
As discussed in Section 3.1, a behavioral program’s execution speed is constrained by its

slower threads, because the behavioral execution mechanism needs to receive the declarations
of requested and blocked events of all threads before triggering an event. However, in some
cases these constraints may be relaxed, as we now demonstrate.

Let P denote a set of threads that constitute a behavioral program, and assume that
at some point during P ’s execution a subset Psync ⊂ P of the threads has reached a syn-
chronization point, while the rest are still executing. Further, assume that the execution
mechanism has additional information about the events that the threads in P \ Psync will
request and block when they synchronize. If, combining the information from threads in
Psync with the information about threads in P \ Psync, the execution mechanism can find an
event e that will be enabled at the highest priority when all threads have synchronized, then
e can immediately be chosen for triggering.

The execution mechanism may then pass e on to the threads in Psync to let them continue
their execution, without waiting for the remaining threads to synchronize. Once any of
these other threads reaches its synchronization point, the execution mechanism immediately
passes it event e, since e was the event selected for that particular synchronization point.
This is accomplished by having a designated queue for each of the b-threads, of events that

31

are waiting to be passed, and putting e in the queues corresponding to the as-of-yet not
synchronized threads. The execution mechanism described is eager, in the sense that it uses
predetermined information to choose the next event as early as possible.

When a thread BT reaches a synchronization point, if the corresponding queue is
nonempty, the execution mechanism dequeues the next pending event e′. If BT requests or
waits for e′, it is passed to the thread, which then continues to execute. Otherwise, e′ is
ignored, and the execution mechanism continues with the next event pending in the queue.
In order to reflect the semantics of BP, from the execution mechanism’s global perspective
BT is not considered synchronized as long as it has events pending in the queue. Specifically,
the events that are requested or blocked by BT at this point are irrelevant for the selection
of the next event; they have already been considered when the event e′, which is now at
the head of the thread’s queue, was triggered by the execution mechanism, ensuring that e′
was a valid choice. Observe that the eager execution mechanism strictly adheres to the
semantics of BP, as described in Section 2.9: at every synchronization point, the triggered
event is indeed the enabled event of highest priority 2. The key point, however, is that the
eager mechanism makes its decisions more quickly, and can thus produce more efficient runs.

Note that, under certain conditions, event queues for slow threads can grow to any
arbitrary length. Consequently, we propose to cap the length of these queues, based on
available system resources. When the cap is reached, the system must wait for the slower
threads to catch up. Hopefully, the slow threads will not have requested or waited-for many
of the events in their queues, allowing them to catch up quickly.

It remains to show how the execution mechanism knows which events could be requested
and blocked by threads that are yet to synchronize. We propose two approaches: one based
on static information and the other on dynamic information, discussed and demonstrated
in Sections 4.2 and 4.3, respectively. For a rigorous formulation of the eager execution
mechanism, we refer the reader to Appendix B.

4.2. Relaxing Synchronization using Static Information
In this approach, the execution mechanism is given in advance a static over-

approximation of the events that a thread might block when synchronizing. More specifi-
cally, if a thread has states s1, . . . , sn, this over-approximation is ⋃1≤i≤nB(si), where B(si)
is the set of events blocked in state si. This information is static, in the sense that the
over-approximation does not change throughout the run. Also, since it does not depend on
the threads’ specific states, this approach is unaffected (complexity-wise) by the number of
events stored in the threads’ queues.

When a thread synchronizes, the execution mechanism attempts to resolve the synchro-
nization point, based on the information gathered so far. It finds the highest-priority event
that is requested and not blocked by threads in Psync. This event may immediately be trig-
gered, if two conditions hold: (1) it is guaranteed to remain enabled when more threads

2 The eager execution mechanism is tightly coupled to the event selection scheme in use — in our case,
a priority-based scheme. In a preliminary version of this section, published in LPAR 2013, we described a
mechanism for a simpler event selection scheme, in which an arbitrary enabled event is selected.

32

synchronize, ascertained by checking that it does not appear in the over-approximations
of blocked events of any of the unsynchronized threads, and (2) it is guaranteed to be the
highest-priority enabled event at the synchronization point, ascertained by requiring that
all threads that have higher priorities than the thread requesting the selected event have
already synchronized.

If such an event exists, it can be triggered immediately. Otherwise, the execution mecha-
nism waits for more b-threads to synchronize. This generally results in more events becoming
eligible for selection, since the actual set of events that are blocked by a thread in a given
state is always a subset of the over-approximation, which includes all the events that are ever
blocked by the b-thread, and since additional requested events are revealed as additional
b-threads synchronize. As soon as enough information is gathered to deduce that an event is
the highest-priority enabled event at the synchronization point in question, it is immediately
triggered and passed to all synchronized threads.

This mechanism can be improved further. In particular, it is sometimes possible to de-
duce that an enabled event e is the highest-priority enabled event even when a higher priority
thread has not yet synchronized. This can be accomplished by keeping over-approximations
of the requested events of threads, and checking that all events that may be requested by
this higher-priority thread are already blocked by synchronized threads.

Observe that we only discuss over-approximating requested and blocked events, but not
their under-approximations, although these can be used analogously. The reason is that
typically there are no events that are requested/blocked in each and every state of the
thread, and so the under-approximations are typically empty.

4.2.1. Example: External Input using Static Information
We revisit the rocket examples from Section 3.4, and show how it can be implemented

using eager execution and static information.
External input is injected into the system asynchronously from two sources: the user

clicking the buttons, and the periodic tick events. Using static information, each of these
sources of input can be handled by a dedicated lowest-priority sensor thread that (non-
behaviorally) waits for them to occur, and then requests a behavioral event representing
them. These two threads do not block any events, and so their over-approximation of
blocked events is simply the empty set.

When the program runs, the sensor threads may delay in reaching their synchronization
points; indeed, these threads can be thought of as paused until their respective external
inputs are received. However, this does not prevent the rest of the threads from triggering
events: as the sensor threads have lowest priority and never block any events, whenever the
remaining threads are synchronized a highest-priority enabled event (assuming one exists)
can be triggered.

The system can still be thought of as progressing in super-steps. At first, all non-
sensor threads are synchronized, but no event is enabled. Then, one of the sensor threads
synchronizes, because of a clock tick or because of a user input. Its respective requested
event is triggered, and this may result in a sequence of consecutive events triggered by the
non-sensor threads. Eventually, the system completes its super-step, and returns to a state

33

where all non-sensor threads are synchronized but no events are enabled. The system then
waits for the next input.

The actual implementation of the system is quite similar to that of Section 3.4; indeed,
the non-sensor threads remain unchanged. The external ticker process is rewritten as a
b-thread, whose role is to request a tick event every N milliseconds to orchestrate the
rocket’s descent, e.g.:
ticker () ->

bp: bSync (# rwb{ request =[tick]}),
sleep (N),
ticker ().

Observe how the eager execution mechanism allows the b-thread to sleep between synchro-
nization points without delaying the system; this was not possible using the traditional
execution mechanism. Finally, a declaration is provided to the execution mechanism, by
a function call and associated message exchange, stating that the thread never blocks any
events. Similarly, sensor threads for each of the user buttons, left, right and up, wait for
clicks and request events left, right and up to signal that they have been pressed. The
manually programmed queue and the thread in charge of sampling it are omitted from the
implementation; they are replaced by the internal queues that the eager execution mecha-
nism maintains for threads that it approximates — in this case, the sensor threads.

4.2.2. Modularity using Static Information
Having shown how eager synchronization and static information can be used to accom-

modate behavioral programs with external sources of input, we next discuss how it can also
support programs with multiple time scales.

In section 3.3 we saw an example where a behavioral program included threads that ran
in different frequencies. These threads could not be simply run together, lest the slower
thread slow down its faster counterpart. Generalizing, we consider programs that can be
partitioned into disjoint sets of threads (which we termed behavior modules), each handling
a different facet of the system. These modules may operate at different time scales, and may
be assigned distinct computational resources (e.g., they can run on different hardware). We
seek to use eager synchronization to alleviate run-time dependencies between these modules.

In order to characterize the effects that eager execution has on behavior modules, we
offer the following definitions. Consider a behavioral program P consisting of a set behavior
modules M1, . . . ,Mk; thus, the threads in the program are ⋃ki=1Mi. Denote by Ei the set of
events that are controlled — i.e., requested or blocked — at some synchronization point of a
thread of module Mi. Typically, these events are part of the “vocabulary” corresponding to
that the facet of the system addressed by module Mi. The modular design of the program
is termed strict if E1, . . . , Ek are pairwise disjoint; i.e., Ei ∩Ej = ∅ for i 6= j. However, any
thread can wait for any event. A strict modular design essentially means that while modules
may signal one another (by waiting for each other’s events), they do not control each other’s
events; i.e., they are assigned sufficiently independent duties. Note that this requirement
parallels the situation in the b-node approach, as discussed in Section 3.3.

In order to support priorities in the context of such modular designs, we must permit

34

b-thread priorities that are partially ordered (i.e., to relax the requirement that for any two
distinct priorities, one is larger than the other). An enabled event e requested by thread
BT is eligible for triggering if no other thread BT ′, with a priority that is larger than that
of BT , requested a different enabled event e′. In a strict modular design we require that the
priorities of threads in different modules be independent (i.e., unordered). This reflects the
fact that, as the modules have sufficiently independent duties, when two events are requested
by two different modules one is not preferable to the other (logically speaking). This again
parallels the situation in the b-node approach, where priorities are local to each b-node.
Note that since b-threads synchronize one at a time, at most one module can be ready for
event selection at any given time.

The eager execution mechanism has desirable properties when it comes to behavioral
programs having a strict modular design. Considering a module Mi of a strict modular
design, the eager execution mechanism results in an implementation in which the threads in
Mi never need to wait for a thread in another module to synchronize in order for an event in
Ei to be triggered (i.e., for the sake of triggering Mi’s own events). This means that as soon
as a module’s threads have synchronized, enabled events that are controlled by the module
may be triggered immediately. Hence, modules may operate at different time scales. This
property is formalized by the following proposition:

Proposition 1. Let P be a behavioral program that has a strict modular design and is
executed with the eager execution mechanism. If all b-threads of module Mi are synchronized,
then an event e ∈ Ei is eligible for triggering if and only if it is eligible for triggering upon
the arrival of any other thread at its synchronization point.

See Appendix D for a proof of the proposition.
The notion of modules is quite similar to that of b-nodes, except that inter-module

communication is not performed by the application, via manually programmed external
events and queues, but rather internally, by the BP infrastructure. For instance, consider
the design of the quadrotor of Section 3.3, as depicted in Figure 7. An alternative design,
using strict eager execution modular design, is depicted in Figure 11. Each set of threads
in charge of a facet of the system — i.e., simulation, high-level control and forces to RPM
— resides in a separate module, and the threads can thus process events at their respective
sampling rates. For communication purposes, they can listen out for (but not request or
block) events controlled by the other modules.

4.3. Relaxing Synchronization using Dynamic Information
In this approach, the execution mechanism is given complete state graphs of threads,

which are generated before the program is executed. The labeled vertices of a state graph
correspond to the thread’s synchronization points and the events that it requests/blocks at
these points, and the edges, labeled with non-blocked program events, describe the thread’s
transitions from one synchronization point to another. The graph thus provides a complete
description of the thread from the execution mechanism’s point of view — that is, a complete
description of the events requested and blocked by the thread, but without any calculations

35

A simulation of quadrotor,
sensor, and actuator dynamics

module

Forces to RPMs
(High Frequency)

module

High-Level Control
(Low Frequency)

module

Errors
∆thrust,
∆pitch,
∆roll,

∆yaw

Forces
Fthrust,

Fpitch,

Froll,

Fyaw

RPMs
Rthrust,

Rpitch,

Rroll,

Ryaw

b-program

Figure 11: An alternative block diagram for the quadrotor example, implemented using eager
execution and a strict modular design. The simulation module controls the Error events,
the High-Level control module controls the Forces events, and the Forces to RPMs module
controls the RPM events. Thus, each of the modules can trigger these events regardless of the
other modules. Modules can wait for events controlled by other modules, which allows them
to inter-communicate. Communication is not performed directly between the modules, but
rather through the execution mechanism and by waiting for broadcasted events.

or input/output actions performed by the thread when not synchronized. For more details
on these state graphs, see [25].

During runtime, the execution mechanism keeps track of the threads’ positions in the
graphs, allowing it to approximate the events they will request and block at the next syn-
chronization point — even before they actually synchronize. This method is dynamic, in
the sense that the approximations for a given thread can change during the run, as different
states are visited. As is the case with static information, the complexity of this approach
is unaffected by the number of events stored in the threads’ queues. In order to make trig-
gering decisions, it is enough for the event selection mechanism to remember the “current”
state for each thread (that is — the state it would reach after processing all events in its
queue), and this state can be updated every time an event is added to the queue.

We stress the fundamental difference between running a thread and simulating its run
using its state graph. In the former, transitions can be considered immediate, whereas in
the latter, additional non-trivial computation may be performed, and the transitions can
take longer. For instance, in a recent behavioral application implementing a web-server,
we used threads to calculate checksums over TCP segments and to read web pages from
the disk. Both actions were time consuming, and hence the threads performing them did
not immediately arrive at the next synchronization point. In such cases, simulating threads
using their state graphs is faster than actually running them.

Recall that our definition of a thread dictates that its transitions be deterministic. There-
fore, simulating a thread through its state graph yields precise predictions of its requested
and blocked events at each synchronization point. In the nondeterministic model, where

36

threads may depend on coin tosses or inputs from the environment, it may be impossible
for the execution mechanism to determine a thread’s exact state until it synchronizes. How-
ever, the execution mechanism can approximate the thread’s requested and blocked events
by considering all the states to which the nondeterministic transitions might send it. If,
due to a previous transition, the thread is known to be in one of states s1, . . . , sn, then the
blocked events may be over-approximated by ⋃1≤i≤nB(si) — similarly to what is done when
using static approximations. Analogously, the requested events may be under-approximated
by ⋂1≤i≤nR(si). For more details see Appendix C. As before, if these approximations leave
no enabled events that are eligible for triggering, the execution mechanism waits for more
threads to synchronize.

The other details are as they were in the static approximation scheme. Once an event is
triggered, it is immediately sent to all synchronized threads, and is placed in the queues of
the threads that are yet to synchronize.

4.3.1. Example: Optimization using Dynamic Information
To demonstrate the dynamic approximation mechanism, we consider a vending machine

system, described next. The basic operation of the machine includes receiving coins from
customers and dispensing requested products. Once every 3 hours the machine goes into a
special maintenance phase: it checks its internal temperature and humidity using sensors,
and, if these values are outside a safe range, corrects them using actuators. For simplicity, we
assume that every measurement indicates values that are unsafe, and so every maintenance
phase ends in corrective action.

The maintenance phase is implemented as follows. Once every 3 hours, a timer thread re-
quests an initiate_maintenance event; using static information as described in Section 4.2,
this thread does not slow the system down, and does not interfere with the dispensing of
products. A measurer threads waits for initiate_maintenance events and reads the cur-
rent temperature and humidity values using sensors. It then requests events indicating the
required corrective action, which a corrector thread then performs. Code snippets appear
in Fig. 12 and Fig. 13. The vending functionality of the machine is managed by threads
orthogonal to the ones described; we omit the details. All threads in the system have equal
priorities.

Next, consider the following requirement: due to mechanical limitations, it is forbid-
den to dispense products during the temperature measurement and correction phase, or
the correction might be interrupted. Therefore, the measurer thread blocks events of type
dispense_product (that signify the dispensing of products) during temperature measure-
ment and correction. During humidity measurement, however, this limitation does not
apply.

Measurement and correction operations take a non-zero amount of time; hence, there is
a time window during the maintenance cycle in which the measurer and corrector threads
are not synchronized. Under the traditional execution mechanical, this would delay any
vending operations in the machine, which is undesirable; we thus seek to use the eager
execution mechanism to minimize this downtime. The key point, however, is the distinction
between the two phases of the maintenance cycle — as dispensing is only allowed during

37

while true ->
bp: bSync (# rwb{wait= initiate_maintenance }),
if temperatureTooHigh () ->

bp: bSync (# rwb{ request = decrease_temperature , block = dispense_product });
true ->

bp: bSync (# rwb{wait= increase_temperature , block = dispense_product });
end ,
bp: bSync (# rwb{wait= temperature_corrected , block = dispense_product }),
if humidityTooHigh () ->

bp: bSync (# rwb{ request = decrease_humidity });
true ->

bp: bSync (# rwb{ request = increase_humidity });
end ,
bp: bSync (# rwb{wait= humidity_corrected }).

Figure 12: The main method of the measurer thread. Upon triggering of the
initiate_maintenance event this thread wakes up, asks for the appropriate temperature
correction, and waits for confirmation. Afterwards, an analogous process is performed for
the humidity level. Observe that the dispense_product event is blocked during the tem-
perature phase, but not during the humidity phase.

one of them.
In this case, static information does not suffice: as the measurer thread blocks the

dispense_product event at some of its states, the static over-approximation would include
this event — and so dispense_product events would not be triggered during humidity
measurement and correction. Dynamic information, on the other hand, resolves this issue,
as it allows us to distinguish between the two phases; see Table 1 for performance comparison.

Table 1: Performance of the vending machine program using the different execution mech-
anisms. The measurements were performed using a customer simulator, purchasing 250
products in random intervals. The table depicts the time the experiment took, the number
of maintenance rounds performed during the experiment, and the average delay — the time
between making an order and receiving the product. The improvement column measures the
reduction in delay compared to the traditional execution mechanism. Note: this experiment
was conducted using a C++ implementation, equivalent to the one depicted in Figures 12
and 13.

Execution #Servings Time (min) #Maintenance Delay (sec) Improvement
Traditional 250 15:40 59 1.68 —

Static 250 12:30 50 0.85 50%
Dynamic 250 9:20 37 0.18 90%

We point out that the measurer thread’s transitions are not deterministic — as they
depend on input received through the temperatureTooHigh and humidityTooHigh subrou-
tines. As previously explained, this does not pose a problem, as the execution mechanism
calculates an over-approximation based on all the successor states of the thread’s last known
state.

38

while true ->
case bp: bSync (# rwb{wait =? ALL }) of

increase_temperature ->
increaseTemperature (),
bp: bSync (# rwb{ request = temperature_corrected });

decrease_temperature ->
decreaseTemperature (),
bp: bSync (# rwb{ request = temperature_corrected });

increase_humidity ->
increaseHumidity (),
bp: bSync (# rwb{ request = humidity_corrected });

decrease_humidity ->
decreaseHumidity (),
bp: bSync (# rwb{ request = humidity_corrected });

end.

Figure 13: The main method of the corrector thread. The thread waits
for events increase_temperature, decrease_temperature, increase_humidity or
decrease_humidity; if they are triggered, it responds by adjusting the temperature or
humidity (this part is abstracted away in the subroutines). Then, the thread requests an
event signaling that the request has been handled, and goes back to waiting for new requests.

4.3.2. Automated Graph Spanning
Recall that the dynamic approximation method includes spanning the state graphs of

threads and integrating these graphs into the program. Manual spanning of state graphs
is prone to error, and is rather tedious in large systems with many events. However, this
spanning can also be performed automatically.

Automatic spanning is performed by separating the thread under inspection from its
siblings, and then iteratively exploring its state graph until all its states and transitions
have been found. Starting at the initial state, we check the thread’s behavior in response
to the triggering of each event that is not blocked by the thread in that state. After the
triggering of each event, the thread arrives at a new state (synchronization point) — and,
with proper bookkeeping, it is simple to check if the state was previously visited or not.
Every new state discovered is added to a queue to be explored itself, in an iterative BFS-like
manner. In the case of nondeterministic threads, each event is checked with every possible
“non-behavioral configuration”. For instance, if the triggering of event e sends the thread to
either state s1 or s2 based on a coin toss, we simulate the triggering of e with each possible
outcome of the coin toss in order to discover all possible successor states. Declarations of
the possible non-behavioral configurations need to be supplied by the programmer.

Technically, isolating the threads and exploring their state graphs can be performed
by running them in an separate execution environment, dedicated to this purpose. This
mechanism has been implemented in the BPC framework for BP in C++ (see http://www.
b-prog.org); implementing it in Erlang remains for future work.

39

http://www.b-prog.org
http://www.b-prog.org

5. Comparing B-Nodes and Eager Execution

Sections 3 and 4 presented two possible approaches for coping with BP’s synchronization
requirements in the face of external input and multiple time-scales within a single program.
In this section we discuss the similarities, differences and possible synergies between the two
approaches.

The b-node approach to program design (Section 3) is a two-layer approach, which,
in essence, goes beyond a single behavioral program. Each b-node constitutes a distinct
behavioral program, with its own vocabulary of internal events, within which b-threads are
synchronized and BP’s idioms can be used. Then, as an additional layer, external events are
sent asynchronously between the b-nodes to signal the occurrence of certain internal events.
This solution therefore requires an additional vocabulary of external events, to be used
across b-nodes. Each external event typically corresponds to certain events that are internal
to the b-nodes. Moreover, each b-node has auxiliary threads for handling asynchronous
communication, as well as the translation of internal events to external inter-b-node events
and vice versa.

In contrast, the eager execution mechanism of Section 4 allows alleviating the synchro-
nization requirements between the b-threads of a single behavioral program with no external
means. For those sets of threads within the program, called modules, that are sufficiently
independent — i.e., they form a strict modular design — eager execution results in an exe-
cution in which distinct modules are executed independently of one another (as far as each
module’s controlled events are concerned; of course, a dependency arises when one module
waits for another module’s controlled events). In this solution, there is a single vocabu-
lary of events that is used across the program, and communication between the modules is
facilitated by BP’s native idioms.

It turns out that the two approaches are closely related. As demonstrated in the exam-
ple at the end of Section 4.2.2 (see Figure 11), a program designed according to the b-node
approach induces an equivalent program with a strict modular design. Similarly, it is also
possible to transform a strict modular design into a b-node based design: each module is
transformed into a b-node, and modules that would wait for events controlled by other mod-
ules are adjusted to wait for matching external events instead. However, when performing
these transformations, one must take into account that, unlike the eager execution mech-
anism, the external message passing mechanism is not guaranteed to preserve event order;
for instance, if module M1 signals module M2 twice, by requesting events e1 and e2 in that
order, the eager execution approach guarantees that event e1 is received before e2. This
guarantee does not necessarily hold in the b-node case.

Despite these similarities, each approach offers its distinct benefits. The eager execution
approach uses automated tools, and is thus simpler to use, whereas the more complicated
implementation details of simultaneously executing multiple modules are hidden within the
execution mechanism itself, and the user does not need to implement external mechanisms
and auxiliary events. Thus, the automated approach allows the specification and direct
coding of richer scenarios, without having to break the scenario at the b-node boundary.

Moreover, even when the design is not strictly modular, eager execution generally relaxes

40

some of the synchronization that arises between threads — especially when the dynamic
approach of Section 4.3 is used. These relaxations may yield performance improvements, as
demonstrated in Section 4.3.1.

The major drawback of eager execution with respect to the b-node approach is that every
thread must generally communicate with a global execution mechanism for each triggered
event. While this is still significantly better than synchronizing all b-threads at each step
of the execution, it may limit the applicability of the approach in such cases where com-
munication is costly or unreliable. In contrast, the b-node approach allows programmers to
fine-tune their programs in the face of such constraints: the execution mechanisms are local
to each b-node, and, at points where inter-node communication is needed, messages can be
routed directly to the desired recipient. This produces programs that are able to run in a
highly distributed fashion.

In order to enjoy the benefits of both worlds, one may combine the two approaches within
a single system. One way to do this is to apply the b-node approach of Section 3 but to
implement an eager execution mechanism within each b-node. This may yield performance
improvements over the basic b-node approach. Another way entails applying the eager
execution approach, and enhancing it to support distributed execution with selective message
exchanges between disparate modules, as in the b-node approach (see Appendix E). Yet
another approach to the combination, aimed at automating the b-node approach, is to
specify b-threads as if they are in a single b-node and then use automated tools to determine
b-node boundaries (along the lines of [31]). Automated tools could then add the necessary
processes for creating physically distributed b-nodes as in Section 3.

When eager execution or automated construction of behavioral modules or nodes are
available, there is the additional advantage of the specified scenarios being readily able to
cross the boundaries of objects, nodes or other components, enriching the expressiveness
of the specification with regard to overall system behavior. Then, distributing the nodes
according to physical constraints may be done as a separate task — automated when possible,
manual when not. The resulting b-nodes may or may not be related to components. They
may all be local behaviors related to a single object that run in very different time scales.
A b-node may also involve multiple physical objects if the communication between them is
fast enough relative to the required time scale, such that synchronization does not pose a
performance issue. Furthermore, when a system-wide scenario has to cross multiple nodes
that do not use the same event names, it can still be specified in BP — splitting the
scenario into separate parts. Future development may include the automatic splicing such
separate scenarios into a single one for visualization purposes, or automatic decomposition of
a cross-node scenario based on user-provided hints of where external events and asynchronous
communication should be inserted.

6. Positioning BP relative to Mainstream Actor and Agent Programming

The BP-based design patterns presented here coexist with, complement, and leverage
several existing actor-oriented and agent-oriented concepts and models presented to-date.
In comparing pure behavioral programming (without b-nodes) to the actor model of Agha [3],

41

for example, we observe that (a) generally, b-threads are not explicitly aware of each other,
and communicate only indirectly, using the request, wait and block idioms; (b) BP focuses
on interweaving independent behaviors towards a desired sequence of events, and is less
focused on issues related to the parallel execution of any part of the independent behaviors
(in fact, some implementations of the behavioral execution mechanism are single-threaded;
e.g., the Java model-checker in [24], and the JavaScript implementation [38]); (c) in BP,
asynchrony is allowed only between b-nodes, while within a b-node, behavior coordination
imposes full synchronization (c.f., statecharts [22]). Furthermore, In Agha [3, Chapter 6],
there is a discussion of how the problems of deadlocks and divergence (infinite loops) are
dealt with in the actor model, and why the problem of shared memory is a non-issue. As
discussed in detail in our work on model-checking [24], in BP we expect that deadlocks
and infinite loops (liveness violations) will either be readily found in the code of individual
b-threads or be directly attributed to a problem in the specifications, as the modules are
aligned with the requirements. Further, a behavioral program where b-threads do not share
data has the desired property that arbitrary delays between any two synchronization points
in any b-thread do not change the sequence of events generated, if the external events arrive
at the same super-steps. This eliminates many types of race conditions.

BP principles have already been implemented in several environments and languages.
It would be interesting to explore the synergy between BP and agent-oriented-specific lan-
guages, such as AgentSpeak and Jason [7], 2APL [15], GOAL [29], SIMPA [41], Indigolog [8],
JIAC [8], and Axum [1]. Such synergy could emerge from interfacing agents and behavioral
programs, from turning b-nodes into agents and using agent programming languages to
handle communication between behavioral nodes, or from introducing blocking idioms into
agent-oriented languages.

Agents are often portrayed with human-like cognitive capabilities; e.g., Belief-Desire-
Intention designs [12, 40, 15], goal oriented agents [29], autonomous agents with mental
states [43], and agents with purpose and emotions [46]. Since the intelligence of an entity
is often described through its handling of a particular scenario, based on our experience so
far we believe that BP idioms can support the programming of rich cognitive concepts in a
simple and natural way.

In [32], Alan Kay highlights the naturalness of programming with rules. Behavioral pro-
gramming is often reminiscent of rule-based systems but it extends the concept by allowing
the ability to easily monitor, and react to, entire scenarios without requiring complex state
management in the rules. Furthermore, in BP, event-blocking facilitates expressiveness and
behavioral composition.

The appendix of Bordini et al. [8] contains criteria for comparing agent-oriented platforms
and languages. It would be interesting to check if and how the BP approach can be assessed
subject to these criteria.

An agent-oriented coordination mechanism similar to behavioral programming (however
without the crucial event-blocking), and which also uses the term super-step, is proposed
in [39].

The coordination and event selection of BP can be seen as analogous in some ways to
the tuple-space model. An implementation of BP using a tuple-space model can be found

42

in the work of Shimony et al in the Picos environment [42].
As mentioned in [27] specifying behaviors as modifications to base programs is presented

in the study of superimpositions [11], and subsquently in aspect oriented programming
(AOP) [34]. BP offers practical ways for implicit, indirect control of each behavior over all
other behaviors, without direct reference from a controlling module to a controlled one. We
believe that BP can contribute towards implementing symmetric aspects, complementing the
currently prevalent asymmetric nature of AOP that distinguishes base code from aspects. In
addition, BP allows for more intuitive state management, in the triggering of behaviors by
sequences of events, as compared to standard AOP, where join-points commonly represent
individual events, and triggering behaviors following rich sequences of events requires non-
trivial handling in the aspect code.

7. Conclusion and Future Work

We have described behavioral programming as a design pattern in Erlang, and have
presented a visualization tool that helps in the comprehension of programs designed in this
manner. We then offered general design patterns for dealing with synchronization issues
in the context of execution in different time scales and of environment-generated events.
We have argued that connecting behaviorally programmed nodes using a simple messaging
infrastructure is a promising approach to the incremental development of complex systems.
We demonstrated how systems can be decomposed into b-nodes, such that the run-time
synchronization requirements are substantially reduced. We also demonstrated how this
decomposition can preserve behavioral programming’s natural, incremental development
and the alignment of behavior modules with requirements.

Future work can progress in several directions: Studying the impact of BP design patterns
in large realistic case studies, exploring ways to automatically partition large, fully behavioral
systems into non-synchronized nodes, developing formal methods and tools to verify (e.g.,
model-check) behavioral programs constructed in this manner wholly or compositionally, and
exploring the addition of behavioral synchronization and event blocking to more mainstream
actor- and agent-based platforms.

Acknowledgements

We thank the anonymous reviewers for valuable comments and suggestions on an earlier
version of this paper. These comments have led to a substantial enhancement of the paper.
We would like to thank Einat Fuchs, whose lecture about coordination of cockroach loco-
motion [17] inspired some of the ideas in this paper. We thank Dan Brownstein and Nir
Svirsky for their programming work on the MATLAB simulation and the control software of
the behaviorally-controlled quadrotor, and Nadav Shechter and Oren Othnay for their work
on flying a real quadrotor with BP.

The research of the D. Harel, A. Kantor, G. Katz, A. Marron and G. Wiener was sup-
ported by the John von Neumann Minerva Center for the Development of Reactive Sys-
tems at the Weizmann Institute of Science, by an Advanced Research Grant to Harel from

43

the European Research Council (ERC) under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) and by the Israel Science Foundation. The research of
G. Weiss was supported by the Lynn and William Frankel Center for Computer Science at
Ben-Gurion University, by a reintegration (IRG) grant under the European Community’s
FP7 Programme, and by the Israel Science Foundation.

References

[1] Axum Programmer’s Guide. Microsoft, 2010.
[2] M. Abadi and Y. A. Feldman. Automatic recovery of statecharts from procedural code. In Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engineering, pages 238–241.
ACM, 2012.

[3] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, 1986.
[4] J. Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010.
[5] A. Ashrov, A. Marron, G. Weiss, and G. Wiener. A use-case for behavioral programming: an archi-

tecture in JavaScript and Blockly for interactive applications with cross-cutting scenarios. Science of
Computer Programming, 2014.

[6] D. Barak, D. Harel, and R. Marelly. Interplay: Horizontal scale-up and transition to design in scenario-
based programming. Lectures on Concurrency and Petri Nets, pages 66–86, 2004.

[7] R. Bordini, J. Hübner, and M. Wooldridge. Programming multi-agent systems in AgentSpeak using
Jason. John Wiley and Sons, 2007.

[8] R. Bordini, M. Dastani, J. Dix, and A. Seghrouchni. Multi-Agent Programming: Languages, Tools and
Applications. Springer, 2009.

[9] S. Bouabdallah. Design and control of quadrotors with application to autonomous flying. PhD thesis,
Ecole Polytechnique Federale De Lausanne, 2007.

[10] S. Bouabdallah, P. Murrieri, and R. Siegwart. Design and control of an indoor micro quadrotor. In
International Conference on Robotics and Automation, volume 5, pages 4393–4398. IEEE, 2004. ISBN
0780382323.

[11] L. Bouge and N. Francez. A compositional approach to superimposition. In POPL, 1988.
[12] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning. Computational

intelligence, 1988.
[13] W. Cai, F. Lee, and L. Chen. An auto-adaptive dead reckoning algorithm for distributed interactive

simulation. In Proc. 13th IEEE. Workshop on Parallel and Distributed Simulation (PADS), pages
82–89, 1999.

[14] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[15] M. Dastani. 2apl: a practical agent programming language. Autonomous Agents and Multi-Agent
Systems, 16(3):214–248, 2008.

[16] N. Eitan, M. Gordon, D. Harel, A. Marron, and G. Weiss. On visualization and comprehension of
scenario-based programs. Int. Conf. on Program Comprehension (ICPC), 2011.

[17] E. Fuchs, P. Holmes, T. Kiemel, and A. Ayali. Intersegmental coordination of cockroach locomotion:
adaptive control of centrally coupled pattern generator circuits. Frontiers in Neural Circuits, 2010.

[18] R. Fujimoto. Parallel and distributed simulation. In Proc. Winter Simulation Conference (WSC), pages
118–125, 1995.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995. ISBN
0201633612.

[20] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8
(3):231–274, 1987.

[21] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-
Engine. Springer, 2003.

44

[22] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. TOSEM, 5(4), 1996.
[23] D. Harel, A. Marron, and G. Weiss. Programming coordinated scenarios in Java. In Proc. 24th European

Conf. on Object-Oriented Programming (ECOOP), pages 250–274, 2010.
[24] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-checking behavioral programs. In Proc. 11th

Int. Conf. on Embedded Software (EMSOFT), pages 279–288, 2011.
[25] D. Harel, G. Katz, A. Marron, and G. Weiss. Non-intrusive repair of reactive programs. In International

Conference on Engineering of Complex Computer Systems (ICECCS), 2012.
[26] D. Harel, A. Marron, A. Nissim, and G. Weiss. A software engineering framework for switched fuzzy

systems. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2012. To Appear.
[27] D. Harel, A. Marron, and G. Weiss. Behavioral programming. Communications of the ACM, 55(7):

90–100, 2012.
[28] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree. From control models to real-time code using Giotto.

Control Systems Magazine, IEEE, 2003.
[29] K. Hindriks. Programming rational agents in GOAL. Multi-Agent Programming:, 2009.
[30] N. Jennings. An agent-based approach for building complex software systems. CACM, 2001.
[31] G. Katz. On module-based abstraction and repair of behavioral programs. Proc. 19th Int. Conf. on

Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pages 518–535, 2013.
[32] A. Kay. Programming and programming languages. Technical report, VPRI Research Note RN-2010-

001., 2010.
[33] R. Keller. Formal verification of parallel programs. Comm. Assoc. Comput. Mach., 19(7):371–384,

1976.
[34] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-

Oriented Programming. European Conference on Object-Oriented Programming (ECOOP), 1997.
[35] H. Kugler, C. Plock, and A. Roberts. Synthesizing biological theories. In CAV, 2011.
[36] D. Liberzon. Switching in systems and control. Springer, 2003.
[37] J. Lygeros, G. Pappas, and S. Sastry. An introduction to hybrid system modeling, analysis, and control.

Preprints of the First Nonlinear Control Network Pedagogical School, 1999.
[38] A. Marron, G. Weiss, and G. Wiener. A decentralized approach for programming interactive applica-

tions with JavaScript and Blockly. Proceedings of the 2nd AGERE! workshop (Programming systems,
languages and applications based on actors, agents, and decentralized control abstractions) at ACM
SIGPLAN SPLASH, pages 59–70, 2012.

[39] W. Miao and W. Tong. Agent based serviceBSP model with superstep service for grid computing. In
GCC, 2007.

[40] A. Rao, M. Georgeff, A. A. I. Institute, T. Department of Industry, and A. Commerce. Modeling
rational agents within a BDI-architecture. Australian Artificial Intelligence Institute, 1991.

[41] A. Ricci, M. Viroli, and G. Piancastelli. simpA: A simple agent-oriented java extension for developing
concurrent applications. Languages, Methodologies and Development Tools for Multi-Agent Systems,
pages 261–278, 2008.

[42] B. Shimony, I. Nikolaidis, P. Gburzynski, and E. Stroulia. On coordination tools in the PicOS tuples
system. SESENA, 2011.

[43] Y. Shoham. Agent-oriented programming. Artificial intelligence, 1993.
[44] A. D. Stefano and C. Santoro. Using the Erlang language for multi-agent systems implementation. In

IAT, pages 679–685, 2005.
[45] A. D. Stefano, F. Gangemi, and C. Santoro. Eresye: artificial intelligence in erlang programs. In Erlang

Workshop, pages 62–71, 2005.
[46] M. Travers. Programming with Agents: New metaphors for thinking about computation. PhD thesis,

MIT, 1996.

45

Appendix A. Example: Coordinated sequential processing

In this section we present an example for using BP for bulk processing of a large number
of records to perform business operations, where multiple, independent sequential processes
are implemented as b-threads.

Business operations include time based events (e.g., generation of periodic correspon-
dence), periodic application of complex business rules processed repetitively across very
large data sets (e.g., interest accrual or rate adjustments), or the integration of informa-
tion that is received from internal and external systems that typically requires formatting,
validation and processing in a transactional manner into the system of record. Such batch
processing systems are used to process daily billions of transactions for enterprises around
the world. Easy interweaving of such processes can be of great value. For example, consider
the printing of different notices, paper advertisements or coupons, for insertion in each cus-
tomer’s envelope. Sequential processes may independently customize individual messages to
customers in a large database, but they need to be coordinated, so that all messages to a
given customer are printed consecutively. The BP design pattern enables such coordination
with minimal dependency across the different sequential processes.

In BP terms, sequential batch processing can be formulated as an iterative bidding/con-
sensus process where, for each record of data, a set of independent b-threads collaborate
by using the request/wait/block idioms to express their views of how the record should be
processed. More specifically, the system can be programmed using a sequencer b-thread
that controls the sequencing of the records, and b-threads that model various considerations
regarding how the records should be processed.

To demonstrate the technique, we present an implementation of the Sieve of Eratosthenes
algorithm:
sequencer (I) when I < 100 ->

sync (# rwb{ request =[I]}) ,
T = sync (# rwb{ request =[prime , not_prime]}) ,
io: format ("˜w is ˜w ˜n", [I,T]),
sequencer (I+1);

sequencer (I) -> io: format (" ---˜n").

pFactors (I) -> pFactors (2*I,I).

pFactors (N,I) ->
sync (# rwb{wait = [N]}) ,
sync (# rwb{ block =[prime], wait = [N+1]}) ,
pFactors (N+I,I).

factory (I) ->
I = sync (# rwb{wait = [I]}) ,
T = sync (# rwb{wait = [prime , not_prime]}) ,
if

T == prime ->
add(spawn (fun () -> pFactors (I) end), 1);

true -> ok
end ,
factory (I+1).

run () ->

46

init (),
add(spawn (fun () -> sequencer (2) end), 2),
add(spawn (fun () -> factory (2) end), 3),
start ().

The sequencer is a b-thread that leads the sequential processing of the natural numbers
and attempts to declare each one a prime. The pFactors b-thread blocks the multiples of a
prime number from being declared as prime. The factory b-thread is responsible for spawn-
ing and registering a pFactors b-thread whenever a prime number is discovered. Note that
this kind of dynamic addition of b-threads extends the basic collaboration scheme described
above, and requires further attention in definition and development. The start method
starts an instance of the sequencer and the factory b-threads. This code does not con-
form with the assumptions outlined in Section 2.10, and therefore cannot be automatically
visualized by bs_wis.

Appendix B. Eager Execution Formalized

We now formally define the the eager execution mechanism. For simplicity, all definitions
in this section exclusively consider programs with deterministic b-threads of equal priorities;
handling nondeterministic threads and threads with varying priorities is similar.

Let P = {BT 1, . . . , BT n} be a behavioral program, where n ∈ N and each BT i is a
distinct b-thread. In order to define the eager execution mechanism, we construct a labeled
transition system (LTS) denoted by L̂TS(P) = 〈Q̂, q̂0, δ̂〉, which is defined next. We use
some of the notation introduced in Section 2.9.

The set of states is given by Q̂ := (Q1 × Σ∗) × · · · × (Qn × Σ∗). Each state is thus a
tuple consisting for each thread of its state and the contents of its event queue. Let q =
〈qi, ui〉ni=1 ∈ Q̂ be a state. We use the standard notation δi(qi, ui) to denote the state in Qi

after applying the transition function δi of thread BT i starting from state qi for each event in
the queue ui. Given q, we denote the tuple comprised of these states by q := 〈δi(qi, ui)〉ni=1;
we refer to it as the indication of q. Note that q naturally corresponds to a state in Q, which
is the set of states of LTS(P) = 〈Q, q0, δ〉 defined in Section 2.9. We slightly abuse notation
and write that q ∈ Q. Naturally, the initial state is q̂0 := 〈(q1

0, ε), . . . , (qn0 , ε)〉 ∈ Q̂.
In each state q = 〈qi, ui〉ni=1 ∈ Q̂, eager execution approximates the requested and blocked

events of each thread. This is indicated by the following sets of events: Ri(q) ⊆ Σ, for the
requested events of thread BT i, and Bi(q) ⊆ Σ, for the its blocked events. As previously
mentioned, eager execution has various forms (depending on the analysis technique that
is used); each form is characterized by its specific choice for these approximations. The
requirements imposed on them are the following. We require that Ri(q) is a subset of the
events that are requested by thread BT i at state δi(qi, ui), and that Bi(q) is a superset of
the blocked events at that state. That is,

Ri(q) ⊆ Ri(δi(qi, ui)) Bi(δi(qi, ui)) ⊆ Bi(q) . (B.1)

Moreover, we require that in case a thread is synchronized, the two approximations are pre-
cise. More formally, if ui = ε for some i ∈ [n] (where [n] denotes the set of indices {1, . . . , n}),

47

so that in particular δi(qi, ui) = qi, then we require

Ri(q) = Ri(qi) Bi(q) = Bi(qi) . (B.2)

These two requirements are sufficient for our purposes. One may easily verify that
the eager execution with either static or dynamic analysis technique complies with the
requirements. From these, we obtain that the approximated enabled events, defined in the
following, are contained in the enabled events at the indication state q ∈ Q; i.e.,

E(q) :=
n⋃
i=1
Ri(q) \

n⋃
i=1
Bi(q) ⊆ E(q) . (B.3)

In case all threads are synchronized, i.e., ui = ε for all i ∈ [n], we obtain

E(q) = E(q) . (B.4)

The nondeterministic transition function δ̂ : Q̂ × (Σ∪̇{ε}) → 2Q̂ includes also silent ε-
labeled transitions; these ε transitions are not considered part of the runs of the system. δ̂
is defined for each state q = 〈qi, ui〉ni=1 ∈ Q̂, and σ ∈ Σ ∪ {ε}, as:

• If σ = ε, then δ̂(q, ε) is defined to be those states 〈ri, vi〉ni=1 ∈ Q̂ for which there is i0 ∈
[n] and a ∈ Σ such that ui0 = a vi0 and ri0 = δi0(qi0 , a), and for all other i ∈ [n] \ {i0}
it holds that ri = qi and vi = ui. These transitions correspond to threads with queued
events processing these events — they change states, while the other threads do not
move.

• If σ ∈ Σ, and moreover σ ∈ E(q), then δ̂(q, σ) is defined to be the singleton δ̂(q, σ) =
{〈qi, ui σ〉ni=1}. These transitions correspond to new events being triggered.

• If σ ∈ Σ and σ 6∈ E(q), we define δ̂(q, σ) = ∅. This reflects the fact that events that
are not enabled cannot be triggered.

We conclude by formally proving that the eager execution mechanism yields runs that
are valid accord to BP’s original semantics, by comparing L̂TS(P) defined above and LTS(P)
from Section 2.9. Technically, we claim that each complete run of L̂TS(P) is a complete run
of LTS(P); i.e., L(L̂TS(P)) ⊆ L(LTS(P)). This is a consequence of the following lemmata.

When considering L̂TS(P), q σ→ q′ stands for q′ ∈ δ̂(q, σ), as customary when discussing
transition systems (for any states q, q′ ∈ Q̂ and a possibly silent event σ ∈ Σ ∪ {ε}). Also,
recall that q ∈ Q̂ is a terminal state if for all σ ∈ Σ ∪ {ε} it holds that δ̂(q, σ) = ∅. Similar
notations and terminology apply to LTS(P).

Lemma 1. Let q, q′ ∈ Q̂ and σ ∈ Σ ∪ {ε} such that q σ→ q′ in L̂TS(P).

1. If σ = ε, then q′ = q.

2. If σ ∈ Σ, then q
σ→ q′ in LTS(P).

48

Proof. 1: Denote q = 〈qi, ui〉ni=1 ∈ Q̂, and suppose that σ = ε. By the definition of δ̂, we
obtain that q′ = 〈ri, vi〉ni=1, where all the coordinates are the same as in q, except for the one
corresponding to i0 ∈ [n]. In the latter coordinate we get δi0(ri0 , vi0) = δi0(δi0(qi0 , a), vi0) =
δi0(qi0 , a vi0) = δi0(qi0 , ui0), as needed.

2: Now, suppose σ ∈ Σ. According to the definition of δ̂, σ ∈ E(q) and q′ =
〈qi, ui σ〉ni=1. By (C.3) and by the definition of δ, we get that in LTS(P) it holds
that q σ→ 〈 δi(δi(qi, ui), σ) 〉ni=1 = 〈 δi(qi, ui σ) 〉ni=1 = q′.

Corollary 1.

1. Let r0
σ1→ r1

σ2→ · · · σk→ rk be a finite execution of L̂TS(P) (k ≥ 0). There exists
a finite execution s0

a1→ s1
a2→ · · · at→ st of LTS(P) (t ≥ 0) such that rk = st and

σ1 σ2 · · · σk = a1 a2 · · · at.

2. Let r0
σ1→ r1

σ2→ · · · be an infinite execution of L̂TS(P). There exists an execution
s0
a1→ s1

a2→ · · · of LTS(P) such that σ1 σ2 · · · = a1 a2 · · · .

sketch. 1: By induction on k. For k = 0 the claim follows from the fact that q̂0 = q0 ∈ Q;
the induction step follows from Lemma 1.

2: By an inductive construction of the execution, which similarly follows from Lemma 1.

Lemma 2.

1. If q ∈ Q̂ is a terminal state in L̂TS(P), then q is a terminal state in LTS(P).

2. There is no infinite sequence q ε→ q′
ε→ q′′

ε→ · · · in L̂TS(P).

Proof. 1: As q is terminal, by the definition of δ̂ it holds that all the queues in q are empty
(otherwise, δ̂(q, ε) 6= ∅); i.e., q = 〈qi, ε〉ni=1. Let a ∈ Σ. Because q is terminal, a 6∈ E(q).
Thus, by (C.3), a 6∈ E(q), and therefore by the definition of δ, δ(q, a) = ∅.

2: For each state q = 〈qi, ui〉ni=1 ∈ Q̂, consider the total size of the queues, denoted
by ϕ(q) := Σn

i=1|ui| ∈ N. Given such an infinite sequence of states, ϕ is strictly decreasing
(by the definition of δ̂), which contradicts the well-foundness of the natural numbers.

Corollary 2. Let r0
σ1→ r1

σ2→ · · · be a complete (finite or infinite) execution of L̂TS(P).
There exists a complete (finite or infinite, respectively) execution s0

a1→ s1
a2→ · · · of LTS(P)

such that σ1 σ2 · · · = a1 a2 · · · .

The corollary follows from Corollary 1 and Lemma 2. It is equivalent to L(L̂TS(P)) ⊆
L(LTS(P)), as needed.

49

Appendix C. Nondeterministic Threads

In several points in the paper, we mention and demonstrate the use of nondeterministic
threads. In this section we formally define such threads and discuss applying the eager
synchronization mechanism to them.

Nondeterministic threads can be intuitively thought of as threads that do not depend
solely on the (behavioral) events triggered, but also on other sources of input — such as
randomness or user actions. For example, consider a thread currently at state s. In this state,
the thread waits for event e. When that event is triggered, the thread flips a coin; “heads”
sends the thread to state sh, and “tails” sends it to state st. Thus, the thread’s transition
does not depend solely on the triggered event, e. We call such threads nondeterministic.

Formally, nondeterministic threads are defined as follows: A nondeterministic behav-
ior thread (nondeterministic b-thread) BT is abstractly defined to be a tuple BT =
〈Q, q0, δ, R,B〉, where

• Q is a set of states,

• q0 ∈ Q is an initial state,

• δ : Q× Σ→ 2Q \ {∅} is a transition function,

• R : Q→ P(Σ) assigns for each state a set of requested events,

• B : Q→ P(Σ) assigns for each state a set of blocked events.

The difference between this definition and that of a (deterministic) b-thread is in the def-
inition of δ; here it may map each state and event pair rightarrow more than one possible
successor. For instance, in the example given above we would have δ(s, e) = {sh, st}.

The semantics of behavioral programs with nondeterministic threads are naturally de-
fined as follows. Let P = {BT 1, . . . , BT n} be a behavioral program, possibly with nonde-
terministic threads. We construct a labeled transition system LTS(P) = 〈Q, q0, δ〉, where

• Q := Q1 × · · · ×Qn is the set of states,

• q0 := 〈q1
0, . . . , q

n
0 〉 ∈ Q is the initial state,

• δ : Q × Σ → 2Q is a (nondeterministic) transition function, defined for all q =
〈q1, . . . , qn〉 ∈ Q and a ∈ Σ, by

δ(q, a) :=

{ 〈r1, . . . , rn〉 | ri ∈ δi(qi, a) } ; if a ∈ E(q)
∅ ; otherwise .

where E(q) = ⋃n
i=1R

i(qi) \ ⋃ni=1B
i(qi) is the set of enabled events at state q.

50

As in the deterministic case, an execution of P is an execution of the induced LTS(P). The
latter is executed starting from the initial state q0. In each state q ∈ Q, an enabled event a ∈
Σ is selected for triggering if such exists (i.e., an event a ∈ Σ for which δ(q, a) 6= {∅}). Then,
the system nondeterministically (that is, depending on coin tosses, user input, etc) moves
to one of the next states q′ ∈ δ(q, a), and the execution continues. Such an execution can be
formally recorded as a possibly infinite sequence of triggered events, called a run. The set
of all complete runs is denoted by L(P) , L(LTS(P)), which contains either infinite runs or
finite ones that terminate in a state in which no event is enabled.

Appendix C.1. Eager Execution of Programs with Nondeterministic Threads
As we briefly mentioned in the paper, eager execution can be adapted to programs with

nondeterministic threads. We now discuss this adaptation more thoroughly.

Appendix C.1.1. Relaxing Synchronization using Static Information
The first method for eager execution mentioned in the paper is that of static analysis. In

this approach, the coordinator is given, prior to running the program, an over approximation
of the events that the thread might block during its run. Clearly, this method can be applied
to non-deterministic threads as-is: the threads’ nondeterministic nature does not affect the
validity of the over approximations.

Further, recall that in Section 4.2.2 we discussed leveraging the eager execution mech-
anism in designing modular behavioral programs. As mentioned therein, the results given
rely on the use of static analysis of the threads. Consequently, as static analysis is invariant
to nondeterministic threads, the results regarding modular design equally hold.

Appendix C.1.2. Relaxing Synchronization using Dynamic Information
The second method for eager execution that we mentioned relies on dynamic analysis.

In this variant, the global coordinator uses the threads’ state graphs to determine their
future synchronization requests, while they are busy performing lengthy actions. Naturally,
nondeterministic transitions in a thread’s state graph pose a problem to this technique, as
the coordinator cannot determine the state of the thread without knowing which transition
was finally chosen. This information only becomes available when the thread synchronizes,
but at that time it is no longer helpful.

We propose a slightly different variant, that is slightly weaker than dynamic analysis
of deterministic threads but still superior to static analysis. Consider the example given
earlier, where a thread determines its next state by tossing a coin; i.e., δ(s, e) = {sh, st}.
Further, suppose that coin tossing takes a long time. The coordinator has no way of knowing
if the thread is in state sh or st until it synchronizes, but it can approximate its requested
and blocked events by R = R(sh) ∩ R(st) and B = B(sh) ∪ B(st). More generally, if the
thread is known to arrive in one of the states Q = {q1, . . . , qn} for its next synchronization
point, the coordinator can approximate its event sets by R = ⋃n

i=1R(qi) and B = ⋂n
i=1B(qi).

In many cases, these approximation may prove sufficiently tight to allow the triggering of
the next event, without actually waiting for the thread to finish its lengthy operations and
synchronize.

51

Observe that this method can also be applied iteratively — i.e., many more events can
be triggered before the nondeterministic thread synchronizes. All that is required is that
the coordinator properly maintains the set Q of states the thread can reach at its next
synchronization point.

Appendix C.2. Eager Execution Formalized for Nondeterministic Threads
In this section we extend the formal definitions of eager execution in the natural way, to

include proper handling of nondeterministic threads. While many of the particulars remain
the same as in the deterministic case, we repeat them here for completeness. For simplicity,
we assume all the threads in the program have equal priorities.

Let P = {BT 1, . . . , BT n} be a behavioral program, where n ∈ N and each BT i is a dis-
tinct, possibly nondeterministic b-thread. In order to define the eager execution mechanism,
we construct a labeled transition system (LTS) denoted by L̂TS(P) = 〈Q̂, q̂0, δ̂〉, which is
defined as follows.

• Q̂ := (Q1 × Σ∗) × · · · × (Qn × Σ∗) is the set of states, in which each state is a
tuple consisting of the state of each thread and the contents of the corresponding
event queue. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state. We use the notation δi(qi, ui) to
denote the set of states in Qi that can be reached after applying the (nondeterministic)
transition function δi of thread BT i starting from state qi for each event in the queue ui.
Given q, we denote the set of tuples comprised of possible combinations of these states
by ind(q) := {〈r1, . . . , rn〉 | ri ∈ δi(qi, ui)} we refer to it as the indication of q. Note
that each q ∈ ind(q) naturally corresponds to a state in Q, which is the set of states
of LTS(P) = 〈Q, q0, δ〉 defined above. We slightly abuse notation and write that q ∈ Q.

• q̂0 := 〈(q1
0, ε), . . . , (qn0 , ε)〉 ∈ Q̂ is the initial state.

• In each state q = 〈qi, ui〉ni=1 ∈ Q̂, eager execution approximates the requested and
blocked events of each thread. This is indicated by the following sets of events: Ri(q) ⊆
Σ, for the requested events of thread BT i, and Bi(q) ⊆ Σ, for the its blocked events.
The requirements imposed on them are the following. We require thatRi(q) is a subset
of the events that are requested by thread BT i at any of the states in δi(qi, ui), and
that Bi(q) is a superset of the blocked events at these states. That is,

Ri(q) ⊆
⋂

v∈δi(qi,ui)
Ri(v)

⋃
v∈δi(qi,ui)

Bi(v) ⊆ Bi(q) .
(C.1)

Moreover, we require that in case a thread is synchronized, the two approximations
are precise. More formally, if ui = ε for some i ∈ [n] (consequently, δi(qi, ui) = {qi}),
then

Ri(q) = Ri(qi)
Bi(q) = Bi(qi) .

(C.2)

52

From these, we obtain that the approximated enabled events, defined in the following,
are contained in the enabled events at any of the states in ind(q); i.e., ∀q ∈ ind(q)

E(q) :=
n⋃
i=1
Ri(q) \

n⋃
i=1
Bi(q) ⊆ E(q) .

In case all threads are synchronized, i.e., ui = ε for all i ∈ [n], we obtain that ind(q) =
{〈q1, . . . , qn〉} and

E(q) = E(〈q1, . . . , qn〉) . (C.3)

• δ̂ : Q̂ × (Σ∪̇{ε}) → 2Q̂ is a nondeterministic transition function, which includes also
silent ε-labeled transitions; these ε transitions are not considered part of the runs of
the system. δ̂ is defined for each state q = 〈qi, ui〉ni=1 ∈ Q̂, and σ ∈ Σ∪{ε}, as follows:

– If σ = ε, then δ̂(q, ε) is defined to be those states 〈ri, vi〉ni=1 ∈ Q̂ for which there
is i0 ∈ [n] and a ∈ Σ such that ui0 = a vi0 and ri0 ∈ δi0(qi0 , a), and for all
other i ∈ [n] \ {i0} it holds that ri = qi and vi = ui. Each of these transitions
corresponds to a thread with queued events when it finishes processing the head
of the queue — it changes states, while the other threads don’t move.

– If σ ∈ Σ, and moreover σ ∈ E(q), then δ̂(q, σ) is defined to be the singleton
δ̂(q, σ) = {〈qi, ui σ〉ni=1}. These transitions correspond to new events being trig-
gered.

– If σ ∈ Σ and σ 6∈ E(q), we define δ̂(q, σ) = ∅. This reflects the fact that events
that are not enabled cannot be triggered.

The definitions above capture the case of nondeterministic threads. They can be used
to prove the result of the matching section in the paper for the nondeterministic case: that
in the nondeterministic case it also holds that each complete run of L̂TS(P) is a complete
run of LTS(P); i.e., L(L̂TS(P)) ⊆ L(LTS(P)). The actual proof is similar to that of the
deterministic case.

Appendix D. Modularity Formalized

In this section we use the formalization of eager execution described in Section 4.2.2 in
order to rigorously formulate and prove Proposition 1.

Let P = {BT 1, . . . , BT n} be a behavioral program (where n ∈ N and each BT i is a
distinct b-thread). Assume that P is composed of behavioral modules M1, . . . ,Mk; i.e.,
M1, . . . ,Mk is a partition of the threads. For each thread BT i, the set of events controlled
by BT i is denoted by Ci :=

(⋃
s∈Qi Bi(s)

)
∪
(⋃

s∈Qi Ri(s)
)
. For each module Mj, the set

Ej := ⋃
i :BT i∈Mj

Ci is the set of events controlled in Mj. We assume that the modular design
is strict; i.e., E1, . . . , Ek are pairwise disjoint.

We will assume that the program P is executed with the eager execution mechanism,
which is formalized as the transition system L̂TS(P) in Appendix B. The strict modu-
lar design translates into a constraint on the approximations used — namely, that these

53

approximations only include events controlled by the specific module. Formally, in each
state q ∈ Q̂, and for each module Mj and thread BT i ∈ Mj, the approximation of the
blocked events satisfies

Bi(q) ⊆ Ej . (D.1)

This obviously holds in both static and dynamic analysis. Observe that the analogous
constraint, Ri(q) ⊆ Ej, follows directly from (C.1).

We now turn to prove the following technical proposition that, when applied iteratively,
implies Proposition 1.

Proposition 2. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state of L̂TS(P) in which all threads of mod-
ule Mj have already synchronized; i.e., if BT i ∈ Mj then ui = ε. Let q′ = 〈ri, vi〉ni=1 ∈ Q̂
be a state such that q ε→ q′ in L̂TS(P). Then for all i ∈ [n] such that BT i ∈ Mj it holds
that vi = ε, and an event e ∈ Ej is enabled in q, i.e. e ∈ E(q), if and only if it is also
enabled in q′, i.e. e ∈ E(q′).

Proof. By the definition of the transition function δ̂ of L̂TS(P), for all i ∈ [n] such
that BT i ∈Mj it holds that vi = ui = ε, as required, and also ri = qi.

We begin by showing that e ∈ E(q′) =⇒ e ∈ E(q). By (C.3), e ∈ E(q′) implies e ∈ Rl(q′)
for some l ∈ [n], and e 6∈ ⋃ni=1 Bi(q′). By (C.1), Rl(q′) ⊆ C l, where C l is the set of events
controlled by BT l; as e ∈ Ej and the design is strict, BT l ∈ Mj. From the above, we get
that rl = ql and vl = ul = ε. Therefore, from (C.2) we obtain Rl(q) = Rl(ql) = Rl(q′), so
that e ∈ Rl(q). For the same reason, and due to (C.2), for all i ∈ [n] such that BT i ∈Mj, it
holds that Bi(q) = Bi(qi) = Bi(q′); as we know that e is not in the latter approximation set,
we get that e 6∈ Bi(q). For other i ∈ [n], for which BT i 6∈ Mj, we get from (D.1), and from
the design being strict, that Bi(q) ⊆ Σ \ Ej. Consequently, here also, e 6∈ Bi(q). Conclude
that e ∈ ⋃ni=1Ri(q) \ ⋃ni=1 Bi(q) = E(q) , as needed.

The proof for the other direction, i.e. e ∈ E(q) =⇒ e ∈ E(q′), is similar and is omitted.
The proposition follows.

Appendix E. The Distributed Execution Mechanism

The concept of behavior modules discussed in Section 4.2.2 requires that each b-thread
communicate with the global coordinator at every synchronization point. While this con-
straint is significantly weaker than stepwise synchronization with all other b-threads, it
may limit the applicability of the approach for designing multi-component applications in
distributed architectures, in which communication is costly and time-consuming. In this
section, we show how a variant of eager execution, combined with Dead Reckoning tech-
niques [13, 18], can be utilized to reduce these costs. This variant is referred to as distributed
execution.

In order to have behavioral modules executed in a decentralized manner on different
machines, we distribute the coordinator, so that each machine runs its own coordinator
agent. These agents serve as the coordinators for their local threads, i.e., threads running

54

on the local machine, but have no direct access to threads on other machines. Instead, they
can communicate with other agents.

Before running the system, each agent is given the state graphs of all the threads in
the system, including non-local threads (similarly to the technique in Section 4.3). Each
coordinator agent then executes the program locally, using these state graphs to simulate
non-local threads and predict their synchronization requests. Each agent is responsible for
answering its local threads’ synchronization requests, just as a central coordinator would.
Observe that this requires that the event selection mechanism be a deterministic function
— that is, a function from 2Σ \ {∅} to Σ, whose input is the set of enabled events — in
order to ensure that the autonomous agents pick the same events. The priority-based event
selection mechanism has this property.

In a program with deterministic threads, this form of distribution would suffice to make
inter-component communication obsolete, as each coordinator agent could trigger precisely
the same events as the others. In the case of systems with nondeterministic threads (such as
reactive systems), some communication between the distributed components is mandatory.
Intuitively, this communication is used to announce the outcome of nondeterministic choices
made by a thread to the other components. Specifically, all coordinator agents are aware
of each thread’s nondeterministic forks, as they hold all the state graphs. Whenever such
a nondeterministic fork is reached, the coordinator agent on which that thread is actually
running is responsible for disseminating the outcome of the nondeterministic choice to the
remaining agents. If other agents reach this point before the outcome has been broadcasted,
they must wait for it. This guarantees that the execution is consistent across all program
components, in the following sense:
Lemma 3. Let P be a behavioral program executed using the distributed execution mecha-
nism. Then, all coordinator agents trigger the same sequence of events, and this sequence is
a valid run (under BP’s semantics).

In the distributed execution mechanism, a thread waits for threads in other components
only to resolve nondeterminism in the behavior of the latter. For the correctness of code
executed in accordance with the triggering of an event, the programmer should generally
assume that in other components this event is triggered at a different time (before or after).

In the next section we describe an example of a distributed application; and in Ap-
pendix E.1 we formally define the model and prove Lemma 3.

Appendix E.1. Distributed Execution Formalized
In this section we provide a rigorous definition of the model, and prove that the runs

that it produces abide by the semantics of BP.
Let P = {BT 1, . . . , BT n} be a (possibly nondeterministic) behavioral program, where

n ∈ N and each BT i is a distinct b-thread, and let f : 2Σ \{∅} → Σ be a deterministic event
selection function. Suppose that the threads run on different machines M1, . . . ,Mk. Each
machine is defined as the set of thread that it runs, i.e. ⋃ki=1Mi = P .

Each machine Mi has a coordinator agent, Ci; this agent acts as the coordinator for
the threads of Mi, and answers their synchronization requests. Each coordinator agent is

55

supplied with the state graphs of all threads in the system, and uses these graphs to locate
nondeterministic transitions of the threads throughout the run.

The pseudocode for coordinator agent Ci in charge of managing threads Mi is given
below. The agent uses variables s1, . . . , sn to keep track of the states of all threads in the
system.

Coordinator Agent Ci:
1: ∀i, si ← qi0
2: LastEvent← φ
3: while true do
4: Sync← φ
5: while |Sync| < |Mi| do
6: Receive synchronization request from thread BT j

7: Mark the new state of BT j as s′j
8: if LastEvent 6= φ and |δj(sj ,LastEvent)| > 1 then
9: Broadcast s′j

10: sj ← s′j
11: Sync← Sync ∪BT j
12: for BT ` /∈Mi do
13: if LastEvent 6= φ then
14: if |δ`(s`,LastEvent)| > 1 then
15: Update s` according to broadcasts from other agents
16: else
17: s` ← δ`(s`,LastEvent)
18: E ←

⋃n
j=1(Rj(sj))−

⋃n
j=1(Bj(sj))

19: LastEvent← f(E)
20: Inform threads in Mi that LastEvent was triggered

Note the slight abuse of notation of line 17 — where δ`(s`,LastEvent) is not the state
of the thread, but rather a set containing that state. Also, we implicitly assume that all
broadcasts between the coordinator agents contain the index of the synchronization point
that they refer to, to prevent cases where information about synchronization point t1 could
be mistakenly used in synchronization point t2.

Intuitively, the coordinator agent waits for the threads that it manages (loop on line 5),
same as in the centralized case. Whenever a thread synchronizes, the agent checks if the
thread’s last transition was nondeterministic (line 8). If so, the new state is broadcasted to
the other agents — as they have no other way of finding out which transition was taken.

Once all the agent’s threads have synchronized, it turns to consider threads that run on
other machines. The key fact is that if a non-local thread is at a nondeterministic transition
(line 14), the agent has to wait to receive a broadcast message (line 15) in order to determine
the new state of that thread. Otherwise, it can go ahead and determine the thread’s state
locally (line 17).

After the synchronization requests of all threads have been determined, the next event
to be triggered is selected (line 19), and then broadcasted to the agent’s threads. This

56

part is the reason for stipulating that f be a deterministic function — in order to maintain
cohesiveness, all agents much trigger the same event on line 19.

Observe that each coordinator agent uses information regarding the transition functions
(lines 8 and 14) and synchronization requests (line 18) of all the threads in the system —
both threads that run locally on that agent, and threads that run on other agents. This
information is given prior to the run, in the form of the state graphs of all the threads in
the system.

Having formally defined the operation of each agent, we can now prove the following
proposition, which is a technical formulation of Lemma 3:

Proposition 3. Let P = {BT 1, . . . , BT n} be a behavioral program, divided into machines
M1, . . . ,Mk with coordinator agents C1, . . . , Ck. Let f : 2Σ \ {∅} → Σ be a deterministic
event selection function. Then agents C1, . . . , Ck produce a cohesive run; that is, there exists
a unique run e1e2 . . . such that at synchronization point i, every coordinator C` triggers ei.
Further, the sequence e1e2 . . . is a valid run (under BP’s semantics).

For simplicity, we prove the lemma for the case of two machines, i.e. n = 2; the proof
can easily be extended to any n ∈ N. The proof follows directly from the next proposition,
which is in turn proven by induction over the index of the synchronization points of the run.

Proposition 4. For i ∈ N and m ∈ {1, 2}, let sim(BT `) denote the state of thread BT ` at
synchronization point i, from the point of view of coordinator agent m. Let Sim denote the
system-wide state at synchronization point i from the point of view of coordinator agent m;
that is, Sim = 〈sim(BT 1), . . . , sim(BT n)〉. Then for all i ∈ N, it holds that Si1 = Si2.

Proof. Let i = 1, which is the first synchronization point in the program. At this point, by
the initialization in line 1 in the coordinator agent’s code, s1

1(BT `) = q`0 and s1
2(BT `) = q`0

for all `. Consequently, S1
1 = S1

2 .
Now, suppose that Si1 = Si2 for some i. At synchronization point i, both coordinator

agents triggered the same event ei. This is so because the event selection function is deter-
ministic, and thus both agents triggered event ei = f(E(Si1)) = f(E(Si2)). This event was
passed to all threads of the system by their respective coordinator agents.

Observe synchronization point i+ 1 from the point of view of C1. As soon as all threads
in M1 have synchronized, C1 knows their states. In order to determine the states of the
remaining threads (those running on machine M2), C1 uses their pre-supplied state graphs.
For any BT ` ∈ M2, agent C1 checks whether |δ`(si1(BT `))| = 1, and if so it deduces that
si+1

1 (BT `) = δ`(si1(BT `)). In this case, C2 will learn the state of BT ` when that thread
synchronizes, and it will hold that si+1

1 (BT `) = si+1
2 (BT `).

The other option is that thread BT ` is performing a nondeterministic transition, i.e.
|δ`(si1(BT `))| > 1. In this case, C1 has to wait for thread BT ` to synchronize and reveal its
state to C2, after which C2 will broadcast this state to C1. In this case, it will also hold that
si+1

1 (BT `) = si+1
2 (BT `).

Further, upon receiving the synchronization request from a local thread BT t, agent C1
uses its stored state graphs to check whether |δt(si1(BT t))| > 1. If so, C1 transmits the

57

thread’s new state as learned from the synchronization request, si+1
1 (BT t), to C2 — to

inform C2 of how that nondeterministic transition was resolved.
As agent C2 behaves symmetrically, we conclude that for all t it holds that si+1

1 (BT t) =
si+1

2 (BT t), and consequently that Si+1
1 = Si+1

2 .

Proposition 3 immediately follows from Proposition 4, and from the fact that f is a
deterministic function. Indeed, Si+1

1 = Si+1
2 implies identical calculation of the set E (line 18

in both agents, and thus the same output for f(E). Finally, the fact that the resulting run
is a legal BP follows from the definition of the set E to be the set of enabled events at the
synchronization point.

Appendix E.2. Further Relaxing the Distributed Execution Mechanism
The distributed execution mechanism described above utilizes eager execution in the

sense that each machine may be able to continue its execution without waiting for slower
machines — except in nondeterministic transitions. We point out that further relaxation
can be achieved by using static or dynamic thread information within the scope of each
coordinator agent. As in the non-distributed case, this would allow faster threads within
the same machine to continue their execution without waiting for their slower counterparts.

Another possible enhancement for the distributed model above is to use approximations
for nondeterministic threads on other machines that slow down execution. Suppose that
controller agent C1 of machine M1 is waiting for thread BT ∈M2 to finish its nondetermin-
istic transition in order to trigger an event. As was the case in the centralized version, if C1
can deduce, using the state graph of BT , that its next state will be either s1 or s2, it can ap-
proximate its requested and blocked events with R = R(s1)∩R(s2) and B = B(s1)∪B(s2).
This further reduces the dependency between the different machines, hopefully achieving
better optimization.

58

	Introduction
	 Behavioral Programming in Erlang
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaboration
	Code structure
	A simple example
	Formal Definitions
	B-Threads
	Behavioral Programs

	Visualization
	Consequences
	Example: Coordinated sequential processing
	Known uses and related design patterns

	Application Designs for Dealing with Asynchrony and Different Time Scales
	How short is your zero time?
	Handling external events
	Accommodating behaviors at different time scales
	Example 1: Synchronizing with an external environment
	Game architecture
	Game behaviors

	Example 2: Coordinating behaviors with different time scales
	Example 3: Incremental development of a multi-agent application
	Vehicle motion
	Enabling external communication
	Adding an advisor agent

	Relaxing Synchronization Constraints through Eager Execution
	Relaxing Synchronization Constraints
	Relaxing Synchronization using Static Information
	Example: External Input using Static Information
	Modularity using Static Information

	Relaxing Synchronization using Dynamic Information
	Example: Optimization using Dynamic Information
	Automated Graph Spanning

	Comparing B-Nodes and Eager Execution
	Positioning BP relative to Mainstream Actor and Agent Programming
	Conclusion and Future Work
	Example: Coordinated sequential processing
	Eager Execution Formalized
	Nondeterministic Threads
	Eager Execution of Programs with Nondeterministic Threads
	Relaxing Synchronization using Static Information
	Relaxing Synchronization using Dynamic Information

	Eager Execution Formalized for Nondeterministic Threads

	Modularity Formalized
	The Distributed Execution Mechanism
	Distributed Execution Formalized
	Further Relaxing the Distributed Execution Mechanism

