1. Reflected BM

(a) For a regular BM we know that $p(y, t|x, 0) = p(B_t = y|B_0 = x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-x)^2}{2t}}$. For the reflected BM we may write

$$p(y, t|x, 0) = p(B_t = y|B_0 = x) + p(B_t = -y|B_0 = x)$$

$$= \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-x)^2}{2t}} + \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y+x)^2}{2t}}$$

$$= \frac{1}{\sqrt{2\pi t}} \left(e^{-\frac{(y-x)^2}{2t}} + e^{-\frac{(y+x)^2}{2t}} \right)$$

$$= \frac{2}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} \cosh \left(\frac{xy}{t} \right)$$

For $y = 0$ we have that $p(y = 0, t|x, 0) = \frac{2}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \neq 0$, however for $y < 0$ the probability $p(y, t|x, 0) = 0$ (it is a reflected motion), thus we have discontinuity at $y = 0$.

(b) The heat equation is of the form

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial y^2}$$

Deriving the reflected BM

$$\frac{\partial p}{\partial t} = \frac{-1}{\sqrt{8\pi t^3}} \left(e^{-\frac{(y-x)^2}{2t}} + e^{-\frac{(y+x)^2}{2t}} \right) + \frac{1}{\sqrt{2\pi t}} \left(\frac{(y-x)^2}{2t^2} e^{-\frac{(y-x)^2}{2t}} + \frac{(y+x)^2}{2t^2} e^{-\frac{(y+x)^2}{2t}} \right)$$

$$= \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} \left(-\frac{1}{t} \cosh \left(\frac{xy}{t} \right) + \frac{y^2 + x^2}{t^2} \cosh \left(\frac{xy}{t} \right) - \frac{xy}{t^2} \sinh \left(\frac{xy}{t} \right) \right)$$

The spatial first derivative

$$\frac{\partial p}{\partial y} = \frac{2}{\sqrt{2\pi t}} \left(-\frac{y}{t} \right) e^{-\frac{y^2}{2t}} \cosh \left(\frac{xy}{t} \right) + \frac{2}{\sqrt{2\pi t}} \frac{e^{-\frac{y^2}{2t}}}{t^2} \sinh \left(\frac{xy}{t} \right)$$

It is easy to see that for $y = 0$ this derivative vanishes ($\sinh(0) = 0$). The second derivative

$$\frac{\partial^2 p}{\partial y^2} = \frac{2}{\sqrt{2\pi t}} \frac{y^2 - t}{t^2} e^{-\frac{y^2}{2t}} \cosh \left(\frac{xy}{t} \right) + \frac{2}{\sqrt{2\pi t}} \left(-\frac{y}{t} \right) e^{-\frac{y^2}{2t}} \left(\frac{x}{t} \right) \sinh \left(\frac{xy}{t} \right) + \frac{2}{\sqrt{2\pi t}} \left(\frac{x}{t} \right) \left(-\frac{y}{t} \right) e^{-\frac{y^2}{2t}} \sinh \left(\frac{xy}{t} \right) + \frac{2}{\sqrt{2\pi t}} \frac{e^{-\frac{y^2}{2t}}}{t^2} \left(\frac{x^2}{t^2} \right) \cosh \left(\frac{xy}{t} \right)$$

$$= \frac{2}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} \left(\frac{y^2 - t + x^2}{t^2} \cosh \left(\frac{xy}{t} \right) - \frac{xy}{t^2} \sinh \left(\frac{xy}{t} \right) \right)$$
It is easy to see that the reflected BM solves the heat equation \(\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial y^2} \) with the boundary condition \(\frac{\partial u}{\partial y}|_{y=0} = 0 \).

2. Recurrence in BM

Consider \(\Pr (B_t \geq a | \tau_a \leq t) \) that is the probability of the BM to be above \(a \) at time \(t \) provided the first passage time \(\tau_a \leq t \). Since \(\tau_a \leq t \) there exist a time \(s \leq t \) s.t. \(B_s = a \) therefore the two events are equivalent \(\Pr (B_t \geq a | \tau_a \leq t) = \Pr (B_t \geq a | B_s = a) \). From the properties of BM we know that \(\Pr (B_t \geq a | B_s = a) = \frac{1}{2} \).

We may write

\[
\frac{1}{2} = \Pr (B_t \geq a | B_s = a) = \Pr (B_t \geq a | \tau_a \leq t) = \frac{\Pr (B_t \geq a, \tau_a \leq t)}{\Pr (\tau_a \leq t)} = \frac{\Pr (\tau_a \leq t | B_t \geq a) \cdot \Pr (B_t \geq a)}{\Pr (\tau_a \leq t)}
\]

Since BM is continuous the probability \(\Pr (\tau_a \leq t | B_t \geq a) = 1 \). We know that \(\Pr (B_t \geq a) = \frac{1}{\sqrt{2\pi t}} \int_a^{\infty} e^{-\frac{y^2}{2t}} \, dy \).

Putting everything together we obtain

\[
\frac{1}{2} = \frac{\Pr (B_t \geq a)}{\Pr (\tau_a \leq t)} = \frac{\Pr (\tau_a \leq t | B_t \geq a) \cdot \Pr (B_t \geq a)}{\Pr (\tau_a \leq t)} = \frac{1 \cdot \Pr (B_t \geq a)}{\Pr (\tau_a \leq t)}
\]

\[
\Pr (\tau_a \leq t) = \frac{2}{\sqrt{2\pi t}} \int_a^{\infty} e^{-\frac{y^2}{2t}} \, dy
\]

Note: For \(s = t \) the probability \(\Pr (B_t \geq a | B_s = a) \neq \frac{1}{2} \), however this event is of measure zero thus it does not affect the result for \(\Pr (\tau_a \leq t) \).

Looking at the limit

\[
\lim_{t \to \infty} \Pr (\tau_a \leq t) = \lim_{t \to \infty} \frac{2}{\sqrt{2\pi t}} \int_a^{\infty} e^{-\frac{y^2}{2t}} \, dy
\]

It may be viewed as the area under the graph of the normal distribution curve as the variance increase. Figure 1 depicts in black the required area, the dotted region is the area of

\[
\lim_{n \to \infty} \frac{2}{\sqrt{2\pi t}} \int_0^{a} e^{-\frac{y^2}{2t}} \, dy
\]

The height of the rectangle (dotted plus gray areas) equals to \(a \cdot \frac{2}{\sqrt{2\pi t}} \). For any variance \(t \) we know that the value of the integral \(\frac{2}{\sqrt{2\pi t}} \int_0^{\infty} e^{-\frac{y^2}{2t}} \, dy = 1 \). As \(t \to \infty \) the dotted area bounded by \(a \cdot \frac{2}{\sqrt{2\pi t}} \) tends to zero, while the total area (dotted plus black) is constant, therefore we may conclude that

\[
\lim_{t \to \infty} \frac{2}{\sqrt{2\pi t}} \int_a^{\infty} e^{-\frac{y^2}{2t}} \, dy = 1
\]

Thus the probability of BM arriving at \(a \) for some time \(t \) starting from \(B_0 = 0 \) equals to one.
Figure 1: Evaluating \(\lim_{t \to \infty} \frac{1}{\sqrt{2\pi t}} \int_{a}^{\infty} e^{-\frac{y^2}{2t}} \, dy \)

Considering the mean \(\mathbb{E}\{\tau_a\} \) we may compute it through its density function \(p(\tau_a = t) = \frac{d}{dt}\Pr(\tau_a \leq t) \) and the expectancy is

\[
\mathbb{E}\{\tau_a\} = \int_{0}^{\infty} t \cdot p(\tau_a) \, dt = \int_{0}^{\infty} t \cdot \frac{d}{dt}\Pr(\tau_a \leq t) \, dt
\]

Changing variables and computing the derivative (thank you Leibniz)

\[
\frac{d}{dt}\Pr(\tau_a \leq t) = \frac{d}{dt} \left\{ \frac{2}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\frac{y^2}{2t}} \, dy \right\} = \frac{2}{\sqrt{2\pi}} \frac{d}{dt} \left\{ e^{-\frac{y^2}{2t}} \right\} = \frac{2}{\sqrt{2\pi}} e^{-\frac{y^2}{2t}} \frac{d}{dt} \left\{ \frac{a}{\sqrt{t}} \right\} = \frac{3}{\sqrt{2\pi t^3}} e^{-\frac{a^2}{2t}}
\]

Computing the mean

\[
\mathbb{E}\{\tau_a\} = \int_{0}^{\infty} t \cdot \frac{d}{dt}\Pr(\tau_a \leq t) \, dt = \int_{0}^{\infty} \frac{3t}{\sqrt{2\pi t^3}} e^{-\frac{a^2}{2t}} \, dt
\]

\[
= \int_{0}^{\infty} \frac{3}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} \, dt
\]

The term \(e^{-\frac{a^2}{2t}} \) tends to 1 as \(t \to \infty \) thus there exist \(s \) s.t. for \(t > s \); \(e^{-\frac{a^2}{2t}} > \frac{1}{3} \) and therefore \(\frac{3}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} > \frac{1}{\sqrt{2\pi t}} \).

We know that \(\int_{0}^{\infty} \frac{1}{\sqrt{2\pi t}} \, dt \to \infty \) for any \(\alpha > 0 \). Hence

\[
\mathbb{E}\{\tau_a\} = \int_{0}^{\infty} \frac{3}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} \, dt \geq \int_{0}^{\infty} \frac{1}{\sqrt{2\pi t}} \, dt \to \infty
\]

Therefore the mean of \(\tau_a \) is infinite.

One dimensional BM experience self similarity, therefore if \(\lim_{t \to \infty} \Pr(\tau_a \leq t) = 1 \) then the probability of reaching from any \(B_{t_1} = a_1 \) to \(B_{t_2} = a_2 \) tends to 1 for large enough \(t \).

\[
\Pr(B_t(\omega) = x \text{ for some } t > T) = \int_{x_T} \Pr(B_t(\omega) = x | B_T = x_T) \cdot \Pr(B_T = x_T) \, dx_T
\]

\[
= \int_{x_T} 1 \cdot \Pr(B_T = x_T) \, dx_T = 1
\]

Hence one dimensional BM is recurrent.
3. Absorbed BM

Let the pdf of absorbed BM at \(a \) be denoted by \(p_a (y, t|x, 0) \). The pdf of regular BM is \(p(y, t|x, 0) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} \) for the absorbed BM we need to exclude from this term paths that reach the point \(y \) at time \(t \) but cross \(a \) on the way. These paths have the pdf of \(\frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-2a)^2}{2t}} \), i.e. they are as likely as paths that starts from \(y_o = 2a \) at \(t_o = 0 \) and reach \(y \) at time \(t \) (I reflect the segment of the path between 0 and \(a \) around the line \(y = a \)). Thus the pdf of absorbed BM is

\[
p_a (y, t|x, 0) = \begin{cases} \\
\frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} - \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-2a)^2}{2t}} & \text{for } y(t) < a \\
2 \frac{1}{\sqrt{2\pi t}} a e^{-\frac{y^2}{2t}} \ dy' & \text{for } y(t) = a \\
0 & \text{for } y(t) > a
\end{cases}
\]

That is for \(y(t) < a \) we exclude the paths that cross \(y = a \) for some time \(s < t \). The probability of \(y(t) = a \) is exactly \(\Pr (\tau_a \leq t) \), i.e. we reached \(a \) at some time \(s \leq t \) and now the BM is absorbed at \(a \).

4. Stochastic integrals

Looking at two possible definitions of Stochastic integrals

\[
S_1 [f] = \lim_{n \to \infty} \sum \int f \left(B \left(\frac{t_j + t_{j+1}}{2}, t_j \right) \right) \cdot \left[B_{t_{j+1}} - B_{t_j} \right]
\]

\[
S_2 [f] = \lim_{n \to \infty} \sum \int f \left(\frac{B_{t_{j+1}} + B_{t_j}}{2}, t_j \right) \cdot \left[B_{t_{j+1}} - B_{t_j} \right]
\]

Since \(B_t \) is continuous w.p. 1 the limits \(\lim_{\Delta t \to 0} B \left(\frac{t_j + t_{j+1}}{2}, t_j \right) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} (B_{t_{j+1}} + B_{t_j}) \) as depicted in figure 2. As \(n \to \infty \) the values \(\lim_{n \to \infty} \int f \left(\frac{B_{t_{j+1}} + B_{t_j}}{2}, t_j \right) \) (continuity of \(f(x,t) \) and \(B(t) \)). Therefore \(S_1 [f] = S_2 [f] \) w.p. 1. Let \(t_{j+\frac{1}{2}} \) denote the point \(t_{j+\frac{1}{2}} = \frac{t_j + t_{j+1}}{2} \). The behavior of the differences is characterized by BM properties

\[
B \left(t_{j+\frac{1}{2}} \right) - B \left(t_j \right) \sim N \left(0, \frac{1}{2} \Delta t \right)
\]

\[
B \left(t_{j+1} \right) - B \left(t_{j+\frac{1}{2}} \right) \sim N \left(0, \frac{1}{2} \Delta t \right)
\]

And their difference

\[
B \left(t_{j+1} \right) - 2B \left(t_{j+\frac{1}{2}} \right) + B \left(t_j \right) \sim N \left(0, \Delta t \right)
\]

Looking at Taylor expansion of the function \(f(x,t) \approx f \left(x_o, t_o \right) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + \frac{1}{2} \frac{\partial^2 f}{\partial x \partial t} (\Delta x) \Delta t + \frac{1}{8} \frac{\partial^3 f}{\partial t^2} (\Delta t)^2 \). Taking the expansion for each interval separately (note that the term \(\Delta t = 0 \))

\[
f \left(B \left(t_{j+\frac{1}{2}} \right), t_j \right) = f \left(B \left(t_j \right), t_j \right) + \frac{\partial f}{\partial x} \bigg|_{B(t_j),t_j} \cdot \left(B \left(t_{j+\frac{1}{2}} \right) - B \left(t_j \right) \right) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_{B(t_{j+\frac{1}{2}},t_j)} \cdot \left(B \left(t_{j+\frac{1}{2}} \right) - B \left(t_j \right) \right)^2
\]

\[
f \left(\frac{B_{t_{j+1}} + B_{t_j}}{2}, t_j \right) = f \left(B \left(t_j \right), t_j \right) + \frac{1}{2} \frac{\partial f}{\partial x} \bigg|_{B(t_j),t_j} \cdot \left(B_{t_{j+1}} - B_{t_j} \right) + \frac{1}{8} \frac{\partial^2 f}{\partial x^2} \bigg|_{B(t_{j+1},t_j)} \cdot \left(B_{t_{j+1}} - B_{t_j} \right)^2
\]
The terms \(\left(B \left(t_{j+\frac{1}{2}} \right) - B (t_j) \right)^2 \) and \((B_{t_{j+1}} - B_{t_j})^2 \) may be neglected. They represent a normal RV squared which has variance of \(o \left((\Delta t)^2 \right) \), as \(\Delta t \to 0 \) this term decays faster to 0. Looking at the difference:

\[
S_1 [f] - S_2 [f] = \lim_{n \to \infty} \sum_j \left(f \left(B \left(t_{j+\frac{1}{2}} \right), t_j \right) - f \left(\frac{B_{t_{j+1}} + B_{t_j}}{2}, t_j \right) \right) \cdot [B_{t_{j+1}} - B_{t_j}]
\]

\[
= \lim_{n \to \infty} \sum_j \left(\frac{1}{2} \left. \frac{\partial f}{\partial x} \right|_{B(t_j), t_j} \left(B \left(t_{j+1} \right) - 2B \left(t_{j+\frac{1}{2}} \right) + B \left(t_j \right) \right) \right) \cdot [B_{t_{j+1}} - B_{t_j}]
\]

It is easy to see that \(B \left(t_{j+1} \right) - 2B \left(t_{j+\frac{1}{2}} \right) + B \left(t_{j} \right) \sim N \left(0, \Delta t \right) \) thus it behaves like \(o \left(\sqrt{\Delta t} \right) \). The term \(\Delta B_j \sim N \left(0, \Delta t \right) \), and behaves like \(o \left(\sqrt{\Delta t} \right) \) as well, thus their product behaves like \(o \left((\Delta t)^{\frac{3}{2}} \right) \). As \(n \to \infty \) the time step \(\Delta t \to 0 \) and the product tends to zero. Hence the two terms approximate the same integral: \(S_1 [f] = S_2 [f] \).

Taking the 2\(^{nd}\) argument of \(f(x, t) \) at different part of the interval \(\Delta t_j \) will not change the equality \(S_1 [f] = S_2 [f] \). Since it is fixed along the interval \(\Delta t_j \) the \(\Delta t \) argument for the Taylor expansion will remain 0. Moreover the value of \(S [f] \) will not be changed due to different choice of the 2\(^{nd}\) argument. Looking at the two sums (for some smooth function \(g(x, t) \))

\[
I_1 [g] = \lim_{n \to \infty} \sum_j g \left(B_{t_j}, t_j \right) \cdot [B_{t_{j+1}} - B_{t_j}]
\]

\[
I_2 [g] = \lim_{n \to \infty} \sum_j g \left(B_{t_j}, t_{j+1} \right) \cdot [B_{t_{j+1}} - B_{t_j}]
\]
Using Taylor expansion

\[T_2 [g] = \lim_{n \to \infty} \sum_{j} g(B_{t_j}, t_{j+1}) \cdot [B_{t_{j+1}} - B_{t_j}] \]

\[= \lim_{n \to \infty} \sum_{j} \left[g(B_{t_j}, t_j) + \frac{\partial g}{\partial t}_{B_{t_j}, t_j} \Delta t + \frac{\partial^2 g}{\partial t^2}_{B_{t_j}, t_{j+t}} \Delta t^2 \right] \cdot \Delta B_j \]

As \(n \to \infty \) the time step \(\Delta t \to 0 \) thus we may neglect the last two terms in the summand and obtain

\[T_2 [g] = \lim_{n \to \infty} \sum_{j} g(B_{t_j}, t_j) \cdot [B_{t_{j+1}} - B_{t_j}] = T_1 [g] \]

Therefore the exact choice of the point at which the second argument of \(f(x, t) \) is computed does not affect the result of the integral.