
Spaghetti for the Main Course?
Observations on the Naturalness of

Scenario-Based Programming

Michal Gordon
Dept. of Computer Science
and Applied Mathematics

Weizmann Institute of Science
Rehovot 76100, Israel

michal.gordon@weizmann.ac.il

Assaf Marron
Dept. of Computer Science
and Applied Mathematics

Weizmann Institute of Science
Rehovot 76100, Israel

assaf.marron@weizmann.ac.il

Orni Meerbaum-Salant
Dept. of Science Teaching

Weizmann Institute of Science
Rehovot 76100, Israel

orni.meerbaum-
salant@weizmann.ac.il

ABSTRACT
Scenario-based programming is an approach to software de-
velopment which calls for developing independent software
modules to describe different behaviors that a system should
or should not follow, and then coordinating the interwoven
execution of these modules at run time. We show that pat-
terns previously shown to exist in programs written in the
Scratch environment, which is not specifically scenario ori-
ented, by children who did not have other training, and were
not guided to write in a scenario-based manner, are also
characteristic to scenario-based programming. These pat-
terns include extremely fine-grain decomposition and bottom-
up development. This result suggests that scenario-based
programming concepts are “natural” in some ways. Thus,
with an appropriate environment and a matching set of
tools, scenario-based programming concepts could have an
important role in early-stage computer-programming curric-
ula.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Infor-
mation Science Education - Computer Science Education;
D.1.m [Software]: Programming Techniques - Miscellaneous;
D.3.3 [Software]: Programming Languages - Language Con-
structs and Features

General Terms
Human Factors, Design, Languages

Keywords
Scenario-based Programming, Scratch, behavioral program-
ming, rule based systems, aspect-oriented programming, live
sequence charts, LSC, BPJ, natural programming, habits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’12, July 3–5, 2012, Haifa, Israel.
Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

1. INTRODUCTION
Scratch [18] is a visual programming environment intended

“...to develop an approach for programming that would ap-
peal to people who hadn’t previously imagined themselves
as programmers...” (Resnick et al [22]). While drawing ideas
and inspiration from a number of other programming envi-
ronments designed for young people or novice programmers,
Scratch is designed to be“more tinkerable, more meaningful,
and more social than other programming environments”[22].

Scenario-based programming is an approach to software
development which calls for developing independent soft-
ware modules to describe different behaviors that the sys-
tem should or should not follow, and then coordinating the
interwoven execution of these modules at run time. Imple-
mentations (or manifestations) of various facets of scenario-
based programming are seen, e.g., in rule-based systems such
as [14], aspect-oriented programming [15], the language of
live sequence charts (LSC) [5, 10], and the package BPJ for
behavioral programming in Java [11].

This paper reports on qualitative research carried out
by re-interpreting pre-existing data reported by Meerbaum-
Salant, Armoni and Ben-Ari in [21]. We find that patterns
observed in Scratch programming are significant to the study
of scenario-based programming — with a focus on traits re-
lated to naturalness of language constructs.

Meerbaum-Salant et al. [21] draw attention to emerging
properties of Scratch projects written by children. They
studied novices who used the Scratch environment and were
not guided to write in a scenario-based programming ap-
proach. Their subjects were drawn from two middle school
classes (46 students, ninth grade, ages 14-15 years old, boys
and girls). Each class took place in one two-hour period a
week for one semester. The teachers encountered the Scratch
environment for the first time; one of them was experienced
in CS, the other was not. The teachers received Scratch
teaching materials as well as technical and pedagogical sup-
port. The researchers did not intervene in the actual teach-
ing of the classes. Their investigation was based primarily on
four sources of qualitative data: (a) documentations of class
observations (b) analysis of students’ projects and exams;
(c) interviews with ten students and two teachers, (d) a dis-
cussion in a focus group of two students. During the data
collection and its qualitative analysis, interesting findings
arose serendipitously and appeared repeatedly in different
types of data. For more details see [21].

The main patterns were defined as extremely fine-grain
programming (EFGP) and bottom-up development. These
patterns appear to be counter to some accepted program-
ming design practices such as top-down design, and lead
to a discussion of whether training in Scratch contributes
or is detrimental to the teaching of principles of program-
ming and computer science. We examine the patterns iden-
tified in [21] and the data supporting them, and observe that
the patterns are shared with applications that are designed
with scenario-based programming in mind. The fact that
these patterns were found in Scratch programs of inexpe-
rienced students suggests that scenario-based programming
concepts are “natural”.

When discussing natural behavior or patterns through-
out this paper we refer to the Merriam-Webster dictionary
definitions of “produced by nature: not artificial ” or “not
cultivated”. i.e., behaviors that are either inborn, or are ac-
quired as part of normal and general child development, as
opposed to specific training in computer programming. It
appears that people describe behaviors using multiple sce-
narios, naturally, e.g., in sharing a cooking recipe: ‘I do A
and then B”, ”It is important to do C before doing D”, and
”If you see E don’t do F”. We will show in the following sec-
tions that scenario-based programming in Scratch was nat-
ural and intuitive to the students in the sense that Scratch
constructs and operators were readily understood, and seem
to connect to the tendency for scenario-based descriptions.
The programming patterns we describe were found repeti-
tively and in many student works, despite not being taught
or discussed explicitly by teachers, hence we consider them
natural.

Meerbaum-Salant et al. [21] expressed concern about the
ability of students to deal with a multitude of simultaneous
scenarios, and referred by analogy to the “go-to” debate and
the emergence of spaghetti code from inappropriate or un-
wise use of available commands. However, we suggest to con-
sider the extremely fine-grained programs not as spaghetti
but rather as an application of scenario-based programming.
In this case we can consider explicitly teaching these con-
cepts in early-stage computer-science curricula, thus using
tools from scenario-based programming platforms as utensils
for enjoying the spaghetti meal. More research is required
on how to associate this with current curricula.

This paper is structured as follows. Section 2 provides
background on scenario-based programming. In Section 3
we examine the programming patterns identified in [21], as
well as some additional characteristics in raw data of that
experiment and re-interpret their significance in the context
of scenario-based programming. In Sections 4 and 5 we dis-
cuss possible implications of these findings to programming
education and to software engineering in general.

2. SCENARIO-BASED PROGRAMMING
The term scenario is commonly used in the context of

requirements specification and use cases. In this paper we
focus on executable scenarios - program parts or modules
which can be run as part of the application, and are aligned
with the system’s behavior under a certain set of conditions.
There is a variety of platforms and development environ-
ments which enable the developer to use scenarios not only
in early design stages, but throughout the programming pro-
cess.

In rule-based systems one codes a set of conditions, and

Figure 1: Scenario-based programming in a rule-engine:

rules in a steam-generation control system. The conditions

involve a status variable, the water level and its rate of

change, and the actions involve opening and closing feed and

drain valves. E.g., rule number 5 requires that when filling up

the tank, if the level becomes critically full, the drain valve

must be opened.

associates each condition with one or more required actions.
The infrastructure repeatedly evaluates all conditions and
for any condition that is satisfied, it executes the actions
associated with it. Figure 1 depicts some of the rules in a
rule-based system for controlling a boiler in a steam gener-
ator [14].

In aspect-oriented programming (AOP) [15], the program-
mer uses the programming language to dictate when certain
modules called aspects should be activated, by associating
them with join points in the base code. Aspects and base
code are interwoven such that at run time when a defined
join point is reached, the relevant aspect code can be exe-
cuted before, after, or instead of the original code. AOP was
designed to enable implementation of cross-cutting concerns
in a single module, rather than the previously standard prac-
tice of inserting appropriate method calls in every affected
point in the base code. AOP is available as extensions of
many programming languages, most notably ASPECTJ for
Java.

Behavior-based architectures for constructing systems from
desired behaviors were proposed in the context of robotics
and hybrid-control. These include Brooks’s subsumption ar-
chitecture [4], Branicky’s behavioral programming [3], and
leJOS [16] (see the review in [1]).

The language of Live Sequence Charts (LSC) [5, 10] is a
visual programming language in which behavior is described
in multiple separate scenarios. Each scenario (see example in
Figure 2) is a sequence chart enhanced with modalities that
specify which events may, must or must not happen. The
chart modalities play a role that corresponds to that of the
modal verbs in natural language such as shall, can, may or
cannot. Each chart describes a piece of behavior, or “story”
that may involve multiple objects. A scenario is composed
of a prechart and a main chart, where if the events in the
prechart occur in the specified order, then the sequence of
events specified in the main chart is executed by the system.
During execution, all the charts are synchronized and coor-
dinated: e.g., whenever conditions of precharts are satisfied,
main charts are activated, and events that must be triggered
are indeed triggered in the specified order if they are not
forbidden by other charts. The LSC language enables inter-
woven execution (play-out) of scenarios each of which may
involve sequences of conditions and events in multiple ob-

Figure 2: Scenario-based programming example in LSC:

Whenever a telephone user presses the sequence of a star, a

digit and send (see hexagonal prechart), the chip must re-

trieve the corresponding number from memory and call it by

sending a message to the environment. If a busy signal is

returned, the call must be tried up to three times.

jects. Inter-scenario dependencies are solved automatically,
without requiring each scenario to be aware of the others.
A feature called play-in enables the programmer to specify
the required events by acting them out on a mock-up GUI of
the application (e.g. pressing a send button on a simulated
phone display).

Behavioral programming in Java (BPJ) [11] implements
the principles of LSC in the realm of standard, procedu-
ral languages, and enables their integration with standard
object-oriented programming. Each behavior is coded as a
Java thread, independent of the others, and all threads are
synchronized and coordinated at run time to produce inte-
grated system behavior. For example, in an application that
plays the game of Tic-Tac-Toe, each of the game rules and
each playing strategy is coded in its own separate behav-
ior thread. Figure 3 illustrates how, using BPJ, individual
strategies conceived in one’s mind can be coded directly as
independent Java modules, to be interlaced by the infras-
tructure during execution.

A key feature of scenario-based programming is its align-
ment with the requirements, or the descriptions of the sys-
tem behavior as perceived by humans. This feature can be
observed from different angles. Structurally, the application
(i.e. its modules) can be mapped to individual requirements,
as opposed to having each module responsible for parts of
different requirements, as is common in standard program-
ming. From the time dimension, looking at the development
process, a scenario-based design often enables incremental-
ity. That is, adding, refining, or removing behaviors can be
done by adding new modules (rules, aspects, scenarios, be-
havior threads, etc.) that influence the already-developed
parts of the application. See [8] for a discussion of how such
features can contribute to making the development process
natural, intuitive, and fun.

3. ANOTHER LOOK AT SCRATCH
PROGRAMMING PATTERNS

Meerbaum-Salant et al. [21] identified two programming
habits, EFGP and Bottom-Up programming, that appeared

Figure 3: Scenario-based programming in Java with BPJ:

Each behavior is coded as a separate Java thread. In the

child’s (and the application’s) mind this part of strategy

needs to wait for the events X(1,3) and X(2,2) (in green),

and then attempt to trigger the event O(3,1) (in blue).

repeatedly in the students’ work and in the resulting projects.
These habits emerged conspicuously during the data collec-
tion phase of an investigation of learning computer science
concepts in Scratch [20]. The qualitative assessment in [21]
focuses on how these behaviors of the students may affect the
process of learning. Given that Scratch is not explicitly or
inherently a scenario-based programming environment and
that this concept was not one of the basic principles that
were taught in the observed classes, we propose to use the
emerging patterns to gain insight about scenario-based pro-
gramming and people’s tendencies in this context. For sim-
plicity and clarity of the presentation, we use a few succinct
code examples which represent what was observed in differ-
ent forms in many students’ projects.

3.1 Extremely Fine-Grained Programming
The pattern called EFGP in [21] revolves first around the

fact that the programming modules are small, and second,
around the fact that composite behaviors were decomposed
into separate units, instead of being handled in a single mod-
ule. For example, in a game application the player has to
fight dragon guards. Every time the player touches a guard
with his or her sword, the player obtains a magical item that
was watched over by the guard. When the player collects
six items, he or she can move to the next level. In standard
programming, a script to handle the event of the player over-
coming a guard would often be composed of the following
steps: (a) move the magical item to the player’s bag (e.g.,
by sending an appropriate message to the item); (b) update
a counter of items in the player’s bag; (c) if the counter is
equal to six, move to the next level. The manifestation of
EFGP shows that students broke the module into at least
two parts:

in script 1, and

in script 2.

In the following subsections we discuss our observations
relative to this decomposition

3.1.1 Naturalness
The extremely fine-grained structure reflects the ability of

Scratch developers to align code modules with the require-
ments or with other natural human description of the sys-
tem. As the students in the referenced experiment [21] were
not required to document their projects, we rely on the com-
mon observation that game descriptions provide each of the
basic rules of the game separately and independently, e.g.,
valid moves, how one can attack, defend and earn points,
what are the winning conditions, etc. Sometimes, almost as
an after-thought, these descriptions include exceptions, such
as, what happens when the player gets a certain number
of points (e.g., go up a level), or when a certain condition
arises (e.g., a draw). The possibility in Scratch to create
multiple independent modules was an opportunity for the
students to separate the descriptions into different scripts.
This is in contrast to standard programming practices where
these behaviors are likely to be coded into a single or few
modules, each with many conditions and branches. In some
cases the program may even be structured very differently,
e.g. replacing the conditions with a tree structure for us-
age by a minimax algorithm. The small scripts may have
a confusing visual effect when floating in the scripts area
in the Scratch development environment, however, the stu-
dents seemed comfortable using these building blocks. We
therefore observe in Scratch the ability to align the applica-
tion structure with the requirements, which was discussed
as key trait of scenario- based programming in Section 2.

3.1.2 Basic use of IF statements
A facet (or an enabler) of EFGP observed in [21] is the de-

composition of then and else parts of an IF statement into
separate scripts - one with if <condition1> then <action1

> and the other with if <not-condition1> then <action2>.
This property is very much in line with the association of
scenarios with ”stories”. In rule-based systems and in AOP,
this style is the default. When coding in LSC one can write
both standard conditions (with or without else blocks), and
assertions - conditions with no else structure. In the latter
- when the condition is not satisfied the scenario either ter-
minates (i.e., becomes irrelevant), or is suspended until the
condition is satisfied. Additionally, precharts and monitored
events in LSC imply conditions that drive further actions,
with no reference to else whatsoever. When the events lis-
tened for in the scenarios do not occur, the scenario sim-
ply (and naturally) remains inactive or suspended, allowing
other scenarios to handle the situation. In natural language,
it is common to find descriptions such as “If a character is
hit by dragon-fire it loses a life, but if it avoids the fire it
earns bonus points”. This style leads to separate scripts for
each branch of the condition, with equivalent overall seman-
tic to that of using else. In [21], this habit was described by
a student during an interview:

Q: Can you define what is a ‘condition”?

A: when I write: “If this is such and such then say move
here”; “if this is such and such then go here”. So if I lay down
this kind of conditions, the moment I enter one situation, he
goes here, and if the situation is different, it does something
else.

In this context we note that when a particular action is
desired following any of several conditions, many students
did not program a disjunction, most likely because the topic
was not covered in these classes. It is well known that dis-
junctions and conjunctions are indeed more complex con-
structs than simple conditions, and are often introduced at
later stages, as reflected, e.g. in the textbook [2]. Instead,
the students coded each term of the disjunction in a sepa-
rate scenario: i.e., if <condition1> then <action1> and if

<condition2> then <action1> — an approach which is read-
ily accommodated in scenario-based programming and con-
tributes to the EFGP phenomenon.

3.1.3 Preconditions and FOREVER loops
As already seen in the previous examples, many students’

scripts began with conditional operations, implemented ei-
ther by constant checking of variable values or by waiting
for a message that is broadcast by other scripts when cer-
tain conditions are met. In contrast with more standard
procedural programming where methods are called directly
by other methods, and where conditions are tested mainly
as part of a longer process, in scenario-based programming
modules specify the conditions under which they are acti-
vated. In rule based systems the activation triggers are a
complete set of conditions over the state of the system; in
aspect-oriented programming they are the specifications of
the join-points; and, in LSC they are the relevant scenarios’
precharts - the sequences of events that trigger the main
chart components of the scenarios; in BPJ this behavior is
manifested by the fact that many b-threads begin by waiting
for certain sequences of events.

In [21], students often performed the constant testing of
conditions using the special construct of forever_if, which
continually checks whether a condition is true and whenever
it is, runs the blocks inside. Similar constructs are indeed
an important part of the infrastructure in scenario-based
programming platforms.

3.2 Bottom-up programming
Bottom-up programming is defined in [21] as starting from

components which are later linked to form a larger subsys-
tem. This pattern is observed based on examples of students
dragging separate blocks and then combining them into a
script. This is in line with the intention of Scratch designers
as stated by Resnick et al [22] “to make bottom-up tinkerers
as comfortable as planners”. While these examples demon-
strate bottom-up approach, in that the young programmers
did not think about the structure of the entire system be-
fore beginning to program, we propose that scenarios coded
early in the process can reflect also high level behaviors, or
abstractions that are not necessarily aligned with classical
bottom-up structures.

For example, in [21] there is a discussion of the decompo-
sition of the repeat until loop

into the following three scripts:

In scenario-based programming this decomposition would
not be viewed as three tasks that were wrongly “separated
at birth” and are now “desperately” trying to collaborate to
accomplish a joint goal which would normally be better ac-
complished by a single module. Instead, these can be viewed
as three behaviors that may be intrinsic to the sprite in their
own right. One behavior is the constant moving, the other
is the constant sensing whether the sprite touches other ob-
jects, and the third, reacting to such touching. Further, in a
design review of such an application, one may even expect a
discussion of whether the broadcasting of stop in reaction to
the touch, is the right one, and perhaps instead, the broad-
cast should have been of the message touched, and then other
behaviors could translate this to a request to stop, while oth-
ers could use it for other purposes, such as touching again,
or verifying the identity of the touched object, or escaping.

In other words, while the process of building the system
may appear as bottom-up, the program structure suggests a
decomposition which is orthogonal to the bottom-up dimen-
sion. The sprite has capabilities and/or routine behaviors,
and what it does with them is programmed in the body
of these behaviors. In general, these independent behav-
ioral capabilities can be at abstraction levels that are high
or low, and may not be restricted to a particular level. The
programmer is not necessarily programming bottom-up, but
rather, one behavior after another, as he or she thinks about
them. Thus, not only can there be a mapping between the
modules of the application to the sections and paragraphs
of the requirements document - the process of developing
some application components parts may indeed follow their
sequential order in the requirements document (or in a se-
quential mental equivalent thereof). One may conceive the
developer following a requirement document that is being
read out aloud (with appropriate pauses), with little or no
ability to go back in the text, beyond what is in his or her
memory and with little or no modification to already com-
pleted scripts. Adjacent paragraphs may describe related or
unrelated behaviors at different abstraction levels.

4. POSSIBLE IMPLICATIONS TO
EDUCATION

In Scratch programming, a behavior may or may not be
considered “scenario-based” based on its structure and the

commands it uses. Perhaps with the right set of tools (as are
available in many scenario-based platforms), scenario-based
programming may be a central vehicle for teaching com-
puter programming to young students in a way that will
be natural, intuitive and fun. The required tools should
cover, among others, organization of code, visualization and
comprehension of code, visualization of interwoven execu-
tion and verification (see, e.g., [12, 6, 19, 9]). Such tools will
help the students to not only get their scripts and sprites
to run as desired, but also to “see the forest for the trees”.
They should be able to conceive of an application as a com-
posite artifact whose design should have certain traits such
as understandability or maintainability.

Additionally, when teaching top-down design and other
accepted methodologies for creation of complex systems, the
teacher’s awareness of the natural tendencies for “bottom-
up” construction and fine-grain design, may help clarify the
points being taught.

The incrementality that comes with the scenario-based
design, and the executability and feedback associated with
it, are thus key ingredients in enabling tinkering, which is
one of the goals of Scratch [22], and in line with the con-
structionism approach of Papert [13].

It should be noted that Scratch is not a full scenario-
based platform, and that established scenario-based tech-
niques and approaches have additional features such as auto-
matic synchronization, and compact idioms for one behavior
to suspend or otherwise influence the execution of all other
behaviors without explicit interaction between modules. In
the right setting, such concepts may prove easier to teach
than the raw concepts of concurrency and interprocess com-
munication where it is the programmer’s responsibility to
craft all aspects of the composite behavior.

Lastly, we conjecture that new design disciplines and prac-
tices will be developed where scenario-based programming
concepts are first-class citizens among the methodologies
and technologies that make up successful engineering prac-
tices. These disciplines will include, how to write indepen-
dent behaviors, how to organize sets of behaviors, and what
kind of inter-dependencies are acceptable. Subsequently,
these practices will become a standard part of programming
and computer science education at all levels.

5. DISCUSSION
While it is unlikely that humans are endowed with in-

herent/intrinsic skills specifically design for programming
computers (as we know them today), “programming”-like
skills are encountered in social human behaviors from the
beginning of civilizations. From the wisdom of elders passed
through generations, through social norms and laws, to ev-
eryday practices around nutrition, medicine, and art, hu-
mans were and are constantly engaged in telling others, or
memorizing for themselves, how to do things. In computer
science, the developers of various styles of scenario-based
programming claim that the proposed techniques are “nat-
ural” in some ways - a claim that seems plausible in view
of the prevailing styles of instruction manuals, cookbooks,
books of law, spoken narratives with morales, etc. Quali-
tative studies such as [7] investigate what language features
may or may not be natural or intuitive for programmers.
The findings of Meerbaum-Salant et al. [21] and the findings
of this paper suggest that the desire to compose full “opera-
tional descriptions” from small self-standing pieces, each of

which is introduced shortly before it is needed, is manifested
not only in verbal or documented descriptions, but, given a
programming language that allows it, are a preferred way
for constructing all or parts of the system.

We suggest that future research could shed light on what is
it in scenario-based behavior description (and subsequently,
programming) that is attractive to young programmers and
whether the Scratch projects uncovered a pre-existing ten-
dency, or led the students to a totally new behavior. From
our experience as programming professionals and observers
of novice and experienced programmers, it appears that part
of the answer lies in reducing the amount of energy or re-
sources required at any given point in time in the develop-
ment process. Perhaps fine-grained, “bottom-up” develop-
ment, allows one to reduce the number of pieces that one
has to think about at each stage, at the cost of having more
components in the final system. What we are observing may
be the stages in the process described by Lochhead [17]:
“before knowledge can be organized in comprehensive global
structures it first must be collected piecemeal”.

In summary, the seemingly unintentional new habits which
are characteristics of students’ Scratch programs, during
early stages of learning programming skills, appear to be
well aligned with key features of scenario-based program-
ming. To the question posed in [21], namely, that “why the
control structures were not used in the ways they were de-
signed to be used” this paper proposes that the answer may
be that the structures which were used instead are in some
way natural.

6. ACKNOWLEDGMENTS
The authors thank Michal Armoni, Moti Ben-Ari, David

Harel, and Gera Weiss for their valuable comments and sug-
gestions. The reseasrch of Michal Gordon and of Assaf Mar-
ron was supported by an Advanced Research Grant from
the European Research Council (ERC) under the European
Community’s 7th Framework Programme (FP7/2007-2013).
The research of Orni Meerbaum-Salant was partially sup-
ported by the Israel Science Foundation grant 09/1277 and
by a Sir Charles Clore Postdoctoral Fellowship.

7. REFERENCES
[1] R. C. Arkin. Behavior-Based Robotics. MIT Press,

1998.

[2] M. Armoni and M. Ben-Ari. Computer Science
Concepts in Scratch. Weizmann Institute of Science,
2010. (In Hebrew).

[3] M. Branicky. Behavioral Programming. In Working
notes AAAI spring symp. on hybrid systems and AI,
1999.

[4] R. Brooks. A Robust Layered Control System for a
Mobile Robot. IEEE J. of Robotics and Automation,
2(1), 1986.

[5] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1), 2001.

[6] N. Eitan, M. Gordon, D. Harel, A. Marron, and
G. Weiss. On Visualization and Comprehension of
Scenario-Based Programs. Int. Conf. on Program
Comprehension (ICPC), 2011.

[7] I. Hadar and U. Leron. How Intuitive is
Object-Oriented Design? Commun. ACM, 51:41–46,
2008.

[8] D. Harel. Can Programming Be Liberated, Period?
IEEE Computer, 41(1), 2008.

[9] D. Harel, R. Lampert, A. Marron, and G. Weiss.
Model-Checking Behavioral Programs. In Int. Conf.
on Embedded Software (EMSOFT), 2011.

[10] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

[11] D. Harel, A. Marron, and G. Weiss. Programming
Coordinated Scenarios in Java. In 24th European
Conference on Object-Oriented Programming
(ECOOP), 2010.

[12] D. Harel and I. Segall. Visualizing Inter-Dependencies
Between Scenarios. In Proc. ACM Symp. on Software
Visualization (SOFTVIS), pages 145–153. ACM, 2008.

[13] I. Harel and S. Papert. Constructionism. Ablex
Publishing, 1991.

[14] INFORM Gmbh. fuzzyTECH Software Package
www.inform-ac.com/fuzzytech.htm.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. European Conference on
Object-Oriented Programming (ECOOP), 1997.

[16] LEJOS. Java for LEGO Mindstorms.
http://lejos.sourceforge.net/.

[17] J. Lochhead. Some pieces of the puzzle.
Constructivism in the computer age. Lawrence
Erlbaum Associates, Hillsdale, NJ, pages 71–82, 1988.

[18] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: A Sneak Preview
[Education]. In Creating, Connecting and
Collaborating through Computing, 2004. Proc. Second
Int. Conf. on, pages 104–109. IEEE, 2004.

[19] S. Maoz and D. Harel. On Tracing Reactive Systems.
Software and Systems Modeling, pages 1–22, 2010.

[20] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Learning Computer Science Concepts with Scratch. In
Proc. of the Sixth Int. Workshop on Computing
Education Research, pages 69–76. ACM, 2010.

[21] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of Programming in Scratch. In Proc. of the
16th Annual Joint Conf. on Innovation and
Technology in Computer Science Education (ITICSE),
pages 168–172. ACM, 2011.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
Programming for All. Comm. of the ACM,
52(11):60–67, 2009.

www.inform-ac.com/fuzzytech.htm

	Introduction
	Scenario-based programming
	Another look at Scratch programming patterns
	Extremely Fine-Grained Programming
	Naturalness
	Basic use of IF statements
	Preconditions and FOREVER loops

	Bottom-up programming

	Possible Implications to Education
	Discussion
	Acknowledgments
	References

