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ABSTRACT

Reasoning about relations between objects in images is key to scene understanding. Today, this task
is still difficult for Artificial Intelligence to master. Detecting the objects in a scene is not enough
for building an understanding of complex situations such as ’stealing’ (Fig. 1). However, object
recognition combined with semantic information about the interactions among them has a better
chance of unraveling the puzzle of a scene.
True reasoning comes with the ability to generalize broadly to different tasks and distributions, since
the objective is solving a defined problem and not learning a dataset. For instance, in order to
understand the relation ’right of’, it should be possible to establish the relation between objects never
encountered during training. If train and test data distributions are similar, an expressive model with
enough data could succeed on the test set. It is important therefore to test on novel distributions or
novel tasks. Moreover, it is difficult to obtain a sufficient amount of training data for the extremely
large set of possible objects in each relation, which also increases over time.
In this work we focus on several aspects of relational reasoning. In particular, given some object
A and a relation, the goal is to identify an object B related to object A, in a given scene, in the
specified relation, while being able to generalize to other objects. Additionally, it is important to
represent relations meaningfully, such that visually similar relations have similar representations.
This is learned and tested on synthetic data such as handwritten characters and shapes.
The method we propose using for dealing with relations is a bottom-up top-down deep neural network.
Using the proposed architecture allows us to introduce task selectivity, as opposed to extracting all
objects and relations from an image, regardless of the task. Moreover, we show that this architecture
allows better generalization than simple feedforward models.
The network can further be used in a cyclic fashion for answering visual questions, where the output
of each cycle is based on an object related to the object from the previous cycle. Other uses for
applying the model in a cyclic fashion can be scene graph and image caption generation, in which
case a policy for choosing the initial object and a relation in each cycle is needed.

Keywords relational reasoning · generalization · bottom-up top-down deep neural network

1 Introduction

Scene perception is one of the fundamental tasks of artificial visual intelligence. Research in this area takes form
in pursuing several related tasks including image captioning, scene graph generation and visual question answering
(VQA). In order to interpret what goes on in an image, the system needs to have knowledge about the objects present in
the scene and their properties and interactions, as well physical knowledge about the world. Whereas single object
recognition is almost a solved task [1], understanding relations between objects is one of the main next steps towards
significant progress in machine intelligence [2]. In addition to being an important part of general artificial visual
intelligence, detecting and reasoning about object relationships is a required aspects in various applications, such as
helping the blind and visually-impaired in day to day conduct and integrating VQA into image retrieval systems [3].



In order to verify that a model can reason about relations, it is critical to test it on a generalization set. Consider
the man grabbing a bag in Fig. 1. Without ever seeing this specific bag, it is still possible to identify the ’grabbing’
relation and the person involved in this relation, and understand the possible consequences. The ability of models to
detect ’grabbing a bag’ is often tested using a training and test sets using instances of grabbing-bag images. A more
meaningful test, however, should involve different types of objects altogether, i.e., grabbing objects that are not bags.
This generalization capacity is important since the task is to understand the relation, (‘grabbing’, in this case), which
is derived essentially from spatial relations between the objects and from image features generated by the interaction
between objects, and not from the objects themselves. Humans have such a generalization capacity and can identify
’grabbing’ of novel objects, and intelligent vision systems should have a similar capacity.

Figure 1: ’Stealing’. A typical human description of the scene is: A lady sitting on a chair with a bag hanging over the
back of the chair. A man is approaching from behind the chair, grabbing the bag.

When humans observe a scene, they do not grasp all details simultaneously, but build an understanding of the situation
step by step. Ongoing experiments in the lab demonstrate that when presenting humans with images for short periods of
time, they only pick up on partial information, which then develops systematically over time. What allows humans to
establish the understanding is the constant feedback from our cognition to the visual system, based on what we see.
Consider Fig. 1. People tend to first perceive humans in a scene, i.e., the man or the woman in this case. Say we start
focusing on the man. We can easily observe, by his pose, that he is grabbing something, thus we focus on the bag. Since
the bag is hanging over the back of the chair, we come to notice a lady sitting on that chair. We infer that the bag is hers,
and we might notice that her gaze is not fixated on the man, hence he is probably stealing the woman’s bag. Since it
is infeasible to extract all the possible relations in a scene with many objects, we want a model that extracts relations
in a guided manner similarly to the human perception. This means that scene interpretation is an extended process,
which allows the extraction of relevant relations between selected objects. This behavior can help answer relational
questions, e.g., by guiding attention from one object in the scene to another based on the relations between these objects.
More importantly, this could serve as a stepping stone towards the understanding of complex image scenarios, such as
’stealing’.

Feedback in the brain from our cognition to the visual system takes place via bottom-up (BU) and top-down (TD)
connections in the visual cortex. Both BU and TD feedback occur between different levels in the visual cortex and at
each level within its layers [4]. As soon as a human observes the environment, sensory input is continuously processed
by the visual cortex according to the BU principle; visual information that enters through the eyes, flows from lower
to higher visual areas, i.e. from bottom to top. But how do we know whether or not a given piece of information
is more important than another? The TD principle helps us determine this, based on information that flows in the
opposite direction, i.e., from top to bottom; to direct attention to particular stimuli, for example. The brain uses previous
experiences to organize information in the present context and to make predictions on this basis. In other words, the TD
flow influences the BU flow and steers our attention towards objects that are important in the current situation [5]. This
can happen automatically, for example due to the sudden appearance of a threatening stimulus. Or it can also happen
through attention, for example when we are looking for something based on our prior knowledge of the world, primed
by a previous stimuli for instance the plot of a movie, or following instructions [6].

2 Related work

We survey related other work that deals with relational reasoning. We start with implicit end-to-end approaches, i.e.
which analyze scenes without explicitly modeling the processes of extracting relations using black-box architectures.
We then discuss non-selective (or comprehensive) methods that examine all objects and relations, and selective methods
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that integrate attention. Finally, we review models similar to ours, as far as the use of the BU-TD architecture is
concerned.

It is possible in some cases to achieve good results for tasks requiring relational reasoning without directly acknowl-
edging the relations between objects of interest. This can be done by using implicit end-to-end approaches. Most
approaches for VQA, generating a natural language answer to a natural language question about an image, combine
CNNs and LSTMs in various ways, trained end-to-end with large data sets of questions and answers [7, 8, 9]. Image
captioning, i.e., generating automatically a textual description of an image, can also be done end-to-end, without
acknowledging specific related objects, by training on a dataset of (image, caption) pairs. Such methods combine CNNs
and LSTMs like in [10, 11]. When using language priors, generalizing is more challenging. We propose a different
approach, with an emphasis on learning relation representations from visual data. Other end-to-end methods for image
captioning attempt to map inputs to outputs using attention [12, 13], implicitly modeling the reasoning processes (via
the chosen architecture), or using reinforcement learning [14, 15] without explicitly modeling the reasoning processes
at all. Scene graph generation, the task of generating a graph that represents an image, generates a graph with nodes
that correspond to object bounding boxes and their object categories, and its edges correspond to pairwise relationships
between objects. Work like [16] uses a CNN and RNNs to predict the scene graph using an end-to-end approach as
well. The RNNs are used iteratively to improve the scene graph prediction at each iteration.

The end-to-end models are often non-selective, in the sense that they try to extract all the objects and all possible
relations in the scene. Work such as [17] for relational reasoning has shown super-human performance on a limited
subset of questions applied to the CLEVR dataset [18]. However, it requires implicitly analyzing all object pairs in an
image and their corresponding relations, which results in a computational burden that may not be required for many
tasks. Also, this approach does not identify explicitly the objects and their relations, and it is unlikely to generalize
to more complex tasks and data. There are also non-selective models, that are not end-to-end such as [19] which
extracts object proposals and then applies relation detection to all pairs using language priors. Work on recognizing
human-object interactions [20] uses a relation attention mechanism; however, it computes this for each human and
possible relation, and compares the outcome with each object. We prefer pursuing a selective approach.

Selective methods do not extract all relations in the scene, but can focus on relations between selected objects only.
More recent work on referring relationships [21] suggests that the visual appearances of relations are too varied to
learn, and focuses on localizing the two objects in a given relationship, conditioned on one another. It is selective in
the sense that it attends to the object in the specified relation out of multiple entities of that same object. However, it
does not distinguish between multiple entities of the same object in the same relation. Most successful methods for
VQA use also an attention mechanism [22, 23]. This should have a similar effect to inputting features of interest as we
propose (see Fig. 2). Other end-to-end methods that are selective by the models’ intermediate outputs have also shown
good results on CLEVR [24, 25]. However, these methods use a compositional approach which enables combinatorial
generalization [26], but might not scale well to a dataset with many relations.

There are other artificial models that use a BU-TD architecture, for instance fully convolutional networks (FCN)
[27] and Mask R-CNN [28] for semantic segmentation, and the U-Net convolutional networks for biomedical image
segmentation [29]. The uniqueness of our BU-TD proposed architecture is the additional TD input which enforces
attention. Another major difference is that FCN, Mask R-CNN and U-Net use lateral connections only from BU to TD,
whereas we use lateral connections in the opposite direction as well. Moreover, the choice of architecture details, such
as which layers form the lateral connections, how they are connected with the TD layers and if their weights are fixed or
learned. Also, the choice of using fully connected layers versus pooling, etc.

3 The Counter Stream model for relational reasoning

3.1 Overview

The proposed scheme is an artificial BU-TD architecture inspired by the BU-TD cortical structures. This architecture
allows information from high-level areas to control and guide the extraction of information from lower-level stages.
In the current work, the combination of BU and TD processes is used to deal with relationships between objects. For
example, given an object and a relation, find the second object that satisfies the given relation. We will also show
examples where the BU-TD scheme helps to generalize the classification of relations from trained to novel objects, as
well as examples where the relations themselves can be generalized to form novel relations.

Within the BU-TD scheme, the feedforward BU part is a convolutional neural network (CNN) which receives an
image as input. The BU part is followed by a feedback TD architecture, which is connected to the BU part via lateral
connections (see Fig. 2). The TD architecture receives additional so-called ’guidance’ input. For example, in extracting
a relation, the TD instruction will specify a subject and a relation of interest, and the output of the next BU pass
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will then output the object in the image which participates in the specified relation with the subject. We will show
examples where our network can be used in a cyclic fashion, extracting more than a single relation, where a cycle is
formed of a BU pass followed by a TD pass. The number of completed cycles is equal to the number of relations in
question, where the network is expected to output the next related object at the end of each cycle. The input subject
to each cycle is the previous cycle’s output object. In practice, the network we train and test usually consists of a
cycle and a half; the first BU pass followed by a TD pass form one cycle, and the additional BU pass, implemented by
additional layers to the architecture with residual connections to the TD part, forms an additional half a cycle. We refer
to the above cycle-and-a-half structure as the counter stream (CS) model in Fig. 2. This is an unfolding in time, of a
network composed of the interconnected BU and TD streams. This forms a recurrent network, in which the computation
continues to cycle between the BU and TD networks. The weights of BU1 and BU2 are therefore identical. Training
is performed by back-propagation though the unfolded network. This allows the scheme to perform a first BU pass,
analyze the results obtained from the image, select what to extract from the image next, and guide the extraction of the
selected information in the subsequent BU pass.

In terms of images, We use initially EMNIST [30] digits, and then show that our method generalizes to EMNIST
handwritten English letters, as well as handwritten letters in various languages (Omniglots [31]), and other general
shapes. In terms of relations, we focus initially on spatial relations, i.e. ’right’, ’left’, ’above’ and ’below’, and generalize
to all eight principal directions of the compass rose. As we shall see, the factors that support broad generalization in
our relation processing come from the architecture of the CS, especially its lateral connections, running it in a cyclic
fashion over a sequence of relations, and separating object classification from spatial relational reasoning.

Our approach is different from other approaches to relational reasoning, in terms of the following three main issues:

1. The first issue concerns implicit versus explicit representation of objects and relations. This work uses explicit
representations as input to the CS model.

2. The second issue has to do with detecting all objects and relations versus selecting only those of interest for
performing a scene perception related task. When there are many objects in an image, extracting all objects
and relations is redundant for the purpose of answering (most) relational questions or identifying the main
event in an image. The CS model is selective, guiding the process to selected objects and relations. subject and
relation guidance.

3. The third issue concerns the computational approach, i.e., end-to-end versus sequential detection of objects
and relations. This work takes the sequential approach, which breaks problems requiring relational reasoning
into smaller units composed of two objects and the relation between them. This grants model interpretability
and better generalization.

3.2 The Counter Stream (CS) model

Given an image, an object A in that image and a relation, our initial goal is to output an object B in the image, which is
related to object A via the specified relation. For this task we use the CS model, which is illustrated schematically in
Fig. 2 and consists of three parts: BU1, TD and BU2.

The BU1 part is a standard CNN structure, and it serves to extract meaningful features from the image which can be
used for preliminary classification or localization of objects in the image. The images are inputted into the BU1 pillar
composed of convolutional layers and a fully connected layer. It is possible to add a second fully convolutional layer
(illustrated below) as an intermediate output, whose loss is added to the BU2 loss. This intermediate output is the
multi-label classification of all objects in the image or their locations. Instead of convolutional layers, another version
of the BU1 is made up of resnet blocks [32], specifically an implementation of renet-18 was used.

The TD’s purpose is guiding the next BU stage, for fulfilling a specified task. The TD pillar receives an instruction ’flag’
as input, with an encoding of an object A and a relation. These encodings can be one-hot encodings or more meaningful
representations such as object A’s features. This flag is embedded by a fully connected layer, which is concatenated
with the first fully connected BU1 layer, and embedded again by a fully connected layer. The next TD layers are
convolution or transpose convolution (also known as deconvolution) layers, each connected with an equivalent side
layer. The equivalent side layers are products between matching layers in shape and hierarchy from the BU1, and
learnt weights (per node or channel). TD layers are convolutional if there is no increase in dimensionality; if there is,
transpose convolution layers are used to learn this upsampling, as used in FCNs for Semantic Segmentation. The last
TD layer is equivalent to the first BU1 layer (which is the result of convolving the input image once). It is optional to
add another layer, upsampling to the original image size, for segmenting object A given by the flag, or an object B
related to it by the given relation. The segmentation loss is added to the BU2 loss (and the BU1 loss if it exists).
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The BU2’s purpose, similar to BU1, is extracting meaningful features from the image, however for classifying or
locating a specific object B as opposed to general objects. The BU2 pillar shares its convolution filters and structure
with the BU1. Its first layer (which is not trainable) is identical to the BU1’s first layer. The fully connected weights are
not shared, neither is batch normalization. Side layers from the TD are connected to the BU2 in the same fashion the
BU1 side layers are connected to the TD. The BU2 output is an object B’s class or location, which is related to object A
by the relation given to the TD.

Figure 2: The CS model consists of a BU1 pillar, which receives an image as input, a TD pillar, which receives an
instruction flag as input with an object A and relation (e.g. the location of 7 in the image and the relation ’below&right’),
and a BU2 pillar, that outputs the related object B accordingly (e.g., the location of G in the image). The CS model
may yield two additional outputs: (1) An additional BU1 output of the locations of all objects in the image, and (2) an
additional TD output of segmentation of the its flag object A (i.e., 7) or of its related object B (i.e., G).

4 Experiments

In this section we describe several experiments that deal with the extraction of an object given another object and
their relation. All experiments, but the last, use images with EMNIST characters, Omniglots and shapes with spatial
relations. The last experiment uses natural images and human-object interactions, in particular the ’riding’ relation. We
use EMNIST since it is a simple but still challenging domain that was used extensively in past development of Deep
Neural Networks. Furthermore, it allows us to generate large and well-controlled datasets and label them. In the next
subsection, 4.1, we describe the datasets we used. Then, in subsections 4.2 - 4.6, each experiment will be described and
discussed.
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4.1 Datasets

4.1.1 Concatenated characters

Each image is a horizontal concatenation of four different characters of size 28×28. The final image sizes are 28×112
(see Fig. 3). This dataset has several variants, where characters are handwritten digits between 0−9 and English letters
from the EMNIST Balanced Dataset, five Omniglot languages or shapes.

Figure 3: An image from the concatenated characters dataset, which consists of four characters in a row.

4.1.2 Scattered characters

Images are of size 64×64, and contain two to four different characters of size 21×21 (see Fig. 4). Like the dataset
described above, this dataset has several variants, where characters are handwritten digits between 0−9 and ten capital
English letters from the EMNIST Balanced Dataset, five Omniglot languages or shapes. The location of the first
character (i.e. its center coordinates) is randomly selected. The second character location is also randomly selected
under the constraint that there is a certain spatial relation between it and the first character. Object B (the second, or
’target’ character) is ’right of’ object A (the first, or ’reference’ character) in the sense that A and B’s center rows
are within distance of at most 5 pixels, B’s center column is right of A’s, and that the 21×21 characters windows do
not overlap. The placement of B is defined in a similar manner for ’left’, ’above’ and ’below’ relations as well. The
definition for the four possible diagonal relations (such as ’above & right’) is:

|rowchar1− rowchar2| = |colchar1− colchar2|
in each respective direction. The choice for the other zero to two character locations is random under the constraint that
there is no overlapping with previously placed characters, and no interfering with the relation between the first and
second characters. These characters may or may not be related to previously placed characters in the image in any of
the eight interactions described.

Figure 4: An image from the scattered characters dataset, which consists of two to four EMNIST characters in a scatter.

4.1.3 HICO-DET subset

We used a subset of the Humans Interacting with Common Objects Detection (HICO-DET) dataset [33]. This subset
includes RGB images where the interacting object is visible and the interacting human and object’s width or height are
at least 50 pixels. Interacting objects are ∈ {bicycle, motorcycle, elephant, horse, cow, giraffe, sheep, skateboard, skis,
snowboard, surfboard}. The interaction relations include ’riding’ and other ’non-riding’ interactions such as ’repair’,
’wash’ and ’carry’. We split ’riding’ into four relation types based on visual similarity of humans in these interactions:
type 1 - riding bicycles and motorcycles, type 2 - riding elephants, horses, cows, giraffes and sheep, type 3 - riding
skateboards, skis, snowboards and surfboards, type 4 - ’non-riding’. We split the objects in each ’riding’ type to train
and generalization test sets, and increased the size of type 2 generalization set to a reasonable size by adding another 35
images of humans riding cows, giraffes and sheep using Google Image Search. These images were used for testing
generalization of ’riding’ to objects that were not seen during training. Additionally, we increased the size of the train
set by moving 200 ’non-riding’ images from the test set to the train set.

4.2 Object and spatial relation generalization on synthetic data

The main objective of the following experiment was to extract an object given another object and their relation, and
testing generalization to novel objects and relations. In our first generalization test, we tried to exploit the similarity of
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train and generalization objects for generalizing. Specifically, we used a CS network on the concatenated characters
dataset with ’right’ and ’left’ relations. We trained on digit images to extract target object B’s class, and tested
generalization to images with novel object A (reference) letters. This was possible since we used object A’s features
as TD flags, and since visually similar digits and letters (e.g. 8 used in train and B in generalization test) have similar
features. A limitation of this method is that it cannot generalize to novel target object Bs, since we extract B’s class,
which was not used in training. Moreover, it will not be able to scale well to substantially different reference object
As from the ones used during training. Therefore, in the following experiment we describe, we separated between the
tasks of object classification and relational reasoning. For the relational reasoning part, we used the object locations,
independent of their identity. We show generalization to object types (i.e., from digits to characters) and to additional
spatial relations (from right, left, above and below relations, to diagonal directions).

Given a reference object A’s class and a relation, the goal was to output the related object B’s class. For humans, such
generalization is natural; we can tell that B is to the right of A, even if one of them, or both, are novel objects that were
not examined in left-right relations in the past. In order to accomplish this and generalize to new objects, we divided
the task into three tasks: 1) translating object A from its class into its location, 2) outputting object B’s location given
object A’s location and their relation, 3) translating B’s location to its class. In this way, the classifiers (tasks 1 and
3) are separated from the relational reasoning (task 2). Tasks 1 and 3 are trained on all classes of interest, but task 2
is trained only on a subset of these objects. We can generalize to novel objects A and B which may be objects that
the system was trained to classify, but never participated in the relational training, or, they can be entirely novel, i.e.
never seen by the system before. If the classes are known, we can test whether the system can still perform the task.
If the objects are entirely novel, then it is still possible to perform task 2, but it will need A’s position in the input,
and will produce B’s location rather than its class. In order to classify object B, after extracting its location, task 3
would need further training. To avoid catastrophic forgetting (abruptly loosing knowledge of previously learned tasks
as information relevant to the current task is incorporated), the three tasks were trained simultaneously on the same
network. Another option, would be to train on an unfolded three task CS network, i.e. BU-((TD-BU)×3) and train on
samples that consist of the three tasks. In this way, the TD parts in tasks 2 and 3 will receive lateral input from tasks 1
and 2 BU2 parts respectively, whereas currently, they receive BU1 lateral input. We leave this for future exploration.

In the following series of experiments, we implemented this, training the CS model to learn spatial relations: ’right’,
’left’, ’above’ and ’below’, on the scattered characters dataset and generalizing to new objects and diagonal relations.
During training (see Fig. 5 (a)), the BU1 input to task 1 is an image, and the TD input is the class of the reference
object A. The BU2 output is object A’s location. For task 2, the BU1 input is the image, the TD input is a relation and
object A’s ground truth location. The BU2 output is object B’s location. In task 3, the BU1 input is the image, the TD
input is object B’s ground truth location, and the BU2 output is object B’s class. In all tasks, the BU1 initial objective is
the location of all characters in the image (i.e. two to four pairs of (x,y) coordinates). For consistency, the coordinate
order of objects is from left to right, top to bottom in the image. The TD objective in all tasks is segmentation of the
object given as the TD flag (as a class or location). The image inputs in tasks 1 and 3 are of digits and letters, and in
task 2 only digits, in order to test generalization to letters. Testing the can be done on each task separately using ground
truth locations in tasks 2 and 3 TD flags. Another option is performing the three tasks sequentially, where the BU2
output of each task provides the TD input to the next. In this case, the input is the image, object A’s class and a spatial
relation, and the expected output is object B’s class (see Fig. 5 (b)).

Figure 5: Summary of the three tasks. (a) Training the tasks simultaneously. (b) Sequential testing example.

Objects are represented as one-hot vectors of size 20: 10 digits and 10 letters. Locations are concatenations of two
one-hot vectors which represent the (x,y) coordinates of the character centers. There are 44 options for each coordinate
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and 442 location options. Relations are represented as directions in R2: ’right’ as [1,0], ’left’ as [−1,0], ’above’ as
[0,1] and ’below’ as [0,−1]. Diagonal relations are sums of two directions, i.e. ’above & right’ is [1,1], and so on for
’above & left’, ’below & left’, ’below & right’.

The loss of tasks 1 and 2 (which output locations) is the sum of softmax cross-entropy on each coordinate separately.
The way the scattered characters dataset is created, promises there is only one correct answer, i.e. there is only one
’right’ object, which ensures task 2 is a classification problem and not a multi-label problem. Task 3’s loss is softmax
cross entropy on the outputted class. The BU1 initial loss is the sum of softmax cross-entropy on all coordinates. The
TD intermediate loss is the mean squared error (MSE) loss.

The results on variants of the scattered characters dataset (the test, and object and relation generalization sets) are
shown in Tab. 1. Accuracy for tasks 1 and 2 is calculated for correct classification of rows and columns. Allowing a
margin for mistake of even 1 pixel increases accuracy by a few percentages for all datasets. For task 3, accuracy is
on object classification. For each dataset, each task is evaluated separately with correct inputs, and as a sequence. A
sequence means the estimated output of each task provides the input to the next task (and not the ground truth). The test
set contains ’right’, ’left’, ’above’ and ’below’ relations, digit and letter images for tasks 1 and 3 and only digit images
for task 2. Each task is evaluated separately on this dataset. The object generalization set is similar but with digit and
letter images for task 2. The relation generalization set contains only diagonal relations: ’above & right’, ’above &
left’, ’below & left’ and ’below & right’ and only digit images. The object & relation generalization set contains only
diagonal relations and digit & letter images. The generalization datasets are evaluated separately and as sequences.
On task 2, there is almost perfect generalization to objects. On diagonal relations, task 2 generalization is not as good,
however, this result shows that the chosen relation representation is meaningful. Note that multiplying the accuracies of
each task separately is not equal to sequential task 3 accuracy. However, allowing a mistake margin of several pixels for
each task, and then multiplying accuracies is roughly equal to sequential task 3 accuracy on each dataset.

Table 1: Object & relation generalization BU2 accuracy.

Dataset task 1 task 2 task 2 sequence task 3 task 3 sequence

random 0.0005 0.0005 - 0.05 -

test 0.91 0.98 - 0.93 -
object generalization 0.91 0.97 0.92 0.93 0.88

relation generalization 0.91 0.82 0.78 0.94 0.78
object & relation generalization 0.9 0.79 0.74 0.93 0.77

Since all tasks were learned simultaneously, tasks 1 and 3 on digits and letters, and task 2 only on digits, we checked if
tasks 1 and 3 affect task 2 and help improve its generalization performance on letters. To do this, we created a modified
version of the object generalization dataset where objects A and B in all images are replaced by Omniglots or general
shapes (see Fig. 6). Task 2 accuracy is only 18%, however for a mistake margin of 5 pixels per row and/or column,
accuracy is 94% which is close to task 2 accuracy on the object generalization dataset (97%). This can be partially
explained by the average center of the Omniglots and shapes, which is shifted by 2 pixels from the average EMNIST
digits and letters center in the 21×21 character window. Both object A and B are replaced, potentially causing a 4 pixel
shift on average. Small mistakes in location estimation (2-3 pixels for row and column estimations) are only slightly
significant for task 3 accuracy where B is a trained class, and cause less than 10% deterioration. This, and the examples
in Fig. 6 demonstrate that the spatial relations are learned regardless of the training objects, but do depend on their
general statistics, i.e. scale, connectivity etc.
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Figure 6: Task 2 object generalization to Omniglots and shapes. The estimated object centers are marked in red.

In this subsection we presented results for object generalization and relation generalization. For object generalization,
the CS scheme uses a sequence of instructions to compute spatial relations between locations, rather than specific
objects. As a result, the scheme can generalize to completely new objects. For relation generalization, the scheme
generalizes at least in part from the trained relations to novel relations, which are intermediate between two trained
relations.

4.3 Combinatorial generalization

Combinatorial generalization is the ability to generalize in test to (input, output) combinations that were not seen
together during training, but did appear in different combinations. We discuss combinatorial generalization in the
context of the three tasks described in the previous subsection. Then, we compare combinatorial generalization in the
CS model to a BU under similar conditions.

1. Despite tasks 1 and 3 (described in subsection 4.2) imperfect performance, there is combinatorial generalization
to new (character, location) combinations: about 60% of the task 1 test set are combinations that do not appear
in the task 1 train set; the same for task 3. For task 2, 90% of the test set (reference flag location, target
location) combinations are not in task 2 train set.

2. Next, we describe a simpler experiment we conducted, which shows that the CS performance is better than
the BU in terms of combinatorial generalization. The BU model we refer to here is a simple feedforward
architecture without an additional TD input.
In order to conduct a fair comparison between the CS and the BU models, the following must be taken into
account. First, the output must be of the same nature (e.g. both models should output a related object’s class
rather than one outputting a class and the other an object segmentation). However, since the BU has no specific
instruction with a specific relation, it must output all related objects of all the characters in an image. Moreover,
the number of parameters, epochs and training data in each model must be comparable.
Therefore, we compared the CS to a BU with the same number of layers (the BU is like BU1 in Fig. 2, where
each group has 6 convolution blocks instead of 2), trained for the same number of epochs (35) and on the
same number of training samples (50,000) from the concatenated characters dataset. It is also possible to
conduct the following experiment on a CS model without TD input, however we chose a simple BU model,
and demonstrate the effect of the CS lateral connections in subsection 4.5. The number of parameters of a
CS without TD input and an expanded BU are still on the same scale (57M and 27M respectively), but due to
removing the lateral connections, these models are not equal in their complexity. Moreover, it is debatable
whether the number of training samples should be equal, since each BU sample essentially contains 8 CS
samples (’right of’ and ’left of’ for each of the four digits). We use the same number of samples, but using 8
CS samples for each BU sample is also an option.
We compared learning in the BU vs. the CS network using the concatenated characters dataset with ’right
of’ and ’left of’ relations, and 10 digits and 10 letters as objects. In training, 14 out of the 190 possible pair
combinations are omitted (each character is in at most 2 omitted pairs), and test evaluation is on these pairs.
Since we do not test generalization to new data in this setting, we do not use three tasks going via computing
locations, but use a single BU-TD-BU cycle (using the reference class and relation as TD input, and expecting
the target class as BU2 output). Instead, the input to the CS is an image, a character class and a relation, and
the output is the related object’s class. The BU input is an image, and the output is a tensor of size 2×20×21
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where:

(BUout put)1i j =

{
1 j is ′right o f ′ i
0 else , (BUout put)2i j =

{
1 j is ′left o f ′ i
0 else

The 21st bit indicates there is nothing to the right or left of character i or that character i is not in the image.
The loss is a sum of softmax cross-entropy applied to 2× 20 predictions. Testing on images with the 14
omitted pairs, Hamming distance is 97%, accuracy over neighbors in images which are not the omitted pairs is
93% and over omitted pairs 0%. For the CS, accuracy over all samples is 95% and over omitted pairs 92%, i.e.
the CS generalizes to seen data in new combinations, whereas the BU doesn’t.
This might not be surprising since the weights connecting to (BUout put)1i j and (BUout put)2i j for each omitted
pair (i, j) are not updated during training. It might be optional to output three ’right of’ characters and three
’left of’ characters instead, in order to create a full understanding of the relations in the image and avoid the
’unused neuron’ problem. On the other hand, in the CS model the likelihood in train of a TD flag and output
from the omitted pairs is zero, but the model is still successful on these pairs.

In conclusion, the CS generalizes to unseen train combinations in the three task setting, and has an advantage in this
sense over simple feedforward models with no TD guidance.

4.4 Multi-cycle use of the CS model

A potential use of the CS model could be for VQA tasks, where an answer is obtained by applying an appropriate
sequence of TD instructions. We demonstrate this using a single-task CS as described in 4.3 in a repeating fashion for
answering simple questions. For each sample, the question is if for some digit in the image, there is another given digit,
at any location to the right of the first. For example, for Fig. 3, possible questions are if there is a 3 to the right of 4, to
which the answer is no, or if there is a 0 to the right of 2, to which the answer is yes. The input to the CS is a digit in the
image and a ’right of’ TD instruction. If the output is the target digit in the question, the model returns ’yes’. Otherwise,
the output becomes the next input to the TD path, and this goes on until the digit is found. If the model returns that there
is no digit to the ’right of’ request, it i.e. reached the last, rightmost digit in the image, ’no’ is returned. We limited this
procedure to four iterations’ since there were four digits in each image. Out of 4980 questions, the model answered
99.4% correctly, does not give an answer for less than 0.5%, and answers falsely for even less.

4.5 CS model: removing lateral connections

In order to examine the role of lateral connections, we repeated the experiment described in 4.2 on the scattered
characters dataset, once without the BU1-TD lateral connections (except the top most connection to maintain the
model’s connectivity) and again without the TD-BU2 connections (except the bottom most connection). Results are
shown in Tab. 2. Without BU1-TD lateral connections, object and relation generalization reduces substantially. This
demonstrates the importance of these connections, possibly for attention applied at the end of the TD part, directed
to the relevant location. On the other hand, without TD-BU2 lateral connections, in this experiment, the object and
relation generalization were not affected. Possibly this is due to the relative simplicity of the task, but requires further
investigation. We explored this further by looking into readouts from the top of each of the three BU2 groups and the
feature layer (i.e., the penultimate BU2 layer).

Table 2: The effect of lateral connections on object and relation generalization. Each model is tested on the three
generalization sets sequentially. Accuracies are of BU2 for task 3.

model object generalization relation generalization object & relation generalization

CS 0.88 0.78 0.77
CS without BU1-TD 0.75 0.56 0.54
CS without TD-BU2 0.87 0.81 0.75

Readouts are extracted from four layers of the CS model described in 4.3 on the concatenated characters dataset with
digits, and from a similar model trained the same way without TD-BU2 connections. We extracted these layers for 1000
samples where the TD task is ’right of’, and checked if it is possible to extract the ’right of’ and ’left of’ digits using
simple classifiers. The rationale is that if a simple classifier can extract the answer, then that information is explicitly
represented in these layers. We chose a non-linear SVM as the classifier for the feature layer with a RBF kernel. The
intermediate layers are not vectorized in the same way as the feature layer, therefore we learned a model with a 1×1
convolution layer for flattening, ReLU for non-linearity, a fully connected layer and softmax cross-entropy for the loss.
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Since the original task is ’right of’, an indication of a ’good’ classifier is its success on the ’right of’ task given enough
data. 1000 feature layer readouts do not produce good ’right of’ results on the model without TD-BU2 connections.
Therefore, we extract 2000 samples for the feature layer in each model. Tab. 3 shows that the ability to perform the ’left
of’ task in the full CS model improves from group 1 throughout groups 2 and 3 up to the feature layer that achieves
74% accuracy which is well over chance (9%). In the model with no TD-BU2 connections, this ability does not improve
as a function of progressing the BU2.

Table 3: Readouts from ’right of’ samples classified on the ’right of’ task and the ’left of’ task. The top part shows the
train and test results for the full CS model. The first two rows are accuracy on the ’right of’ task, the bottom two rows
are on the ’left of’ task. For each row we display results for each extracted layer. The bottom part shows results for the
model without TD-BU2 lateral connections. Training is on 800 samples, testing is on 200.

model task set top1 top2 top3 features

CS right of train 1 1 1 1
test 0.96 0.99 1 1

left of train 0.3 1 1 0.85/0.9*

test 0.3 0.69 0.66 0.49/0.74*

CS without TD-BU2 right of train 1 1 1 0.89/0.97*

test 1 1 0.99 0.45/0.87*

left of train 1 1 0.89 0.56/0.56*

test 0.48 0.4 0.46 0.43/0.43*

* Training is on 1600 samples, testing is on 400.

These results suggest that the TD-BU2 lateral connections have a role in learning the TD specified task and transfer
information regarding other possible tasks as well. In the model without TD-BU2 connections, more data is needed to
learn a classifier on the specified ’right of’ task on feature layer readouts, indicating these connections contribute to the
desired task. Moreover, the ’left of’ performance of this model deteriorates from the top1 layer to the feature layer,
indicating the lateral connections transfer this information too.

4.6 Results on Human-Object Interactions

We present further results on the HICO-DET subset dataset, focusing on tasks 2 (object location to related object
location) and 3 (object location to class) where object A is a person, object B is one of the objects described in 4.1.3,
and the relation is one of four types of ’riding’. We want to generalize relations to new objects of interaction, e.g. riding
a different animal not seen during training. We do this via locations, similar to what was done when generalizing to
other objects in section 4.2. We trained task 2 on images of people engaged in riding relations of three types: riding
bicycles (type 1), riding animals, elephants and horses (type 2), and riding skateboards, skis and snowboards (type 3).
We also train on ’non-riding’ (type 4), which includes images of humans interacting with the same objects, but in other
relations. These interactions include relations such as ’wash’, ’groom’ and ’feed’. We tested generalization to images of
people riding motorcycles (type 1), cows, giraffes and sheep (type 2), and surfboards (type 3). Specifically, we tested
if we could locate new objects in the ’riding’ relation and detect cases where the human-object interaction was not
’riding’. In the last step, i.e. task 3, we gave the ground truth location of the target object, e.g. the elephant, and trained
to produce the class at this location. This was trained for task 2 train and generalization objects. In sequential testing,
the input to task 3 was an approximate location (estimated by task 2), and we checked if it was possible to produce the
class near this location.

For this dataset, we represent locations of humans and objects by bounding boxes, i.e. (x,y,w,h), where (x,y) are the
coordinates of the top left bounding box corner, and w and h are its width and height. For task 2, the input to BU1 is
the full image, and the input to the TD is the bounding box of the human of interest in the image. The BU2 has two
outputs. The first is a score indicating if the human of interest is ’riding’ or not (1 for riding, 0 for non-riding). The
second is the offset of the object relative to the human of interest as in InteractNet [20]:(

xo− xh

wh
,

yo− yh

hh
, log

wo

wh
, log

ho

hh

)
Where (xh,yh,wh,hh) represent the human bounding box, and (xo,yo,wo,ho) the object bounding box. As in InteractNet,
we use the Huber loss (similar to MSE loss but more robust to outliers) with δ = 1 (also referred to as the smooth L1
loss). We used the CS model described in Fig. 2 with resnet-18 for the BU1 layers instead of simple convolution layers.
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The following table and figures show that we manage to perform object localization. In Tab. 4, each row shows detection
results on task 2 for a different ’riding’ type, where the last row is their average. The three left columns show results
on a test set (of humans riding training objects): the left column shows the mean Intersection over Union (mIoU) of
ground truth object bounding boxes and task 2 estimated riding object bounding boxes; the middle shows the percent of
test images of each riding type that have mIoU greater than 0.5 (detection); the right shows the percent of images with
mIoU greater than 0.1 (localization). Similarly, the three right columns show results on a generalization set (of humans
riding generalization objects). Since detection (IoU> 0.5) results are not high, we check localization (IoU> 0.1) as
well. In YOLO [34], the definition for localization is detection with IoU> 0.1 and correct classification of objects.
Since we separate detection from classification, we refer to localization as achieving IoU> 0.1. We checked if this
could be sufficient for classification, and discuss this below. In Fig. 7, we show the ROC curves for task 2 ’riding’ or
’not-riding’ predictions for test and generalization sets. Fig. 8 shows some qualitative results on generalization objects.

Table 4: Object detection results on humans riding.

riding type test generalization
mIoU IoU> 0.5 IoU> 0.1 mIoU IoU> 0.5 IoU> 0.1

type 1 (bikes) 0.54 0.64 0.97 0.51 0.55 0.98
type 2 (animals) 0.5 0.57 0.96 0.44 0.37 0.96
type 3 (boards) 0.22 0.06 0.72 0.17 0.02 0.65

all 0.39 0.36 0.86 0.47 0.48 0.95

Figure 7: ROC curves for test and generalization ’ride’ or ’non-ride’ prediction.

Figure 8: Example generalization images with input human bounding boxes (red) and estimated bounding boxes
(green).

Although the detection is far from ideal, we can use the fact that we can localize well enough to perform classification.
I.e., perform task 3, and achieve classification accuracies on task 2 estimated object locations which are close to ground
truth object locations. For this task, we used a resnet-18 BU model, which receives cropped object images as input, and
outputs object classes. In training, the object images are cropped by ground truth bounding boxes. In sequential testing,
images are cropped by the task 2 estimated bounding boxes, and we want to classify the object at or near this location.
This task is learned and tested for all objects, including the generalization objects, which were never seen in the context
of the relations, i.e. as a part of task 2. A limitation of this method is that classification is based on cropped images. If
estimated object locations are not accurate, it would be difficult to test on images cropped by these estimations. Another
option would be to train task 3 with a CS model receiving a full image, instead of a cropped image, and a bounding box
TD flag of an object’s ground truth or estimated location, and outputting the class via the BU2. The main challenge with
this scheme is enforcing the network to use the TD bounding box information and not use the image alone to perform
classification.
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In Fig. 9 we plot the confusion matrices generated by classifying two versions of this test set, where objects are cropped
by ground truth bounding boxes and by the task 2 estimated bounding boxes. The classifier we use (Fig. 9 left) has
low accuracy on many object classes, meaning that a main limitation of performance is not generalizing relations
to novel objects and their estimated locations, but insufficient training of the classifiers to reach sufficient accuracy.
However, the average recall difference over all classes between ground truth and estimated object bounding
boxes is relatively minor, 12%±1%.

Figure 9: Classification of objects from ground truth bounding boxes (left), and estimated bounding boxes (right).

5 Summary and Conclusion

We have presented in this work a model for relational reasoning, which is explicit, selective and sequential. We showed
how to use the BU-TD architecture for relational reasoning and generalization. The proposed architecture has some
similarity to the brain’s functioning, as far as its TD guidance and the use of lateral connections are concerned. Also
similarly to humans, the architecture operates in a sequential manner from object to relation to object. The experiments
we described deal with different aspects of two general issues: selection and generalization. Selection is the ability
to instruct the visual system to perform a particular computation, by applying a particular function to selected item,
for example, a particular spatial relation of a selected object in the image. We have shown that such selection can be
obtained in computing spatial relations by using a top-down network to instruct and guide the bottom-up network.
The selected computations can then be composed sequentially in different combinations to perform more complex
computations. The second issue is generalization: a major challenge in visual learning is to train on a limited set
of examples, and later generalize broadly to different examples. We have shown examples, using both synthetic and
natural data, where broad generalization can be obtained by applying a sequence of selected operations.

Using both EMNIST characters and natural images, we showed how it is possible to learn spatial relations regardless of
objects, and generalize to different object types, as long as they have similar general statistics (e.g., scale, connectivity,
distance, etc.). This is achieved by separating object classification (which can be done on general objects) from learning
relations (which can be obtained by learning form a limited set of objects). We also showed it is possible to generalize
to new spatial relations, given meaningful relation embeddings. Moreover, we showed we can use multiple cycles to
extract more complex information, such as second and third neighbors. As part of this, we introduced the CS model,
which is composed of the BU1, TD and BU2 parts, connected by lateral connections. The BU1 and BU2 architectures
are the same, and they share the same weights. The BU1 part extracts a full image representation, while the TD part
instructs the system to apply a selected computation to a specific object in the image, using the lateral information from
BU1. The lateral connections, which are critical for generalization, possibly select and transfer information that is lost
in the downsampling from BU1 to TD. It is then used with the TD upsampling layers, guided by a particular selected
relation to compute, for attending to a specific area in the image. BU2 classifies specific information extracted through
attention, potentially using additional general TD lateral information.

In the future, this work could be used as a building block in a complex system which runs the CS model sequentially,
using a sequence of TD instructions, to extract visual relations as well as other information from the image. The
appropriate sequence for a task could perhaps be learned by policy learning, using reinforcement learning. If such a
policy can output an initial object and relations based on previous CS outputs, this can be used for scene graph and image
captioning generation. Such a process could have some similarity to human reasoning during scene understanding, in
that it would focus sequentially on different objects and gain more information during each cycle. Such a process may
be used for efficient VQA, selecting from the image information needed to produce an answer, and avoiding the need of
detecting all objects and relations in an image. Given our results concerning, we expect that generalization to new scene
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configurations will depend primarily on having all the appropriate object classifiers for the objects in the scene, but
without the need of training the relational reasoning used by the CS model.
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