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ABSTRACT
We present a method and a tool for composing a reactive
system and for accompanying the development and docu-
mentation process with a proof of its correctness. The ap-
proach is based on behavioral programming (BP) and the
Z3 SMT solver. We show how program verification can
be automated and streamlined by combining properties of
individual modules, specified and verified separately, with
application-independent specifications both of the BP se-
mantics and of general theories. The method may yield
an exponential acceleration of the verification process when
compared with model-checking the composite application.
We show that formalization of properties of independent
modules in preparation for the correctness proofs can be
useful as documentation for future development. We view
this work as a further step towards making formal correct-
ness proofs standard practice in the development of reactive
systems, and carried out by programmers at large.

1. INTRODUCTION
The development and verification of large scale component-

based software systems pose many challenges. During de-
velopment, programmers working on separate modules may
often be unaware of the fine details of inter-module inter-
faces, or these interfaces may not be well defined; and the
state explosion problem prevents the model-checking of the
entire system, which could discover the resulting errors at
the system level.
In recent decades, a prominent approach for tackling these

issues has been that of compositional development, based on
well defined interfaces, assume-guarantee contracts, and ver-
ification. This approach calls for defining the interfaces be-

tween modules, programming each module separately, and
then verifying that each module guarantees certain prop-
erties under certain assumptions on its environment. The
modules’ verified properties are then combined in order to
deduce system-wide properties. For some of the notable
compositional approaches see, e.g., [3–7, 9, 10, 12–14, 17–20,
22–25], which are reviewed in Section 5. A recent survey
of behavioral interface specification languages [17] points to
outstanding research challenges in this area, including how
to deal with parallel programs, to tie module specifications
to requirements specifications, and to further automate the
verification process. This paper aims to contribute to the
pursuit of these challenges.
We present a compositional approach and a tool chain for

building and verifying reactive systems. In our proposed
approach, properties of individual modules are formalized
and then used for automated verification of the compos-
ite system. The formalized module properties serve also as
part of system documentation and can be useful for other
development tasks. Two key elements of the approach are
(1) a specification and programming formalism that enables
programming different aspects of system behavior indepen-
dently of each other; (2) means to infer composite system
properties from formally-specified properties of individual
modules.
For system specification we use the formalism of behavioral

programming (BP) [16] and for inferring system properties
from module properties the Z3 SMT solver [8]. We believe,
however, that the approach can be based on to other meth-
ods too as long as they cater to programming separate as-
pects in isolation. It can also be used with other inference
tools and theorem provers.
Our goal is to improve the process of compositional devel-

opment, documentation, and verification, by proposing ways
that in some cases will give rise to efficient verification. Sim-
ilarly important is providing tools for formal documentation
of the module properties.
The methodology behind the approach consists of the fol-

lowing steps (which can be performed in almost any order):

Specification: Document in natural language each of the
desired and undesired aspects of system behavior.



Module Properties: Design the system such that each as-
pect of the behavior will be implemented by its own
separate program module (or a set thereof). Formalize
the properties of each such module (or set of modules)
as formulas in a solver or proof assistant.

Environment Properties: Similarly, formalize the de-
scription of external environment behavior and encode
it in the solver or proof assistant.

Composition Properties: Specify the application-
independent module-composition rules as formulas of
the solver or proof assistant.

Domain Properties: Specify the application-independent
domain knowledge in the solver or proof assistant.

Prove System Properties: Use the solver or proof assis-
tant to prove that, given the module, composition and
domain properties, the system will behave correctly.

System Implementation: For each independent aspect
of the behavior, develop the code of the correspond-
ing module(s). If needed for simulation purposes, also
implement the external environment behavior as a sep-
arate program module (or a set thereof).

Module Verification: Verify that the individual modules
satisfy their properties as stated in the Module Proper-
ties step. If the modules are small and simple, this step
can be done, e.g., automatically by model-checking, or,
by traditional testing techniques.

We present several examples to demonstrate that this
technique might yield more efficient verification in some
cases, and illustrate the benefits of formally documented
properties in software comprehension, reuse and mainte-
nance.
The paper is organized as follows. In Section 2 we recap

the basic formal definitions of BP. In Section 3 we show how
BP semantics can be formalized as a reusable application-
agnostic model of the Z3 SMT solver. In Section 4 we apply
the proposed approach to several examples, and discuss its
benefits. In Section 5 we briefly review different approaches
to compositional system specification and verification. In
Section 6 we summarize the paper and discuss future re-
search directions.

2. BEHAVIORAL PROGRAMMING
A behavioral program consists of independent threads of

behavior that are interwoven at run time. Each behavior
thread (abbr. b-thread) specifies events and event sequences
which, from its own point of view must, may, or must not
occur. The execution infrastructure synchronizes and inter-
weaves all behaviors, selecting events that constitute inte-
grated system behavior without requiring direct communi-
cation between b-threads. Specifically, at every execution
cycle, all b-threads declare events that should be considered
for triggering (called requested events), events whose trig-
gering they forbid (blocked events), and events that they do
not actively request but simply “listen-out for” (waited-for
events). Following these declarations all b-threads synchro-
nize. An event selection mechanism then triggers one event
that is requested and not blocked, and resumes all b-threads
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Figure 1: Incremental development of a system for con-
trolling water level in a tank with hot and cold water
sources. The b-thread WhenLowAddHot repeatedly waits for
WaterLevelLow events and requests three times the event
AddHot. WhenLowAddCold performs a similar action with the
event AddCold, reflecting a separate requirement, which was
introduced when adding three water quantities for every sen-
sor reading proved to be insufficient. When WhenLowAddHot
and WhenLowAddCold run simultaneously, with the first at a
higher priority, the runs will include three consecutive AddHot
events followed by three AddCold events. When a new require-
ment is introduced that water temperature be kept stable the
b-thread Stability is added. It enforces the interleaving of
AddHot and AddCold events by using event blocking.

that requested or waited for the event. Figure 1 demon-
strates a behavioral application.
In the BP package for Java (BPJ), for example, b-threads

are coded by the developer as ordinary Java threads. Syn-
chronization and declaration of requested, blocked and
waited-for events is done by calling a method named bSync,
passing it the three sets of events as parameters.
Behavioral programming facilitates incremental non-

intrusive development. For example, in a game-playing pro-
gram each game-rule and each strategy can be implemented
in a dedicated independent b-thread, enabling or forbidding
moves. A rule for alternation of player-turns, for example,
can be implemented by an independent b-thread that re-
peatedly blocks one player’s move while waiting for a move
by the other player, and vice versa. Considering another
example program, in the reactive program for stabilizing an
aerial vehicle, separate independent b-threads can control
UAV altitude and each of the three attitude angles (see,
e.g., [16] and references therein).
While the motivation behind BP is natural and intuitive

development using almost any programming language [1,16],
its underlying infrastructure was formally described and an-
alyzed with formal definitions based on composition of tran-
sition systems. Below we recap the definitions as appeared
in [15].
A deterministic labeled transition system is a quadruple
〈S, E,→, init〉, where S is a set of states, E is a set of events,
→ is a (possibly partial) function from S × E to S, and
init ∈ S is the initial state. The runs of a transition system
are sequences of the form s0

e1−→ s1
e2−→ · · · ei−→ si · · · , where

s0 = init, and for all i = 1, 2, · · · , si ∈ S, ei ∈ E, and the
function→maps the pair 〈si−1, ei〉 to si, written si−1

ei−→ si.
The system 〈S, E,→, init〉 is said to be total if the function
→ is total. Behavior threads can be modeled by transition
systems, with S and E finite, and with states being labeled



by event sets, as follows.

Definition 1. A behavior thread is a tuple
〈S, E,→,init, R, B〉, where 〈S, E,→, init〉 forms a de-
terministic total labeled transition system, R : S → 2E

associates a state with the set of events requested by the
b-thread in this state, and B : S → 2E associates a state
with the set of events blocked by the b-thread in this state.

Definition 2. The runs of a set of b-threads
{〈Si, Ei,→i,initi, Ri, Bi〉}n

i=1 are the runs of the labeled
transition system 〈S, E,→, init〉, where S = S1 × · · · × Sn,
E =

⋃n

i=1 Ei, init = 〈init1, . . . , initn〉, and → includes a
transition 〈s1, . . . , sn〉

e−→ 〈s′1, . . . , s′n〉 if and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s′i)︸ ︷︷ ︸
affected b-threads

move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads

don’t move

)
.

The basic BP semantics allows alternative implementa-
tions of event selection among all those requested and not
blocked, including, e.g., random, prioritized, planned or
adaptive.
In this paper we keep to an assumption, introduced in [15],

that b-threads do not share data and depend solely on events
for input and output. A coding convention that guarantees
this assumption allows us to use the tool presented in [15]
for explicit model-checking of behavioral code.

3. FORMULATING BP IDIOMS IN Z3
In this section we show how the application-agnostic com-

position semantics of BP can be defined in Z3 towards serv-
ing in compositional proofs.
We begin the definition with the concepts of time and

events1:
Time = IntSort ();
Event = Datatype (’Event ’)
. . .
Event = Event . create ()

In our implementation, time is discrete and is represented
by integers, and in fact refers to the sequence number of
an event in a trace. Events are defined as a Z3 data type,
followed by the definition and creation of the application-
specific event objects.
We then define functions that model the requesting and

blocking of events by b-threads, and the resulting trace of
triggered events:
requested = Function (’requested ’, Event ,

Time , BoolSort ())

blocked = Function (’blocked ’, Event ,
Time , BoolSort ())

trace = Function (’trace ’, Time , Event )

1Most of this work with Z3 was done using the Python
API. For readability, the presentation here interchanges and
mixes such Python code, formatted Z3 output, and plain
mathematical formulations. The code can be found at [2].

The first line states that the function requested maps any
event and time instant to a boolean flag, which specifies
whether or not the event was requested at that time by any
b-thread. Similarly, the function blocked maps an event and
a time instant to a boolean flag that is true if and only if
the event was blocked at that time. The trace function as-
sociates each time instant with the event that was triggered
at that instant.
We then model behavioral programming semantics as a

property of these functions.
∀e, t: trace (t) = e ⇒

requested (e,t) ∧ ¬blocked (e,t)

This rule states that, in order to be triggered at a particular
time instant, an event must be requested at that time and
must not be blocked.
Since we want to establish the proof by analyzing each

of the b-threads in isolation, we introduce a helper function
called requested_by that takes the same parameters as the
function requested, with one additional parameter that in-
dicates which b-thread initiated the request. The function
blocked_by indicates in a similar way which b-thread initi-
ated the blocking of an event at a given time. We then
define:

requested(e,t)⇔
∨

bt∈BThreads

requested_by(e,t,bt)

and

blocked(e,t)⇔
∨

bt∈BThreads

blocked_by(e,t,bt).

I.e., an event is considered requested (respectively, blocked)
if and only if it is requested (respectively, blocked) by some
b-thread. The set BThreads of participating b-threads is en-
coded as a Z3 list.
There are various methods that can be applied in event

selection, such as priority or planning-based schemes, with
which it may sometimes be more convenient to program.
The axioms corresponding to these models can also be for-
mulated in Z3. Appendix 1 in the supplementary mate-
rial [2] contains an example. Our axiomatization presup-
poses that all executions of the program are infinite, since
trace is defined to be an infinite sequence of events. How-
ever, finite executions can also be dealt with, by adjusting
the axioms to include a special nop event that is only trig-
gered when no other events are enabled.

4. EXAMPLES
In this section we demonstrate the application of the

method outlined in the introduction to several examples.
In each example, we specify module and system properties,
prove the latter given the former, and, when applicable, ver-
ify that the individual implemented modules indeed satisfy
their properties. The source code for all examples (b-threads
and Z3 code) is available online at [2]. We then discuss how
the basic proof of correctness of the application also results
in opening the way to possible acceleration of the proof when
compared to explicit model checking, and in benefits in doc-
umentation.

4.1 Counting with small orthogonal modules
Before going into more practical examples, we describe a

small example that highlights how domain knowledge that



leads to a particular design can be known to and used by the
SMT solver, leading to efficient verification of a composite
reactive program.
Let p1, p2 . . . , pn be n large prime numbers, and let N =∏n

i=1 pi. Let E0 and E1 be two events, and consider the ω-
regular language LN =

(
(E0 + E1)EN−1

1
)ω. Thus, in every

run E0 can only be triggered at times that are divisible by
N , and E1 may always be triggered.
Our goal is to create a behavioral program that generates

LN and prove its correctness. For i = 1, 2, . . . , n consider the
b-threads BT1, . . . , BTn and BTgen defined by the following
pseudo-code:
BTi for i ∈ {1, 2, ..., n} {

for (;;) {
bSync (wait for {E0 ,E1 });
for(j=0; j<pi -1; j++)
bSync (wait for E1 while blocking E0 );

}
}

BTgen {
for (;;) {

bSync ( request {E0 ,E1 });
}

}

In words, BTi blocks E0 at all time instants that are not
divisible by pi, and BTgen requests both E0 and E1 at all
synchronization points. We now prove that together these
b-threads generate LN .
We first express the properties of each of the b-threads

separately (shown here for n = 2, with p1 = 3 and p2 = 7):
∀t, e: ((t%3 6=0) ⇔ blocked_by (E0 , t, BT1 )) ∧

¬blocked_by (E1 , t, BT1) ∧
¬requested_by (e, t, BT1)

∀t, e: ((t%7 6=0) ⇔ blocked_by (E0 , t, BT2 )) ∧
¬blocked_by (E1 , t, BT2) ∧
¬requested_by (e, t, BT2)

∀t, e: requested_by (e, t, BTgen) ∧
¬blocked_by (e, t, BTgen)

The first formula says that BT1 blocks E0 if and only if t is
not a multiple of 3, that it never blocks E1, and that it never
requests any event. The second formula states similar prop-
erties for BT2 with the difference that it blocks E0 at times
not divisible by 7 instead of 3. The third formula captures
the properties of BTgen, namely, that it always requests both
events and never blocks either of them. Note that the states
and transitions of the b-threads are not explicitly modeled
in this case, and that the Z3 formulas also cover what the
modules do not do, i.e., do not block or request, which is
needed for our application-agnostic composition.
As these b-thread properties concentrate only on what

b-threads request or do not request and what they block
or do not block, and not on which events are actually trig-
gered, each b-thread’s properties can be verified by model-
checking the b-thread in isolation from the rest of the pro-
gram. This method of model-checking relies on the abstrac-
tion of a b-thread code as consisting of atomic transitions be-
tween synchronization points, in which requests and blocked
events are declared. As each of the first n b-threads has pi

states and BTgen has a single state, model-checking the in-
dividual b-threads entails examining a total of 1 +

∑n

i=1 pi

states. In contrast, explicit model-checking of the entire sys-
tem with all b-threads would have to traverse all the

∏n

i=1 pi

reachable states in the product transition system.

When we add these properties to the Z3 model described
in the preceding section, we see that Z3 can indeed quickly
verify that the system satisfies its desired property. Namely,
that E0 is only enabled at times divisible by N (21 in this
case), and that E1 is enabled at all times.

∀t: requested (E0 ,t) ∧ ¬blocked (E0 ,t) ⇔ t %21==0
∀t: requested (E1 ,t) ∧ ¬blocked (E1 ,t)

The duration it takes Z3 to verify this property is affected
only negligibly by an increase in the pi values. This illus-
trates the fact that the verification is performed with the aid
of additional arithmetical knowledge and not by traversing
the entire state space. It yields (in this case) the ultimate
desired property of compositional verification – establish-
ing correctness based on proving individual modules sepa-
rately, without explicitly model-checking the product tran-
sition system.
Observe that the described Z3 formulation can also be

used to prove liveness properties. For instance, in order to
prove the property “event E0 is triggered infinitely often” we
would follow the same steps described above, formulate in Z3
the property that E0 is enabled infinitely often (at intervals
of 21 steps), and let Z3 prove it. Then, using reasonable
fairness assumptions, the liveness property can immediately
be deduced. Liveness property verification is also supported
by verifying liveness properties of individual b-threads or
group thereof using the BPJ model checker.
This example also shows the power of the blocking idiom

in BP. Specifically, if we remove the ability of a b-thread
to block events, we can prove (to be published separately)
that one must then use at least one b-thread whose size is
exponentially larger than the size of the b-threads proposed
here. This shows that, in our setting, blocking may allow for
an exponential saving in the size of the state space needed for
verification, thus accelerating verification when appropriate
compositional techniques exist.

4.2 Simulating constrained movement
Consider an application simulating movement of a particle

in a two-dimensional grid, as follows. The grid has (2n+1)2

points, with coordinates 〈x, y〉 where −n ≤ x, y ≤ n. Ini-
tially, the particle is at the center of the grid, at point 〈0, 0〉.
In each simulation step, the particle moves randomly from
its then-current position to one of its four neighbor posi-
tions. Apart from the particle process, the system includes
processes that make areas of the grid inaccessible to the par-
ticle. For example, we analyze the case where each such inac-
cessible area can be described by a continuous function f(x)
such that point 〈x, y〉 is inaccessible if and only if y ≥ f(x)
(alternatively, y ≤ f(x)). In other words, the area above (or
below) the curve y = f(x) is inaccessible.
The goal is to discover compositionally whether the inac-

cessible areas jointly prevent the particle from reaching the
grid’s boundaries.
Each process b-thread may have a rich behavior and a

complex transition system unrelated to the particle move-
ment, where the constraining of the particle movement may
be only a side-effect of the behavior. This complex behav-
ior is abstracted here by a b-thread with ` states, visited
sequentially in a cycle, such that the constraining effect is
true in all of them. The approach that we use may be ap-
plied also to more complex processes with branches in the
transition system and varying sets of blocked events.



The pseudo-Java code of the particle b-thread is:
x = 0; y = 0;

for (;;) {
bSync ( Request the moves :

Move(x+1,y),Move(x-1,y),
Move(x,y+1) , Move(x,y -1));

/* The triggered Move event is returned
in bp. lastEvent */
x = bp. lastEvent .x; y = bp. lastEvent .y;

}

Observe that the particle b-thread is “unaware” of move-
ment constraints imposed by either the grid or the process
threads.
A b-thread corresponding to a process that forbids par-

ticle movement into the region y ≥ f(x), and has a single
cycle of ` states, is:
state = 0
for (;;) {

bSync (Wait for all events ,
while blocking moves to all
〈x, y〉 s.t. y ≥ f(x));

state = ( state +1) % `;
}

A direct approach to verifying this application is to span
its entire state graph, and to check that there is no reach-
able state where x or y equals ±n. For example, in explicit
model-checking of the composite application the number of
states that will be visited is on the order of n2 ·

∏
bt∈P

`bt,
a quantity that grows exponentially with the size of the set
P of all process b-threads.
By contrast, the compositional approach that we suggest

is to model-check each process b-thread separately (with all
its internal dynamics), and to employ Z3 for the compo-
sitional part. For example, the relevant properties of the
particle b-thread ParticleBT are coded in Z3 as:
∀e, t: ¬blocked_by (e, t, ParticleBT )

∀x, y:
requested_by (Move(x,y), t, ParticleBT ) ⇔
( trace (t -1).x = x -1 ∧ trace (t -1).y = y) ∨
( trace (t -1).x = x ∧ trace (t -1).y = y -1) ∨
( trace (t -1).x = x+1 ∧ trace (t -1).y = y) ∨
( trace (t -1).x = x ∧ trace (t -1).y = y+1)

and the properties of each process b-thread Processi (asso-
ciated with function fi) are coded as:
∀e, t : ¬requested_by (e, t, Processi)

∀x, y, t: blocked_by (Move(x,y), t, Processi) ⇔
y >= fi(x)

Observe that this formulation holds for all `i states of the
process b-thread, and there is no need to articulate proper-
ties of individual states.
Another Z3 formula (not shown) specifies the initial posi-

tion of the particle. Finally, to define what we want Z3 to
prove, we state the (undesired) property that the particle
does reach the grid boundaries:
∃t: trace (t).x = n ∨ trace (t).x = -n ∨

trace (t).y = n ∨ trace (t).y = -n

We then run Z3 to check that this model is unsatisfiable,
taking advantage of Z3’s knowledge of arithmetic to deduce
that the inaccessible zone, as defined by the properties of

the Processi b-threads, renders the edges of the grid un-
reachable.
It now remains to be verified that the original b-threads

uphold the properties that we have encoded in Z3. Fortu-
nately, this can be performed for each b-thread separately,
without composing them — by using either static analy-
sis or the BPJ model-checker [15]. In the latter case, each
process b-thread is checked, along with a b-thread that re-
peatedly requests all possible movements into all (2n + 1)2

points of the grid. The property to be verified is that the
single b-thread blocks movements into coordinates where
y ≥ f(x). The particle b-thread is also verified separately,
to ensure that successive points in the movement are always
connected by a single grid edge.
Table 1 shows the savings when model-checking each pro-

cess behavior and the particle behavior separately, as com-
pared to checking the movement of the particle with all be-
haviors together. In this example, we set n = 20 (resulting
in a 41 × 41 grid), and chose four processes with forbidden
zones that prevent the particle from venturing outside the
quadrilateral with vertices 〈15, 15〉, 〈−18, 16〉, 〈−19,−19〉,
〈17,−18〉. The movement-constraining processes have 2, 3, 5
and 7 internal states. The run time improvement is evident.
For a similar setting with n = 1017, it took Z3 approxi-

mately 7 seconds to reach a conclusion. However, a related
test run, in which one of the constraints was omitted and
the resulting model is satisfiable did not terminate (in a rea-
sonable amount of time). We believe that this is a technical
issue in our implementation, and not a fundamental prob-
lem in the underlying approach. Future work will include
optimizing our implemented model to better fit Z3’s con-
straints, as well as leveraging future enhancements of Z3.
Note that our present model does permit one to use Z3 to
verify, within a fraction of a second, that a given trace that
reaches the grid boundaries is valid.
We now demonstrate how a formalization of properties of

the modules in Z3 supplements the code with documentation
that is useful beyond the verification process, for tasks such
as module reuse or enhancement.
Consider a requirement, which arrives from the user after

the system is up and running, to expand the application to
a three-dimensional setting. That is, the grid is extended
to 3D and the original requirement that the particle is con-
strained within a box around the origin and cannot reach
the grid boundaries, remains, but now is interpreted in 3D.
After adding an attribute to the Move event that gives the
z axis position and adding to the particle b-thread move-
ments in the z direction, the question we ask next is how to
enhance the b-threads for the processes that constrain the
particle movement.
In a standard development process, without the Z3 formu-

lation, a programmer wanting to reuse or enhance existing
modules for the new requirement would need to check their
code directly. While the code in our example is simple, the
code of the movement-constraining b-threads may be com-
plex, and the relevant properties may not readily emerge.
With the Z3 formulation, the contemplation of how to ex-

tend the system can be done in the context of the high-level
theory. In this case, the Z3 code explicitly talks about the
lines that form a closed polygon contained in the boundary
of the two-dimensional grid. When we formulate in Z3 a 3D
extension of the properties, we can start by checking if the
current modules and formulated properties already satisfy



Table 1: Comparing the monolithic approach to the compositional one. Rows 1 and 2 describe checking each of the b-threads
separately using model-checking (MC); row 3 describes the compositional step (using Z3); and row 4 summarizes the total cost
of the compositional approach. The last row of the table describes model-checking the entire system, as a single unit.

Checked entity Number of states Method of checking Run time (sec.)
Four process b-threads 2,3,5,7 MC 160 (total)
Particle 1681 MC 4
Compositional step — Z3 0.03
Total compositional proof 1698 MC+Z3 164.03
MC of Entire system 119385 MC 426

the new requirement. If not, Z3 gives us a counterexample
that we can use to guide the development. From the coun-
terexample we may realize that, in 3D, the b-threads form
infinite walls in the z dimension rising from the edges of the
2D polygon and that it is sufficient to add a “floor” and a
“ceiling”. More generally, we see that the boundaries can be
avoided by forming a set of planes in the 3D space that form
a polytope that contains the origin and is contained within
the bounding box.
The role of Z3 in this process is to help the designers iden-

tify and document all the properties of the b-threads that
are relevant to the requirements. When a property is miss-
ing (e.g., if we forget to mention that the polytope contains
the origin) Z3 presents a counterexample, from which the
missing properties may emerge. When Z3 proves that all
the requirements are satisfied, we know that we have doc-
umented all the required properties of the b-threads. The
completeness of the documentation of the properties of the
b-threads is important, for example, when we want to re-
place a b-thread.
Once a set of sufficient properties is established in Z3, the

implementation can proceed in different directions: some
properties may already exist in the current modules (but
are not documented because they were not relevant to the
2D case), others may be implemented as changes to existing
modules, and yet others may be added as new independent
b-threads. The implemented modules can then be model-
checked to verify that they satisfy the properties and, if so,
we can conclude that the application is correct.

4.3 A job scheduler
The following example demonstrates the development and

compositional verification of a scheduling algorithm using
behavioral programming. The program is actually incre-
mental in nature: when new b-threads are added, the pro-
gram can be verified without rechecking existing processes.
The problem is defined as follows. A scheduler needs to

assign time slots for each of k processes P1, . . . , Pk. Each
process Pi is associated with two parameters, mi and ni,
meaning that it requires the assignment of mi slots in each
cycle of ni slots. Put differently, process Pi needs to be
assigned mi slots in cycle {kni + 1, kni + 2, . . . , (k + 1)ni},
for all k ∈ N ∪ {0}.
A schedule that satisfies all these constraints exists if and

only if
∑k

i=1 (mi/ni) ≤ 1, in which case an earliest-deadline
first (abbr. EDF) policy will guarantee that none of the
conditions are violated (see, e.g., [21]).
We suggest the following BP implementation. Given

an instance of the problem, 〈mi, ni〉1≤i≤k, we program a
b-thread for each process, presenting mi requests in each
cycle of ni slots in the form of events R(bt, j), where bt is

the b-thread’s identity and 1 ≤ j ≤ ni is the number of
slots (scheduling opportunities for this process) before the
present cycle ends. The scheduler is implemented in BP by
having all b-threads that have not yet been assigned suffi-
cient slots in the present cycle block all event requests with
a higher value of j. An additional b-thread, Idle, continu-
ously requests the special event R(idle,∞) that is triggered
only when no process requests any event in the slot.
At each behavioral synchronization point, one of the re-

quested events is triggered, indicating that the requesting
process is assigned the present slot. All b-threads are noti-
fied when an event is triggered and can then request to be
scheduled in the next slot as needed. The b-threads for each
of the processes can be modeled in BPJ as follows:

BT〈mi,ni〉 for i ∈ {1, . . . , k} {
for (;;) {

count = 0;
for(j=ni; j >0; j--) {

if( count < mi) {
bSync ( request R(i, j),

block all events R(s, t)
such that t > j,
wait for all events );

if( lastEvent == R(i, j))
count ++;

}
else {

bSync (wait for all events );
}

}
}

}

Without loss of generality, we assume that ∀i, mi = 1 (for
mi > 1, as we can substitute the original process by mi

processes with parameters 〈1, ni〉 each). The b-thread for
process Pi then has O(ni) states. Consequently, exhaustive
verification of the application entails inspecting O(

∏k

i=1 ni)
states (in the worst case, assuming the ni’s are pairwise
mutually prime).
A compositional alternative is to verify each b-thread sep-

arately, to ensure that it constantly blocks all requests by
processes with further-away deadlines than its own — un-
til its scheduling quota has been filled. This can be ac-
complished by inspecting only O(

∑k

i=1 ni) states. If these
properties hold, then EDF scheduling is guaranteed, and it
only remains to check that

∑k

i=1(mi/ni) ≤ 1, which can be
done manually, or using a calculator.
All in all, this approach yields much shorter verification

times. Further, when adding a new process 〈mk+1, nk+1〉
at a later time, one need not repeat the verification of the
original b-threads (assuming an upper bound on the number
of threads and their cycle lengths). It suffices to check that
the new b-thread adheres to its responsibility in the EDF



policy (by requesting and blocking events correctly), and
then verify that

∑k+1
i=1 (mi/ni) ≤ 1.

Another alternative solution we explored entails model-
ing the properties of the b-threads in Z3, and having the
tool check whether a legal schedule exists in a model that
includes all of them. In this approach, the properties of
b-thread i with parameters 〈1, ni〉 are as follows:

∀e, t: requested_by (e, t, BTi) ⇔
(e=(BTi , ni -(t -1)%ni) ∧
¬already_scheduled (BTi , t))

∀e, t: ¬already_scheduled (BTi , t) ⇒
blocked_by (e, t, BTi) ⇔
deadline (e) > ni -(t -1)%ni

∀e, t: already_scheduled (BTi , t) ⇒
¬blocked_by (e, t, BTi)

where, as in the BPJ implementation, events consist of the
requester’s identity and the time remaining until its dead-
line, and the functions deadline and requester are used
to retrieve the respective parameters. The helper function
already_scheduled evaluates to true if and only if b-thread
BTi has already been scheduled in the cycle to which time
t belongs.
The verification is then performed by giving Z3 the unde-

sired property that one of the processes is not scheduled in
some cycle, and having it prove that the model then becomes
unsatisfiable. The property is given as:

∃BTi , t1: ∀t2: t1·ni <t2 ≤(t1 +1)ni ⇒
requester ( trace (t2 )) != BTi

As the property to be proved is algebraic in nature, we
expected the Z3 verification process to readily display supe-
rior performance as compared with explicit model checking
using the BPJ model checker. Unfortunately, that was not
the case, and the running time grew exponentially with the
number of processes. We believe that our implementation
can be improved and the running time greatly decreased,
but we leave this for future work. Despite being applicable
only to programs with few processes, our current model is
still useful: it demonstrates that the set of thread proper-
ties we have identified is complete, and that it suffices for
proving the correctness of the system. This indicates that we
have documented any hidden assumptions about the various
modules, and facilitates their redesign or reuse.

4.4 Dining philosophers
In this example we demonstrate a direct approach to en-

coding b-threads in Z3 by capturing their transition systems
and the requested and blocked events in each state.
Consider for example a BP model for the famous dining

philosophers problem2. Assume that this abstract problem
is a specification for a larger BP application, e.g., a circle of
industrial robots where each two adjacent ones share a tool,
and each robot requires both its adjacent tools to perform its
task. This behavior of the robots can be specified in BP as
follows: there is a b-thread per tool (fork), with two states —
“up” (fork_state is true) and “down” (fork_state is false),
and a b-thread per robot (philosopher), with its four states
known as the fixed cycle of “thinking”, “picked up one fork”,
“eating”, and “put down one fork”. The events are of the
2There are n philosophers sitting around a table. There is
a fork between each two adjacent philosophers. To eat, a
philosopher needs to hold both of her adjacent forks.

form E(i,j,up) or E(i,j,down) and represent “philosopher i
picked up (or put down) fork j” for 0 ≤ i ≤ n, and j = i
or j = (i + 1) mod n. All philosophers but one are right-
handed (they first pick up the fork on their right) and one is
left-handed. Each fork thread blocks events that pick it up
when in the “up” state and events that put it down when in
the “down” state, without ever requesting events.
We proceed to explain the transition system by formulat-

ing its properties in Z3 as part of a proof that the industrial
robotic application satisfies its specification and is deadlock-
free. Below we describe parts of a model for a system with
eight philosophers (hence, e.g., (fo+1)%8 is the index of the
fork next to fork fo (and the philosopher of same number)
in cyclic order):
Fork b-threads never request events:

∀e, t, fo : ¬requested_by (e, t, Fork(fo ))

A b-thread for a fork that is down blocks the events of
putting the fork down again (and only these):

∀t, fo:
¬fork_state (fo , t) ⇒
( blocked_by (E(fo , fo , down), t, Fork(fo )) ∧

blocked_by (E(( fo +1)%8 , fo , down),
t, Fork(fo )) ∧

(∀e1:
blocked_by (e1 , t, Fork(fo )) ⇒
e1 = E(fo , fo , down) ∨ e1 = E(( fo +1)%8 ,

fo , down )))

A b-thread for a fork that is up blocks the events of picking
the fork up again (and only these):

∀t, fo:
fork_state (fo , t) ⇒
( blocked_by (E(fo , fo , up), t, Fork(fo )) ∧

blocked_by (E(( fo +1)%8 , fo , up),
t, Fork(fo )) ∧

(∀e1:
blocked_by (e1 , t, Fork(fo )) ⇒
e1 = E(fo , fo , up) ∨ e1 = E(( fo +1)%8 ,

fo , up ))

The state of the fork changes according to the pick-up/put-
down actions of the philosophers on the right or left of the
fork (and only these) :

(∀t, fo:
trace (t) = E(fo , fo , up) ∨
trace (t) = E(( fo +1)%8 , fo , up) ⇒
fork_state (fo , t+1)) ∧

(∀t, fo:
trace (t) = E(fo , fo , down) ∨
trace (t) = E(( fo +1)%8 , fo , down) ⇒
¬fork_state (fo , t+1)) ∧

(∀t, fo:
¬( trace (t) = E(fo , fo , up) ∨

trace (t) = E(( fo +1)%8 , fo , up) ∨
trace (t) = E(fo , fo , down) ∨
trace (t) = E(( fo +1)%8 , fo , down )) ⇒

fork_state (fo , t) = fork_state (fo , t+1))

Once these properties are formulated, system properties
can be proven. In our case, Z3 can verify that the system
does not deadlock, i.e., that there is always an event that
is requested and not blocked in all executions of the pro-
gram. Z3 does this in under 10 seconds. This verification
is performed using a slightly modified version of the axioms
presented in Section 3, which considers both finite and infi-
nite executions of the program.
Note that the robotic implementation may be very differ-

ent from the specification. Still, to verify that each property



in the specification holds it should suffice to model-check ex-
haustively only a few robots and tools.

4.5 Tic-Tac-Toe
In this example we demonstrate the use of Z3 to verify a

slightly larger example, highlighting that the properties of
the individual modules are quite independent of each other,
and refer to the basic specification of the system. We il-
lustrate our technique on the b-threads of the Tic-Tac-Toe
game application presented in [15]; we briefly summarize the
application’s features in a description taken from [15], and
refer the reader to that paper for a more detailed explana-
tion of the application itself.
In the (classical) game of Tic-Tac-Toe, two players, X and

O, alternately mark squares on a 3 × 3 grid whose squares
are identified by 〈row, column〉 pairs: 〈1, 1〉, 〈1, 2〉, . . . , 〈3, 3〉.
The winner is the player who manages to form a full hori-
zontal, vertical or diagonal line with three of his/her marks.
If the entire grid becomes marked but no player has formed
a line, the result is a draw.
In our example, player X is played by a human, and player

O is played by the application. Each move (marking of a
square by either player) is represented by a matching event,
X〈row,col〉 or O〈row,col〉. The events XWin, OWin and Tie repre-
sent the respective victories and a draw. A play of the game
may be described as a sequence of events. E.g., the sequence
X〈1,1〉, O〈2,2〉, X〈3,2〉, O〈1,3〉, X〈3,0〉, O〈2,1〉, X〈3,3〉, XWin describes
a play in which X wins, and whose final configuration is:

The BP implementation of the game as described in [15]
contains two types of b-threads: game rules and strategies.
Examples for game rule b-threads are the SquareTaken thread
that blocks further marking of squares already marked by X
or O, and the EnforceTurns thread that alternately blocks O
moves while waiting for X moves, and vice versa (we assume
that X always plays first).
Strategy b-threads are responsible for helping the program

to play “wisely” — that is, to contribute towards ensuring
that the program does not lose the game. An example for
one such b-thread is PreventThirdX: when it notices two Xs
in a line, it requests the marking of an O in the third square
of this line (to prevent an immediate loss).
If neither player makes any mistakes, a Tic-Tac-Toe game

ends in a draw. Therefore, we consider our game playing
application to be achieving its goals if it never loses the
game — namely, if the event XWin is never triggered in any
run. In [15], this property was verified via explicit model-
checking of the Java application with concurrent execution
of all b-threads. By contrast, in the present work the proof
of correctness begins with the properties of the b-threads as
may be verified individually, or as may be planned or de-
signed in early development stages. Z3 is used to verify that
these properties, when composed, yield the desired results.
In our proposed Z3 formulation, each event has three

fields: x, y and type. The type field can have values

X,O,X_WIN,O_WIN and TIE. If the event is of one of the first two
types, the x and y fields hold the row-column coordinates of
the move; otherwise, these fields are meaningless.
As in the previous examples, we formulate the proper-

ties of the various b-threads as Z3 code. For instance, the
EnforceTurns thread, BTet, is formulated as:

∀t, e: (t==1) ⇒
blocked_by (e,t,BTet) ⇔ e.type () == O

∀t, e: (t >1) ⇒ blocked_by (e,t,BTet) ⇔
(e.type ()==O ∧ trace (t -1). type ()==X) ∨
(e.type ()==X ∧ trace (t -1). type ()==O)

The code states that in the first move (t == 1) the b-thread
blocks all of O’s moves, and that in subsequent moves the
b-thread blocks the player who played last.
Next, we see how the PreventThirdX b-thread, BTptx,

translates into Z3 code:

∀t, e: requested_by (E(row ,col ,O), t, BTptx) ⇔
∃t1, t2: t1 < t ∧ t2 < t ∧

trace (t1 ). type ()==X ∧
trace (t2 ). type ()==X ∧
(( trace (t1 ).x() == trace (t2 ).x() == row) ∨

( trace (t1 ).y() == trace (t2 ).y() == col) ∨
(( trace (t1 ).x() == trace (t1 ).y()) ∧

( trace (t2 ).x() == trace (t2 ).y()) ∧
(row == col )) ∨

(( trace (t1 ).x() + trace (t1 ).y() == 4) ∧
( trace (t2 ).x() + trace (t2 ).y() == 4) ∧
(row + col == 4)))

The above code indicates that the b-thread only requests
an O move in square row, col if: (1) X has already marked
two squares in that row, or (2) X has already marked two
squares in that column, or (3) The square is part of the
main diagonal (row == col), and X already has two squares
of that diagonal, or, (4), if the square is part of the secondary
diagonal (row + col == 4), and X has already marked the
two other squares of that diagonal.
Due to the larger extent of this example, we omit the

remaining b-threads. The code is available online at [2].
Once all the other rule and strategy b-threads have been

translated into Z3 in a similar fashion, we had the tool prove
the desired property, namely that O can never lose:

∀t: trace (t). type () != Xwin

Z3 replied in the affirmative. Further, running the same
test with one of O’s strategy b-threads omitted resulted in
a failure. Printing the Z3 model, the listing of the function
trace reveals a counter-example scenario in which X wins:

[1 → TraceEntry (E(3, 3, X)),
2 → TraceEntry (E(2, 2, O)),
3 → TraceEntry (E(1, 1, X)),
4 → TraceEntry (E(1, 3, O)),
5 → TraceEntry (E(3, 1, X)),
6 → TraceEntry (E(2, 1, O)),
7 → TraceEntry (E(3, 2, X)),
else → TraceEntry (E(1, 1, X_WIN ))]

Apart from enabling us to prove the desired property, we
observe that formulating the b-thread’s properties as Z3
axioms also provides a more precise documentation than
natural-language requirements, as well as a useful abstrac-
tion of program code. For instance, the Z3 code for the
the EnforceTurns b-thread (displayed above) states explic-
itly, and thus documents, the fact that player X plays first,
and that neither player can make two consecutive moves.
For comparison, the (pseudo) Java code of this b-thread is:



for (;;) {
bSync ( block O moves , wait for X moves );
bSync ( block X moves , wait for O moves );

}

In the Z3 code, the reader can interpret each formula sep-
arately. Even if a formula is long — its scope is well defined
and it is always complete. When reading program code
like the above the reader has to mentally follow the flow
of the for loop, and the instructions within it and translate
them into conditions and possible scenarios. We find that
the combination of the natural scenario-oriented program
code with the precise yet abstract Z3 properties comple-
ment each other in development, verification and mainte-
nance processes. If modules from this application are to be
used in another application, or in an enhanced version of the
same application, the developers can readily see whether the
existing code supports, e.g., more than two players, changing
the order of player moves, or allowing a player two consec-
utive moves under some conditions.

5. RELATIONSHIP TO OTHER WORK
Much research on compositional and modular verification

has been conducted in recent years. While most proposed
approaches are similar in their underlying assume-guarantee
framework, they differ in several aspects: the modeling for-
malisms (for both program and specification), the way as-
sumptions are inferred (manual or various automatic vari-
ants), and the type of reasoning used to deduce the desired
system-wide property from the module properties. In this
section we review some of these approaches.
In [24], [20] and [25], the authors study assume-guarantee

proof rules for parallel programs, where communications or
interference between programs are via messages (in [24]) or
shared variables (in [20, 25]). Our focus is also on parallel
programs, but in our work the components (b-threads) do
not communicate directly with each other, but rather use
the simple protocol offered by BP semantics. In addition to
providing a concise interface for interweaving independent
modules that represent separate facets of behavior, the pro-
tocol also allows for a reduction in the size of the state-space,
as we are only interested in the state of a b-thread when it
is at a synchronization point.
As shown in Section 2, while BP is oriented towards

programming in standard languages, composition in BP is
event-based and may be formalized in terms of finite-state
transition systems. System composition and modular ver-
ification in such finite-state settings were described in [22]
with the introduction of I/O automata, in [14] in the context
of a subset of CTL, in [7] using interface automata, and in
the research on the behavior-interaction-priority formalism
(BIP), see, e.g., [4]. Our work can be viewed as contribut-
ing towards applying these methods in programming con-
texts and towards making the application of formal methods
more accessible to programmers. In line with this goal, it
would be interesting to explore compositional verification of
behavioral programs based on properties formalized as asser-
tions within the code, using behavioral interface languages
such as JML, SPEC#, SPARK, separation logic, and Dafny.
See [17] for a survey.
The difficulty in formalizing environment behavior from

the point of view of a single module is tackled in [5]. The
authors verify individual parallel modules, together with in-

terface processes that represent a module’s dependencies on
its environment, but which can be simpler than the full
composite behavior of the environment. The interface mod-
ules are derived from the specification of the other modules.
In [19], the authors describe assume-guarantee reasoning us-
ing iterative abstraction and refinements of the assumptions.
In [12], the environment assumptions of a thread are au-
tomatically inferred and are abstracted from behaviors of
the other threads. In [13], the authors present techniques
for automatically decomposing the verification problem and
generating component assumptions based on design-level ar-
tifacts. In another approach [3], a learning algorithm is used
to infer the assumptions.
In our proposed setting, the strict interface through which

modules communicate (that is, the events they request,
wait-for and block) facilitates integrating assumptions about
the environment into the verification process. Particularly,
we have shown here that it is often straightforward to repre-
sent the environment by dedicated b-threads. This process
is demonstrated in Section 4.5, where all strategies available
to the environment — the X player — are represented by a
simple b-thread. From the verifier’s point of view, there is no
difference between that b-thread and the actual program’s
b-threads.
Applying model-checking to the goal of establishing low-

level properties and then using semi-automated high-level
analysis also helps tackle the state-explosion problem. For
example, in [23] the authors verify hardware systems using
reasoning that is performed by a proof assistant, while the
generated subgoals are verified by model-checking. In [6],
the authors show that finding a decomposition that yields
benefits in compositional verification is not easy and may
not always be possible. In this context, one of the key
goals of our present work is verifying modules and com-
posing systems based on artifacts and properties that are
aligned with the specifications. Similar approaches appear
in [18] for causal behavioral obligations of classes and in-
stances, in [9] for interference and cooperation of aspects,
and in [10] for components as part of research in the field of
component-based software engineering.

6. DISCUSSION AND CONCLUSION
We have shown how BP and the Z3 SMT solver can be

used together for composing a reactive system from rela-
tively independent modules, while accompanying the devel-
opment with a proof of system’s correctness.
As mentioned in Section 5, a major issue in compositional

verification is automatically generating component proper-
ties. We address this by using the requirements that indi-
vidual modules satisfy as these properties, thus leveraging
the intuition the programmers used in building the modules.
Using BP to code the modules ensures that module inter-
faces are always well defined (per the BP semantics), and it
tends to produce modules with properties that are relatively
self-standing. Consequently, apart from streamlining verifi-
cation, the resulting module properties are of value for main-
tenance and debugging tasks. We believe that this approach
has potential, as it bypasses the intricate task of looking for
compositional properties in composite code — allowing the
programmer to focus on module properties more than on
inter-module relationships.
When the effects of module-to-module interaction are de-

pendent on a domain theory that is known to the SMT



solver, an opportunity emerges for improving the efficiency
of the automated verification. This is because system prop-
erties may be inferred directly from module properties, with-
out explicitly examining all states of the composite applica-
tion.
A key issue that we have encountered is the difficulty of

formulating module properties. Per our methodology, com-
ponent properties have to be formulated twice: once as SMT
solver axioms for the compositional part, and once as model-
checker properties to be proven on individual threads. In our
examples, the first part was often time-consuming: it took
some effort to formulate properties that appeared to us nat-
ural and aligned with system’s requirements in ways that
allowed Z3 to handle the proof in reasonable time. This is
in line with [11], which suggests that the practical impact
of compositional methods is constrained by the amount of
non-trivial human input required for defining appropriate
assumptions. Interestingly, we found that the second part
— translating the Z3 properties into model-checker proper-
ties — was almost trivial, as the properties were typically
simple postulations on the states of the threads. In the fu-
ture we plan to automate this transformation.
Despite its difficulties, we found that the process of refin-

ing formal properties was instrumental to our understanding
and to the corresponding documentation of module behav-
ior. Our conclusion is that, given the right tools, program-
mers and designers may find the property formalization and
automated verification processes beneficial.
Future research directions include developing IDE sup-

port for automated proofs of behavioral applications, guide-
lines for formulating module properties, and possible en-
hancements to Z3 (or an alternative solver). Another im-
portant direction is proving that our methodology fits in-
dustry practice, by applying it to a real large-scale system.
A good example would be the industrial modeling system
SCADE [26], which allows programmers to model systems
as reactive state machines and data flows.
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