The Effect of Concurrent Programming Idioms on Verification
A Position Paper

David Harel!, Guy Katz', Assaf Marron' and Gera Weiss>
LDept. of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

2Dept. of Computer Science, Ben Gurion University, Beer-Sheva, Israel
{dharel, guy.katz, assaf.marron} @weizmann.ac.il, geraw @cs.bgu.ac.il

Keywords:

Abstract:

Concurrency, Verification, Design for Verification, Behavioral Programming.

In recent years formal verification techniques have become an important part of the development cycle of

concurrent software. In order to tackle the state explosion problem and verify larger systems, a great deal
of work has been put into improving the scalability of verification tools. In this work, we seek to draw
attention to an alternative/complementary approach to improving scalability, which sometimes receives less
notice: the effect the concurrent programming model itself has on one’s ability to verify programs encoded
within it. Recent work suggests that a suitable choice of model, tailored to the problem at hand, may render
the produced software more amenable to verification techniques. We recapitulate some recent and new results
demonstrating this effect in programming models for discrete, synchronous reactive systems, and outline some
directions for future work. We hope that the paper will trigger additional research on this important topic.

1 INTRODUCTION

Concurrent reactive systems are typically character-
ized by a myriad of threads and services running in
parallel, continuously interacting with each other and
with their environment. Errors in these systems often
do not originate from single threads or components,
but are the result of unexpected interleaving of sets
thereof. Hence, they tend to be hard to predict, under-
stand and prevent.

In recent decades, a prominent approach for tack-
ling this issue has been that of formal verification.
There, one relies on automatic tools that methodi-
cally explore the state space of the system, looking
for bugs. The main hindrance to the applicability of
formal verification to large systems is the state explo-
sion phenomenon: the size of the state space of a sys-
tem can be exponential in the size of its constituent
components. This makes it difficult to impossible for
verification techniques to scale up to real-world sys-
tems.

In its ongoing attempts to improve the scalability
of verification tools, the research community has di-
rected a great deal of effort into finding more efficient
ways to detect bugs, which do not entail explicitly
enumerating and visiting every state of the system. A
few notable examples include the efficient traversal of
state graphs using BDDs (Bryant, 1986; Burch et al.,

1990), ignoring redundant thread interleaving via par-
tial order reductions (Alur et al., 1997), compositional
verification (Grumberg and Long, 1994), abstraction-
refinement based techniques (Clarke et al., 2000), and
also the use of theorem provers and SMT solvers for
verification (De Moura and Bjgrner, 2011; Ghilardi
and Ranise, 2012).

In this position paper we seek to draw attention
to an aspect of the verification problem which, we
feel, has received less attention: the effect the se-
lected computational model (e.g., the programming
language idioms) has on the complexity of software
verification. It is now widely accepted that a great
many bugs result from the “unconstrained” concur-
rency that characterizes modern programming lan-
guages (Lu et al., 2008), and also that some advanced
programming language features (e.g., pointers, alias-
ing) are very difficult for verification tools to handle.
The approach that we advocate in this work is a de-
sign for verification approach: by carefully choos-
ing the programming idioms to use in the develop-
ment of a particular system, one can program in a
rich and expressive environment, but at the same time
reduce concurrency in the program, making it more
amenable to formal analysis. This direction is or-
thogonal to the advanced verification techniques men-
tioned in the previous paragraph, and, as we later
demonstrate, a combination of both may result in im-

proved performance of the analysis tools.

This approach naturally raises the question of
which computational model to use. From a verifi-
cation point of view, the simpler the model, the bet-
ter, but from a software engineering point of view ad-
vanced features are needed to make the model attrac-
tive to programmers. Indeed, this is a trade-off that
needs to be addressed intelligently. As part of our at-
tempts to answer this question, we have been studying
idioms for concurrent programming, attempting to
measure the verification-wise cost of including them
in a programming model on one hand, and their use-
fulness as programming idioms on the other. Some of
our recent results appear in later sections. Our ulti-
mate goal is to offer engineers a pool of programming
idioms, with a detailed analysis of the benefits and
costs of each, thus helping them tailor the program-
ming framework to their needs.

In the following sections we demonstrate the
principles of our approach by focusing on the re-
cently proposed behavioral programming paradigm
for scenario-based programming (Harel et al., 2012),
and its main concurrency idioms: the requesting,
waiting-for and blocking of events. Recent work
shows that this relatively simple model may be ap-
pealing to programmers, but may also facilitate ver-
ification. Our main goal is not to claim that behav-
ioral programming is necessarily the best program-
ming model for verification — but rather to encourage
additional discussion and research on this topic, by
demonstrating the connection between the program-
ming model and verification complexity.

The rest of this paper is organized as follows. Sec-
tion 2 introduces behavioral programming. In Sec-
tion 3 we discuss the compositional verification of this
model, and in particular the effect that its program-
ming idioms have on the verification complexity. In
Section 4 we discuss the advantageous effect certain
programming idioms may have on another aspect of
the verification problem — program repair. Related
work appears in Section 5, and we conclude in Sec-
tion 6.

2 BEHAVIORAL
PROGRAMMING

Behavioral programming (BP) (Harel et al., 2012) is a
programming approach, aimed particularly at design-
ing and incrementally developing reactive systems.
BP emerged from the live sequence charts (LSCs)
programming language (Damm and Harel, 2001) and,
like LSCs, it is a scenario-based paradigm. Intu-
itively, a behavioral program is a collection of scenar-

ios, each corresponding to one desired or undesired
system behavior. During execution these scenarios
are woven together, producing cohesive system be-
havior.

More formally, a behavioral program consists of
independent threads of behavior (each encoding a sin-
gle scenario) that are interwoven at run time. Each be-
havior thread (abbr. b-thread) specifies events which,
from its own point of view must, may, or must not oc-
cur. These threads are then run simultaneously, and
are synchronized by an execution infrastructure re-
sponsible for selecting events that constitute the in-
tegrated system behavior.

A key principle in the BP model is that b-threads
do not communicate with each other directly; instead,
at every execution cycle, they each declare events that
they want to be considered for triggering (called re-
quested events), events that they do not actively re-
quest but simply “listen out” for (waited-for events),
and events whose triggering they forbid (blocked
events). Once this information has been collected
from all participating threads, the execution infras-
tructure triggers one event that is requested and is not
blocked, and resumes all b-threads that requested or
waited for that event. Figure 1 (borrowed from (Harel
et al., 2014)) demonstrates a simple behavioral appli-
cation. In practice, behavioral programs are imple-
mented using various high level languages, such as
Java, C++, Erlang, Javascript and, of course, LSCs
(see the BP website at http://www.b-prog.org/).

AddHot AddCold Stability Event Log
wait for | wait for wait for
WaterLow WaterLow AddHot e
while WaterLow
request request blocking AddHot
| AddHot | | AddCold | AddCold AddCold
¥ ¥ ¥ AddHot
| request | | request | wait for AddCold
AddHot AddCold AddCold AddHot
¥ ¥ while AddCold
| request | request blocking .
AddHot AddCold AddHot

Figure 1: (From (Harel et al., 2014)) Incremental develop-
ment of a system for controlling water level in a tank with
hot and cold water sources. The b-thread AddHot repeat-
edly waits for WaterLow events and requests three times
the event AddHot. AddCold performs a similar action with
the event AddCold, capturing a separate requirement, which
was introduced when adding three water quantities for every
sensor reading proved to be insufficient. When AddHot and
AddCold run simultaneously, with the first at a higher pri-
ority, the runs will include three consecutive AddHot events
followed by three AddCold events. When a new require-
ment is introduced, to the effect that that water temperature
be kept stable, the b-thread Stability is added, enforcing
the interleaving of AddHot and AddCold events by using
event blocking.

The software-engineering motivation for using BP
is its strict and simple synchronization mechanism.
By having all threads repeatedly synchronize, and
interact only indirectly — through requested and
blocked events — BP facilitates incremental, non-
intrusive development, and the resulting systems of-
ten have threads that are aligned with the specifica-
tion (Harel et al., 2012). Additional studies also indi-
cate that BP is natural, in the sense that it is easy to
learn and fosters abstract programming (Gordon et al.,
2012; Alexandron et al., 2014).

We recap the formal definitions of BP, as they ap-
pear in (Harel et al., 2010; Katz, 2013). A b-thread
BT over event set E is a tuple BT = (Q,0,qo,R,B),
where Q is a set of states (one for each synchro-
nization point), go is the initial state, R : Q — 2F
and B : Q — 2F map states to the sets of events re-
quested and blocked at these states (respectively), and
8: 0 x E — 22 is a transition function.

Behavioral programs are created by composing
b-threads. The parallel composition of threads BT =
(0',8',¢},R",B") and BT? = (Q?,&, 43, R*, B?) over
the common event set E yields the b-thread defined by
BT' || BT? = (' x 0*.3, (qh,q3),R' UR?,B' UB),
where (§',3%) € 8((q",q%),e) if and only if §' €
8'(¢',e) and ¢ € 8°(¢*,¢). The union of the label-
ing functions is defined in the natural way; i.e. e €
(R"UR?)({(q",¢*)) if and only if e € R' (¢") UR?(¢?).
A behavioral program P comprised of b-threads
BT',BT?,...,BT" is the composite thread P = BT |
... || BT".

Let P = (Q,9,q0,R,B). An execution of P starts
from g, and in each state g along the run an enabled
event is chosen for triggering, if one exists (i.e., an
event ¢ € R(q) — B(q)). Then, the execution moves to
state § € 8(q,e), and so on. An execution can be in-
finite, or finite if it ends in a state with no successors
(a deadlock state); and it can be formally recorded
as a (possibly infinite) sequence of states and trig-

gered events, € = qq 4 q1 % The matching set
of events, without states, is called a run. The set of all
runs of the program is denoted by £(P).

In (Harel et al., 2011; Harel et al., 2013a), it is
demonstrated how the transition systems underlying
b-threads can be automatically extracted from high
level code, composed, and then traversed in order to
verify safety and liveness properties. In (Katz, 2013),
this model checking technique is enhanced with ab-
straction capabilities: b-threads are replaced with ab-
stract versions thereof, in which multiple states are
symbolically represented by a single state, with ad-
justed requested and blocked events.

3 SUCCINCTNESS AND
COMPOSITIONAL
VERIFICATION

A key technique in combating state explosion, which
has been studied extensively, is compositional verifi-
cation (Grumberg and Long, 1994): instead of span-
ning the entire composite state graph in order to ver-
ify the program (effectively transforming a concurrent
program into an equivalent, sequential program), the
idea is to first prove sub-properties on individual mod-
ules/threads, and then show, by some sort of reason-
ing, that the sub-properties entail the desired global
property. By verifying each module separately, the
exploration of composite states is avoided.
Compositional verification is easy to grasp but dif-
ficult to perform: breaking the system down into mod-
ules, and especially coming up with the “right” mod-
ule properties, can prove tricky (and sometimes even
impossible (Cobleigh et al., 2006)). In modern pro-
gramming languages, concurrent threads may affect
each other in many subtle ways, and hence it is dif-
ficult to capture and formulate the properties of just
one module, in isolation. Given these facts, we ar-
gue that a computational model is “compatible” with
compositional verification if two conditions hold:

1. Programs in the model may be broken down into
modules, such that verifying properties of the
modules is substantially cheaper than verifying
the composite program.

2. The modules are such that it is possible (prefer-
ably straightforward) to formulate meaningful
module properties, which may later imply the de-
sired global property.

The trade-off we discussed earlier, between the
need to have a model that is easy to verify and adding
more advanced features to make the model usable, ex-
ists here too: the more advanced features we add, the
smaller the modules we can have — but the modules’
ability to influence each other in a variety of ways
makes it harder to formulate the properties of just a
single one. Thus, we argue, it is desirable to have
a computational model that has just enough concur-
rency in it to make the modules small, but not too
much concurrency, so that reasoning about them re-
mains easy. Clearly, the program in question plays a
role in determining what “just enough concurrency”
means, depending on the tasks at hand. In the remain-
der of the section, we discuss the benefits of using a
simple concurrency model — in this case, BP — in
compositional verification.

The topic of compositionally verifying behavioral
programs was discussed in (Harel et al., 2013b).

There, thread properties are summarized as logical
formulas, which are then given to an SMT solver
that proves the global property. An example (adopted
from that paper) appears in Figure 2. The key ob-
servation is that in a simple and strict computational
model it is possible to reason about modules without
resorting to more complex assume-guarantee proofs
(e.g., (Henzinger et al., 1998; Flanagan et al., 2002))
or the circular reasoning sometimes required in less
constrained paradigms. In our opinion, such exam-
ples serve as evidence that condition 2 above may be
satisfied by using this kind of simple model.

The other requirement we mentioned (condition 1)
was that verifying module properties, such as those in
Figure 2, be cheaper than verifying the global prop-
erty on the composite system. In practice, since
model-checking is linear in the size of the program,
this can be translated into having modules that are
exponentially smaller than the composite program in
terms of the number of states. Clearly, concurrency
allows one to write smaller modules; but will the lim-
ited kind of concurrency afforded by the BP synchro-
nization method and its request, wait-for and block
idioms suffice?

New results that we have obtained (to appear sepa-
rately) indicate that each of the three requesting, wait-
ing and blocking idioms affords an exponential in-
crease in succinctness; that is, each of the idioms
enables the writing of programs in an exponentially
more compact manner than the best possible with-
out it (see Figure 3). More specifically, we show
that the request idiom allows one to succinctly encode
programs that contain a disjunction of constraints;
the blocking idiom does the same for conjunctions;
and the wait-for idiom allows the creation of succinct
threads that cooperate in achieving a shared goal. In
fact, the example of Figure 2 includes a conjunction of
constraints (that event b be allowed only in indices di-
visible by both 2 and 3), and hence the blocking idiom
is suitable there. Further, our results show that when
these idioms afford an exponential improvement in
succinctness, even a far more liberal model (e.g., the
Statecharts model (Harel, 1987), in which each mod-
ule is completely aware of the internal state of other
modules) cannot improve this succinctness further.

4 PROGRAM REPAIR

In this section we discuss another aspect of formal
verification, which deals also with the correction of
bugs, separately from their detection. In program re-
pair, one takes as input a program with a bug, and at-
tempts to turn it into a correct program. Common ap-

@

Figure 3: The succinctness afforded by programming mod-
els comprised of combinations of the request (&), wait-for
(W) and block (B) idioms. Each arrow indicates a tight
exponential gap in succinctness: some programs, when
“moved” from the source model to the target model, must
increase exponentially in size. The figure shows that the
omission of any of the three idioms results in a blowup for
some classes of programs. A precise mathematical formu-
lation of these properties and their proofs will be published
separately.

proaches to the repair of general programs include re-
placing faulty modules with synthesized ones (Staber
et al., 2005; Jobstmann et al., 2005), and genetic and
co-evolution based techniques (Arcuri and Yao, 2008;
Weimer et al., 2010).

In (Harel et al., 2014; Katz, 2013) we show that
using a simple concurrency model can have beneficial
effects on program repair as well. Specifically, we
demonstrate repair algorithms for BP which widely
leverage the blocking idiom. This form of repair has
the important advantage that it is non-intrusive; i.e., it
is performed strictly by adding new modules.

Figure 4 demonstrates the repair of a safety viola-
tion (i.e., an error of the form “something bad hap-
pens”) in a behavioral program. Intuitively, when-
ever a violating run is found, a new “patch” thread
designed to prevent the error is added to the program.
This new thread utilizes the event blocking idiom in
order to prevent the sequence of events leading to the
bad state from occurring.

The second type of error covered in (Harel et al.,
2014) is that of liveness violations; i.e. that “some-
thing good that should happen, does not”. This type
of bug is likewise repaired using the blocking idiom:
whenever it is detected that the system is traversing a
cycle in which no good events occur, a repair thread
occasionally blocks all the events that do not lead the
system towards a good event. Thus, with only min-
imal interference, the system is “steered back” to-
wards the correct course. As is the case with safety
violations, repairing liveness violations is performed
strictly by adding new modules to the program.

These examples indicate that it may be worthwhile
to study the benefits of various concurrency idioms,

Thread 1 Thread 2 Thread 3
a
a,b l a,b g)
a a a b
)
g -~ D) *(‘ l}—’.
R = {a} R={a,b} R = {a} R = {a} R={a,b} R=0 R=0
B={b} B=0 B={b} B ={b} B=0 B=0 B={a,b}

Figure 2: (From (Harel et al., 2013b)) Compositional verification of a behavioral application. In the depicted program, Thread
1 counts modulo two: on odd steps it requests event a and blocks event b, and on even steps it requests both events. Thread 2
is similar, but counts modulo three, and only requests both events every third step. Together, these two threads count modulo
6, producing the language (@’ (a + b))®. The final thread, Thread 3, encodes the property to be checked: that event b is never
triggered (and thus, the program is unsafe). If b is triggered, this thread moves to its “bad” state (marked in red).

Verifying this program directly would entail spanning the composite state graph (2-3-2 = 12 states). In (Harel et al., 2013b),
we demonstrate a compositional approach, by first expressing thread properties as logical lemmas. For Thread 1, this lemma
is: triggered(b,i) = i =0(mod 2), where triggered(b,i) means that the i’th event triggered was b; and for Thread 2, the
lemma is triggered(b,i) = i = 0(mod 3). Using these lemmas, an SMT solver can deduce that if a violation occurs, it
occurs in the 6th step; and then, the intermediate composite states can be ignored. Intuitively, the number of states explored in
this process is the sum of the threads’ sizes, instead of the product thereof. That paper demonstrates a significant improvement

in verification run time when compositional verification is applied to this example, and others.

H
e

Figure 4: (From (Katz, 2013)) Automatically repairing a
safety violation in a behavioral program. The safety vio-
lation occurs when a red state is reached. The violation is
fixed using event blocking, which effectively trims edges
from the graph. Graph I depicts the initial configuration,
with only one bad state: g4. The edges leading to g4 cross
the dotted red line, and are candidates for blocking. In the
first iteration, blocking these edges would cause a deadlock
in state g». Thus, in graph II state ¢ is also marked as bad.
Unfortunately, blocking the edges that now cross the dotted
line would create a deadlock in state g5, and so we iterate
again. Only then, in graph III, can edges crossing the dotted
line be safely removed without causing deadlocks. The red
states are thus rendered unreachable, fixing the safety vio-
lation. This form of repair is made possible because of the
blocking idiom, and because of the simple and strict syn-
chronization mechanism between b-threads.

m "»8

from BP and from other computational models, for
additional formal and semi-formal methods: static
analysis, design-by-contract approaches, combinato-
rial test designs, etc.

S RELATED WORK

The design for verification approach has appeared in
several studies over the years. In (Austin, 2001), the
author challenges engineers to design systems that are

easier to verify, focusing on separation of concerns, so
that modules may be verified in isolation. A similar
approach appears in (Kharmeh et al., 2011), where the
authors discuss implementing communication proto-
cols from pre-verified blocks, in order to more easily
guarantee their correctness. Our work offers a dif-
ferent/complementary perspective on this topic: in-
stead of focusing on design patterns and pre-verified
modules, we seek to adjust the entire computational
model, removing some features while retaining oth-
ers, in order to assist verification tools. Naturally,
what all these approaches have in common is that they
are more likely to succeed if the programmer coop-
erates; i.e., if he/she attempts to write code that is
amenable to verification.

In (Klein et al., 2010), the authors present the de-
sign for verification of a complete microkernel (nearly
10,000 lines of code). They discuss design patterns
that they favored and those that they avoided in order
to facilitate verification. Another set of design pat-
terns that facilitates verification, this time aimed at de-
signing air traffic control software, appears in (Betin-
Can et al., 2005), and additional rules, evaluated on
a robot control software system, appear in (Sharygina
etal., 2001). These studies and similar ones can hope-
fully serve to identify programming idioms that are
more amenable to verification than others.

6 CONCLUSION AND FUTURE
WORK

The formal verification of software is a tremendously
important task given today’s large systems, but is still
very difficult. The development of more efficient ver-
ification algorithms and tools is thus a worthy en-

deavor, and has already born much fruit. However,
there seems to be untapped potential in designing
software in a way that makes it more verification com-
patible: by carefully choosing a computational model
that is on one hand expressive and convenient, and on
the other hand amenable to formal verification tools,
one can often achieve improved scalability.

We have demonstrated these principles on three
idioms for concurrent programming — the request-
ing, waiting-for and blocking of events, which to-
gether make up the BP model. We recapitulated work
showing that, because of its strict synchronization
protocol, the BP model produces programs that may
be more amenable to compositional reasoning and re-
pair than less restricted concurrent models, and yet
that a behavioral program may be significantly more
succinct than an equivalent sequential program.

Our work focused on BP, which is but one
paradigm among many for discrete event reactive sys-
tems. As discussed earlier, a key ingredient in our
proposed approach is an appropriate mapping of pro-
gramming idioms to problems they can solve, and
their respective costs, verification-wise. In order to
fully harness this synergy in practice, extensive study
of additional idioms is required. For instance, it
would be interesting to compare results for BP with
other models for reactivity such as BIP (Basu et al.,
2006), Signal (Le Guernic et al., 1991) and Lus-
tre (Halbwachs et al., 1991).

In the longer run, we envision an extensive catalog
of idioms for programmers to choose form, according
to the problem at hand. Perhaps in the further away
future these decisions could even be performed by an
automated recommender system.

ACKNOWLEDGEMENTS

The work of all the authors was supported by an Israel
Science Foundation grant. The research of G. Weiss
was also supported by the Lynn and William Frankel
Center for CS at Ben-Gurion University, and by a
reintegration (IRG) grant under the European Com-
munity’s FP7 Programme.

REFERENCES

Alexandron, G., Armoni, M., Gordon, M., and Harel, D.
(2014). Scenario-Based Programming: Reducing the
Cognitive Load, Fostering Abstract Thinking. In Proc.
36th Int. Conf. on Software Engineering (ICSE), pages
311-320.

Alur, R., Brayton, R. K., Henzinger, T. A., Qadeer, S., and
Rajamani, S. K. (1997). Partial-Order Reduction in
Symbolic State Space Exploration. In Proc. 9th. Int.
Conf. on Computer Aided Verification (CAV), pages
340-351.

Arcuri, A. and Yao, X. (2008). A Novel Co-evolutionary
Approach to Automatic Software Bug Fixing. In Proc.
10th IEEE Congress on Evolutionary Computation
(CEC), pages 162-168.

Austin, T. (2001). Design for verification? IEEE Design &
Test of Computers, 18(4):80-80.

Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling Het-
erogeneous Real-time Systems in BIP. In Proc. 4th
IEEE Int. Conf. on Software Engineering and Formal
Methods (SEFM), pages 3—12.

Betin-Can, A., Bultan, T., Lindvall, M., Lux, B., and Topp,
S. (2005). Application of Design for Verification with
Concurrency Controllers to Air Traffic Control Soft-
ware. In Proc. 20th. Int. Conf. on Automated Software
Engineering (ASE), pages 14-23.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Computers,
100(8):677-691.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang,
L. (1990). Symbolic Model Checking: 10%° States
and Beyond. In Proc. 5th IEEE Annual Symposium on
Logic in Computer Science (LICS), pages 428—439.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2000). Counterexample-Guided Abstraction Refine-
ment. In Proc. 12th Int. Conf. on Computer Aided
Verification (CAV), pages 154—169.

Cobleigh, J., Avrunin, G., and Clarke, L. (2006). Breaking
Up is Hard to do: an Investigation of Decomposition
for Assume-Guarantee Reasoning. In Proc. Int. Symp.
on Software Testing and Analysis (ISSTA), pages 97—
108.

Damm, W. and Harel, D. (2001). LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45-80.

De Moura, L. and Bjgrner, N. (2011). Satisfiability Modulo
Theories: Introduction and Applications. Communi-
cations of the ACM, 54(9):69-717.

Flanagan, C., Freund, N. S., and Qadeer, S. (2002). Thread-
Modular Verification for Shared-Memory Programs.
In Proc. 11th. European Symp. on Programming Lan-
guages and Systems (ESOP), pages 262-277.

Ghilardi, S. and Ranise, S. (2012). MCMT: A Model
Checker Modulo Theories. In Proc. 5th Int. Joint
Conf. on Automated Reasoning (IJCAR), pages 22-29.

Gordon, M., Marron, A., and Meerbaum-Salant, O. (2012).
Spaghetti for the Main Course? Observations on
the Naturalness of Scenario-Based Programming. In
Proc. 17th Conf. on Innovation and Technology in

Computer Science Education (ITICSE), pages 198—
203.

Grumberg, O. and Long, D. (1994). Model Checking and
Modular Verification. ACM Trans. Program. Lang.
Syst., 16(3):843-871.

Halbwachs, N., Caspi, P, Raymond, P., and Pilaud, D.
(1991). The Synchronous Data-Flow Programming
Language LUSTRE. Proc. of the IEEE, 79(9):1305—
1320.

Harel, D. (1987). Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231-274.

Harel, D., Kantor, A., and Katz, G. (2013a). Relaxing Syn-
chronization Constraints in Behavioral Programs. In
Proc. 19th Int. Conf. on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR), pages 355—
372.

Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L.,
and Weiss, G. (2013b). On Composing and Proving
the Correctness of Reactive Behavior. In Proc. 13th
Int. Conf. on Embedded Software (EMSOFT), pages
1-10.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2014). Non-
Intrusive Repair of Safety and Liveness Violations in
Reactive Programs. Transactions on Computational
Collective Intelligence (TCCI), 16:1-33.

Harel, D., Lampert, R., Marron, A., and Weiss, G. (2011).
Model-Checking Behavioral Programs. In Proc. 11th
Int. Conf. on Embedded Software (EMSOFT), pages
279-288.

Harel, D., Marron, A., and Weiss, G. (2010). Program-
ming Coordinated Scenarios in Java. In Proc. 24th
European Conf. on Object-Oriented Programming
(ECOOP), pages 250-274.

Harel, D., Marron, A., and Weiss, G. (2012). Behav-
ioral Programming. Communications of the ACM,
55(7):90-100.

Henzinger, T. A., Qadeer, S., and Rajamani, S. K. (1998).
You Assume, We Guarantee: Methodology and Case
Studies. In Proc. 10th Int. Conf. on Computer Aided
Verification (CAV), pages 440—451.

Jobstmann, B., Griesmayer, A., and Bloem, R. (2005). Pro-
gram Repair as a Game. In Proc. 17th Int. Conf. on
Computer Aided Verification (CAV), pages 226-238.

Katz, G. (2013). On Module-Based Abstraction and Re-
pair of Behavioral Programs. In Proc. 19th Int. Conf.
on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518-535.

Kharmeh, S. A., Eder, K., and May, D. (2011). A
Design-For-Verification Framework for a Config-
urable Performance-Critical Communication Inter-
face. In Proc. 9th. Int. Conf. on Formal Modeling and
Analysis of Timed Systems (FORMATS), pages 335—
351.

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolan-
ski, R., Norrish, M., et al. (2010). seL.4: Formal Veri-
fication of an Operating-System Kernel. Communica-
tions of the ACM, 53(6):107-115.

Le Guernic, P, Gautier, T., Le Borgne, M., and Le Maire,
C. (1991). Programming Real-Time Applications with
Signal. Proceedings of the IEEE, 79(9):1321-1336.

Lu, S., Park, S., Seo, E., and Zhou, Y. (2008). Learn-
ing from Mistakes: a Comprehensive Study on Real
World Concurrency Bug Characteristics. In Proc.
13th. Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
pages 329-339.

Sharygina, N., Browne, J. C., and Kurshan, R. P. (2001). A
Formal Object-Oriented Analysis for Software Relia-
bility: Design for Verification. In Proc. 4th. Int. Conf.
on Fundamental Approach to Software Engingeering
(FASE), pages 318-332.

Staber, S., Jobstmann, B., and Bloem, R. (2005). Diagnosis
is Repair. In Proc. 16th Int. Workshop on Principles
of Diagnosis (DX), pages 169-174.

Weimer, W., Forrest, S., Le Goues, C., and Nguyen, T.
(2010). Automatic Program Repair with Evolutionary
Computation. Communications of the ACM, 53:109—
116.

