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Abstract

Computation in the physical world is restricted by the following spatial locality constraint: In a single
unit of time, information can only travel a bounded distance in space. A simple computational model
which captures this constraint is a cellular automaton: A discrete dynamical system in which cells are
placed on a grid and the state of each cell is updated via a local deterministic rule that depends only on
the few cells within its close neighborhood. Cellular automata are commonly used to model real world
systems in nature and society.

Cellular automata were shown to be capable of a highly complex behavior. However, it is not clear
how fast this complexity can evolve and how common it is with respect to all possible initial config-
urations. We examine this question from a computational perspective, identifying “complexity” with
computational intractability. More concretely, we consider an n-cell automaton with a random initial
configuration, and study the minimal number of computation steps t = t(n) after which the following
problems can become computationally hard:

• The inversion problem. Given the configuration y at time t, find an initial configuration x which
leads to y in t steps.

• The prediction problem. Given an arbitrary sequence of ` > n intermediate values of cells in the
computation, predict some value in the sequence based on the previous values with a significant
advantage over guessing.

These two problems capture the natural goals of inferring the past from the present and predicting the fu-
ture based on partial observations of the past. Our main results show that, under widely believed conjec-
tures, there are cellular automata for which both problems become hard even after a single computation
step. This is done by constructing cryptographic one-way functions and pseudorandom generators which
are computed by a single step of a cellular automaton. Our results support the view that computational
forms of complexity can emerge from simple local interactions in a very common and immediate way.

Our results build on and strengthen previous results of Applebaum et al. (FOCS 2004, CRYPTO
2007) on the parallel complexity of cryptography. These previous works implement cryptographic prim-
itives by circuits with constant depth, constant fan-in and constant fan-out, but inherently fail to satisfy
the strong spatial locality requirement.
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1 Introduction

Computation in the physical world is restricted by the following spatial locality constraint: In a single unit
of time, information can only travel a bounded distance in space. A simple computational model which
captures this constraint is a cellular automaton (CA): A discrete dynamical system in which cells are placed
on a grid and the state of each cell is updated via a local deterministic rule that depends only on the few
cells within its close neighborhood. Conway’s Game of Life [BCG83] is a famous instance of CA in which
each cell is initialized to be either “alive” or “dead,” and in each time step each cell interacts with the eight
neighboring cells surrounding it and determines whether to live or die based on the number of its living
neighbors.

CAs were introduced by von Neumann and Ulam in an attempt to model natural physical and biolog-
ical systems [Neu66]. Despite their simple structure, CAs were shown to exhibit complex computational
and dynamical phenomena such as self-replication, universal computation, synchronization, fractality, and
chaos [Neu66, Moo64, Wol84, Vic84, BG85]. The ability to generate complex behaviors by using simple
basic rules makes CAs a powerful tool: Scientists use them to simulate and analyze real world systems in
nature and society, and engineers view them as massive parallel processing machines that can efficiently
solve complicated algorithmic tasks. (See [GSD+03] for a survey on CAs and their applications.) Indeed, in
the last few decades CAs have become the focus of extensive research efforts with specialized conferences
and journals devoted to their study.

Being a universal computational model, CAs are capable of a highly complex behavior. However, it
is not clear how fast this complexity can evolve and how common it is with respect to all possible initial
configurations. We examine this question from a computational perspective, identifying “complexity” with
computational intractability. We focus on two fundamental notions of computational intractability: “one-
wayness” [DH76], which captures the intractability of inferring the past from the present; and “pseudoran-
domness” [BM84, Yao82] which roughly corresponds to the intractability of making informed predictions
about the future based on partial observations of the past. Our main results show that, under widely accepted
conjectures, even a single step of a CA is capable of generating one-wayness and pseudorandomness with
respect to almost all initial configurations. This is formally captured by the ability to compute cryptograph-
ically strong functions by a single step of CA. Our results show that, at least from a computational point of
view, the evolution of complexity can be both common and fast.

1.1 The Inversion Problem

Can the present be used to make inferences about the past? Consider a two-dimensional CA in which each
of the n cells takes a binary value of 0 or 1, and the local update rules need not be identical for all grid
cells [VTH86, Sip94]. We assume that the full description of the CA, including all the local rules, is known.
Initialize the CA with a random configuration x = (x1, . . . , xn) by assigning a randomly chosen value to
each cell, and let the CA evolve for t steps to a configuration y = (y1, . . . , yn). Is it possible to efficiently
recover the initial configuration x from the observed configuration y, or alternatively some other initial
configuration x′ which leads to y in t steps?

While it is easy to efficiently emulate the computation in the forward direction (that is, compute y given
x), it is not clear how to do the same in the backward direction, and it seems plausible that, if we wait
long enough (i.e., let t be sufficiently large), the inversion problem becomes computationally hard. Since we
would like to know how fast intractability evolves, let us consider the extreme case where t = 1. As each cell
only affects and depends on its close neighborhood, finding x boils down to solving a system of equations
yi = fi(x) of a very simple form: each equation involves a small number (say 9) of unknown variables, and
each unknown variable xj participates in a small number of equations. Furthermore, these dependencies are
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dictated by a simple geometrical structure implied by the spatial locality. One can show that when the CA
is one-dimensional (embedded on a line) the inversion problem is easy – a consistent initial configuration
can always be found in time polynomial in n [Ten94]. (Note that a Turing Machine can be viewed as an
instance of a one-dimensional CA over a large alphabet.) Moreover, even in the case of two-dimensional
CAs, one can exploit the geometrical structure and obtain non-trivial algorithmic shortcuts. Specifically, by
using the techniques of [LTst, Bak94], one can find a consistent initial configuration in sub-exponential time
of 2O(

√
n), or alternatively, find in polynomial time an approximate solution: an initial configuration x ′ that

leads to a configuration y′ which differs from y only in an arbitrary small constant fraction of the cells. (See
Proposition 3.2 for formal details.)

Despite this evidence for simplicity, the proof of Cook’s theorem [Coo71] shows that, even for a single
computation step, the inversion problem of a two-dimensional CA is NP-hard. While NP-hardness suggests
that there are some hard instances, it says nothing about their frequency. It might still be the case that only
a tiny fraction of the instances are hard, and there exists an efficient algorithm that solves the inversion
problem with probability which is extremely close to 1. A more satisfactory notion of hardness will be to
show that for some CAs the problem is almost always intractable – namely, the question is whether CAs are
capable of computing one-way functions in a small number of steps.

Assuming the intractability of decoding a random linear code (DRLC), we give an affirmative answer to
this question and construct a two-dimensional CA that computes a one-way function in a single computation
step. We conclude that, barring a major breakthrough in coding theory, there are CAs for which the inversion
problem is hard with respect to almost all initial configurations even when t = 1.

1.2 Pseudorandomness and Unpredictability

One may try to capture irregularity and chaotic behavior via the cryptographic notion of pseudorandomness.
Let us consider the following experiment: a CA is initialized with an unknown random configuration x ∈
{0, 1}n and runs for t computation steps. Suppose that we have only a partial view of the computation, that
is, we are given only a sequence of ` intermediate values y = y1, . . . , y` collected from several sites during
the computation. How random can this sequence look like? Can we identify regular patterns or predict some
values of the sequence based on previous values? Equivalently, is it possible to distinguish y from a truly
random binary sequence z of length `?

To make the question meaningful, let us assume that the number of observations ` is larger than n, the
amount of randomness that was used to initialize the system. In this case, y is statistically far from being
truly random and with no computational limitations it is easy to distinguish y from a uniformly chosen
`-bit string. This also implies that it is possible in principle to predict some values in the sequence based
on previous values with a significant advantage over guessing [Yao82]. However, it might be the case that
no such efficient procedures exist. In cryptographic terms, we ask whether the distribution of y can be
pseudorandom.

Wolfram [Wol86] suggested a heuristic construction of a CA which can generate a long pseudorandom
sequence from a random initial configuration. Concretely, he suggested to let yi be the value of the middle
cell in a simple one-dimensional CA at the beginning of the i-th computation step.1 In this case, a non-
trivial pseudorandom sequence of length ` = n + 1 may be generated in t = n steps. Following Wolfram
many other candidates were suggested [Gua87, HNSM91, MS91, Gut93, NKC94]. However, to the best
of our knowledge, all these constructions require t to be relatively large, at least linear in n. In addition,
none of these constructions is proven to be secure under a well studied intractability assumption. We show
that unpredictable behavior can evolve very fast — even a single computation step of a CA is capable of
generating a pseudorandom sequence of length ` > n. The sequence includes some cells from the initial

1Interestingly, his construction is being used as the pseudorandom generator of the software Mathematica.
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configuration together with all cells of the next configuration. Again, this construction is based on the
conjectured intractability of decoding random linear codes.

1.3 Other Cryptographic Primitives

We also study the possibility of performing other useful cryptographic computations by a single step of a
CA. In addition to one-way functions and pseudorandom generators, we show that commitment schemes,
symmetric encryption schemes and private-key identification schemes can all be computed in this model
under the DRLC assumption.

We also show that, assuming the security of the McEliece cryptosystem [McE78], it is possible to con-
struct a semantically-secure public-key cryptosystem [GM84] whose encryption algorithm can be computed
by a single step of a CA. The possibility of basing a public-key cryptosystem on the hardness of inverting
different models of automata (including CAs) was suggested in the past [TC86, Gua87, Kar92, BI94]. How-
ever, previous attempts resulted in ad-hoc constructions (with no proof of security) that were not computable
in a constant number of steps. Our construction is the first to avoid these drawbacks.

On the negative side, we describe a 2O(
√
n) attack against CA-based primitives which tightly matches

the security of our constructions. We also show that functions which are computable by CAs in a constant
number of steps cannot realize several other primitives such as pseudorandom generators with linear stretch
and encryption schemes of a constant rate. (See Corollary 3.3.) This should be contrasted with the previous
positive results from [AIK08] – see Section 1.5 below for discussion. We also note that other negative
results that were proved for weaker notions of parallel cryptography [LMN93, AIK06a, AIK09] apply to
our setting as well. These negative results imply that cryptographic tasks such as decryption, signing, and
verifying signatures (in both the private key and the public key world) cannot be implemented by a CA in
a constant number of steps. The combination of our positive results and these negative results provides a
fairly complete picture as to which major cryptographic primitives can be implemented by CAs in a constant
number of steps.

1.4 Application: Cryptography with Constant Physical Latency

Traditional theoretical measures of circuit complexity treat circuits as topological rather than physical ob-
jects. As such they do not take into account the size of gates and the distances traveled by signals in an actual
embedding of a circuit in physical space. In particular, parallel time complexity is measured by counting
the maximal number of gates, or equivalently wires, traversed by an input signal on its way to an output,
without considering the physical length of the wires.

In reality, however, chips with long wires are slower and harder to power than chips with short wires [Lei83].
On a more fundamental level, barriers on the speed of light and minimal size of devices impose inherent lim-
itations on parallel time complexity in the physical world. This discrepancy between theoretical measures
of parallel complexity and physical limitations has drawn a considerable amount of attention in the areas of
VLSI design and parallel computing (see [CM85, BP95] and references therein). It has also led to criticism
against the meaningfulness of the complexity class NC (as a model for “efficient” parallel computation).

The possibility of fast cryptographic computations by CAs allows to address this limitation. Our CA con-
structions yield implementations of several primitives (i.e., one-way functions, pseudorandom generators,
symmetric/public-key encryption schemes, commitment schemes and symmetric identification schemes)
with constant physical latency – i.e., the circuit families that compute these primitives can be embedded on
a two-dimensional grid such that the maximal distance traveled by an input signal on its way to an output
gate is bounded by an absolute constant that does not grow with the input length or the level of security. This
shows that, at least in principle, useful cryptographic computations can be carried out in constant parallel
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time even when the geometry of the physical world is taken into account. (An additional discussion of the
physical latency model appears in Section 7.)

1.5 Comparison to Previous Notions of Parallel Cryptography

It is instructive to compare the models considered in this paper to previous notions of highly parallel cryp-
tography. For this, it will be useful to view the input-output dependencies of a function f as a bipartite
graph G in which left nodes correspond to input variables, right nodes correspond to output variables, and
an edge connects an input node to an output node if and only if the corresponding input variable affects the
corresponding output variable. The function has constant output locality (resp., constant input locality) if
the degree of the output nodes (resp., input nodes) is bounded by a constant.

In [AIK06a] it was shown that, under standard intractability assumptions, many useful cryptographic
tasks can be implemented by functions with constant output locality. This positive result was later strength-
ened for a subclass of these tasks to allow implementations with both constant input locality and constant
output locality [AIK09]. In contrast, the current work mainly deals with constant spatial locality: it should
be possible to embed the graph G (via an injective mapping) on the two dimensional grid N × N such that
the Euclidean distance between each pair of adjacent nodes is bounded by some constant d. It can be shown
that this notion of locality is strictly stronger than the previous ones (see Proposition 3.1). More importantly,
as we argue below, this distinction makes a qualitative difference even from a cryptographic point of view.

The spatial locality property prevents G from having good connectivity properties. In particular, G is
a poor expander which has relatively small separators. This limitation does not apply to graphs with low
input and output locality, as constant-degree bipartite graphs can have a very good expansion. From a crypto-
graphic perspective, good expansion makes cryptanalysis harder and, indeed, several previous cryptographic
constructions of low input/output locality were based on such expander graphs [Gol00, MST03, AIK08].
The good expansion of these constructions prevents them from having spatially local embedding. To the
best of our knowledge, all previous implementations of nontrivial cryptographic primitives in the literature
(even parallel constructions that do not rely on expanders) can be proved to have super-constant spatial
locality.

In fact, the existence of small separators for spatially local graphs leads to some actual attacks. As
already mentioned, spatially local functions can be inverted in sub-exponential time, or alternatively, ap-
proximately inverted in polynomial time. This vulnerability can be used to show that variants of some
primitives (e.g., pseudorandom generators with linear stretch) that can be computed with constant input and
output locality [AIK08], cannot be realized by spatially local functions. (See Section 3.4.) All in all, one
may suspect that spatially local functions are too weak to perform any cryptographic computation. Still, our
results show that many cryptographic primitives can be implemented in this class.

Finally, we mention that, as a byproduct of our techniques, we also obtain some improvement over
previous results on the input locality of cryptographic primitives. Previous constructions from [AIK09] only
yield a collection of primitives (e.g., one-way functions and pseudorandom generators) with constant input
locality, where a random function from the collection is secure with high probability. In this work, we obtain
the first explicit one-way functions and pseudorandom generators in which each bit of the input influences
only a constant number of output bits. (As in [AIK09], our constructions achieve optimal input-locality and
output-locality simultaneously.) Similarly, our symmetric encryption scheme is the first encryption scheme
in which each bit of the input, secret key, or randomness influences only a constant number of output bits. A
previous construction from [AIK09] only has this property for any fixed key (i.e., by allowing the topology
of the encryption circuit to depend on the key).
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1.6 Organization

We begin with an overview of our techniques (Section 2). Then, we formally present the notions of cellular
automata and spatially local functions, and make some initial observations regarding these computational
models (Section 3). Our main results regarding the average-case hardness of CAs are proven in three steps
(Section 4– 6): First we show that spatially local primitives can be constructed based on “algebraically
simple” cryptographic functions (Section 4), then we argue that, under the DRLC assumption, “algebraically
simple” functions can achieve cryptographic hardness (Section 5), and finally we show how to convert
spatially local cryptographic primitives into primitives that can be implemented by a single computation
step of a CA (Section 6). We end the paper by showing that our results give rise to cryptographic hardware
with constant physical latency (Section 7).

2 Overview of Techniques

At the heart of our results is a new randomization method for “algebraically simple” functions. Before
describing our construction and its relation to previous works, let us briefly recall the notion of a randomized
encoding of functions from [IK00, AIK06a].

We say that a function f(x) is encoded by a randomized mapping f̂(x, r) if for every x the value
f(x) is “information-theoretically equivalent” to the distribution f̂(x, r) induced by a random choice of r.
Specifically, one should be able to decode f(x) given a sample from f̂(x, r), and vice versa: given f(x)
it should be possible to sample the distribution f̂(x, r). We mention that, syntactically, the input length
and output length of f̂ are typically larger than those of f . We will later elaborate more on the notion of
randomized encoding and its usefulness for low complexity cryptography. For now, let us just mention that,
by the results of [AIK06a], in order to implement a cryptographic primitive by a function with constant
spatial locality (CSL), it suffices to show that functions with CSL can encode some non-trivial class of
functions STRONG in which cryptographic functions exist.

To illustrate our main technique, consider the following problem. We are given a linear function L :
F
n
2 → F

`
2 which maps a column vector x to the vector Mx where M is some matrix in F

`×n
2 . Our goal is to

encode the function L by a function L̂ which can be computed with CSL. Recall that the spatial locality of
L̂ is d if the dependencies graph Ĝ of L̂ can be embedded (via an injective mapping) on a two dimensional
grid N × N such that the Euclidean distance between each pair of adjacent nodes is at most d. Note that
constant spatial locality implies, in particular, that the degrees of all output nodes and the degrees of all input
nodes of Ĝ are bounded by a constant (i.e., O(d2)).

The encoding of [AIK09]. An encoding that achieves the low-degree properties was suggested in [AIK09].
This encoding relies on two “gadgets”: an output-reduction gadget which replaces an output node of large
degree with a (larger) subgraph of low degree, and an input-reduction gadget which does the same for a
high-degree input node. (In both cases, new inputs and outputs are introduced.) These gadgets can be used
to reduce the degree of some specific node without increasing the degree of other nodes. Hence, they allow
to gradually improve the encoding by applying a sequence of local operations. In the end of this process,
one gets an encoding whose dependency graph Ĝ has a constant degree. It is natural to try to obtain a dense
embedding of Ĝ in which the edges are short (e.g., by “squeezing” the graph). However, it can be shown
that this is, in general, impossible — we will always have some adjacent nodes u and v which are placed far
from each other.2

2This can be proven by letting M be the adjacency matrix of a good (bipartite) expander of fixed degree. In this case, the
encoding of [AIK09] has linear number of variables and low (logarithmic) diameter. Hence, any planar, or even 3-dimensional,
embedding of its dependency graph suffers from long (non-constant) edges. See also Proposition 3.1.
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Shortening edges via randomization. We cope with the above problem by making an additional use
of randomization: Instead of moving the adjacent nodes, u and v, one towards the other, we will bridge
the distance by adding new intermediate (random) inputs and outputs that will fill the gap. Indeed, this is
possible (in the case of linear functions) by splitting a single output u = v+ (w1 + . . .+wk) into a “chain”
of k+1 outputs of the form (u1 = v+r1, u2 = r1+r2, . . . , uk = rk−1+rk, uk+1 = rk+(w1+ . . .+wk))
where r = (r1, . . . , rk) are new random inputs. However, these new intermediate nodes occupy area and
therefore this transformation is possible only if the area between the two problematic nodes is free.

A problematic local approach. We can try to take care of each “long” edge e = (u, v) locally by pushing
away the nodes which are placed along e. However, this may lengthen other edges that we already took
care of. Hence, we need a global strategy that keeps the area “under” the edges free. Furthermore, we
should avoid having a long edge e which crosses a large number of other long edges, as in this case our
edge shortening procedure will place many vertices along e. In general, it seems hard to satisfy these
requirements. Nevertheless, it turns out that the special structure of the encoding of [AIK09] gives rise to
such a nice arrangement.

Aligning the graph to the matrix M . The important observation here is that both the output-reduction
and the input-reduction gadgets result in a “chain” or “comb”-like graph structures. Hence, we can place
them along the rows and columns of the grid. Specifically, we will associate each row of the grid with
one original output of L, and each column with an original input variable — similarly to the structure of
the matrix M which defines the linear function. Our encoding is now constructed as follows: (1) Apply
the output gadget to the i-th output and place the resulting chain-like graph along the i-th row. Do this
while keeping the adjacent inputs aligned to their columns. This leads to long horizontal edges whenever
the i-th row of M has a large number of consecutive zeroes; (2) Apply the input gadget to the i-th input
and place the resulting comb-like graph along the i-th column. Do this while keeping the adjacent outputs
aligned to their rows. This leads to long vertical edges whenever the i-th column of M has a large number
of consecutive zeroes; (3) Since the long edges (and in fact all edges) are stretched over free area, we can
apply our transformation and replace a long edge with a sequence of new random inputs and new outputs.

Encoding the universal linear function. While the encoding of [AIK09] works for every fixed linear
function, it falls short of encoding the universal linear function L(M,x) = (M,Mx), which takes the
matrix M as part of its input. As a result, the cryptographic constructions of [AIK09] allow fast parallel im-
plementation only after some additional preprocessing. Due to the correspondence between the embedding
of our current encoding and the structure of the matrix M , we are capable of dealing with L, and as a result
get new implementations of primitives that do not require any preprocessing.

3 Cellular Automata and Spatial Locality

In this section we formally define the notions of cellular automata and spatial locality. We also provide some
basic observations regarding these notions.
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3.1 Cellular Automata

We will consider two-dimensional CAs over the binary alphabet with inhomogeneous updating rules [VTH86,
Sip94].3 In such a CA, cells are ordered on an ` × n grid and they can take a binary value of 0 or 1. A
configuration of the CA consists of binary assignments to each of its cells. At the beginning, an initial
configuration x = (xi,j)1≤i≤`,1≤j≤n is selected by assigning a value for each cell. At the t + 1 time step,
the state of each cell is updated by applying some fixed function fi,j to the current state of the cell and the
states of the cells in its neighborhood. We will assume that the neighborhood consists of the ρ-th closest
cells for some small fixed integer ρ which is called the radius of the CA. Different cells are allowed to use
different updating functions fi as long as the function remains fixed over time. Every CA naturally defines
a next configuration function δ : {0, 1}`·n → {0, 1}`·n which maps a configuration to its successor. We will
sometimes abuse notation and refer to δ as mapping N -bit strings to N -bit strings where N = ` · n. We
say that a function family g =

{
gn : {0, 1}N(n) → {0, 1}N(n)

}
n∈N is computable by a CA in t(n) steps if

there exists a sequence of CAs {Cn}n∈N for which the following conditions hold. For each n and initial
configuration x ∈ {0, 1}N(n) , the CA Cn reaches the configuration gn(x) after t(n) computation steps.
Furthermore, we require the existence of a fixed integer ρ which upper-bounds the radius of all the Cn’s. In
this work, we construct cryptographic functions that can be computed by a CA in a single step.

Uniformity. We will always assume that CA families (resp., circuit families) are polynomial-time uniform:
there exists a probabilistic polynomial time Turing machine T which given 1n outputs the description of n-th
CA (resp., circuit) in the family. In fact, most of our constructions satisfy a stronger notion of DLOGTIME
uniformity [BIS90, Vol99] which means that given (1n, 1i) the machine T outputs the description of the i-th
cell (resp. gate) of the n-th CA (resp., circuit) in logarithmic time.

3.2 Spatial Locality

Instead of proving our results by directly constructing suitable families of CAs, it will be more convenient
to use the following notion of spatial locality. We view the input-output dependencies of a function g :
{0, 1}N → {0, 1}N ′

as a bipartite directed graph Gg = ((In,Out), E) where the set of input nodes In
correspond to input variables, the set of output nodes Out correspond to output variables, and the i-th input
node is connected to the j-th output node if and only if the i-th input influences the j-th output. We say that
the spatial locality of g is d if its dependencies graph Gg can be embedded (via an injective mapping) on
a two dimensional grid such that the Euclidean distance between each pair of adjacent nodes is at most d.
We say that a function family g =

{
gn : {0, 1}N(n) → {0, 1}N ′(n)

}
n∈N

is spatially local if it has constant

spatial locality, i.e., there exists a constant d which bounds the spatial locality of gn for all n ∈ N.
Spatial locality is closely related to the CA model: if the function family g is computable by a CA in

O(1) steps then it is also spatially local. Our construction will first be formulated as spatially local functions,
and then implemented via a CA.

3.3 Relation to other notions of locality

Cryptographic functions which satisfy other notions of locality were studied in [AIK06a, AIK09]. In partic-
ular, the function family f = fn has output locality (resp. input locality) d if the outdegrees (resp. indegrees)
of the graph family Gfn is bounded by d. It is not hard to see that spatial locality of d implies an O(d2)
upper bound on both input and output locality. Hence, the class of spatially local functions is a sub-class of

3The CAs we construct are inhomogeneous in that they apply different update rules to different cells. However, the pattern of
the update rules is highly regular.
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the class of functions for which both the input locality and the output locality are constant. The converse is
however not true — there are functions with constant input and output locality whose dependency graphs
cannot be embedded on the grid with constant spatial locality. For instance, this is the case with functions
whose dependency graph is a good (constant-degree) expander with low diameter. As shown in the next
proposition, such functions do not have spatial locality.

Proposition 3.1. Let Gf be the dependency graph of a function f : {0, 1}n → {0, 1}m . If Gf has diameter
d then the spatial locality of f is no smaller than

√
n+m/d.

Proof. Fix some embedding of Gf . Assume, without loss of generality, that the leftmost bottom node u is
placed in position (1, 1). Since there are m+n nodes, there exists at least a single node v which lies outside
of the square [1..

√
n+m−1]× [1..

√
n+m−1]. Hence, v and u are

√
n+m far from each other. Since u

and v are connected in Gf via a path of length d, it follows that at least one of the edges of the path connects
two nodes which are at least

√
n+m/d-far from each other.

Proposition 3.1 implies that previous constructions of highly parallel cryptographic functions from [AIK06a,
AIK08, AIK09] are not spatially local, and hence cannot be computed by a CA in a constant number of steps.

3.4 Inverting a CA in the worst-case

Consider the problem INVERTCA1 (resp. INVERTCA2) whose input consists of a one-dimensional CA
(resp. two-dimensional CA) which computes the function f : {0, 1}N → {0, 1}N in a single step and a
string y ∈ {0, 1}N , and the output should be a preimage x of y under f or a ⊥ symbol if such a preimage
does not exist.

Proposition 3.2. The worst-case intractability of INVERTCA is summarized as follows:

1. INVERTCA1 can be solved in polynomial time. Moreover, we can efficiently output a random preim-
age which is uniformly distributed over the set f−1(y).

2. INVERTCA2 is NP-hard. In fact, it is even NP-hard to decide whether y is in the image of f .

3. INVERTCA2 has a PTAS. That is, given an arbitrary constant proximity parameter ε > 0 and a string
y ∈ {0, 1}N in the image of f , it is possible to find in polynomial time a string x′ ∈ {0, 1}N for which
∆(y, f(x′)) ≤ ε, where ∆(·, ·) denotes the relative Hamming distance.

4. INVERTCA2 can be solved in 2
√
N time.

Proof. (1) The proof is similar to the algorithm of [Ten94] for inverting functions that can be computed by
a ring-protocol of low communication complexity. Assume that the inputs x = (x1, . . . , xN ) and outputs
(f1, . . . , fN ) of f are ordered on a line from left to right. Let ρ be the radius of the CA. We partition the
inputs to distinct blocks of length 2ρ where the i-th block Bi contains the inputs x2ρ(i−1)+1, x2ρ(i−1)+2, . . . ,
x2ρ(i−1)+2ρ. (We pad the inputs with additional dummy variables to make n a multiple of 2ρ.) The important
observation is that each bit of the string y impose a constraint on inputs that lie in (at most) two consecutive
input blocks. Let Yi be the set of constraints which are imposed by y on the blocks Bi and Bi+1. We reduce
the inversion problem to a connectivity problem. We construct a layered graph G with k = N/2ρ layers,
where each layer contains 22ρ nodes labeled by strings in {0, 1}2ρ . We connect a node v ∈ {0, 1}2ρ of
the i-th layer to a node u ∈ {0, 1}2ρ in the i + 1-th layer if the assignment (u, v) is consistent with all the
constraints in Yi. It is not hard to verify that v1, . . . , vk is a path from the first to the last layer if and only if
v = (v1, . . . , vk) ∈ {0, 1}n is a preimage of y under f . Clearly, we can find such a path, or even a randomly
chosen path, in polynomial-time and thus the first part of the proposition follows.
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(2) The Cook-Levin Theorem [Coo71, Lev73] shows that it is NP-hard to decide whether the following
constraints satisfaction problem (CSP) is satisfiable.

• Variables: (Xi,j)1≤i≤t,1≤j≤m, where t = t(n) and m = m(n) are polynomials and the domain of
Xi,j is some constant-size alphabet Σ.

• Constraints: (Yi,j)1≤i≤t,1≤j≤m where Yi,j involves the variables Xi,j , Xi−1,j−1, Xi−1,j and Xi−1,j+1

(where X0,i and Xi,0 are set to be dummy variables with some fixed arbitrary value).

We reduce this CSP to INVERTCA2. We define f ′ : Σtm → {0, 1}tm as follows. For each Xi,j we put
an input xi,j and for each Yi,j we put an output f ′i,j which is 1 if the value of xi,j, xi−1,j−1, xi−1,j and
xi−1,j+1 satisfies the constraint Yi,j , and 0 otherwise. The function f ′ can be computed by a CA in a single
computation step over the alphabet Σ. Since the size of Σ is constant, f ′ can be also implemented by single
step of a binary CA f (by replacing each xi,j with dlog |Σ|e new boolean variables). We complete the proof
by noting that y = 1tm is in the image of f if and only if the CSP problem is satisfiable.

(3, 4) To prove the last items of the theorem, note that the inversion problem can be described as a
CSP problem whose constraint graph is “almost planar” and, it trivially has a relatively small (O(

√
N))

separator S which partition the graph into two roughly equal parts A and B. (Just “cut” the grid horizontally
or vertically into two halves by removing the middle ρ rows/columns.) Such a CSP can be approximated
in polynomial time or solved in sub-exponential time by using standard divide-and-conquer techniques,
e.g. [LTst, Bak94]. For completeness, let us describe the 2O(

√
N)-time algorithm. Try each of all possible

2O(
√
N) assignments for the variables in S, and for each such partial assignment recursively solve the two

sub-problems which correspond to the variables in A and B (these instances are induced by the partial
assignment for S). The time complexity of this attack is given by the recursion: T (N) = poly(N) +

2O(
√
N)T (N/2) which solves to 2O(

√
N).

We will later show that if a random linear code of constant rate cannot be decoded in sub-exponential
time (an assumption which is consistent with the current state of knowledge), then there exists a 2Ω(

√
N)-

secure one-way function which can be computed by a single computation step of a two-dimensional CA.
This matches the upper-bound of item 4.

Proposition 3.2 can be easily generalized to the case of spatially local functions. By combining item 3 of
(this generalized version of) Proposition 3.2 with the results of [AIK08] we derive the following corollary.

Corollary 3.3. The following primitives cannot be computed by a single step of CA (or by a spatially local
function): (1) pseudorandom generator with linear stretch (i.e., n bits of inputs are expanded into n+Ω(n)
pseudorandom bits); (2) an encryption algorithm of an error-free public-key cryptosystem with constant
expansion factor (i.e., plaintexts of size n are encrypted by O(n) size ciphertexts); and (3) a non-interactive
string commitment with constant expansion factor (i.e., commitments to n-bit strings are of length O(n)).

4 Encoding Functions with Constant Spatial Locality

4.1 Overview

We say that a function f(x) is encoded by a randomized mapping f̂(x, r) if, for every x, the value f(x) is
“information-theoretically equivalent” to the distribution f̂(x, r), induced by a random choice of r (a formal
definition is given below). In [AIK06a], it was shown that the security of most cryptographic primitives is
inherited by their randomized encoding. Therefore, in order to implement a cryptographic primitive by a
function with constant spatial locality (CSL), it suffices to show that functions with CSL can encode some
non-trivial class of functions STRONG in which cryptographic functions exist. If this is indeed the case,
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then one can convert a cryptographic function f in STRONG into a cryptographic function f̂ with CSL. A
similar approach was used in [AIK06a, AIK06b, AIK09].

A useful observation of [AIK09] is that, assuming intractability assumptions related to error-correcting
codes, one can implement cryptographic primitives by “algebraically simple” functions. Hence, we can let
STRONG be the class of such functions. We will follow this approach and construct a CSL encoding for
a class of “semi-linear” functions, which is slightly weaker than the class of functions that was considered
in [AIK09], but is still sufficiently strong to achieve cryptographic hardness. In Section 4.2, we describe the
encoding for the case of linear functions, and then, in Section 4.3, extend this encoding to handle a larger
class of functions. Before that, let us formally define the notion of randomized encoding.

Definition 4.1. (Perfect randomized encoding [AIK06a]) Let f : {0, 1}n → {0, 1}l be a function. We say
that a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a perfect randomized encoding of f , if there exist an
algorithm B, called a decoder, and a randomized algorithm S, called a simulator, for which the following
hold:

• perfect correctness. B(f̂(x, r)) = f(x), for any input x ∈ {0, 1}n, r ∈ {0, 1}m .

• perfect privacy. S(f(x)) ≡ f̂(x,Um), for any x ∈ {0, 1}n .

• balance. S(Ul) ≡ Us.

• stretch preservation. s− (n+m) = l − n or, equivalently, s = l +m,

where Un denotes a random variable uniformly distributed over {0, 1}n, and the notation X ≡ Y indicates
that the random variables X and Y are identically distributed.

The first input of f̂ is referred to as the (deterministic) input and the second input of f̂ is referred to
as the random input. We refer to m and s as the randomness complexity and the output complexity of f̂ ,
respectively. The complexity of f̂ is defined to be m+ s.

Definition 4.1 naturally extends to infinite functions f : {0, 1}∗ → {0, 1}∗ . In this case, the parameters
l,m, s are all viewed as functions of the input length n, and the algorithms B,S receive 1n as an additional
input. By default, we require f̂ to be computable in poly(n) time whenever f is. In particular, both m(n)
and s(n) are polynomially bounded. We also require both the decoder and the simulator to be efficient.

4.2 Encoding Linear Functions

Let M = (Mi,j) be a matrix in F
`×n
2 and v = (v1, . . . , vn) be a vector in F

n
2 . The universal linear function

Ln,` : F`n+n
2 → F

`n+`
2 takes input (M,v) and outputs the pair (M,Mv). We construct a CSL encoding for

this function. It will be convenient to embed the encoding on a “virtual” grid in which each point can hold
six nodes (a 2 × 3 grid). A spatially local encoding over a standard grid can then be obtained by scaling
up the virtual grid. In the following, let [n] denotes the set {1, . . . , n}. We will sometimes identify binary
strings with vectors over F2.

Construction 4.2. (spatially local encoding for linear functions) Let n, ` be positive integers. The encod-
ing L̂n,` : F`n+n

2 × F
`·n+`·(n−1)
2 → F

3`n
2 is defined as follows:

• Deterministic inputs: (Mi,j)i∈[`],j∈[n] and (vj)j∈[n] (we will also refer to vj as w0,j).

• Random inputs: (wi,j)i∈[`],j∈[n], as well as (si,j)i∈[`],j∈[n−1].
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• Embedding: We use an (` + 1) × n grid indexed by (i, j) ∈ {0, . . . , `} × [n]. For each j ∈ [n], we
will place the input vj in the point (0, j). Additionally, in the point (i, j) ∈ [`] × [n] we’ll have the
inputs (Mi,j , wi,j , si,j) and the outputs:

mi,j = Mi,j , ci,j = wi−1,j − wi,j, ri,j = si,j − si,j−1 +Mi,j · wi,j,

where si,0 = si,n = 0 for all i’s. We refer to mi,j, ci,j and ri,j as the matrix-entry, column-entry and
row-entry, respectively.

The construction is outlined in Figure 1. Clearly, the spatial locality of the encoding L̂n,` is constant
(d =

√
10 over a “standard” grid), and it has input-locality of 3 and output-locality of 4. Also note that the

inputs v = (v1, . . . , vn) lie on the boundary of the grid, have input-locality 1 and participate in outputs of
locality 2.

v1 v2 v3

c1,1 r1,1 m1,1 c1,2 r1,2 m1,2 c1,3 r1,3 m1,3

w1,1 s1,1 M1,1 w1,2 s1,2 M1,2 w1,3 M1,3

c2,1 r2,1 m2,1 c2,2 r2,2 m2,2 c2,3 r2,3 m2,3

w2,1 s2,1 M2,1 w2,2 s2,2 M2,2 w2,3 M2,3

c3,1 r3,1 m3,1 c3,2 r3,2 m3,2 c3,3 r3,3 m3,3

w3,1 s3,1 M3,1 w3,2 s3,2 M3,2 w3,3 M3,3

Figure 1: Randomized Encoding for the Universal-Linear Function L3,3(M,v) = (M,Mv). Arrows con-
nect inputs to outputs. Rows are ordered from top to bottom.

Lemma 4.3. For every n, ` ∈ N, the function L̂n,` defined in Construction 4.2 perfectly encodes the
universal-linear function Ln,`.

Proof. Fix n and ` and let L = Ln,` and L̂ = L̂n,`. The encoding L̂ is stretch-preserving since the
number of random inputs equals the number of additional outputs (i.e., 2`n − `). Moreover, given a string
(mi,j, ci,j , ri,j)i,j = L̂(M,v,w, s), we can decode the value of L̂(v) as follows: to compute Mi,j , simply
take mi,j and, to recover the i-th entry of Mv, sum-up the row-entries of the i-th row together with the
column-entries in locations (k, j) for which k ≤ i and Mi,j = 1. Indeed, this results in

∑

j∈[n]
Mi,j · wi,j +

∑

k∈[i],j:Mi,j=1

wk−1,j − wk,j =
∑

j:Mi,j=1

wi,j +
∑

k∈[i],j:Mi,j=1

wk−1,j −wk,j

=
∑

j:Mi,j=1

w0,j =
∑

j:Mi,j=1

vj ,

as required. Hence, the decoder never errs.
Fix some v ∈ F

n
2 and M ∈ F

`×n
2 . Let (M,y) = L(M,v) and let (mi,j , ci,j, ri,j)i,j denote the distribu-

tion L̂(M,v, U`n+`(n−1)). To prove perfect privacy, we will need the following simple claim.
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Claim 4.4. (1) the entries (mi,j)i∈[`],j∈[n] are fixed and equal to (Mi,j)i∈[`],j∈[n]; (2) the entries (ci,j)i∈[`],j∈[n]
and (ri,j)i∈[`],j∈[n−1] are independently uniformly distributed; (3) the remaining entries (ri,n)i∈[`] are uniquely
determined by M,y and the previous outputs. In particular, for each i ∈ `, we have ri,n = yi−(

∑n−1
j=1 ri,j+∑

1≤k≤i,j:Mi,j=1 ck,j).

Proof of Claim. The first item is trivial. To see (2), observe that each of these outputs is a linear function
that contains a fresh random bit. Namely, the output ci,j (respectively, ri,j) depends on wi,j (respectively,
si,j). Item (3) follows from the perfect correctness of the decoder as for every i ∈ [`], we have yi =∑n

j=1 ri,j +
∑

1≤k≤i,j:Mi,j=1 ck,j .

Hence, define a perfect simulator as follows. Given (M,y) ∈ {0, 1}`n+`, the simulator S chooses two
random strings (σi,j)i∈[`],j∈[n] and (ρi,j)i∈[`],j∈[n−1], and outputs:

mi,j = Mi,j, ci,j = σi,j, ri,j = ρi,j, where i ∈ [`] and j ∈ [n− 1]

and

mi,n = Mi,n, ci,n = σi,n, ri,n = yi −




n−1∑

j=1

ri,j +
∑

1≤k≤i,Mi,j=1

ck,j


 , where i ∈ [`].

This simulator is also balanced as each of its outputs is a linear function that contains a fresh random bit.
Namely, the output bit mi,j depends on Mi,j , the output ci,j depends on σi,j , and ri,j depends on ρi,j if
1 ≤ j ≤ n− 1 and on yi if j = n.

The above proof also shows that when `(·) is polynomial, the family L̂n,`(n) forms a uniform perfect encod-
ing for the family Ln,`(n).

Remark 4.5. The output locality of the above construction can be reduced to 3 by adding additional ` · n
random inputs (pi,j) and ` · n additional outputs (qi,j). The new encoding g is similar to L̂, except that we
let qi,j = Mi,j · wi,j − pi,j and redefine ri,j to be si,j − si,j−1 + pi,j . It is not hard to adopt Lemma 4.3 to
show that g perfectly encodes L̂. (Alternatively, one can show that g encodes L̂ and use the Composition
Lemma of [AIK06a, Lemma 4.6] to conclude that g encodes L.)

Remark 4.6. It is instructive to note that the proof of Lemma 4.3 crucially relies on the fact that the entries
of the matrix M are given in the output. Indeed, it was shown in [AIK09] that when M is hidden one
cannot achieve constant input locality and, in particular, the function f(M,v) = Mv does not have such a
randomized encoding.

4.3 Encoding Semi-Linear Functions

We show how to use the basic construction to derive spatially local encoding for other functions. Consider,
for example, the case of a fixed linear function f(v) = Av where A is a fixed matrix. Our construction can
be trivially modified to encode this function (with CSL) by fixing the inputs Mi,j to be Ai,j and omitting
them from the output. More generally, some entries of the matrix M can be fixed and some can be given as
part of the input. Construction 4.2 will work as long as the mapping from the input to the entries of M is
injective.

Another useful extension is obtained by replacing the vector v with the result of some simple function.
For example, consider the function f(M,x) = (M,Mv) where vi = xi · xi+1. Again, it is not hard to
obtain an encoding with CSL by modifying the basic construction. The following definition captures these
variations.
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Definition 4.7. A function f : Ft+k
2 → F

t+`
2 is semi-linear if it maps the pair (z, x) ∈ F

t
2 × F

k
2 to the pair

(z,M(z) · v(x)), where:

• The mapping M : Ft
2 → F

`×n
2 takes a t-length vector z and outputs a matrix M(z) whose entries

are either fixed to some constant or equal to some entry of z. Moreover, each entry of z appears in a
single entry of M .

• The mapping v : F
k
2 → F

n
2 is a function that can be computed with CSL with respect to a 1-

dimensional embedding of its dependencies graph.

Theorem 4.8. A semi-linear function f(z, x) = (z,M(z) · v(x)) can be perfectly encoded with CSL on a
grid in which the input nodes x are located in the first row. Moreover, if the input locality of the function
v is a and its output locality is b, then the input and output locality of f are max(3, a) and max(3, b + 1),
respectively.

To prove the theorem, we will need the following simple properties of randomized encodings.

Lemma 4.9. Let f : {0, 1}n → {0, 1}l be a function which is perfectly encoded by the function f̂(x, r).
Consider the function h(w)

def
= f(g(w)) where w ∈ {0, 1}k and g : {0, 1}k → {0, 1}n. Then, the function

ĥ(w, r)
def
= f̂(g(w), r) perfectly encodes h.

Proof. It is not hard to verify that both the original decoder and the simulator of f̂ allow perfect decoding
and simulation for ĥ. Indeed, given ŷ = ĥ(w, r) = f̂(g(w), r), by the perfect correctness of f̂ , the decoder
returns y = f(g(w)) = h(w). Similarly, on an input y = h(w) = f(g(w)), the simulator samples the
distribution f̂(g(w), Um) ≡ ĥ(w,Um). Finally, ĥ is stretch-preserving since: (1) f̂ is stretch-preserving;
(2) f and h have the same output length; and (3) ĥ and f̂ have the same randomness complexity and output
complexity.

Lemma 4.10. Let f : {0, 1}n → {0, 1}l+k be a function of the form f(x) = (g(x), σ) where g : {0, 1}n →
{0, 1}l is a function and σ ∈ {0, 1}k is a fixed string. Suppose that f is perfectly encoded by a function f̂ :
{0, 1}n × {0, 1}m → {0, 1}s+k of the form f̂(x, r) = (ĝ(x, r), σ) where ĝ : {0, 1}n × {0, 1}m → {0, 1}s.
Then, ĝ perfectly encodes g.

Proof. Let B and S be the decoder and simulator of f̂ . We define a new decoder B ′ (respectively, new
simulator S ′) which, given ŷ ∈ {0, 1}s (respectively, y ∈ {0, 1}l), pads it with the string σ, hands the
padded string to the original decoder (respectively, simulator) and outputs the result with the last k bits
omitted. It is not hard to verify perfect correctness and privacy as well as stretch preservation. We prove that
the new simulator S ′ is balanced. Assume, towards a contradiction, that S ′ is not balanced. Then, since S ′

is distributed over {0, 1}s, there exists a string α ∈ {0, 1}s for which Pr[S ′(Ul) = α] > 2−s. By definition,
S′(Ul) is equivalent to the s-length prefix of S(Ul, σ). Also, by the perfect privacy of f̂ , the k-length suffix
of S(Ul, σ) is fixed to σ. It follows that Pr[S(Ul+k) = (α, σ)] > 2−(s+k), which contradicts the fact that S
is balanced.

Proof of Thm.4.8. By Lemma 4.9, f ′ is perfectly encoded by the function

f̂ ′((z, x), (w, s))
def
= L̂n,`((M(z), v(x)), (w, s)).

Observe that f is derived from f ′ by omitting from the output the fixed entries of M(z). Hence, by
Lemma 4.10, the encoding f̂ which results from f̂ ′ by omitting the fixed entries of M(z) from the out-
put, perfectly encodes f . The CSL implementation of f̂ is evident from the definition of f̂ and the spatial
locality of L̂. The “Moreover” part follows by using the modification of Remark 4.5, and by noting that the
entries of v(x) participate at a single output entry of the form vj−w1,j and so they contribute output locality
of b+ 1 and input locality of a.
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Theorem 4.8 can be extended to work for more general definitions of semi-linear functions (e.g., where
M is computed by a 1-dimensional CPL circuit). However, the current definition suffices for our applica-
tions.

5 Primitives with CSL

In this section, we provide a CSL implementation for several primitives. We will mainly focus on one way
functions and pseudorandom generators (Section 5.2), and only briefly mention extensions to other primi-
tives (i.e. commitment schemes, symmetric and public-key encryption schemes and identification schemes)
in Section 5.3. Most of our constructions are based on the intractability of decoding a random binary linear
code. In the following subsection we formalize this assumption. The reader is referred to [AIK09] for more
background on the problem.

5.1 Main Assumption: Intractability of Decoding Random Linear Code

An (m,n, δ) binary linear code is a n-dimensional linear subspace of Fm
2 in which the Hamming distance

between any two distinct vectors (codewords) is at least δm. We refer to the ratio n/m as the rate of the
code and to δ as its (relative) distance. Such a code can be defined by an m × n generator matrix whose
columns span the space of codewords. Let H2(·) denote the binary entropy function, i.e., for 0 < p < 1,
H2(p)

def
= −p log(p)−(1−p) log(1−p). It follows from the Gilbert–Varshamov bound [Var57] that whenever

n/m < 1 − H2(δ) − ε, all but a 2−(ε/2)m fraction of the m × n generator matrices form (m,n, δ)-linear
codes (cf. [Sud02, Lecture 5]).

In the following, we follow the standard cryptographic convention and refer to a function ε(·) as negli-
gible if ε(n) < n−c for any constant c > 0 and sufficiently large n.

Definition 5.1. Let m(n) ≤ poly(n) be a code-length parameter, and 0 < µ(n) < 1/2 be a noise parame-
ter. The problem DECODE(m,µ) is defined as follows:

• Input: (C,Cx + e), where arithmetic is over F2 and C is an m(n) × n random binary generator

matrix, x R← Un, and e ∈ {0, 1}m is a random vector of error rate µ, i.e., each of its entries is chosen
to be 1 with probability µ independently of other entries.

• Output: x.

We say that DECODE(m,µ) is intractable if every polynomial-size circuit familyA = {An} solves the prob-
lem with no more than negligible probability in n. We say that DECODE(µ) is intractable if DECODE(m,µ)
is intractable for every polynomial m(·).

The hardness of DECODE(m,µ) is well studied [BFKL94, Kea98, HB01, BKW03, Lyu05, JW05,
FGKP06]. It can be also formulated as the problem of learning parity with noise, and it is known to
be NP-complete in the worst-case [BMvT78]. It is widely believed that the problem is hard for every
fixed µ and every m(n) = Θ(n), or even m(n) = poly(n). Similar assumptions were put forward
in [GKL93, KMR+94, BFKL94, Gol01, HB01, JW05, KS06]. The plausibility of such an assumption is
supported by the fact that a successful attack would imply a major breakthrough in coding theory. We men-
tion that the best known algorithm for DECODE(m,µ), due to Blum et al. [BKW03], runs in time 2O(n/ log n)

and requires m to be 2O(n/ log n). Lyubashevsky [Lyu05] showed how to reduce m to be only super-linear,
i.e., n1+α, at the cost of increasing the running time to 2O(n/ log log n). When m = Θ(n) (and µ is constant),
the problem is only known to be solved in exponential time.
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5.2 One-way functions and pseudorandom generators

A one-way function (OWF) is an efficiently computable function f : {0, 1}n → {0, 1}m(n) which cannot be
efficiently inverted with non-negligible success probability. Formally, for any efficient adversary (modeled
as a polynomial-size circuit family) A = {An}, the inversion probability with respect to a uniformly chosen
input

εA(n) = Pr
x

R←Un,y=f(x)

[An(y) ∈ f−1(y)]

should be negligible in n.
A pseudorandom generator (PRG) is an efficiently computable function G : {0, 1}n → {0, 1}m(n)

which expands its input (i.e., m(n) > n) and its output distribution G(Un) is pseudorandom, that is, for
every (non-uniform) polynomial-size circuit family {An}, the distinguishing advantage

|Pr[An(G(Un)) = 1]− Pr[An(Um(n)) = 1]|

is negligible in n.
We show that, under the appropriate assumptions, pseudorandom generators can be realized by CSL

functions. This also gives a one-way function with CSL, as any PRG is also one-way. We rely on the
following construction of [AIK09].

Construction 5.2. Let m = 13n and let t = d1.1 ·me. Define the function

G(A,C, x, ρ)
def
= (A,C,Cx + e(ρ), A · ρ)

where A ∈ F
t×2m
2 , C ∈ F

m×n
2 , x ∈ F

n
2 , ρ ∈ F

2m
2 , and e(ρ) = (ρ2i−1 · ρ2i)mi=1.

The function G was shown to be a PRG, assuming that DECODE(6n, 1/4) is intractable.4 The idea was
to first argue that, under assumption DECODE(6n, 1/4), the distribution (C,Cx + e(ρ)) is pseudorandom
but not expanding (as ρ is too long); and then use the mapping (A, ρ) 7→ (A,Aρ) to extract more random
outputs from ρ via the leftover hashing lemma of [ILL89]. We use G to prove the following theorem:

Theorem 5.3. Suppose that the problem DECODE(6n, 1/4) is intractable, then there exist a PRG and a
OWF with CSL.

Proof. We show that the function G from Construction 5.2 is a semi-linear function. Let v(x, ρ) be the
n+ 3m column vector

(x, (ρ1, ρ1 · ρ2, ρ2), (ρ3, ρ3 · ρ4, ρ4), · · · , (ρ2m−1, ρ2m−1 · ρ2m, ρ2m)), (1)

and let M(A,C) be the following (m+ t)× (n+ 3m) matrix:
(

C 0m e1 0m 0m e2 0m · · · 0m em 0m
0t×n A1 0t A2 A3 0t A4 · · · A2m−1 0t A2m

)
, (2)

where 0k is the all zeroes vector of length k, ei is the i-th unit vector of length m, and Ai is the i-th column
of A. Then, G can be written as

G(A, x,C, ρ) = ((A,C),M(A,C) · v(x, ρ)).
4This assumption roughly says that it is intractable to correct n/4 random errors in a random linear code of relative distance

1/4+ ε, for some constant ε > 0. (The rate n/m = 1/6 is strictly smaller than 1−H2(1/4), and therefore, except with negligible
probability, the relative distance is larger than 1/4. This assumption is very conservative as coding theory does not have any explicit
constructions that achieves such parameters.)
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It is not hard to see that this formulation satisfies Definition 4.7. It follows that G is a semi-linear function
and therefore, by Theorem 4.8, can be perfectly encoded by a CPL circuit Ĝ. By [AIK09, Thm. 6], the
function G is a PRG and therefore, by [AIK06a, Lemma 6.1], the encoding Ĝ is also a PRG. Since any PRG
is also one-way, Ĝ is also OWF.

Remark 5.4. (Optimal Locality) Since the input locality and output locality of v are 3 and 2 (respectively),
we can use the modification described in Remark 4.5 and, by Theorem 4.8, get a PRG whose input-locality
and output-locality are both 3. These parameters are optimal as shown in [AIK09]. This slightly improves
the results of [AIK09] which construct a PRG collection with similar parameters.5

Remark 5.5. (Optimal Stretch) Our PRG has only sublinear stretch as it maps N input bits to N + o(N)
pseudorandom bits. This is essentially optimal as, by Corollary 3.3, spatially local PRGs cannot have linear
stretch (i.e., cannot map N inputs to N + Ω(N) outputs). Interestingly, this limitation does not apply to
functions with constant input and output locality as it is shown in [AIK08] that, under some intractability
assumptions, such functions can implement PRGs with linear stretch.

Remark 5.6. (Optimal Security) If DECODE(6n, 1/4) is exponentially hard — a plausible assumption
which is consistent with the current state of knowledge — then, by the analysis of [AIK09], Construction 5.2
achieves exponential security. Since the overhead which is involved in Theorem 5.3 is quadratic, we derive
a 2Ω(

√
n)-secure PRG with constant spatial locality, and similarly, as shown in Section 6, a 2Ω(

√
n)-secure

PRG which can be computed by a single step of CA. By Proposition 3.2 this security is optimal.

5.3 More Cryptographic Primitives

By relying on the works of [HB01, AIK09, GRS08] it is possible to construct semi-linear implementations of
several other primitives (symmetric encryption, commitment scheme, and private-key identification scheme)
under the DRLC assumption. Furthermore, we can also construct public-key encryption scheme with a semi-
linear encryption function. For this, we rely on the well known McEliece assumption [McE78]. That is, we
assume the existence of a family C of efficiently decodable linear codes in which decoding is infeasible
given a “scrambled” version of a code C in C. The scrambling is obtained by randomly permuting the
coordinates of C and representing it by a random generating matrix (uniformly chosen from all the matrices
that generates C).

Theorem 5.7 (informal statement). Under the intractability of DECODE(1/8), there exist:

1. semantically-secure symmetric encryption scheme with semi-linear encryption function;

2. non-interactive commitment scheme whose sender computes a semi-linear function;

3. one-round symmetric identification scheme whose prover computes a semi-linear function.

Moreover, assuming the McEliece assumption with respect to some family of codes with constant relative
distance6 , we can also get a semantically-secure public-key encryption scheme with semi-linear encryption
function.

5That is, [AIK09] construct a collection {Gz}z∈{0,1}∗ such that: (1) for every z the function Gz expands its input; (2) the
distribution (z,Gz(x)) is pseudorandom for random x and z; and (3) for every z the input-locality and output-locality of Gz are 3.

6The McEliece scheme is usually instantiated with binary classical Goppa Codes (cf. [BLP08], for analysis and suggestions
of concrete parameters). Unfortunately, these codes are known to have an efficient decoding only for subconstant noise rate and
therefore we cannot use them in Theorem 5.7. Instead, we suggest using algebraic-geometric (AG) codes which generalize the
classical Goppa Codes and enjoy an efficient decoding algorithm for constant noise rate. It seems that the use of such codes does
not decrease the security of the McEliece cryptosystem [JM96].
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Proof sketch. The proof of the first three items follows by a close inspection of the constructions of [HB01,
AIK09, GRS08, App08]. (Details omitted.)

To prove the last item, recall that McEliece provides a cryptosystem with one-way security whose en-
cryption function has the following form: To encrypt a vector u ∈ F

n
2 under the key C ′ ∈ F

m×n
2 , which

is a garbled generating matrix of a good code C , output the ciphertext c = C ′u + e where e ∈ F
m
2 is

a random error vector of fractional weight 2−k for a constant k. It is not hard to see that this func-
tion has a semi-linear implementation by writing fC′(u, ρ) = (Im) · (u ◦ e(ρ))T where ρ ∈ F

m×k
2 , and

e(ρ) = (ρi,1 ·ρi,2 · . . . ·ρi,k)i∈[m]. Hence, we get a one-way cryptosystem (or a trapdoor function) with semi-
linear implementation. To obtain a semantically-secure public-key encryption scheme (for a single bit), we
take the exclusive-or of a hardcore predicate of fC and a one-bit plaintext b. (This transformation is standard,
cf. [Gol04, Construction 5.3.13].) By using the Goldreich-Levin hardcore bit [GL89], we get the following
encryption function: EC′(b;u, ρ, s) = (C ′u+e(ρ), s, 〈s, u〉+b) where u, s R← Un, ρ

R← Um×k , 〈·, ·〉 denotes
inner product (over F2), and e(·) is defined as before. (Decryption can be done by relying on the decryption
function of McEliece.) A standard argument shows that the scheme is semantically-secure. Again, it is not
hard to observe that EC′ is semi-linear as we can rewrite it as: EC′(b;u, ρ, s) = (s,M(C ′, s) · v(u, ρ, b)),
where M(C ′, s) is the (m+ 1)× (n+m+ 1) matrix

(
C ′ Im 0m,1

sT 01,m 1

)
,

and v(u, ρ, b) = (u ◦ e(ρ) ◦ b)T. In order to support polynomially long plaintexts one can use standard
concatenation.

We can apply the CSL encoding of Theorem 4.8 to the semi-linear primitives of Theorem 5.7 and, since
randomized encoding preserves the security of all the above primitives [AIK06a], we get implementations
with constant spatial locality.7

6 From Spatial Locality to Cellular Automata

6.1 One-wayness of CAs

We will show how to construct a CA which computes a one-way function in a single step from a spatially
local OWF. In particular, it is possible to convert a function family with spatial locality to a function family
f ′ which is computable by a single step of a CA by adding “dummy” inputs (which do not affect the output)
as well as “dummy” constant outputs. The security of most cryptographic primitives are not affected by
such a padding.

Proposition 6.1. Let f : {0, 1}n → {0, 1}s be a function with spatial locality d. Then, there exists a CA
with radius d which computes a function f ′ : {0, 1}k → {0, 1}k in a single step, such that the function
f ′ is a padded version of f in the following sense: for every x ∈ {0, 1}n and y ∈ {0, 1}k−n it holds that
f ′(x, y) = (f(x), 0k−s).

Proof. Let H be the dependencies graph of f . Consider an optimal embedding of H which achieves spatial
locality of d. In this embedding each connected component of size t lies in a grid of size at most td × td,

7 For the case of encryption, commitment, identification and trapdoor function, Theorem 5.7 yields semi-linear implementations
only for the encryption function, the sender’s computation, the prover’s computation, and the evaluation algorithm respectively.
Accordingly, spatial locality holds only with respect to the sender (i.e., the commitment, encryption and prover’s functions), while
the receiver’s computation (i.e., the verification and decryption functions) is not computed with CSL. However, this limitation is
inherent even if one aims only for constant output locality [AIK06a].
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hence (by possibly rearranging disconnected components), we may assume that the whole embedding is
placed on a k × k grid where k ≤ d(n+ s). We define a CA over a k × k grid as follows: if there exists an
output node v of H in the position (i, j) then set the local updating function of this cell to be the function
that computes the v-th entry of f ; otherwise, if this position is not occupied or contains an input node, set
the corresponding local updating function to be the constant zero function. By definition, the radius of this
CA is d. Also, it is not hard to verify that it computes the padded version f ′ of f in a single step.

A standard argument shows that the above padding preserves the security of OWFs. Hence, by Theo-
rem 5.3, we have:

Corollary 6.2. Suppose that the problem DECODE(6n, 1/4) is intractable. Then there exist a CA which
computes a OWF in a single step.

It follows that, under the DECODE(6n, 1/4) assumption, one cannot invert a single step of CA with
non-negligible success probability with respect to a uniformly chosen initial configuration.

Remark 6.3. (Other primitives) The security of all the primitives listed in Section 5.3 (commitments, iden-
tification, symmetric and public-key encryption schemes) is preserved under the above padding scheme.
Hence, by Proposition 6.1 and Theorem 5.7, these primitives can be computed in a single step of CA.

6.2 Pseudorandomness of CAs

Defining what it means for a CA to compute a PRG is a bit more delicate. Syntactically, we defined CAs to
always compute functions of the form g : {0, 1}N → {0, 1}N while PRGs, by definition, extend their input.
To meaningfully define the computation of PRGs by CAs we adopt the following convention. Suppose that a
CA computes a function g : {0, 1}N → {0, 1}N which ignores some of its inputs, i.e, there exists a function
g′ : {0, 1}N−k → {0, 1}N for which g(x, y) = g′(x) for any x ∈ {0, 1}N−k and y ∈ {0, 1}k . Then, we
may say that the CA computes g′.

Under this convention, a CA with N cells computes a PRG in a single step if the function G : {0, 1}N →
{0, 1}N associated with the CA satisfies the following: (1) the distribution G(UN ) is pseudorandom; and
(2) there exists at least a single cell whose state never affects the state of any cell (including itself) in the
next time step — that is, this cell can be treated as an “output” cell whose input is completely ignored. We
remark that the existence of such a PRG implies that the prediction problem described in the abstract and in
Section 1.2 can be hard. If we initialize the CA to a random configuration and observe the initial values of
the “output” cells together with the values of all the cells (including the output cells) after a single step, then
we get a pseudorandom sequence y of length larger than N .

In the following we show that such a PRG can be constructed from any spatially local PRG G =
{Gn : {0, 1}n → {0, 1}m} that satisfies an additional property called strong spatial locality. A function G
satisfies this property if the dependencies graph Hn of Gn can be embedded with CSL such that there exists
an injection Γ : [n]→ [m] which maps each input node v of Hn to an output node u. Moreover, the distance
between v and u should be bounded by a constant (independent of n).

Proposition 6.4. Let G : {0, 1}n → {0, 1}m be a PRG with strong spatial locality. Then, there exists a CA
which computes a PRG in a single step.

Proof. Let H be the dependencies graph of G. Consider the embedding of H which achieves spatial locality
of d and strong spatial locality via the local injection Γ which maps each input to an output of distance at
most e. As in Proposition 6.1, we may assume that the embedding is placed on a k×k grid for k ≤ d(n+s).
We define a CA over a k × k grid as follows: if there exists an input node v of H in the position (i, j) then
set the local updating function of this cell to be the function that computes the Γ(v)-th entry of G. (Call
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such a cell regular.) If there exists an output node u in the position (i, j) that is not in the image of Γ then
set the local updating function of this cell to be the function that computes the u-th entry of G. (Call such a
cell output.) Finally, if the position (i, j) is occupied with an output node which appears in the image of Γ,
or if the position is empty, then let the (i, j) cell compute the identity function that sets the value of the cell
to be the same value it had at the previous time step. (Call such a cell pad.)

It is not hard to verify that each cell depends on a neighborhood of distance at most e + d. We prove
that the CA computes a PRG. Indeed, if we let x, y and z denote the content of regular, output and pad cells,
respectively, then the resulting function G′(x, y, z) can be written as (G(x), z) which is pseudorandom
according to our assumption (padding by z does not violate this). Hence, G′ satisfies our definition.

We will show that the PRG constructed in Theorem 5.3 has strong spatial locality by relying on the
following useful claim.

Claim 6.5. Suppose we have a(a+1) red tokens {ri,j}i∈[a+1],j∈[a] and a(a+1) yellow tokens {yi,j}i∈[a],j∈[a+1]

placed on the plane where ri,j (respectively, yi,j) is placed in the position (i, j). Then, there is a bijection be-
tween red and yellow tokens such that each yellow token is mapped to a red token which lies in a neighboring
position.

Proof. Consider the main diagonal which begins at (1, 1) and ends at (a, a). A yellow token yi,j which is
placed on the right side of the diagonal will be mapped to its left neighbor ri,j−1. A yellow token yi,j which
is placed on the diagonal or left to the diagonal will be mapped to the token ri+1,j which is located below
him.

Theorem 6.6. The PRG constructed in Theorem 5.3 has strong spatial locality.

Proof. Let Ĝ be the PRG constructed in Theorem 5.3. We describe an injective mapping Γ from the inputs of
Ĝ to its outputs such that the distance between an input node v and the output node Γ(v) is constant. Recall
that Ĝ is obtained by applying the encoding of Theorem 4.8 to the semi-linear function G(A, x,C, ρ) =
((A,C),M(A,C) · v(x, ρ)) where v and M are as defined in Eqs 1 and 2.

Let us take a close look at the structure of Ĝ. Recall that the encoding Ĝ allocates (at most) 3 inputs and
3 outputs to each entry of the matrix M . For simplicity, let us assume that each of these 6-tuples is placed
on a single point on a “virtual” grid. (We can later scale up this grid to a standard grid.) Each (non-fixed)
entry (i, j) of the matrix M(A,C) appears both as an input node and as an output node at location (i, j).
Naturally, we will match these entries to each other. Also, we match each column entry ci,j of Ĝ to the
random-input wi,j , as ci,j and wi,j are located next to each other at the (virtual) point (i, j). For all columns
of the form

( ei
0t
)

, we also match the row entry ri,j to the random input si,j . Let us “remove” these columns
of the grid.

We are left with an (m+ t) × (n+ 2m − 1) grid whose (i, j) point contains an input entry si,j and an
output entry ri,j . We also have an additional column (the n+2m-th rightmost column) which contains only
output entries (ri,n+2m)i∈[m+t] with no si,j’s, and an additional row (the topmost 0-th row) that contains
only n+2m inputs x = (x1, . . . , n), ρ = (ρ1, . . . , ρ2m). Since n+2m < m+ t we can apply Claim 6.5 to
the top (n+ 2m)× (n+ 2m) square, and get a short-distance mapping from all these inputs to the outputs.
Finally, for the entries below the top square, we match each row entry ri,j to the random input si,j .

By combining Theorem 6.6 and Proposition 6.4 we derive the following corollary:

Corollary 6.7. Suppose that the problem DECODE(6n, 1/4) is intractable. Then there exists a CA which
computes a PRG in a single step.
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7 Circuits with Constant Latency

A circuit of physical latency d is a standard Boolean circuit of bounded fan-in and bounded fan-out which
can be embedded in the plane (e.g., in N

2) such that the length of the longest directed path in the graph (mea-
sured with respect to the Euclidean metric) is bounded by d. We assume that gates have area and wires have
width and therefore, in each location (i, j) ∈ N

2 there exists at most a single gate and a constant number of
wire crossovers. (A similar notion was studied in [CM85].) A circuit family

{
Cn : {0, 1}n → {0, 1}m(n)

}
n∈N

has constant physical latency (CPL in short) if there exists a constant, d such that every Cn has latency d.
By simple manipulations (such as scaling up) one can show that a function can be computed by a CPL

circuit if and only if it is spatially local.8 Hence, the results of Section 5 implies that many cryptographic
primitives can be implemented with CPL.

Theorem 7.1 (informal statement). Suppose that DECODE(1/8) is intractable. Then there exist CPL im-
plementations of: (1) one-way function; (2) pseudorandom generator; (3) semantically-secure symmetric
encryption scheme; (4) non-interactive commitment scheme; and (5) one-round symmetric identification
scheme. Moreover, under the McEliece assumption we can also get a CPL semantically-secure public-key
encryption scheme and CPL trapdoor function.9

It should be mentioned that, in CPL circuits, inputs and outputs do not have to be placed on the boundary
of the circuit. This may be justified by the possibility of using the third dimension to “stack” circuits on top
of each other.10

7.1 Discussion

Our main goal here is to explore the theoretical limits of parallelism achievable in cryptography. We do not
attempt (nor do we feel qualified) to address the multitude of challenges and considerations that arise when
implementing cryptographic hardware in the real world. Still, it is interesting to discuss some conceptual
and practical questions that relate to the constant latency model.

For concreteness, let us focus on cryptographic primitives such as encryption or identification which
involve two parties: a “sender”, who performs the encryption or proof of identity, and a “receiver” who
performs the decryption or identity verification. In this case, one may criticize our model by claiming
that we only optimize the “internal latency” of the sender’s device, while the overall latency is dominated
by other parameters such as the “external” distance between the sender and the receiver, and the “internal
latency” of the receiver. (Recall that our constant latency implementations apply only to the sender’s side.)

We argue that despite these valid concerns, the notion of constant physical latency is still conceptually
meaningful, at least in some scenarios. For instance, consider the case of an RFID tag authentication,
or a smart card that communicates encrypted data to a card reader. In these cases, the physical distance
between the sender’s output gates and the receiver output gates is small and independent of the input length
or the security parameter (imagine the parties as two large planar devices aligned in parallel to each other).
Furthermore, in these cases the receiver is much more powerful than the sender. One can also imagine

8Spatial locality does not specify any restriction on the edge/wire layout. Nevertheless, edges can be laid out without violating
the crossover limitation. For example, stretching the edges along the shortest paths ensures that in each point the number of
crossovers is bounded by (π · d2)2. (In this case, a node u is a member of an edge that crosses a point p only if u is d-close to p.
Hence, since nodes are placed on integer coordinates, the number of potential nodes with an edge over p is bounded by the area of
a d-radius circle, and the number of possible edges crossing p is at most quadratic in this number.)

9Again, in the cases of encryption, commitment and identification, we refer only to the efficiency of the “sender”. See Footnote 7.
10This convention is essential for cryptographic constructions as, by Proposition 3.2, when inputs (or outputs) are placed on

the boundary the resulting function can be easily inverted. However, in the case of randomized primitives (such as randomized
encryption), whose input consists of deterministic input and random input, our constructions allow to position all deterministic
inputs on the boundary, placing only output gates, logical AND/OR gates and randomness gates in the interior.
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other meaningful scenarios in which the above concerns do not apply (e.g., secure devices whose physical
medium requires information to travel very slowly, or cases in which the receiver’s computation is applied
only to a small sample of the messages computed by the sender). In such scenarios, the sender’s latency may
become more significant than (and can be measured independently of) the additional latency corresponding
to the receiver and to the physical distance between the parties.

Taking a more pragmatic point of view, even in the typical case where the above best-case scenarios do
not fully apply, the type of constructions we present might provide useful efficiency tradeoffs. For instance,
our private-key identification scheme is based on the HB scheme [HB01] which was suggested as suitable
for implementation on weak devices such as RFID tags. Comparing the concrete cost of our constant latency
implementation to the original construction, our implementation achieves a much better physical latency at
the expense of a moderate cost in hardware size and communication. Whether this type of tradeoffs can be
useful in practice remains for further study.
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