
Arielle Leitner: Transitions of Geometries and Groups

Most of my research concerns the study of transitions between different homogeneous spaces,
G/H, associated with a fixed Lie group, G, obtained by taking limits of conjugates of the sub-
group H inside the ambient group G. The idea of geometric transition may be studied from the
perspectives of geometry, topology, algebraic geometry, and dynamics.

Intuition and Motivation

Imagine blowing up a ball with air so that eventually the ball is so large, it looks like the earth.
Locally, the ball looks flat. This example is given in [16]: a sequence of spheres tangent to a plane,
with increasing radius, will limit to the tangent plane in the Hausdorff topology on closed sets. Such
a process is an example of a geometric transition, or a continuous path of geometric structures that
changes type in the limit.

There are several ways of making the idea of inflating a ball mathematically precise. Envision
the curvature of the ball approaching zero. Or, define a way to measure coordinates on the ball, and
then use coordinates to describe the radius of the ball increasing. A sphere is intrinsically different
from the plane. On a sphere, the angles in a triangle will sum up to more than 180 degrees, since
the edges bulge outwards. In the plane, the angles in a triangle sum to exactly 180 degrees. This
property about triangles is intrinsic to the geometry of the space, and will hold true no matter how
large or small the triangle is. Blowing up a ball is an example of a transition between two different
kinds of geometry: spherical and Euclidean.

The idea of continuously deforming one kind of geometry into another appears in many areas
of mathematics and physics, see [16]. Homogeneous spaces have groups of isometries which are Lie
groups, and have an associated Lie algebra, with multiplication given by the bracket [, ] : g×g→ g.
This bilinear map is determined by the action on a basis, and hence by structure constants. The
structure constants may continuously change, as long as [, ] still determines a Lie algebra. This is
related to the theory of Inönü-Wigner contractions in physics, see [11]. Physicists use deformations
of Lie algebras in several ways, for example the “classical limit” in relativity where the speed
of light, c → ∞; which recovers Newtonian mechanics. Another example is transitioning from
quantum mechanics to Newtonian mechanics, when ~→ 0.

Thurston conjectured and Perelman proved: every compact 3-dimensional manifold is composed
of pieces, each of which has one of 8 kinds of 3-dimensional geometry, two kinds are the familiar
spherical and Euclidean geometry, [45]. These Thurston geometries are (almost) subgeometries
of real projective geometry and one may study geometric transitions in this context as paths of
conjugacies, [16]. I study geometric transitions given by conjugacy limits.

Definition 1. Let G be a Lie group. A subgroup, H ≤ G, limits under conjugacy to another
subgroup, L ≤ G, if there is a sequence of conjugating elements, (pn) in G, such that pnHp

−1
n → L

with respect to the Hausdorff distance.

Chabauty Space of Limits of the Cartan Subgroup in SL3(R)

Building on work of Haettel, [26], I studied geometric transitions of the diagonal Cartan sub-
group in SLn(R) in [36, 38]. For example, when n = 3, a diagonal matrix with distinct eigenvalues
determines a projective triangle, since each eigenvector of the matrix designates a vertex of the tri-
angle. Taking the limit of applying a sequence of projective transformations to a triangle identifies
some of the edges or vertices, to form a degenerate triangle.
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Theorem 2 (Leitner [36]). 1. Any subgroup of SL3(R) isomorphic to R2 is conjugate to exactly
one of the following groups, where a, b ∈ R>0 and s, t ∈ R:

C F N1 N2 N3 a 0 0
0 b 0
0 0 1

ab

 ,

 a t 0
0 a 0
0 0 1

a2

 ,

 1 s t
0 1 s
0 0 1

 ,

 1 s t
0 1 0
0 0 1

 ,

 1 0 t
0 1 s
0 0 1


2. Each of these groups is a conjugacy limit of the diagonal Cartan subgroup.

3. The set of conjugacy classes of limit groups is in bijection with the set of equivalence classes
of degenerate triangles below:

F
N1

N2

N3

C

To prove this theorem, I use the hyperreals [23], a non-Archimedean ordered field containing the
reals, which contains numbers that are infinitesimally small, and others that are infinitely large.
The hyperreals provide a convenient method for describing phenomena that appear after an infinite
amount of time, by giving a precise way to measure the infinities involved using ratios of hyperreals.
This is often more convenient than computing convergence of ratios of sequences.

Future work: I have classified conjugacy limits of the diagonal Cartan subgroup in SLn(R) for
n ≤ 4, and it remains open to classify them for n ≥ 5. There are two possible approaches: studying
degenerations of projective n-simplices, or expanding the hyperreal techniques in [36].

Chabauty Space of Limits of the Cartan Subgroup in SLn(Qp)

In joint work with Corina Ciobotaru and Alain Valette [15], we extended some of these results
to SLn(Qp). Instead of acting on projective space, the groups act on the Bruhat-Tits building
for SLn(Qp). We determine conjugacy limits of the diagonal Cartan subgroup up to conjugacy
for n ≤ 4. There are more conjugacy classes of conjugacy limits than in the real case, because
Gal(Q̄p/Qp) is larger than Gal(C/R).

Our results are as follows: The diagonal group is the center of a stabilizer of an apartment in
the building. If a group contains hyperbolic elements, then a flat torus theorem implies it stabilizes
a flat in the Bruhat-Tits building. If a group contains no hyperbolic elements, then it is contained
in the unipotent radical of a parabolic group that stabilizes a facet in the spherical building at
infinity. A necessary condition for a conjugacy limit of groups H1 → H2 is that the facet in the
spherical building at infinity corresponding to H2 is contained in the facet for H1.

Future work: Extend the classification to n ≥ 5 and generalize to other local fields.

The Topology on the Space of Limit Groups: Red(n) ⊂ Ab(n)

The set of all closed subgroups of a group is a topological space with the Chabauty topology
on closed sets: [19, 27, 26]. The Chabauty topology is the natural topology for conjugacy limits
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of groups [16, 14]. Define two topological subspaces with the subspace topology, Âb(n): the set

of all subgroups of SLn(R) isomorphic to Rn−1; and let R̂ed(n) be the space of all limits of the
diagonal Cartan subgroup in SLn(R). Quotient by conjugacy in SLn(R) to obtain two spaces with
the quotient topology: Ab(n) and Red(n). Since limit groups of the diagonal Cartan subgroup are
isomorphic to Rn−1, then Red(n) ⊂ Ab(n) [31].

Suprenko and Tyshkevitch, [44], classified conjugacy classes of maximal commutative nilpotent
subalgebras over C, for n ≤ 6. They showed Ab(5) is finite, so Red(5) is finite. Iliev and Manivel,
[31], ask if Red(n) is finite when n ≥ 6. I found a conjugacy invariant of groups that shows:

Theorem 3 (Leitner [38]). If n ≥ 7, then the covering dimension 0 < dim(Red(n)) = O(n2).

Thus for n ≥ 7 there are infinitely many non-conjugate limits of the diagonal Cartan subgroup.
When n ≤ 5 there are finitely many conjugacy classes of limits. The case n = 6 remains open.

When n ≤ 4 then Ab(n) = Red(n). Haettel [26] and Iliev and Manivel [31] gave a dimension
counting argument which shows Red(n) ( Ab(n) for n ≥ 7. In [38] I found the first explicit
examples of elements of Ab(n)−Red(n) for n = 5, 6, which may be extended for n ≥ 7.

Theorem 4 (Leitner [38]). Ab(n) = Red(n) if and only if n ≤ 4. If n ≥ 5, then Red(n) ( Ab(n).

In [15] we extend Theorem 3 to Qp. The analog of Theorem 4 is computationally more difficult
since we cannot apply [44], and need to make new computations for n = 5, 6 which is large.

Future research: Over any local field, when is an abelian group a conjugacy limit group?
What special properties do conjugacy limit groups have? I hope to find a conjugacy invariant of
abelian groups that distinguishes conjugacy limit groups. I plan to explore the the topology of the
spaces Ab(n) and Red(n). For example: How many components do Ab(n) and Red(n) have? Does
every component of Ab(n) contain a component of Red(n)? Is Red(n) a retract of Ab(n)?

Varieties of Closed Subgroups

Often it is useful to distinguish conjugacy classes of abelian Lie subgroups of GLn(R). A
matrix, A ∈ GLn(C), has a Jordan Normal Form (JNF) that uniquely determines the conjugacy
class of A. It is possible to simultaneously put two matrices in JNF if they commute. Currently,
I am studying a Jordan Normal Form Invariant for an abelian Lie subgroup G of GLn(R). The
invariant is a function on the projective space P(G). Level sets of this function are projective
semi-algebraic varieties. The goal is to obtain a practical method to distinguish the conjugacy class
of G. Varieties connected to the Jordan Normal Form invariant have long been studied as rank
varieties and varieties of commuting matrices, see [7, 20, 22, 42].

The subspace of conjugates of the diagonal group has closure which is a (semi-algebraic) variety
V, called the Chabauty compactification of the associated homogeneous space. The Chabauty
compactification gives information about the dynamics of the action of GLn(R) on V.

For n = 3, Haettel showed V is a CW complex with 2-skeleton the wedge sum of RP 2 and S2, see
[26]. The cells of the CW complex correspond to conjugacy classes of groups, H, with dimension
equal to the dimension of the Borel group minus the dimension of the normalizer NG(H). The
attaching maps for cells correspond to limits of groups H1 → H2, where the cell corresponding to
H2 has lower dimension than the cell corresponding to H1.

Future research: Determine Chabauty compactifications in higher dimensions over different
fields. In general, one might ask if the Chabauty compactification of G/H and the subalgebra
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compactification g/h are homeomorphic. Guivarc’h- Ji-Taylor [25] showed that these are home-
omorphic when H = K, the maximal compact subgroup. Haettel [26] has shown the Chabauty
compactification and Lie algebra compactification are homeomorphic for the diagonal subgroup in
SLn(R). A natural question is when these compactifications are homeomorphic for different fields
and subgroups H. In [15] we give strong evidence that these compactifications are the same for the
Cartan subgroup in SLn(Qp). In a new project with Corina Ciobotaru we are studying limits of H
in p-adic groups, where H is the fixed point set of some involution (not the Cartan).

Let G be a Lie group (not necessarily SLn(R)). Suppose H ≤ G is any closed subgroup and L
is a conjugacy limit of H. One might ask which properties of a group are preserved under taking a
conjugacy limit. For example, if H is reductive (distal or amenable) then is L reductive (distal or
amenable)?

Generalized Cusps on Convex Projective Manifolds

Another application of these ideas is to study generalized cusps on convex projective mani-
folds, see [4, 33, 17, 18]. A convex projective manifold C = Ω/Γ is the quotient of a convex
subset of projective space, Ω, by a discrete group of projective transformations Γ ⊂ PGLn+1(R).
If Ω is in the complement of a hyperplane, then C is a properly convex projective manifold.
The holonomy of a convex projective manifold Ω/Γ is a representation of the fundamental group
π1(Ω/Γ) = Γ→ PGL(Ω) ⊂ PGLn+1(R). Properly convex projective manifolds are a generalization
of hyperbolic manifolds, and have a rich deformation theory. Contrary to Mostow rigidity for hy-
perbolic manifolds, [17, 18] show that if the ends of the manifold have the structure of generalized
cusps, then it is possible to deform the manifold to make new properly convex projective manifolds.

A generalized cusp in dimension 3 is a properly convex projective manifold that is the product
of a ray and a torus. The holonomy centralizes a 1-parameter subgroup of PGLn(R).

Theorem 5 (Leitner, [37]). A generalized cusp on a properly convex projective 3-dimensional
manifold is projectively equivalent to one of 4 possible cusp types.

Generalized cusps on projective surfaces also give rise to affine structures on the 2-torus, see
[24, 39]. For a generalized cusp C = Ω/Γ in dimension n, we require that ∂C is compact and
strictly convex (contains no line segment) and that there is a diffeomorphism h : [0,∞)× ∂C → C.
Together with Sam Ballas and Daryl Cooper in [5] we classified generalized cusps in dimension n,
and explored new geometries arising from such cusps.

Theorem 6 (Ballas-Cooper-Leitner [5]). The holonomy of a generalized cusp is a lattice in one of a
family of Lie groups G(ψ) parameterized by a point ψ = (ψ1, ..., ψn) ∈ Rn, with ψ1 ≥ · · · ≥ ψn ≥ 0.

A generalized cusp may be determined either by its group of isometries, or by a properly convex
projective domain. More generally, a maximal-rank cusp in a hyperbolic n-orbifold is determined
by the similarity class of lattice in Isom(En−1). We parametrize the space of lattices, and use
this to describe transitions between cusps. Let Modn denote the collection of conjugacy classes of
unmarked lattices in holonomy groups of generalized cusps.

Theorem 7 (Ballas-Cooper-Leitner [5]). There is a bijection between elements of Modn and pro-
jective classes of generalized cusps.

We show every generalized cusp is foliated by (n− 1)-dimensional manifolds with a Euclidean
structure, and every generalized cusp deformation retracts to a hyperbolic cusp. We also discuss
the volume of cusps with respect to the Hausdorff measure induced by the Hilbert metric.
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Theorem 8 (Ballas-Cooper-Leitner [5]). A generalized cusp has finite volume if and only if there
exists k ≤ n− 2 such that ψi = 0 for all i ≥ k.

In a second project with Ballas and Cooper [6], we studied deformations of generalized cusps.
We produce several different invariants for studying the moduli space of marked generalized cusps
which is a subspace of the space of conjugacy classes of representations of π1C.

Theorem 9 (Ballas-Cooper- Leitner [6]). Generalized cusps are determined:

• by the complete invariant, which is comprised of a character and a positive definite quadratic
form β which gives a Euclidean structure on the boundary.

• by β together with some weight data subject to a simple geometric constraint.

• by the sum of the projective class of β and by a cubic differential on the boundary of C.

The different descriptions of the moduli space produced by these invariants are homeomorphic.

The complete invariant is a generalization of a character for semisimple representations. The
moduli space of generalized cusps is a semi-algebraic set of dimension n2−n. Every generalized cusp
is a geometric limit of diagonalizable cusps. A generalized cusp is finitely covered by a Euclidean
manifold. In dimension 3, the final description produces a moduli space of generalized cusps that
is homeomorphic to the product of R2 and a cone on a solid torus. We also determine the topology
of the moduli space for higher dimensions.

Future research: Bobb [9] has realized all cusp types, except the diagonalizable type, attached
to convex projective manifolds. It remains an open question to realize the diagonalizable cusps
attached to a manifold. It is also open to determine which manifolds permit which cusp types, and
to study how to deform the manifolds with cusps attached, rather than deforming the cusps alone.
Finally, one might consider cusps which are not of maximal rank. Classifying geometric structures
on the ends of manifolds is progress towards a higher dimensional Geometrization Theorem.

Chabauty space of subgroups of SL2(R)

Together with Ian Biringer and Nir Lazarovich [8], we are studying the topology of Sub(G),
the Chabauty space of subgroups of G = SL2(R). The connected subgroups are easy to classify
and find limits of, building on limits of 1 parameter groups are calculated in [3]. The space
of discrete subgroups of SL2(R) with the Chabauty topology is homeomorphic to the space of
vectored hyperbolic orbifolds [14]. To understand limits of discrete subgroups, we parametrize
the degeneration of a surface to another surface with lower genus or fewer cusps using conformal
grafting [10, 28]. Grafting is the process of gluing in a Euclidean cylinder with length tending to
infinity that is parametrized in Euclidean coordinates, after which we apply the uniformization
map to put a hyperbolic structure on the resulting piecewise hyperbolic/Euclidean surface.

In the first paper with Biringer and Lazarovich [8], we study the spaces of lattices and elementary
subgroups of G, and prove a continuity result for conformal grafting of (possibly infinite type)
vectored orbifolds that will be useful in both papers. In the future we will write a second instalment
where we graft along infinite type vectored orbifolds to understand the remainder of Sub(G).

First we identify the homotopy type of the space of elementary subgroups of G. Then for a fixed
finite type hyperbolizable 2-orbifold S, we show that the space SubS(G) of all lattices Γ < G with
Γ\H2 ∼= S is a fiber orbibundle over the moduli space M(S). We describe the closure SubS(G) in
Sub(G). The bulk of the paper is taken up by proving the following using grafting:
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Theorem 10 (Biringer-Lazarovich-Leitner [8]). ∂ SubS(G) has a neighborhood deformation retract
within SubS(G).

The deformation retract enables us to make a van Kampen argument to glue the spaces SubS(G)
together, and onto the space of elementary subgroups.

Theorem 11 (Biringer-Lazarovich-Leitner [8]). 1. When S is not one of finitely many low com-
plexity orbifolds, we show that SubS(G) is simply connected.

2. When S is a sphere with three total cusps and cone points, we show that SubS(G) is a (usually
nontrivial) lens space.

Finally, we show that when (Xi, vi) → (X∞, v∞) is a (possibly infinite type) smoothly con-
verging sequence of vectored hyperbolic 2-orbifolds, and we graft in Euclidean annuli along suitable
collections of simple closed curves in the Xi, then after uniformization, the resulting vectored hyper-
bolic 2-orbifolds converge smoothly to the expected limit. As part of the proof, we give a new lower
bound on the hyperbolic distance between points in a grafted orbifold in terms of their original
distance.

Future work: Describing the topology of the Chabauty space of a second countable locally
compact group is difficult, and the topology is known only for R and R2 [29]. There are a few other
cases where the topology is reasonably well understood [34, 13]. This project is an advancement
towards understanding the topology of Chabauty spaces in general. One might hope to understand
the topology of Sub(SL3(R)), and indeed together with Nir Lazarovich we have classified limits
of connected subgroups of SL3(R), [35]. Studying limits of discrete subgroups in higher rank Lie
groups is the next step, and is related to the topology of invariant random subgroups [1, 2, 21].

Coarse Groups and Coarse Geometry

Together with Federico Vigolo, I am studying the category of coarse groups. Coarse geometry
is the study of the large scale geometric features of a space or, more precisely, of those properties
that are invariant up to “uniformly bounded error”. This language allows us to formalize the idea
that two spaces such as Zn and Rn look alike when seen “from very far away”. Studying coarse
properties of spaces allows us to use topological/analytic techniques on a discrete space like Z by
identifying it with a continuous one like R or, vice versa, to use discrete/algebraic methods on
continuous spaces.

The Milnor-Svarc lemma has a natural reinterpretation to coarse groups. If a group has a bi-
invariant metric, then this induces a coarse structure on the group [12]. Coarse groups provide a
unifying framework for many ideas from geometric group theory. We are writing a monograph which
will lay the category theoretic foundations for coarse groups and open new avenues of research.

A coarse space is a space X with a coarse structure E which is a collection of subsets of X ×X
satisfying certain axioms see [43]. A coarse group is a group object in the category of coarse spaces,
so that the group laws hold up to “uniformly bounded error.” We call a “group” a set-group since
it is a group object in the category of sets.

In the first part of the monograph we lay a unified ground work for coarse spaces, and develop
a theory of coarse groups, coarse subgroups, coarse quotient groups, isomorphism theorems, and
coarse actions. We develop our intuition using our example of the free group on two generators
with the cancellation metric (unlike the Cayley metric, a generator can be cancelled from anywhere
in the word). In the second part of the monograph we explore a variety of topics that we hope will
promote future research. Here are some highlights:

6



• We study when set-groups G admit unbounded coarsely connected coarse structures (G, E).

• We study coarse structures on the integers and show there is a continuum of distinct coarse
structures on Z.

• We study cancellation metrics, and put forth a candidate for a coarse group which is not
coarsely equivalent to a set-group.

• We study the relationship between commensurators, coarse automorphisms, and outer auto-
morphisms, and give concrete results for G = Fn and Zn.

Almost-Regular Dessin d’Enfant

A branched covering is a covering map away from finitely many branch points, which determine a
branch datum. A branch datum is compatible if it satisfies the Riemann-Hurwitz formula restricting
the genus, and some orientability conditions. The Hurwitz existence problem asks which compatible
branch data are realized by branched coverings [30]. A Dessin d’Enfant is a connected graph where
each vertex is assigned one of two colors and the endpoints of any edge are different colors. Moreover,
there is a cyclic ordering of the edges around any vertex. See [41, 46]. The Riemann Existence
Theorem says that a branched covering exists if and only if the corresponding Dessin can be drawn.
Given a Dessin, we can construct a branch datum by recording the degrees of the vertices and faces.

As a result of Corollary 4.3 in [40], there are 4 finite types of regular ramifications (the rami-
fication degree at each point is equal), these are branched coverings from the torus to the sphere,
realized as tilings by hexagons or squares on the torus. We study when it is possible to change the
branch data slightly to an almost-regular ramification type where the ramification degree over each
point is the same except for a bounded number of entries, called the error.

Theorem 12 (König-Leitner-Neftin [32]). Almost regular ramification types in genus 0 and 1 with
bounded error are realizable, except four types in genus 1, and one nonrealizable type in genus 0.

Future work: We showed that the genus 1 types are realizable by making changes to only
finitely many tiles of a regular tiling of the torus. Answering this question for larger error using
the techniques we developed would be a good starting point for an undergraduate research project.
It would also be interesting to consider the same question for surfaces of genus ≥ 2.

Answers to the Hurwitz problem are useful in solving problems which reduce to the case of
determining the existence of a map between Riemann surfaces with given ramification type, or the
existence of branched coverings, or rational functions of certain ramification type.
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[33] Koszul, J., Déformations de connexions localement plates. Ann. Inst. Fourier (Grenoble), 18
(1968):103-114.

[34] B. Kloeckner, The Space of Closed Subgroups of Rn is Stratified and Simply Connected, J.
Topology (2009), 57–588.

[35] Lazarovich, N., Leitner, A., Local Limits of Connected Subgroups of SL(3,R) submitted,
https://arxiv.org/pdf/1911.09491.pdf

[36] Leitner, A. Conjugacy Limits of the Cartan Subgroup in SL3(R). Geom. Ded. (2016) 180: 135.
[37] Leitner, A. A Classification of Generalized Cusps on Properly Convex Projective 3-Manifolds.

Topology and its Applications 206, (2016), 241-254
[38] Leitner, A. A Continuum of Non-Conjugate Limits of the Cartan Subgroup in SLn(R). Proc.

Amer. Math. Soc. 144 (2016) 3243-3254.
[39] Nagano, T., and Yagi, K. Affine Structures on the Real Two-Torus Bul. Amer. Math. Soc.,

Vol 79, No. 6, 1973.
[40] Neftin, D., and Zieve, M. Monodromy Groups of Indecomposable Coverings in preparation
[41] Pervova, E., and Petronio, C. On the existence of branched coverings between surfaces with

prescribed branch data, I Algebraic & Geometric Topology 6 (2006) 1957-1985
[42] Richardson, R. Commuting Varieties of Semisimple Lie Algebras and Algebraic Groups, Com-

positio Math. 38 (1979) 311-327.
[43] Roe, J. Lectures on Coarse Geometry, vol. 31, American Mathematical Soc., 2003.
[44] Suprenko, D., Tyshkevitch, R. Commutative Matrices. Academic Press, New York, NY, 1968.
[45] Thurston, W. Three-dimensional Geometry and Topology, Princeton Univ. Press, Princeton,

NJ, 1997.
[46] Zapponi, L. What is...a dessin d’enfant? Notices Amer. Math. Soc. 50(7) (2003) 788-789.

9


