
Genome Evolution: What math you should know  
 

 
The Wright-Fischer and Moran Models: The Wright-Fischer model is defined using a 

population of 2N alleles which is sampled with replacement to generate the next generation 

population of the same size. It can be viewed as a discrete time Markov process over states 

that reflect the number of alleles A in the population, with transition probabilities that 

computed from the binomial sampling process: 
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The Moran model is a continuous time analog to the Wright-Fischer model, and can be 

viewed as a continuous time Markov model on states that reflects the number of A alleles in 

the population, but only transitions from i to i+1 (birth) or i-1 (death), each occurring at an 

exponential rates: NiiNdb ii 2/)2( ⋅−== . 

 
It is easy to show that the probability of fixation of an allele with frequency p is p/2N. This is 

shown by demonstrating that the expected number of A alleles remains fixed. 

 

Selection: Selection is introduced by changing the sampling process. For example, in the 

Moran model )1(
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It is common to state this theorem in terms of the Wrigh-Fischer model, where it is known as 

Kimura's fixation probability: 
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Reversibility: A Markov process can be defined by the transition probabilities jip → .We call 

the process reversible if )|Pr()|Pr( jXiXjXiX dttttdtt ===== ++  or in shorter notation 

if ijji pp ←→ = . This means that reversing time does not change transition probabilities.  

Claim: A Markov process is reversible iff there exists a stationary distribution iπ  such that 

jjiiij pp ππ =  (this is called the detailed balance condition). 

 

Proof: We are working with infinitesimal dt. Since a Markov process is defined by the 

infinitesimal rates, the proof will hold for any time interval. The proof is a direct application 

of the Bayes law:
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If detailed balance is holding: ij
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Conversely, if reversibility is holding: jjiiij
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Probabilistic modeling: A Bayesian network is defined given a directed acyclic graph G on a 

set of random variables X using conditional probability distributions Pr(X|PaX). The joint 

distribution Pr(X) is defined by taking the product: ∏= )|Pr()Pr( ii paxxx . We can work 

with a set of observations (Data), and in this case we denote the observed variables by S and 

the unobserved (hidden) variables by H. We define the likelihood of the data by 

∑=
h

shs ),Pr()Pr(  (taking the sum over an exponential number of hidden variables 

combinations. This process is sometime called marginalization). We would frequently be 

interested in the posterior probabilities )Pr(/),Pr()|Pr(
|
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hidden variable combination while fixing one or few random variables). A more general 

graphical model is called a factor graph which is defined based on a set of potentials which 

are not necessarily conditional distributions and include dependencies that can introduce 

cycles. The joint probability defined by a factor graph is ∏=
a
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)Pr( ϕ where aϕ  is 

the potential for factor a, ax is an assignment of values to the variables associated with the 

factor a, and Z is the partition function. The definition of the joint probability (for each type 

of model), along with the basic definition of conditional probabilities allow computation of 

any posterior probability for any group of variables. Such computation would however 

require summing over an exponential number of terms in the general case. 

 

Inference on the evolutionary tree: for a node i we denote by l,r the left and right child 

nodes, by pai the parent node and by sib the parent's other child node. The up-down algorithm 

for inference on tress is defined by two recursive update formulas (up and down): 
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The recursive formula allows exact computation of the likelihood and posteriors: 
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We will prove directly the formula (1). Denote by Ti the subtree below node i, excluding i. 

Denote by T
j
 the subtree above node j including j. Remember that ti represent assignment of 



values to nodes in Ti. We first argue that ∑∏
∈

=
i it Tj

pajjii Dxxxup ),|Pr()(  for non leafs, or in 

words, the up probability is the likelihood of the data on the subtree below i, when fixing i's 

value to a xi. Note that ),|Pr( Dxx pajj is )|Pr( pajj xx if j is hidden or is determined by the 

data completely if j is observed.  

 

For a parent of two leafs the induction is true since:  
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(the up of a leaf is defined as 1 if not observed and as 1 only on the observation when we have 

data). If the induction hypothesis is holding for the trees on less than n nodes, we combine 

two subtrees using a similar argument: 

 

∑∏

∑∏∑∏∑

∑

=

==

i i

l lr rrl

rl

t T

pajj

t T

pajj

t T

pajjir

xx

il

rir

xx

lilii

Dxx

DxxDxxxxxx

xupxxxupxxxup

),|Pr(

),|Pr(),|Pr()|Pr()|Pr(

)()|Pr()()|Pr()(

,

,

 

 

The general observation that makes the last passage possible is that the two subtrees are 

independent given the parent and we can therefore change the order of summation and 

multiplication using the distributive law. 

 

We can show similarly that ∑∏
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),|Pr()( . For the root this is holding 

by definition. Assuming it holds for trees smaller with fewer than n nodes, we can write: 
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It is now trivial to state: 

 

 ∑∏∑ ∑∏∑∏ ==
h j

pajj

x xt T

pajj

t T

pajj SxxSxxSxxS
i i

i i
i i

),|Pr(),|Pr(),|Pr()Pr(
|

 

 

EM: we often wish to maximize the likelihood of a set of model parameters given data: 
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The EM algorithm is a generic iterative procedure for finding locally optimal parameters. The 

algorithm is based on the simple idea of maximizing the parameters given posterior 

probabilities for the hidden variables that were inferred using a current ad-hoc set of 

parameters: 
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In other words, we compute the maximum likelihood parameters, as if the hidden variables 

were actually observed, such that for each observation s, we observed h P(h|s,θk
) times (or 

fractions of times).  To show that optimizing Q improve the likelihood, observe that: 
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where we used the fact that the KL-divergence is non-negative. 

 

When the joint (P(h,s)) is a BN (a tree in particular), the maximization of Q can be much 

simplified into a set of independent maximization problems: 
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(pa(xi) are all xi's parents, and θi are the conditional probability parameters for variable i).  

Remember that we can compute the posterior of the pair xi,pa(xi) efficiently in trees, or 

approximate it using MF/LBP/Sampling for more complex models. Remember that this 

formula is holding because log(P(h,s)) is breaking down into a sum of independent terms. 

 

Sampling: MCMC inference can be used when it is difficult to compute the target 

distribution, but possible to compute simplified or restricted forms of it. Distributions that are 

difficult to compute are for example the posterior distribution P(h|s) in a BN or simply the 

joint P(x) in a factor graph (remember that these two are in fact equivalent: write 

P(h|s)=P(h,s)/P(s) and set Z=P(s) to see the analogy). In MCMC we use a Markov chain with 

a provably suitable stationary distribution and tractable transition probabilities. The trick is 

to use the detailed balance principle to show that a particular selection of transition 

probabilities give rise to the target stationary distribution.  

 

The Metropolis algorithm uses an arbitrary symmetric proposal distribution S(y|x) and an 

acceptance criterion. The proposal distribution is required only to be ergodic, or in other 

words forming a (discrete time) Markov process that have non zero transition probabilities 

given sufficient time) from any state to any state. The overall Metropolis process is defined in 

two steps. Given a current state x, we first draw a sample from S(y|x). We then compute 

P(y)/P(x). If it is larger than one, we change state to y. If it is smaller than one, we move to 

state y with probability P(y)/P(x) and keep x as the current state with probability 1-P(y)/P(x). 

To show this process is in detailed balance with stationary distribution P(x), we only have to 

write: 
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Gibbs sampling uses a similar approach, but is based on sampling one random variable given 

all others: ),..,,,..,|( 111 niii xxxxxP +− . This is also in detailed balance with stationary 

distribution P(x). 
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To compute any statistics on P(x) (e.g., posterior probabilities of one or several variables), we 

simulate the (Gibbs/Metropolis) Markov process from an arbitrary initial condition, and start 

collecting samples after some "burn-in" period (which is difficult to define analytically). 

 
Variational Free Energy: The variational transformation is trading one difficult problem 

(computing the likelihood) with a more difficult problem (minimizing the free energy of a 

trial distribution q). The basic idea is that the optimization problem can be more readily 

approximated. The free energy is defined as given a probabilistic model P(h,s) and a trial 

distribution q: 
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Where the first term is denoted as the "average energy" and the second term is the variational 

entropy. The association between energies and likelihood is rooted in the Boltzman theory 

from statistical mechanics which associates the probability of a certain ensemble state with its 

energy (p=(1/Z)exp(-kE)). The most useful property of the free energy is that it is a tight 

bound to the –log(likelihood). This is shown since: 
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It is a bound because the KL divergence is non negative (but note that for this we need p(h|s) 

to be a distribution!, summing p(h,s) over h is not enough!). The bound is tight because the 

KL divergence is zero for q=p(h|s). 

 

Mean field: Using the variational transformation, a simple approximation to the optimization 

of the free energy is derived by considering only products of independent posteriors for 

variables or set of variables: 
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the mean field approximation of the free energy is computed by minimizing F(q) subject to 

the independence constraint. The approximation is effective when the joint is itself a product 

of (conditionally) independent terms, like a BN or a factor graph. In the case of a BN we can 

use the decomposition of q(h) and p(h,s) to rewrite the energy in a tractable form (we are 

using p(hi|pahi) to denote both observed and hidden variables): 
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The derived expression therefore represented the energy using a sum of terms that involve a 

product of posteriors of a variable and its parents with the conditional probability associating 

them. To optimize the mean field energy, we usually perform local optimization by selecting 

each time one variable and searching for its optimal qi while fixing all the other q's. The key 

point in this optimization is that only a small number of terms in the above free energy 

expression are dependent on a particular qi. These include terms of variables that are children 

or parents of i (as well as the variable itself). For a simple tree, optimizing FMF by changing qi 

involves working with the expression: 
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where r,l,pai are the children and parent of i and the ci are constant for changes in qi. 

Optimizing the qi given the constraint for it being a distribution is easily solved using 

LaGrange multipliers: 
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Note that the exact same formula is true for any BN, we only have to recompute the constants 

ci using all of the terms involving parents and children of i. The formula is also correct when 

working with a factor graph instead of a BN, replacing the conditional probabilities with the 

factor potentials, and considering all factors that are dependent on the variable i to compute 

the ci constants. 

 
LBP: We are trying to infer posteriors and likelihood for a factor graph 
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The LBP algorithm is defined by the message update rules: 
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Where messages are initialized to arbitrary values and are updated iteratively until possible 

convergence to a fixed point (which is not guaranteed). The update rules give rise to beliefs 

on variables or factor's variables: 
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The message update rules can in fact be extracted from the beliefs formula and a requirement 

for marginalization of factor beliefs over variable beliefs:  
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To see the equivalence just equate the variable belief (left) to the marginalization of the factor 

beliefs (expressed in terms of variable beliefs): 
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We note that as shown in class, the LBP fixed points (where the algorithm is converging) are 

equivalent to local optima of the Bethe free energy: 
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We will not use Bethe theory and its generalizations in the exam. 

 


