
Author-prepared version

A Decentralized Approach for Programming
Interactive Applications with JavaScript and Blockly

Assaf Marron

Weizmann Institute of Science
assaf.marron@weizmann.ac.il

Gera Weiss

Ben-Gurion University
geraw@cs.bgu.ac.il

Guy Wiener

HP Labs
guy.wiener@hp.com

Abstract
We present a decentralized-control methodology and a
tool-set for developing interactive user interfaces. We
focus on the common case of developing the client side
of Web applications. Our approach is to combine vi-
sual programming using Google Blockly with a single-
threaded implementation of behavioral programming
in JavaScript. We show how the behavioral program-
ming principles can be implemented with minimal pro-
gramming resources, i.e., with a single-threaded envi-
ronment using coroutines. We give initial, yet full, ex-
amples of how behavioral programming is instrumental
in addressing common issues in this application do-
main, e.g., that it facilitates separation of graphical rep-
resentation from logic and handling of complex inter-
object scenarios. The implementation in JavaScript and
Blockly (separately and together) expands the avail-
ability of behavioral programming capabilities, pre-
viously implemented in LSC, Java, Erlang and C++,
to audiences with different skill-sets and design ap-
proaches.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Concurrent programming
structures; D.1.3 [Programming Techniques]: Concur-
rent programming

General Terms Languages, Design, Human Factors

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords Behavioral Programming, JavaScript,
Coroutines, HTML 5, Google Blockly, Visual Pro-
gramming, Client-side, Web application, Browser

1. Introduction
The behavioral programming (BP) approach is an ex-
tension and generalization of scenario-based program-
ming, which was introduced in [4, 11] and extended
in [17]. In behavioral programming, individual re-
quirements are programmed in a decentralized manner
as independent modules which are interwoven at run
time. Advantages of the approach include facilitation
of incremental development [17], naturalness [10], and
facilitation of early detection of conflicting require-
ments [18]. A review of research and tool development
in behavioral programming to date appears in [14].
While behavioral programming mechanisms are avail-
able in several languages such as live sequence charts
(LSC), Java, Erlang and C++, its usage for complex
real-world application and development of relevant
methodologies are only beginning.

The purpose of the research summarized in this pa-
per was to examine behavioral programming in a spe-
cific application domain, and to adjust it to languages,
technologies and work methods that are used in this do-
main. The paper also sheds light on the principles of
programming behaviorally and the facilities required of
behavioral-programming infrastructure.

The paper describes and demonstrates the imple-
mentation of behavioral programming in JavaScript
and in Google’s Blockly for the client side of Web
applications, and then discusses general usability and
design principles highlighted by these implementa-
tions. Clearly, in addition to the combined Blockly-
and-JavaScript implementation shown here, behavioral
programming can be used with JavaScript without

Author-prepared version; See published version in AGERE! 2012 - ACM DL 1 2012/12/19



Blockly, or with Blockly with translation to another
language, such as Dart. In this regard, Blockly is a layer
above our JavaScript implementation, which can sim-
plify development and facilitate experimenting with a
variety of programming idioms. We hope that together
with previously described ideas about scenario-based
and behavioral programming, this paper will help drive
the incorporation of these principles into a wide vari-
ety of new and existing environments for development
with agents, actors, and decentralized control, and will
help add them into the basic set of programming con-
cepts that are understandable by and useful for novice
and expert programmers alike.

We propose that decentralized scenario oriented pro-
gramming techniques offer significant advantages over
traditional programming metaphors in this specific do-
main. Consider, for example, an application with some
buttons on a screen where there is a requirement that
the software reacts to a sequence of button clicks in
a certain way. Using a non-behavioral style with, e.g.,
JavaScript, one of the standard programming languages
in this domain, the programmer would handle each
button-click separately, and introduce special code to
manage state for recognizing the specific sequence of
events. We argue that with behavioral programming
such a requirement can be coded in a single imperative
script with state management being implicit and natural
rather than explicit. See Section 5.1.

Our choice of the domain of interactive technology
is influenced also by the current debate about the rel-
ative merits of Flash and JavaScript/HTML5 technolo-
gies (see, e.g., [28]). We believe that the technologi-
cal discussion conducted mainly in industry should be
accompanied with academic revisiting and analysis of
software engineering and methodology aspects.

About the terms block and blocking
As we are dealing with languages and programming id-
ioms, the reader should note that the term block appears
in this paper in two different meanings: (a) a brick or
a box - referring to programming command drawn as
a two-dimensional shape; and (b) a verb meaning to
forbid or to prevent, associated with the behavioral pro-
gramming idiom for declaring events that must not hap-
pen at a given point in time. It is interesting to observe
that these meanings are individually commonly used
and are appropriate for the intent, that finding alterna-
tive terms for the sole purpose of disambiguation, is un-

necessary, in the least, and in some cases, artificial and
even detrimental to the understandability of the text.
In this context, of course, the language name Blockly
fits nicely with its proposed use in programming be-
haviorally. Still to minimize confusion, we avoided us-
ing the terms block and blocking in two other com-
mon software-related meanings, namely, (c) stopping
a process or a subroutine while waiting for an event or
resource; and, (d) a segment of program code which
contains all the commands between some end-markers
such as curly braces or begin and end.

2. Behavioral Programming
In this section we outline the technique of Behavioral
Programming for the development of reactive systems.
Formal definitions and comparisons with other pro-
gramming techniques appear in [14, 17, 19].

A preliminary assumption in our implementation of
behavioral programming is that an application, or a
system, is focused on processing streams of events with
the goal of identifying and reacting to occurrences of
meaningful scenarios. Detected event sequences are
then used to trigger abstract, higher level, events, which
in turn may trigger other events. Some of these events
are translated to actions that the system takes to effect
changes in the external world. This cycle results with
a reactive system that translates inputs coming from its
sensors to actions performed by its actuators.

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Figure 1. Behavioral programming execution cycle:
all b-threads synchronize, declaring requested and
blocked events; a requested event that is not blocked
is selected and b-threads waiting for it are resumed.

More specifically, in a behavioral program, event
sequences are detected and generated by independent
threads of behavior that are interwoven at run time in
an enhanced publish/subscribe protocol. Each behav-
ior thread (abbr. b-thread) specifies events which, from
its own point of view must, may, or must not occur.
As shown in Figure 1, the infrastructure consults all
b-threads by interweaving and synchronizing them, and

Author-prepared version; See published version in AGERE! 2012 - ACM DL 2 2012/12/19



selects the events that will constitute integrated sys-
tem behavior without requiring direct communication
between b-threads. Specifically, all b-threads declare
events that should be considered for triggering (called
requested events) and events whose triggering they for-
bid (block), and then synchronize. An event selection
mechanism then triggers one event that is requested and
not blocked, and resumes all b-threads that requested
the event. B-threads can also declare events that they
simply “listen-out for”, and they too are resumed when
these waited-for events occur.

This facilitates incremental non-intrusive develop-
ment as outlined in the example of Figure 2. For
another example, consider a game-playing program,
where each game rule and each player strategy is added
in a separate module that is oblivious of other rules
and strategies. Detailed examples showing the power
of incremental modularity in behavioral programming
appear, e.g., in [17–19].

wait for
WaterLevelLow

request
AddHot

request
AddHot

request
AddHot

WhenLowAddHot

wait for
WaterLevelLow

request
AddCold

request
AddCold

request
AddCold

WhenLowAddCold

wait for
AddHot while

blocking
AddCold

wait for
AddCold

while
blocking
AddHot

Stability

⋯

WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

⋯

Event Log

Figure 2. Incremental development of a system for controlling wa-
ter level in a tank with hot and cold water sources. The b-thread
WhenLowAddHot repeatedly waits for WaterLevelLow events and requests
three times the event AddHot. WhenLowAddCold performs a similar action
with the event AddCold, reflecting a separate requirement, which was intro-
duced when adding three water quantities for every sensor reading proved
to be insufficient. When WhenLowAddHot and WhenLowAddCold run si-
multaneously, with the first at a higher priority, the runs will include three
consecutive AddHot events followed by three AddCold events. A new re-
quirement is then introduced, to the effect that water temperature should
be kept stable. We add the b-thread Stability, to interleave AddHot and
AddCold events using the event-blocking idiom.

In behavioral programming, all one must do in or-
der to start developing and experimenting with sce-
narios that will later constitute the final system, is to
determine the common set of events that are relevant
to these scenarios. While this still requires contempla-
tion, it is often easier to identify these events than to
determine objects and associated methods. By default,
events are opaque and carry nothing but their name,
but they can be extended with rich data and functional-
ity. Further, the incremental traits of BP and the small-

ness of b-threads (see Section 5) facilitate subsequent
adding and changing of event choices.

The behavioral programming technique facilitates
new automated approaches for planning in execu-
tion [12, 15], program verification and synthesis [13,
18, 22], visualization and debugging of concurrent ex-
ecution [5], natural language coding of scenarios [9],
and program repair [20] .

3. Infrastructure Implementation
3.1 Coordinating behaviors written in JavaScript
In principle, the concepts of behavioral programming
are language independent and indeed they have been
implemented in a variety of languages using differ-
ent techniques. However, certain language facilities
are needed in order to control the execution, synchro-
nization and resumption of the simultaneous behav-
iors. In LSC this is done by the control mechanism
which, interpreter-like, advances each chart along its
locations (see, e.g. [16]). In Java [17], Erlang [32] and
C++ the mechanism is implemented as independent
threads or processes and uses language constructs such
as wait and notify for suspension and resumption.
When executed in a browser, a JavaScript application
is typically executed as a single thread in a single pro-
cess, hence another mechanism is needed. Note that
for the present proof-of-concept, the choice is indeed
JavaScript, but the language-independent principles
can be implemented also in other technologies, say,
Flash ActionScript, if appropriate constructs are avail-
able for suspension and resumption.

In JavaScript 1.7 [27] (currently supported in the
Firefox browser) the yield command was introduced
which allows the implementation of generators and
coroutines, and we chose to use it for our BP im-
plementation - providing suspension and resumption
in single-threaded multi-tasking. Briefly, the yield

mechanism allows a method to return to its caller, and
upon a subsequent call, continue from the instruction
immediately after the most recent return. Thus, in the
context of coroutines, coordinated behavioral execution
can be described as follows:

Behavior threads are implemented as JavaScript
coroutines. For example, the b-thread Stability of
the water-tap example is shown in the following code-
snippet. The b-thread two calls to yield correspond to
the two boxes of this b-thread in Figure 2.
function () {

Author-prepared version; See published version in AGERE! 2012 - ACM DL 3 2012/12/19



while (true) {

yield({

request: [],

wait: [" addHot"],

block: [" addCold "]

});

yield({

request: [],

wait: [" addCold"],

block: [" addHot "]

});

}

}

The infrastructure executes in cycles. In each cycle, the
b-threads are called one at a time. The coroutine of
each b-thread returns, using the yield command, spec-
ifying this coroutine’s declaration of requested events,
blocked events and waited-for events. Once each of the
b-threads has been called and has returned in this man-
ner, and its declarations have been recorded, the infras-
tructure selects for triggering an event that is requested
and not blocked. The infrastructure then resumes all
b-threads that requested or waited for the event, by call-
ing them (and only them), one by one, as part of the
new cycle.

In fact this description summarizes the majority of
what was needed for our implementation of behavioral
programming in JavaScript. More details appear in Ap-
pendix A. The b-threads are, of course, application spe-
cific and are provided by the application programmer.

Since JavaScript requires that the yield command
be visible in the source of the coroutine at least once,
in the present implementation we chose not to hide it
within a method dedicated to behavioral synchroniza-
tion and declarations, such as the bSync method in the
Java implementation. Indeed, we feel that this diversity
in command name usage across languages emphasizes
that BP benefits, such as ease of state management and
incrementality (see Section 5), can be gained by imple-
menting and using BP principles in any language and
with a variety of idioms.

3.2 Behavioral blocks for Blockly
The Google Blockly environment [8] is built along
principles similar to those of the popular Scratch lan-
guage [30]. Other languages and environments in this
family include, among others, BYOB/SNAP! [26],
MIT App Inventor [1], and Waterbear [6]. In these lan-
guages, the programmer assembles scripts from a menu
of block-shaped command templates that are dragged
onto a canvas. The Blockly blocks contain placehold-

ers for variables and sub-clauses of the commands and
can express scope of program-segment containment,
relying on the notation of a block containing physi-
cally other blocks, with possible nesting. The popu-
larity of the Scratch language suggests that this style
of coding is more accessible to children than standard
programming languages, and perhaps even other visual
languages, such as LSC. However, we also feel that the
combination of visualization and language customiza-
tion make Blockly an excellent platform for demon-
strating coding techniques that would otherwise require
pseudo-code or abstraction, and it may also provable
suitable for complex applications.

While Scratch and BYOB are interpreted (in SmallTalk
and now also in Flash), Blockly and Waterbear di-
agrams are translated into code (we use JavaScript)
which can later be manipulated and executed natively
without dependency on the development environment.

Our implementation of behavioral programming in
Blockly includes new (types of) blocks: the b-thread
block

for the b-thread logic (the string b-thread in the
template can replaced by the programmer with the
b-thread’s name or description); the b-Sync block

for synchronization and bidding of requested, waited-
for, and blocked events; and, a lastEvent block where
b-threads that wait for a number of events can examine
the one that indeed happened.

For illustration, the Stability b-thread of the
water-tap example, is coded in Blockly as

Author-prepared version; See published version in AGERE! 2012 - ACM DL 4 2012/12/19



and is automatically compiled into the JavaScript code
shown in Section 3.1.

The advantages of programming in this manner are
discussed in Section 5. We will only mention here
that the visualness of Blockly adds to the usability of
BP principles, while behavioral decomposition should
simplify the development of complex applications in
Blockly .

As the Google Blockly environment is in early de-
velopment stages, we had to also add some basic capa-
bilities, such as list concatenation, that are not specific
to behavioral programming.

4. Programming an Interactive Application
Behaviorally - an Example-driven Tour

In this section we present the underlying design prin-
ciples for applications coded with Blockly, JavaScript,
and HTML, via a review of several small applications.
The code and additional explanations are available on-
line at www.b-prog.org

4.1 Sensors and Actuators
A key design principle is separating the “real” world
from the application logic using appropriate interfaces
for translating occurrences in the environment into en-
tities that can be processed by the application, and ap-
plication decisions into effects on the environment.

We begin our example-driven tour with examination
of the sensors and actuators of a simple application
which consists of the following three buttons:

The requirements for this application are that when
the user clicks Button1 the greeting should be changed
to “Good Morning” and when the user clicks Button2
the greeting should be changed to “Good Evening”. We
first have to create a sensor for the button clicking:

<input

value = "Button1"

type = "button"

onclick = "bp.event(‘button1Click ’);"

/>

The clicking is captured by the standard use of the
HTML verb onclick and the ensuing activation of
JavaScript code. The function bp.event is part of the
behavioral infrastructure in JavaScript, and it creates
the behavioral event passed as a parameter. Details
about event triggering appear in Section 4.3

To transform application decisions into effects on
the environment, an HTML entity can activate JavaScript
code using another part of the behavioral infrastruc-
ture we added in Blockly/HTML/JavaScript, the verb
when eventName, as follows:

<input

value = "Hello , world !"

type = "button"

when_button1Click = "value=‘Good Morning ’"

when_button2Click = "value=‘Good Evening ’"

/>

In this simple example, there are no application-
logic b-threads and the actuator is driven directly by
the behavioral event generated by the sensor.

In the present implementation, events are simply
character strings. The semantics of triggering a be-
havioral event in Blockly is notifying (or resuming)
any b-thread or HTML entity that registered interest
in the specified event, using the b-Sync block or the
when_eventName idiom, respectively.

We believe that the design of a reactive behavioral
application should start with analysis and determina-
tion of the sensors and actuators and the associated
events. For example, Figure 3 in Section 4.3 shows
such an event list for a richer example. The behaviors
can then be added incrementally, as requirements are
analyzed. Of course, as needed, sensors and actuators
can be modified or replaced. In this approach the role
of GUI design can be separated from that of application
logic programming, and deciding about sensors and ac-
tuators can be seen as a development stage in which ne-
gotiation and agreement between individuals acting in
these capacities take place.

4.2 Application-logic b-threads
We now move to a slightly richer example - a water-tap
application similar to the one described in Section 2.
This application’s logic is coded in the following b-
threads. One b-thread adds five quantities of hot water
and terminates:

Another adds five quantities of cold water and termi-
nates:

Author-prepared version; See published version in AGERE! 2012 - ACM DL 5 2012/12/19



And, the third b-thread which interleaves the events
is the same as the one shown in Section 3.2. The result
is of course the interleaved run of ten events alternating
repeatedly between addHot and addCold.

Each b-thread is contained within the Blockly block
of b-thread. The b-thread can use any Blockly block
for implementing the desired logic. To synchronize
with other b-threads the b-Sync block is used, with the
three parameters of requested, waited-for, and blocked
events.

In contrast with the BPJ Java implementation, where
b-thread priorities were assigned explicitly, in the
Blockly implementation, b-thread priority is implied
by its physical location on the development canvas,
with the topmost b-thread being called first, and the
lowest b-thread being called last in every execution cy-
cle. When a new b-thread is added some dragging may
be needed in order to insert it at the desired priority.

When starting an application, the Blockly infrastruc-
ture also triggers a behavioral event called start to
activate the JavaScript behavioral programming infras-
tructure and execution of all b-threads.

4.3 Execution Cycle Details
To show finer points about the interweaving of b-threads
in the Blockly/JavaScript environment, we examine an
application for a computer game where the player at-
tempts to land a rocket on a landing pad on the surface
of a planet, or perhaps a space shuttle on a space sta-
tion. The rocket moves at a fixed speed in the vertical
direction. Using GUI buttons, the player can move the
rocket right and left to be positioned directly above the
landing pad. The player can also press the Up button
to suspend the rocket and prevent it from going down
in the next time unit. A small challenge is introduced
as the landing pad keeps moving right and left either
randomly or subject to an unknown plan. Two walls
mark the sides of the playing areas, and the rocket can-
not move past them (but does not crash when it touches
them).

The game is won when the rocket lands safely on the
landing pad, and is lost if the rocket either lands on the
landing-pad when it is not aligned with it, or if it misses
the landing-pad altogether.

As suggested in Section 4.1 we first agree on the
events, and the associated sensors and actuators in the
game. They are listed in Figure 3.

As described in the infrastructure section, at every
synchronization point, the declarations of all b-threads
are consulted, an event is selected for triggering, and
b-threads that requested or waited for that event are re-
sumed. Events that are generated by sensors are han-
dled as follows. The function bp.event dynamically
creates a b-thread which requests the event at the next
synchronization point, and terminates once the event is
triggered.

When an execution cycle ends and no event is trig-
gered, the system is considered to have completed a su-
perstep. The next behavioral event, if any, must come
from a sensor reporting some external environment
event. The sensor-generated event initiates a new su-
perstep which then continues until, again, there are
no events to be selected. To force a sensor-generated
event to be triggered only at a beginning of a new
future superstep, the sensor code should not call the
event-triggering function directly, but should set it as
a timer-driven JavaScript event. Due to the JavaScript
single-threaded non-preemptive events mechanism the
code will run as soon as the current function (the super-
step) ends. This is shown below where a RocketLeft

actuator uses a when_ clause and the function trigger
to serve as a RocketTouchedLeftWall sensor.

<script >

⋯

function trigger(exEvent) {

setTimeout ("bp.event (‘"+ exEvent +" ’)",0);

}

⋯

</script >

<input

value = "WALL1"

type = "button"

Author-prepared version; See published version in AGERE! 2012 - ACM DL 6 2012/12/19



Sensor / Actuator Event Event Meaning (Description)
Sensor BtnLeft User clicked <-

Sensor BtnRight User clicked ->

Sensor BtnUp User clicked Up

Sensor TimeTick A unit of time passed
Sensor RocketAtLeftWall Rocket started touching left wall
Sensor RocketAwayFromLeftWall Rocket stopped touching left wall
Sensor RocketAtRightWall Rocket started touching right wall
Sensor RocketAwayFromLeftWall Rocket stopped touching right wall
Sensor TouchDown Rocket touched launch pad and is aligned with it
Sensor Missed Rocket reached or passed launch pad without being aligned with it

Actuator RocketLeft Request to redraw rocket 10 pixels to the left
Actuator RocketRight Request to redraw rocket 10 pixels to the right
Actuator RocketDown Request to redraw rocket 10 pixels down
Actuator DisplayWin The application determined that the player won
Actuator DisplayLose The application determined that the player lost
Actuator GameOver The application determined that the game should be stopped
Actuator PadLeft The application wishes the pad to move 10 pixels to the left
Actuator PadRight The application wishes the pad to move 10 pixels to the right

Figure 3. The external world in the rocket-landing game is represented to the behavioral application via sensors
and actuators.

style = "position:absolute;left :10; top:

150; width :52; height :500"

when_RocketLeft =

"if(rocketX <=( leftWall +1)){

trigger(‘RocketTouchedLeftWall ’);

}"

/>

As shown here, to avoid unnecessary delays, the
specified time can be zero.

Note that a separate RocketLeft listener is respon-
sible for moving the rocket on the screen, and that mul-
tiple listeners can be coded for a given behavioral event.
The relevant when_ clauses may be coded under a wide
selection of HTML objects — the approach does not re-
quire that the programmer chooses “correctly” HTML
entities associated with a given sensor or actuator.

Two of the central questions in real-time system de-
sign is whether two events can occur exactly at the
same instant, and how much time is required for the
processing of all system-generated events that follow
a single sensor-generated event. The user should con-
sider the following assumptions and implementation
choices as ways to simplify the application, when ap-
plicable:

• Always trigger sensor-generated events in a new
superstep (using the time-out technique above)

• As in Logical Execution Time [21], assume that a
superstep which consists of one sensor-generated
event followed by system-generated events takes
(practically) zero time.

Note that the second assumption is common, e.g., in
real-time interrupt handling and in user interface pro-
gramming, where event handlers must respond quickly.
Thus, the BP semantics is well defined, and when
b-threads communicate only through behavioral events
also does not allow race conditions. SImplicity emerges
partly from the fact that each b-thread can declare the
events which affect it at a given state, and then handle
the effects of their triggering, and completely ignore
the existence of events that should not affect its state.

5. Key Scenarios where BP Benefits Emerge
Below we outline and exemplify some of the advan-
tages and desirable capabilities of behavioral program-
ming techniques , and the software development sce-
narios in which they appear. For additional comparison
of BP with standard programming techniques as well
as other publish/subscribe and rule-based environments
see [14, 17]

Author-prepared version; See published version in AGERE! 2012 - ACM DL 7 2012/12/19



5.1 Incrementality and alignment with the
requirements

The first and foremost benefit of programming behav-
iorally is the ability to structure application modules
such that they are aligned with the requirements. As
discussed at length in [14, 17], modules can be writ-
ten to reflect individual requirements with little or no
change to existing code. Further, as requirements are
added, refined, or merely taken sequentially from a re-
quirements document, the corresponding b-thread code
can be developed and added to the application incre-
mentally.

In the rocket-landing game, for example, assume
that one first codes the following b-threads without any
requirement for walls — hence without the wall-related
b-threads and the four wall-related events. The coded
b-threads are thus:

• Attempting to move the rocket down in response to
the passing of time,

• Attempting to move the rocket right or left in re-
sponse to a corresponding user click,

• Blocking the rocket’s down move in response to
clicking Up,

• Moving the landing pad right and left, and
• Detecting and announcing user winning or losing.

Then, the developer or the customer realize that
walls may be required and describe the desired behav-
ior: no advancement past the wall, but hitting a wall
does not mean a crash. The appropriate sensors and
b-threads to block rocket movement like

can then be added incrementally. Other capabilities
which can be added with no change to the existing
b-threads include additional obstacles (with behavior
similar to that of the walls), increasingly hard-to-track

movements of the landing pad, and a facility for ad-
vanced human players to automate their own play by
programming strategy b-threads that request prescribed
sequences of button-clicking events (this last example
is, of course, not needed for this simple game, but is
desirable and common in more advanced games).

The independence of behavior threads is also mani-
fested in that scripts and scenarios do not have to com-
municate with each other directly. In the native Blockly
or Scratch, broadcasting and publish/subscribe tech-
niques can suffice for rich processing, relying only on
local variables and avoiding global or shared variables.
With the addition of behavioral synchronization and
event-blocking (i.e., forbidding) the integrated runs are
enriched, without adding a burden of peer-to-peer com-
munication. Specifically, any event or condition that a
b-thread blocks may be generated by any existing or
yet-to-be-developed b-thread or sensor.

5.2 Easy state management for long scenarios
Scenarios are, of course, central to behavioral program-
ming, and go substantially beyond the rule-based ca-
pability of waiting for an event and then triggering
another event based on the system’s state. For exam-
ple, consider the nullification game application [31]
— a combinatorial game where the player attempts to
push in an entire array of switches placed on a rotating
wheel, and where an adversary attempts to reverse the
switch settings.

A game move consists of optionally pressing the
switch (Switch), and then rotating the wheel to the next
switch position (Shift).

In this example the animated drawing of the rota-
tion of the wheel and the changes in switch position
are performed by the GUI-processing JavaScript appli-
cation package Raphael [2]. Following a game move ,
multiple animations have to occur, including the mov-
ing of an arrow indicating the pressing of a switch, the

Author-prepared version; See published version in AGERE! 2012 - ACM DL 8 2012/12/19



movement of the switch itself, wheel rotation, and the
flyover of the arrow from the human player side to the
adversary side and vice versa, in an indication of whose
turn it is.

In native JavaScript, without coroutines, this se-
quence of events would have to be programmed with
callbacks and/or independent event handlers, and with
variables to keep track of the evolving state and would
generally look similar to:

when_UserWantsSwitchAndShift=

state = S w i t c h a n d S h i f t 0 ;

trigger( R e s p o n s e S t a r t );

when_ResponseStart =

if( state = S w i t c h A n d S h i f t 0 ) {

state = S w i t c h A n d S h i f t 1 ;

trigger( s t a r t A n i m a t i o n - M o v e A r r o w );

} else {

⋯

}

when_AnimationEnded -MoveArrow =

if( state = S w i t c h A n d S h i f t 1 ) {

state = S w i t c h A n d S h i f t 2

trigger( s t a r t A n i m a t i o n - S w i t c h C u r r e n t B u t t o n );

} else {

⋯

}

⋯

In our implementation this sequence is handled natu-
rally in a b-thread as consecutive instructions as shown
in Figure 4.

Thus, our solution facilitates waiting for events in-
line and not only by callbacks. It should be noted that
several JavaScript pre-compilers, such as NarrativeJS
[25], StratifiedJS [29], and others, allow for sequential
event handling in JavaScript, similarly to the ability de-
scribed in this section. These extensions to JavaScript
can be viewed as implementing a subset of the com-
plete behavioral protocol, often without events block-
ing or multiple b-threads. In this context it should be
noted that BP is different from rule-based systems is
in that blocking in BP is targeted at events, regardless
of their originator, as opposed to rule-based system in
which blocking is by disabling rules (see, e.g., [7].

5.3 Integration with standard programming
Coding behaviorally does not mean that all calcula-
tions and data processing performed by the application
must be based on events. A behavioral application can
contain substantial pieces that are coded in standard
programming languages. In the context of JavaScript
and Blockly, JavaScript functions can be called from

Blockly blocks, or from the sensors and actuators.
In the nullification game example the calculations of
the adversary strategy which is based on deBruijn se-
quences [31], are performed by calling a JavaScript
function. Needless to say, the Raphael animations dis-
cussed above also demonstrate the power of such inte-
gration capabilities.

5.4 Programming with parallel continuous
entities with well-defined semantics

As in the LSC language, the basic units of program
code (the actors) in the current Blockly and JavaScript
environment are scripts that run “all the time”. These
scripts take desired actions when specific conditions
are met, or constantly express their opinion about the
global state from a narrow viewpoint based on events
that they listen-out for. As observed in [10, 23], this
design appears to be “natural” in the sense that it was
adopted by children who were not explicitly guided to
use it.

In behavioral programming, instantiation, activation
and repeated synchronization of such scripts is easy,
often “free”, i.e., automatic, in comparison to the more
elaborate setup commonly needed in other languages
and contexts.

A problem in Scratch pointed out by Ben-Ari and
discussed in Scratch forum [3] is that the semantics of
interweaving scripts depends on intricate properties of
the model whose effects on scheduling are sometimes
hidden from the programmer. For a less intricate but
illustrative example, consider the scripts

The programmed flow is that once the green flag is
clicked, the first script broadcasts mymsg, waits 1 sec-
ond and then broadcasts the message again. Whenever
this message is received by the second script, the vari-
able X is incremented, and after 2 seconds, the vari-
able Y is incremented. However a result of running and
stopping the scripts is

Author-prepared version; See published version in AGERE! 2012 - ACM DL 9 2012/12/19



Figure 4. A scenario of consecutive instructions (shown here in Blockly) facilitates natural and implicit state
management.

suggesting that when the message is broadcast a sec-
ond time, the first execution of the second script is in-
terrupted and is never resumed, thus Y is incremented
only once. When the delay in the first script is set to 5
seconds instead of 1, the final value of Y is 2. We did
not find documentation of this semantics of Scratch.

Our approach, in this paper, is to view scripts as
global entities with well-defined scheduling, synchro-
nization protocol, and interweaving semantics. Using
our Blockly and JavaScript environment, an applica-
tion similar to the above example will have to be coded
differently. Depending on the programmer’s solution,
when the behavioral event associated with second mes-
sage is triggered, this event will either: (a) cause no ef-
fect, as at the synchronization point when it is triggered
no b-thread will declare it as a requested or waited-
for event (instead, the second b-thread is only waiting
for time-delay to pass), or (b) it will be processed by
another running instance of the second b-thread class,
which would be explicitly started by the application

to catch such events while other instances wait for the
time-delay to pass. In either case, the semantics will be
well defined and the composite behavior will be readily
predictable.

5.5 Priority as a first-class idiom
When multiple simultaneous behaviors are active and
vote with their event declarations as votes’ with regard
to the progress of an application, priority becomes a
useful construct. In our implementation, b-thread pri-
orities are based on their easy to manage order on the
canvas, i.e., a b-thread laid higher on the canvas has
a higher priority. The priorities of b-threads that are
perfectly aligned with each other vertically are ordered
based on the b-threads’ left-to-right horizontal order.
In addition, the single-threaded sequential calling of
JavaScript coroutines provides for well-defined seman-
tics of the “simultaneous” part of the behavior, and
of the corresponding effects on any variables that are
shared between b-threads.

5.6 The secondary role of the behaving objects
In Scratch, scripts are anchored on game characters
called sprites which are perceived as the behaving enti-
ties. On one hand, the sprites can be readily thought of

Author-prepared version; See published version in AGERE! 2012 - ACM DL 10 2012/12/19



as agents or actors in their own right, which in turn rely
on scripts as their implementation or as another level
in their hierarchy. On the other hand, following the de-
tailed discussion of inter-object versus intra-object be-
havior in [11], behavior scenarios are not necessarily
anchored on a given object. For example, in [23] the re-
searchers observed that when forced to associate scripts
with sprites, young programmers split the scripts of
the (correct) behavior of one game character on mul-
tiple sprites, and game rules were associated with ar-
bitrary sprites. This further puts into question the need
to focus on ”the behaving entity” when observing a be-
havior. The Blockly/JavaScript environment presented
here does not force the programmer to associate desired
behaviors with behaving objects.

We propose that there is an important distinction be-
tween objects in general, as in object oriented program-
ming, and the concept of behaving entities that are tan-
gible in the user’s eyes. For example, in an application
with a graphical user interface, it is not always best to
anchor the code on the elements on the screen. It may
be better, instead, to code scenarios that involve multi-
ple tangible entities as standalone modules. Of course,
scenarios, events, screen objects, etc., may be coded
with object-oriented programming.

6. Discussion and Future Work
We presented an implementation of behavioral pro-
gramming principles in JavaScript and in Google Blockly.
The result is a proof-of-concept for a programming en-
vironment which appears to be natural and intuitive,
and highlights interesting traits of behavioral program-
ming. An important next step is to show the scala-
bility of the concepts and their applicability to com-
plex systems. As our understanding of BP develops,
it will also be interesting to expand the discussion of
comparisons of BP to other paradigms, which appear
in [14, 17], to additional platforms such as rule-based
(e.g., [7]) and functional reactive programming envi-
ronments (e.g. [24]).

The ease of creating new language constructs in
Blockly and the fact that visual block-based program-
ming seems natural to individuals with little computer
training, call for using Blockly as a test-bed for investi-
gating the naturalness of new programming idioms. For
example, nesting blocks which state things like “while
forbidding events a,b,c do”, or “exit the present block
when event e is triggered” have the potential of making

behavioral programs simpler and more readable than
when written with just basic b-Sync. Specifically, they
can simplify the management of the sets of requested,
waited-for and blocked events, and reduce the need to
wait, in a single command, for multiple events and then
check which of them was indeed triggered.

The availability of Blockly and JavaScript 1.7 for
mobile platforms, such as Android smartphones, opens
the way for a wide range of applications, and the
single-threaded JavaScript implementation may further
facilitate running behavioral applications with many
b-threads in environments which do not readily accom-
modate large numbers of concurrent Java threads.

The combination of implementations of behavioral
programming principles in popular languages, with
IDEs that are particularly user friendly, and with a
growing set of natural programming idioms, may fur-
ther facilitate programming in a decentralized-control
mindset by wider communities of beginners and pro-
fessionals.

Acknowledgments
We would like to thank David Harel for support and
valuable discussions and suggestions in the develop-
ment of this work. The focus on Scratch-like languages
is inspired by our on-going collaboration with Orni
Meerbaum-Salant and Michal Gordon and by sugges-
tions by Eran Mizrachi. We thank the anonymous re-
viewers for their valuable comments and suggestions
for improvements, which we tried to incorporate.

The research of Assaf Marron and of Guy Wiener
was supported in part by the John von Neumann Min-
erva Center for the Development of Reactive Systems
at the Weizmann Institute of Science, and by an Ad-
vanced Research Grant to David Harel from the Eu-
ropean Research Council (ERC) under the European
Community’s FP7 Programme. The research of Gera
Weiss was supported by the Lynn and William Frankel
Center for Computer Science at Ben-Gurion University
and by a reintegration (IRG) grant under the European
Community’s FP7 Programme.

A. Appendix: Behavioral Programming
using Coroutines

This appendix presents a generic algorithm for im-
plementing the behavioral programming event-driven
loop using coroutines. The motivation for pursuing
coroutines for b-threads is twofold. First, coroutines

Author-prepared version; See published version in AGERE! 2012 - ACM DL 11 2012/12/19



consume less resources than threads or processes, and
therefore can be found in embedded scripting lan-
guages that aim at minimizing resource allocation, such
as JavaScript and Lua. Second, this implementation
does not require concurrent execution, that is not al-
ways desirable, e.g., when debugging or verifying.

A.1 Introduction to Coroutines
Coroutines provide a mechanism for executing two or
more control-flows independently, without requiring a
thread scheduler. Instead, the control is passed from
one coroutine to the other explicitly. Hence, coroutines
are also referred to as type of non-preemptive multi-
threading.

While coroutines are supported by a many program-
ming languages, each with its own syntax for defining
and using them. In this section we will use the follow-
ing notation.

• A coroutine is a function that instead of the standard
return statement uses the special yield statement.
Similarly to return, yield passes the control flow
back to the caller together with a given value. Un-
like return, when the coroutine is called again, it
resumes at the state of the previous yield, as if it
was paused and resumed. When the coroutine is re-
sumed, the yield expression evaluates to the value
sent to the coroutine by the caller.

• The create statement takes the name of a coroutine
and creates a coroutine object. This object acts as a
unique identifier of the state of the coroutine. Each
subsequent call to the same identifier will continue
from the state of the last call to yield. Notice that
create does not run the coroutine itself.

• The send statement takes a coroutine and a value,
and resumes the coroutine with the state of the last
call to yield, returning the given value. If this is
the first call after create, the coroutine will start,
ignoring the value.

• The alive predicate tests if a coroutine object is
still running. It returns true after the coroutines is
created, and as long as the coroutine function is not
completed. It returns false otherwise.

A.2 The Algorithm

// Queues of b-threads and their bids

running = []

pending = []

// ---------------------------------------------

// Adding a b-thread translates to pushing it

// to the running queue and creating a coroutine

// for it

// ---------------------------------------------

function addBThread(prio , func) {

queue running , {priority: prio ,

bthread: create func}

}

// ---------------------------------------------

// Run is called to begin a superstep. It invokes

// the coroutines sequentially , collects the bids ,

// selects the next event , and calls itself

// recursively

// ---------------------------------------------

function run() {

while (running is not empty) {

bid = unqueue running

bt = bid.bthread

newbid = send bt, lastEvent

if (bt has not finished) {

newbid.bthread = bt

newbid.priority = bid.priority

queue pending , newbid

}

}

lastEvent = the first event (w.r.t. priority)

that some b-thread requested and

no b-thread blocked

if (lastEvent is not equal to undefined) {

temp = []

while (pending not empty) {

bid = unqueue pending

if (bid specifies waiting -for

or requesting lastEvent)

queue running , bid

else

queue temp , bid

}

pending = temp

run()

}

}

References
[1] H. Abelson and M. Friedman. MIT App Inventor.

URL: http://appinventor.mit.edu, accessed Aug. 2012.

[2] D. Baranovskiy. Raphael. URL: http://raphaeljs.com/,
accessed Aug. 2012.

[3] M. Ben-Ari and J. Maloney. Scratch
project forum discussion. URL:
http://scratch.mit.edu/forums/viewtopic.php?id=8130,
accessed Aug. 2012.

[4] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[5] N. Eitan, M. Gordon, D. Harel, A. Marron, and
G. Weiss. On Visualization and Comprehension of

Author-prepared version; See published version in AGERE! 2012 - ACM DL 12 2012/12/19



Scenario-Based Programs. Int. Conf. on Program Com-
prehension (ICPC), 2011.

[6] D. Elza. Waterbear language web site. URL:
http://waterbearlang.com/, accessed Aug. 2012.

[7] J. Fenton and K. Beck. Playground: an object-oriented
simulation system with agent rules for children of all
ages. ACM SIGPLAN Notices, 24(10):123–137, 1989.

[8] N. Fraser. Google blockly - a visual programming ed-
itor. URL: http://code.google.com/p/blockly, accessed
Aug. 2012.

[9] M. Gordon and D. Harel. Generating executable sce-
narios from natural language. Computational Linguis-
tics and Intelligent Text Processing, pages 456–467,
2009.

[10] M. Gordon, A. Marron, and O. Meerbaum-Salant.
Spaghetti for the main course? observations on natu-
ralness of scenario-based programming. 17th Annual
Conference on Innovation and Technology in Computer
Science Education, 2012.

[11] D. Harel and R. Marelly. Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-Engine.
Springer, 2003.

[12] D. Harel and I. Segall. Planned and Traversable Play-
Out: A Flexible Method for Executing Scenario-Based
Programs. In Proc. 13th Int. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS), pages 485–499, 2007.

[13] D. Harel and I. Segall. Synthesis from live sequence
chart specifications. Jour. Computer System Sciences,
78:3:970–980, 2012.

[14] D. Harel, A. Marron, and G. Weiss. Behavioral Pro-
gramming. Communications of the ACM, 55(7):90–
100.

[15] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
Play-Out of Behavioral Requirements. In Proc. 4th Int.
Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pages 378–398, 2002.

[16] D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo:
towards a comprehensive tool for scenario based pro-
gramming. In ASE, 2010.

[17] D. Harel, A. Marron, and G. Weiss. Programming Co-
ordinated Scenarios in Java. In Proc. 24th European
Conf. on Object-Oriented Programming (ECOOP),
pages 250–274, 2010.

[18] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-
Checking Behavioral Programs. In Proc. 11th Int.
Conf. on Embedded Software (EMSOFT), pages 279–
288, 2011.

[19] D. Harel, A. Marron, G. Weiss, and G. Wiener. Be-
havioral programming, decentralized control, and mul-

tiple time scales. In Proc. of the SPLASH Workshop on
Programming Systems, Languages, and Applications
based on Agents, Actors, and Decentralized Control
(AGERE!), pages 171–182, 2011.

[20] D. Harel, G. Katz, A. Marron, and G. Weiss. Non-
intrusive repair of reactive programs. In International
Conference on Engineering of Complex Computer Sys-
tems (ICECCS), 2012.

[21] T. A. Henzinger, C. M. Kirsch, M. Sanvido, and
W. Pree. From control models to real-time code using
Giotto. IEEE Control Systems Magazine, 23(1):50–64,
2003.

[22] H. Kugler, C. Plock, and A. Roberts. Synthesizing
biological theories. In CAV, 2011.

[23] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of Programming in Scratch. In Proc. of the
16th Annual Joint Conf. on Innovation and Technology
in Computer Science Education (ITICSE), pages 168–
172. ACM, 2011.

[24] L. Meyerovich, A. Guha, J. Baskin, G. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi.
Flapjax: A programming language for ajax applica-
tions. In ACM SIGPLAN Notices, volume 44, pages
1–20. ACM, 2009.

[25] N. Mix. Narrativejs. URL:
http://www.neilmix.com/narrativejs/, accessed Aug.
2012.

[26] J. Moenig and B. Harvey. BYOB Build your own
blocks (a/k/a SNAP!). URL: http://byob.berkeley.edu/,
accessed Aug. 2012.

[27] Mozilla Foundation. FireFox JavaScript 1.7 -. URL:
http://developer.mozilla.org/en/New in JavaScript 1.7,
accessed Aug. 2012.

[28] E. Naone. HTML 5 could challenge Flash. URL:
http://www.technologyreview.com/news/418130/html-
5-could-challenge-flash/, accessed Aug. 2012.

[29] Oni Labs. Stratifiedjs. URL:
http://onilabs.com/stratifiedjs/, accessed Aug. 2012.

[30] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
Programming for All. Comm. of the ACM, 52(11):60–
67, 2009.

[31] G. Weiss. A combinatorial game approach to state nul-
lification by hybrid feedback. In 46th IEEE Confer-
ence on Decision and Control, pages 4643–4647. IEEE,
2007.

[32] G. Wiener, G. Weiss, and A. Marron. Coordinating and
Visualizing Independent Behaviors in Erlang. In Proc.
9th ACM SIGPLAN Erlang Workshop, 2010.

Author-prepared version; See published version in AGERE! 2012 - ACM DL 13 2012/12/19


