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Abstract. We consider the question of constructing cryptographic pseudoran-
dom generators (PRGs) inNC0, namely ones in which each bit of the output
depends on just a constant number of input bits. Previous constructions of such
PRGs were limited to stretching a seed ofn bits to n + o(n) bits. This leaves
open the existence of a PRG with a linear (let alone superlinear) stretch inNC0.
In this work we study this question and obtain the following main results:

1. We show that the existence of a linear-stretch PRG inNC0 implies non-
trivial hardness of approximation resultswithout relying on PCP machinery.
In particular, that Max 3SAT is hard to approximate to within some constant.

2. We construct a linear-stretch PRG inNC0 under a specific intractability as-
sumption related to the hardness of decoding “sparsely generated” linear
codes. Such an assumption was previously conjectured by Alekhnovich [1].

We note that Alekhnovich directly obtains hardness of approximation results from
the latter assumption. Thus, we do not prove hardness of approximation under
newconcreteassumptions. However, our first result is motivated by the hope to
prove hardness of approximation under more general or standard cryptographic
assumptions, and the second result is independently motivated by cryptographic
applications.

1 Introduction

A cryptographic pseudorandom generator (PRG) [8, 24] is a deterministic function that
stretches a short random seed into a longer string which cannot be distinguished from
random by any polynomial-time observer. In this work, we study the existence of PRGs
that are both (1) extremely parallel and (2) stretch their seed by a significant amount.

Considering the first goal alone, it was recently shown in [3] that the ultimate
level of parallelism can be achieved under most standard cryptographic assumptions.
Specifically, any PRG inNC1 (the existence of which follows, for example, from the
intractability of factoring, discrete logarithm, or lattice problems) can be efficiently
“compiled” into a PRG inNC0, namely one in which each output bit depends on just a
constant number of input bits. However, the PRGs produced by this compiler can only
stretch their seed by a sublinear amount: fromn bits ton+O(nε) bits for some constant
ε < 1. Thus, these PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just one
bit can be used to construct a PRG that stretches its seed by any polynomial number of

? Research supported by grant 36/03 from the Israel Science Foundation.



bits. However, all known constructions of this type are inherently sequential. Thus, we
cannot use known techniques for turning anNC0 PRG with a sublinear stretch into one
with a linear, let alone superlinear, stretch.

The above state of affairs leaves open the existence of alinear-stretchPRG (LPRG)
in NC0; namely, one that stretches a seed ofn bits into n + Ω(n) output bits.1 (In
fact, there was no previous evidence for the existence of LPRGs even in the higher
complexity classAC0.) This question is the main focus of our work. The question has a
very natural motivation from a cryptographic point of view. Indeed, most cryptographic
applications of PRGs either require a linear stretch (for example Naor’s bit commitment
scheme [19]), or alternatively depend on a larger stretch for efficiency (this is the case
for the standard construction of a stream cipher or stateful symmetric encryption from
a PRG, see [14]). Thus, the existence of an LPRG inNC0 would imply better parallel
implementations of other cryptographic primitives.

1.1 Our Contribution

LPRG in NC0 implies hardness of approximation.We give a very different, and
somewhat unexpected, motivation for the above question. We observe that the existence
of an LPRG inNC0 directly implies non-trivial and useful hardness of approximation
results. Specifically, we show (via a very simple argument) that an LPRG inNC0 im-
plies that Max 3SAT cannot be efficiently approximated to within some multiplicative
constant. This continues a recent line of work, initiated by Feige [12] and followed
by Alekhnovich [1], that provides simpler alternatives to the traditional PCP-based ap-
proach by relying on stronger assumptions. Unlike these previous works, which rely on
very specific assumptions, our assumption is of a more general flavor and may serve to
further motivate the study of cryptography inNC0. On the down side, the conclusions
we get are weaker and in particular are implied by the PCP theorem. In contrast, some
inapproximability results from [12, 1] could not be obtained using PCP machinery. It is
instructive to note that by applying our general argument to the sublinear-stretch PRGs
in NC0 from [3] we only get “uninteresting” inapproximability results that follow from
standard padding arguments (assuming P6=NP). Furthermore, we do not know how to
obtain stronger inapproximability results based on a superlinear-stretch PRG inNC0.
Thus, our main question of constructing LPRGs inNC0 captures precisely what is
needed for this application.

Constructing an LPRG in NC0. We present a construction of an LPRG inNC0 under
a specific intractability assumption related to the hardness of decoding “sparsely gen-
erated” linear codes. Such an assumption was previously conjectured by Alekhnovich
in [1]. The starting point of our construction is a modified version of a PRG from [1]
that has a large output locality (that is, each output bit depends on many input bits) but
has a simple structure. The main technical tool we employ in order to reduce its locality
is a randomness extractor inNC0 that can use a “sufficiently short” seed for sources
with a “sufficiently high” entropy. We construct the latter by combining the known

1 Note that anNC0 LPRG can be composed with itself a constant number of times to yield an
NC0 PRG with arbitrary constant stretch.



construction of randomness extractors fromε-biased generators [18, 6] with previous
constructions ofε-biased generator inNC0 [17]. Our LPRG can be implemented with
locality 4; this LPRG is essentially optimal, as it is known that no PRG with locality 4
can have asuperlinearstretch [17]. However, the existence of superlinear-stretch PRG
with a higher (but constant) locality remains open.

By combining the two main results described above, one gets non-trivial inapprox-
imability results under the intractability assumption from [1]. These (and stronger) re-
sults weredirectly obtained in [1] from the same assumptionwithout constructing an
LPRG inNC0. Our hope is that future work will yield constructions of LPRGs inNC0

under different, perhaps more standard, assumptions, and that the implications to hard-
ness of approximation will be strengthened.

LPRG in NC0 and Expanders.Finally, we observe that any LPRG inNC0 contains
a copy of a graph with some non-trivial expansion property. This connection implies
that a (deterministic) construction of an LPRG inNC0 must use some non-trivial com-
binatorial objects. (In particular, one cannot hope for “simple” transformations, such as
those given in [3], to yield LPRGs inNC0.) The connection with expanders also allows
to rule out the existence ofexponentially-strong PRGs withsuperlinearstretch inNC0.

1.2 Related Work

The existence of PRGs inNC0 has been recently studied in [10, 17, 3]. Cryan and Mil-
tersen [10] observe that there is no PRG inNC0

2 (i.e., where each output bit depends on
at most two input bits), and prove that there is no PRG inNC0

3 achieving a superlinear
stretch; namely, one that stretchesn bits ton + ω(n) bits. Mossel et al. [17] extend this
impossibility toNC0

4. Viola [23] shows that an LPRG inAC0 cannot be obtained from
a OWF via non-adaptive black-box constructions. This result can be extended to rule
out such a construction even if we start with a PRG whose stretch is sublinear.

On the positive side, Mossel et al. [17] constructed (non-cryptographic)ε-biased
generators with linear stretch and exponentially small bias inNC0

5. Later, in [3] it was
shown that, under standard cryptographic assumptions, there are pseudorandom gener-
ators inNC0

4. However, these PRGs have onlysublinear-stretch.
The first application of average-case complexity to inapproximability was suggested

by Feige [12], who derived new inapproximability results under the assumption that re-
futing 3SAT is hard on average on some natural distribution. Alekhnovich [1] continued
this line of research. He considered the problem of determining the maximal number of
satisfiable equations in a linear system chosen at random, and made several conjectures
regarding the average case hardness of this problem. He showed that these conjectures
imply Feige’s assumption as well as several new inapproximability results. While the
works of Feige and Alekhnovich derivednew inapproximability results (that were not
known to hold under the assumption thatP 6= NP), they did not rely on the relation
with a standard cryptographic assumption or primitive, but rather used specific average
case hardness assumptions tailored to their inapproximability applications. A relation
between the security of a cryptographic primitive and approximation was implicitly
used in [17], where an approximation algorithm for Max 2LIN was used to derive an
upper bound on the stretch of a PRG whose locality is 4.



2 Preliminaries

Probability notation. We useUn to denote a random variable uniformly distributed
over{0, 1}n. If X is a probability distribution, or a random variable, we writex ← X
to indicate thatx is a sample taken fromX. Themin-entropyof a random variableX
is defined asH∞(X) def= minx log( 1

Pr[X=x] ). Thestatistical distancebetween discrete
probability distributionsY andY ′, denoted‖Y −Y ′‖, is defined as the maximum, over
all functionsA, of thedistinguishing advantage|Pr[A(Y ) = 1]− Pr[A(Y ′) = 1]|.

A function ε(·) is said to benegligible if ε(n) < n−c for any constantc > 0 and
sufficiently largen. We will sometimes useneg(·) to denote an unspecified negligible
function. For two distribution ensembles{Xn}n∈N and{Yn}n∈N, we writeXn ≡ Yn

if Xn andYn are identically distributed, andXn
s≈ Yn if the two ensembles aresta-

tistically indistinguishable; namely,‖Xn − Yn‖ is negligible inn. A weaker notion of
closeness between distributions is that ofcomputationalindistinguishability: We write
Xn

c≈ Yn if for every (non-uniform) polynomial-size circuit family{An}, the distin-
guishing advantage|Pr[An(Xn) = 1]− Pr[An(Yn) = 1]| is negligible. By definition,
Xn ≡ Yn implies thatXn

s≈ Yn which in turn implies thatXn
c≈ Yn. A distribution

ensemble{Xn}n∈N is said to bepseudorandomif Xn
c≈ Un.

We will use the following definition of a pseudorandom generator.

Definition 1. (Pseudorandom generator)A pseudorandom generator (PRG) is a de-
terministic functionG : {0, 1}∗ → {0, 1}∗ satisfying the following two conditions:

– Expansion: There exists astretch functions : N → N such thats(n) > n for all
n ∈ N and|G(x)| = s(|x|) for all x ∈ {0, 1}∗.

– Pseudorandomness: The ensembles{G(Un)}n∈N and {Us(n)}n∈N are computa-
tionally indistinguishable.

Whens(n) = n + Ω(n) we say thatG is a linear-stretchpseudorandom generator
(LPRG). By default, we requireG to be polynomial time computable.

It will sometimes be convenient to define a PRG by an infinite family of functions
{Gn : {0, 1}m(n) → {0, 1}s(n)}n∈N. Such a family can be transformed into a single
function that satisfies Definition 1 via padding. We will also rely onε-biased generators,
defined similarly to PRGs except that the pseudorandomness holds only against linear
functions. Namely, for a bias functionε : N → (0, 1) we say thatG : {0, 1}n →
{0, 1}s(n) is anε-biased generator if for every non-constant linear functionL : GFn

2 →
GF2 and all sufficiently largen’s it holds that|Pr[L(G(Un)) = 1]− 1

2 | < ε(n).

Locality. We say thatf : {0, 1}n → {0, 1}s is c-local if each of its output bits depends
on at mostc input bits, and thatf : {0, 1}∗ → {0, 1}∗ is c-local if for everyn the
restriction off to n-bit inputs isc-local. The uniform versions of these classes contain
functions that can be computed in polynomial time.



3 LPRG in NC0 implies Hardness of Approximation

In the following we show that if there exists an LPRG inNC0 then there is no polynomial-
time approximation scheme (PTAS) for Max 3SAT; that is, Max 3SAT cannot be effi-
ciently approximated within some multiplicative constantr > 1. Recall that in the Max
3SAT problem we are given a 3CNF boolean formula withs clauses overn variables,
and our goal is to find an assignment that satisfies the largest possible number of clauses.
The Max`-CSP problem is a generalization of Max 3SAT in which instead ofs clauses
we gets boolean constraintsC = {C1, . . . , Cs} of arity `. Again, our goal is to find
an assignment that satisfies the largest possible number of constraints. (Recall that a
constraintC of arity ` overn variables is a pair(f : {0, 1}k → {0, 1}, (i1, . . . , ik)). A
constraintC is satisfied by an assignment(σ1, . . . , σn) if f(σi1 , . . . , σik

) = 1.)
The following standard lemma shows that in order to prove that Max 3SAT is hard

to approximate, it suffices to prove that Max`-CSP is hard to approximate. This follows
by applying Cook’s reduction to transform every constraint into a 3CNF.

Lemma 1. Assume that, for some constants` ∈ N andε > 0, there is no polynomial
time(1+ ε)-approximation algorithm for Max̀-CSP. Then there is anε′ > 0 such that
there is no polynomial time(1 + ε′)-approximation algorithm for Max 3SAT.

A simple and useful corollary of the PCP Theorem [5, 4] is the inapproximability
of Max 3SAT.

Theorem 1. Assume thatP 6= NP. Then, there is anε > 0 such that there is no
(1 + ε)-approximatation algorithm for Max 3SAT.

We now prove a similar result under the (stronger) assumption that there exists an
LPRG inNC0 without relying on the PCP Theorem.

Theorem 2. Assume that there exists an LPRG inNC0. Then, there is anε > 0 such
that there is no(1 + ε)-approximation algorithm for Max 3SAT.

Proof. Let s(n) = cn for some constantc > 1, and lets = s(n). Let G : {0, 1}n →
{0, 1}s(n) be an LPRG which is computable inNC0

` . Let0 < ε < 1/2 be a constant that
satisfiesH2(ε) < 1/2 − 1/(2c), whereH2(·) is the binary entropy function. Assume
towards a contradiction that there exists a PTAS for Max 3SAT. Then, by Lemma 1,
there exists a PTAS for Max̀-CSP. Hence, there exists a polynomial-time algorithm
Aε that distinguishes satisfiable instances of`-CSP from instances of̀-CSP for which
any assignment fails to satisfy a fractionε of the constraints. We show that, givenAε, we
can “break” the LPRGG; that is, we can construct an efficient (non-uniform) adversary
that distinguishes betweenG(Un) and Us. Our adversaryBn will translate a string
y ∈ {0, 1}s into an`-CSP instanceφy with s constraints such that,

1. If y ← G(Un) thenφy is always satisfiable.
2. If y ← Us then, with probability1 − neg(n), no assignment satisfies more than

(1− ε)s constraints ofφy.



Then,Bn will run Aε on φy and will outputAε(φy). The distinguishing advantage of
B is 1− neg(n) in contradiction to the pseudorandomness ofG.

It is left to show how to translatey ∈ {0, 1}s into an`-CSP instanceφy. We usen
boolean variablesx1, . . . , xn that represent the bits of an hypothetical pre-image ofy
underG. For every1 ≤ i ≤ s we add a constraintGi(x) = yi whereGi is the function
that computes thei-th output bit ofG. SinceGi is an`-local function the arity of the
constraint is at most̀.

Suppose first thaty ← G(Un). Then, there exists a stringσ ∈ {0, 1}n such that
G(σ) = y and henceφy is satisfiable. We move on to the case in whichy ← Us. Here,
we rely on the fact that such a randomy is very likely to be far from every element in
the range ofG. More formally, we define a setBADn ⊆ {0, 1}s such thaty ∈ BADn

if φy is (1−ε)-satisfiable; that is, if there exists an assignmentσ ∈ {0, 1}n that satisfies
a fraction(1− ε) of the constraints ofφy. In this case, the Hamming distance between
y and Im(G) is at mostεs. Therefore, the size ofBADn is bounded by

|Im(G)| ·
(

s

εs

)
≤ 2n2H2(ε)s = 2n(1+cH2(ε)) ≤ 2n(1+c( 1

2− 1
2c )).

Hence,

Pr
y←Us

[φy is (1− ε) satisfiable] = BADn · 2−s ≤ 2n(−c+1+c( 1
2− 1

2c )) = 2(1−c) n
2 ,

which completes the proof. ut

Remark 1.Theorem 2 can tolerate some relaxations to the notion of LPRG. In particu-
lar, since the advantage ofBn is exponentially close to 1, we can consider an LPRG that
satisfies a weaker notion of pseudorandomness in which the distinguisher’s advantage
is bounded by1− 1/p(n) for some polynomialp(n).

Papadimitriou and Yannakakis showed in [20] that if Max 3SAT does not have a
PTAS (i.e., it cannot be approximated up to an arbitrary constant), then several other
problems do not have PTAS as well (e.g., Max Cut, Max 2SAT, Vertex Cover). In
fact, [20] defined the class Max SNP, and showed that Max 3SAT is complete for this
class in the sense that any problem in Max SNP does not have a PTAS unless Max 3SAT
has a PTAS. Hence, we get the following corollary (again, without the PCP machinery):

Corollary 1. Assume that there exists LPRG inNC0. Then, all Max SNP problems do
not have a PTAS.

4 A Construction of LPRG in NC0

For ease of presentation, we describe our construction in a non-uniform way. We will
later discuss a uniform variant of the construction.



4.1 The Assumption

Let m = m(n) be an output length parameter wherem(n) > n, let ` = `(n) be a
locality parameter (typically a constant), and let0 < µ < 1 be a noise parameter. Let
Mm,n,` be the set of allm× n matrices overGF2 in which each row contains exactly
` ones. For a matrixM ∈Mm,n,` we denote byDµ(M) the distribution of the random
vector

Mx + e,

wherex ← Un ande ∈ {0, 1}m is a random error vector in which each entry is chosen
to be 1 with probabilityµ (independently of other entries), and arithmetic is overGF2.
The following assumption is a close variant of a conjecture suggested by Alekhnovich
in [1, Conjecture 1].2

Assumption 3. For any m(n) = O(n), and any constant0 < µ < 1, there exists a
positive integer̀ , and an infinite family of matrices{Mn}n∈N, Mn ∈Mm(n),n,`, such
that

Dµ(Mn)
c≈ Dµ+1/m(n)(Mn)

(Note that since we consider non-uniform distinguishers, we can assume thatMn is
public and is available to the distinguisher.)

Alekhnovich [1] shows that if the distributionDµ(Mn) satisfies the above assump-
tion then it is pseudorandom. (In fact, the original claim proved in [1, Thm. 3.1] deals
with slightly different distributions. However, the proof can be adapted to our setting.)

Lemma 2. For any polynomialm(n) and constant0 < µ < 1, and any infinite family,
{Mn}n∈N, of m(n) × n matrices overGF2, if Dµ(Mn)

c≈ Dµ+1/m(n)(Mn), then

Dµ(Mn)
c≈ Um(n).

Proof sketch.The proof follows by combining the following easy claims:

1. Dµ+1/m(n)(Mn) ≡ Dµ(Mn) + rn wherern ∈ {0, 1}m(n) is a random vector in
which each entry is chosen to be 1 with probabilityc/m(n) (independently of other
entries) for some constantc > 1.

2. Let r
t(n)
n be the distribution resulting from summingt(n) independent samples

from rn. Then, for some polynomialt(n) it holds thatrt(n)
n

s≈ Um(n).

3. Let {An} be a polynomial-time samplable distribution ensemble overGFm(n)
2 . For

a polynomialt(n), let A
t(n)
n be the sum (overGF2) of t(n) independent samples

from An. Suppose thatDn
c≈ Dn + An for some distribution ensemble{Dn}.

Then, for every polynomialt(n) we haveDn
c≈ Dn + A

t(n)
n .

2 Our assumption is essentially the same as Alekhnovich’s. The main difference between the two
assumptions is that the noise vectore in [1] is a random vector of weightdµme, as opposed
to our noise vector whose entries are chosen to be 1 independently with probabilityµ. It can
be shown that our assumption is implied by Alekhnovich’s assumption (since our iid noise
vectors can be viewed as a convex combination of noise vectors of fixed weight).



By the first claim and the Lemma’s hypothesis, we haveDµ(Mn)
c≈ Dµ(Mn) + rn.

Hence, for some polynomialt(n),

Dµ(Mn)
c≈ Dn + rt(n)

n

s≈ Dn + Um(n) ≡ Um(n),

where the first transition is due to the third claim and the second transition is due to the
second claim. ut

By combining Assumption 3 and Lemma 2, we get the following proposition:

Proposition 1. Suppose that Assumption 3 holds. Then, for anym(n) = O(n), and any
constant0 < µ < 1, there exists a constant` ∈ N, and an infinite family of matrices
{Mn}n∈N whereMn ∈Mm(n),n,` such thatDµ(Mn)

c≈ Um(n).

Remark 2.If the restriction on the density of the matricesMn is dropped, the above
proposition can be based on the conjectured (average case) hardness of decoding a
random linear code (cf., [7, 15]). In fact, under the latter assumption we have that
Dµ(Mn)

c≈ Um(n) for mostchoices ofMn’s.

4.2 The Construction

From here on, we letµ = 2−t for somet ∈ N. Then we can sample each bit of the error
vectore by taking the product oft independent random bits. In this case, we can define
anNC0 function whose output distribution is pseudorandom. Namely,

fn(x, ê) = Mnx + E(ê)

where

x ∈ {0, 1}n, ê ∈ {0, 1}t·m(n), E(ê) =




t∏

j=1

êt·(i−1)+j




m(n)

i=1

. (1)

Sincefn(Un, Ut·m(n)) ≡ Dµ(Mn), the distributionfn(Un, Ut·m(n)) is pseudorandom
under Assumption 3 (when the parameters are chosen appropriately). Moreover, the
locality of fn is ` + t = O(1). However,fn is not a pseudorandom generator as it uses
n + t ·m(n) input bits while it outputs onlym(n) bits. To overcome this obstacle, we
note that most of the entropy ofê was not “used”. Hence, we can apply anextractorto
regain the lost entropy. Of course, in order to get a PRG inNC0 the extractor should also
be computed inNC0. Moreover, to get a linear stretch we should extract all thet ·m(n)
random bits from̂e by investing less thann additional random bits. In the following,
we show that such extractors can be implemented by usingε-biased generators.

First, we show that the distribution ofê givenE(ê) contains (with high probability)
a lot of entropy. In the following we letm = m(n).

Lemma 3. Let ê ← Ut·m and E(ê) be defined as in Eq. 1. Denote by[ê|E(ê)] the
distribution ofê given the outcome ofE(ê). Then, except with probabilitye−(2−tm)/3,
it holds that

H∞([ê|E(ê)]) ≥ m(1− 2−t+1) log(2t − 1) ≥ t ·m(1− δ(t)), (2)

whereδ(t) = 2−Ω(t).



Proof. We view E(ê) as a sequence ofm independent Bernoulli trials, each with a
probability2−t of success. Recall that̂e is composed ofm blocks of lengtht, and that
thei-th bit of E(ê) equals the product of the bits in thei-th block ofê. Hence, whenever
E(ê)i = 1 all the bits of thei-th block of ê equal to 1, and whenE(ê)i = 0 the i-th
block of ê is uniformly distributed over{0, 1}t \ {1t}. Consider the case in which at
most2 · 2−tm components ofE(ê) are ones. By a Chernoff bound, the probability of
this event is at least1− e−(2−tm)/3. In this case,̂e is uniformly distributed over a set of
size at least(2t− 1)m(1−2−t+1). Hence,H∞([ê|E(ê)]) ≥ m(1− 2−t+1) log(2t− 1) ≥
tm(1− δ(t)), for δ(t) = 2−Ω(t). ut

ε-biased generators can be used to extract random bits from distributions that con-
tain sufficient randomness. Extractors based onε-biased generators were previously
used in [6, 11]. Formally,

Lemma 4 ([18, 2, 16]).Letg : {0, 1}s → {0, 1}n be anε-biased generator, and letXn

be a random variable taking values in{0, 1}n whose min-entropy is at leastp. Then,

‖(g(Us) + Xn)− Un‖ ≤ ε · 2(n−p−1)/2 .

It can be shown that for some fixed exponentially small biasε(n) = 2−Ω(n) and
every constantc there exists anε-biased generator inNC0 that stretchesn bits into
cn bits. (The locality of this generator depends onc). Hence, wheneverp exceed some
linear threshold we can extractn bits fromXn in NC0 by investing onlyn/c random
bits for any arbitraryc. (Details are deferred to the full version.) However, in our casep
is very close ton and so we can rely on a weakerε-biased generator with an arbitrary
linear stretchc and biasε = 2−n/poly(c). Recently, Mossel et al. [17] constructed such
anε-biased generator inNC0

5.

Lemma 5 ([17], Thm. 14). For every constantc, there exists anε-biased generator
g : {0, 1}n → {0, 1}cn in NC0

5 whose bias is at most2−bn/c4
(whereb is some universal

constant that does not depend onc).

We remark that the above construction can be implemented inuniformNC0 by using
the results of [9, Theorem 7.1].3

We can now describe our LPRG.

Construction 4. Lett and` be positive integers, andc, k > 1 be real numbers that will
be used as stretch factors. Letm = kn and let{Mn ∈Mn,m,`} be an infinite family of
matrices. Letg : {0, 1}n → {0, 1}cn be theε-biased generator promised by Lemma 5.
We define the function

Gn(x, ê, r) = (Mnx + E(ê), g(r) + ê),

wherex ∈ {0, 1}n, ê ∈ {0, 1}t·m, r ∈ {0, 1}t·m/c, E(ê) =
(∏t

j=1 êt·(i−1)+j

)m

i=1
.

3 Theorem 7.1 of [9] gives an explicit family of asymmetric constant-degree bipartite expanders,
which can replace the probabilistic construction given in [17, Lemma 12]. We note that the
locality of the resulting generator depends onc. See full version for details.



Observe thatGn is anNC0 function. We show that if the parameters are chosen
properly thenGn is an LPRG.

Lemma 6. Under Assumption 3, there exist constantst, ` ∈ N, constantsc, k > 1, and
a family of matrices{Mn ∈ Mn,m,`} such that the functionGn defined in Construc-
tion 4 is an LPRG.

Proof. Setk > 1 to be some arbitrary constant and letm = kn. Let c = 2t/(1− 1/k)
and chooset to be a constant satisfying:

∆
def=

bt

c5
− δ(t) > 0, (3)

whereδ(·) is the negligible function from Eq. 2 andb is the bias constant of Lemma 5.
There exists a (large) constantt satisfying the above sinceδ(t) = 2−Ω(t) while bt/c5 =
Θ(1/t4). Let` ∈ N be a constant and{Mn ∈Mn,m,`} be an infinite family of matrices
satisfying Assumption 3.

First, we show thatGn has linear stretch. The input length ofGn isn+tm+tm/c =
n(tk + k/2 + 1/2). The output length ism(t + 1) = n(tk + k). Hence, sincek > 1,
the constanttk + k/2+1/2 is smaller than the constanttk + k, and so the functionGn

has a linear stretch.
Let x, ê andr be uniformly distributed over{0, 1}n, {0, 1}t·m and{0, 1}t·m/c re-

spectively. We prove that the distributionGMn(x, ê, r) is pseudorandom. By Lem-
mas 3, 4 and 5 it holds that

‖(E(ê), ê + g(r))− (E(ê), Ut·m)‖ ≤ e−(2−tm)/3 + 2−b(tm/c)/c4
2(tm−(t−δ(t))m−1)/2

≤ e−(2−tm)/3 + 2(δ(t)−bt/c5)m

≤ e−(2−tm)/3 + 2−∆m = neg(m) = neg(n),

where the last inequality is due to Eq. 3. Therefore, by Proposition 1, we get that

(Mnx+E(ê), g(r)+ê)
s≈ (Mnx+E(ê), Ut·m) ≡ (D2−t(Mn), Ut·m)

c≈ (Um, Ut·m) .

ut
By the above Lemma we get a construction of LPRG inNC0 from Assumption 3.

In fact, in [3] it is shown that such an LPRG can be transformed into an LPRG whose
locality is 4. Hence, we have:

Theorem 5. Under Assumption 3, there exists an LPRG inNC0
4.

Mossel et al. [17] showed that a PRG inNC0
4 cannot achieve a superlinear stretch.

Hence, Theorem 5 is essentially optimal with respect to stretch.

Remarks on Theorem 5.

1. (Uniformity) Our construction uses a family of matrices{Mn} satisfying Assump-
tion 3 as a non-uniform advice. We can eliminate this advice and construct an
LPRG inuniformNC0

4 by slightly modifying Assumption 3. In particular, we fol-
low Alekhnovich (cf. [1, Remark 1]) and conjecture that any family{Mn} of good



expanders satisfy Assumption 3. Hence, our construction can be implemented by
using an explicit family of asymmetric constant-degree bipartite expanders such as
the one given in [9, Theorem 7.1].

2. (The stretch of the construction) Our techniques do not yield asuperlinearstretch
PRG inNC0. To see this, consider a variant of Assumption 3 in which we allow
m(n) to be superlinear and letµ(n) be subconstant. (These modifications are nec-
essary to obtain a superlinear PRG.) In this case, the noise distribution cannot be
sampled inNC0 (sinceµ(n) is subconstant). This problem can be bypassed by
extending Assumption 3 to alternative noise models in which the noise is not iid.
However, it is not clear how such a modification affects the hardness assumption.

5 The Necessity of Expansion

As pointed out in the previous section, our construction of LPRG makes use of ex-
pander graphs. This is also the case in several constructions of “hard functions” with
low locality (e.g., [13, 17, 1]). We now show that this is not coincidental at least in the
case of PRGs. Namely, we show that the structure of any LPRG inNC0 contains a
copy of a graph with some expansion property. (In fact, this holds even in the case of
ε-biased generators.) Then, we use known lower bounds for expander graphs to rule out
the possibility of exponentially strong PRG with superlinear stretch inNC0.

Let g : {0, 1}n → {0, 1}s be a PRG. We claim that every setS of output bits whose
size isO(log n) touches at least|S| input bits. Otherwise, there exists a small setS of
output bits and a stringy ∈ {0, 1}|S| such thatPr[gS(Un) = y] = 0 (wheregS(·) is
the restriction ofg to the output bits ofS). Hence, an efficient adversary can distinguish
betweengS(Un) andU|S| with advantage2−O(logn) = 1/poly(n), in contradiction to
the pseudorandomness ofg. More generally, ifg is ε-strong (i.e., cannot be broken by
any efficient adversary with probabilityε), then every set oft ≤ log(1/ε) output bits
touches at leastt input bits. This claim extends to the case ofε-biased generators by
using the Vazirani XOR Lemma [22].

In graph theoretic terms, we have a bipartite graphG = ((In = [n],Out = [s]), E)
that enjoys some output expansion property. This property is trivial when the output
degree ofG is high (as in standard constructions of PRGs) or whens is not much larger
thann (as in theNC0 constructions of [3]). However, when the locality is constant
and the stretch is linear,G is a sparse bipartite graph havingn input vertices,s =
n + Ω(n) output vertices, and a constant output degree. In the standard cryptographic
setting, whenε(n) is negligible, we get expansion for sets of sizeO(log(n)). That is,
G expands (output) sets of size smaller thanω(log n). Whenε < 2−Ω(n) (as in the
ε-biased construction of [17]), we get expansion for sets of size at mostΩ(n).

Radhakrishnan and Ta-Shma [21] obtained some lower bounds for similar graphs.
In particular, by using [21, Thm. 1.5] it can be shown that ifg : {0, 1}n → {0, 1}s

is anNC0
` function that enjoys the above expansion property for sets of size≤ t, then

` ≥ Ω(log(s/t)/ log(n/t)). We therefore conclude that there is no2−Ω(n)-strong PRG
(resp.2−Ω(n)-biased generator) with superlinear stretch inNC0.

Acknowledgments.We thank Eli Ben-Sasson and Amir Shpilka for helpful discus-
sions.
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