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Abstract. We consider the question of constructing cryptographic pseudoran-
dom generators (PRGs) INC®, namely ones in which each bit of the output
depends on just a constant number of input bits. Previous constructions of such
PRGs were limited to stretching a seedrobits ton + o(n) bits. This leaves
open the existence of a PRG with a linear (let alone superlinear) streN@n
In this work we study this question and obtain the following main results:
1. We show that the existence of a linear-stretch PRAI° implies non-
trivial hardness of approximation resutdthout relying on PCP machinery
In particular, that Max 3SAT is hard to approximate to within some constant.
2. We construct a linear-stretch PRGNC? under a specific intractability as-
sumption related to the hardness of decoding “sparsely generated” linear
codes. Such an assumption was previously conjectured by Alekhnovich [1].
We note that Alekhnovich directly obtains hardness of approximation results from
the latter assumption. Thus, we do not prove hardness of approximation under
new concreteassumptions. However, our first result is motivated by the hope to
prove hardness of approximation under more general or standard cryptographic
assumptions, and the second result is independently motivated by cryptographic
applications.

1 Introduction

A cryptographic pseudorandom generator (PRG) [8, 24] is a deterministic function that
stretches a short random seed into a longer string which cannot be distinguished from
random by any polynomial-time observer. In this work, we study the existence of PRGs
that are both (1) extremely parallel and (2) stretch their seed by a significant amount.

Considering the first goal alone, it was recently shown in [3] that the ultimate
level of parallelism can be achieved under most standard cryptographic assumptions.
Specifically, any PRG ilNC' (the existence of which follows, for example, from the
intractability of factoring, discrete logarithm, or lattice problems) can be efficiently
“compiled” into a PRG irNC", namely one in which each output bit depends on just a
constant number of input bits. However, the PRGs produced by this compiler can only
stretch their seed by a sublinear amount: fretyits ton+ O(n°) bits for some constant
€ < 1. Thus, these PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just one
bit can be used to construct a PRG that stretches its seed by any polynomial number of
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bits. However, all known constructions of this type are inherently sequential. Thus, we
cannot use known techniques for turninghé@® PRG with a sublinear stretch into one
with a linear, let alone superlinear, stretch.

The above state of affairs leaves open the existencdiméar-stretchPRG (LPRG)
in NC°; namely, one that stretches a seecdhadbits into n 4+ £2(n) output bits! (In
fact, there was no previous evidence for the existence of LPRGs even in the higher
complexity classAC.) This question is the main focus of our work. The question has a
very natural motivation from a cryptographic point of view. Indeed, most cryptographic
applications of PRGs either require a linear stretch (for example Naor’s bit commitment
scheme [19]), or alternatively depend on a larger stretch for efficiency (this is the case
for the standard construction of a stream cipher or stateful symmetric encryption from
a PRG, see [14]). Thus, the existence of an LPRG@ would imply better parallel
implementations of other cryptographic primitives.

1.1 Our Contribution

LPRG in NC° implies hardness of approximation.We give a very different, and
somewhat unexpected, motivation for the above question. We observe that the existence
of an LPRG inNC" directly implies non-trivial and useful hardness of approximation
results. Specifically, we show (via a very simple argument) that an LPRGfhim-

plies that Max 3SAT cannot be efficiently approximated to within some multiplicative
constant. This continues a recent line of work, initiated by Feige [12] and followed
by Alekhnovich [1], that provides simpler alternatives to the traditional PCP-based ap-
proach by relying on stronger assumptions. Unlike these previous works, which rely on
very specific assumptions, our assumption is of a more general flavor and may serve to
further motivate the study of cryptography¥C°. On the down side, the conclusions

we get are weaker and in particular are implied by the PCP theorem. In contrast, some
inapproximability results from [12, 1] could not be obtained using PCP machinery. It is
instructive to note that by applying our general argument to the sublinear-stretch PRGs
in NC" from [3] we only get “uninteresting” inapproximability results that follow from
standard padding arguments (assumiggNIP). Furthermore, we do not know how to
obtain stronger inapproximability results based on a superlinear-stretch PRG’in

Thus, our main question of constructing LPRGsNG captures precisely what is
needed for this application.

Constructing an LPRG in NC°. We present a construction of an LPRGNG under

a specific intractability assumption related to the hardness of decoding “sparsely gen-
erated” linear codes. Such an assumption was previously conjectured by Alekhnovich
in [1]. The starting point of our construction is a modified version of a PRG from [1]
that has a large output locality (that is, each output bit depends on many input bits) but
has a simple structure. The main technical tool we employ in order to reduce its locality
is a randomness extractor MC° that can use a “sufficiently short” seed for sources
with a “sufficiently high” entropy. We construct the latter by combining the known

! Note that ariNC® LPRG can be composed with itself a constant number of times to yield an
NC° PRG with arbitrary constant stretch.



construction of randomness extractors frethiased generators [18, 6] with previous
constructions ot-biased generator iNC" [17]. Our LPRG can be implemented with
locality 4; this LPRG is essentially optimal, as it is known that no PRG with locality 4
can have auperlinearstretch [17]. However, the existence of superlinear-stretch PRG
with a higher (but constant) locality remains open.

By combining the two main results described above, one gets non-trivial inapprox-
imability results under the intractability assumption from [1]. These (and stronger) re-
sults weredirectly obtained in [1] from the same assumptiaithout constructing an
LPRG inNCP. Our hope is that future work will yield constructions of LPRG&ifi”
under different, perhaps more standard, assumptions, and that the implications to hard-
ness of approximation will be strengthened.

LPRG in NC" and Expanders.Finally, we observe that any LPRG MC" contains

a copy of a graph with some non-trivial expansion property. This connection implies
that a (deterministic) construction of an LPRGN@" must use some non-trivial com-
binatorial objects. (In particular, one cannot hope for “simple” transformations, such as
those given in [3], to yield LPRGs iNC".) The connection with expanders also allows

to rule out the existence ekponentiallystrong PRGs witlsuperlinearstretch inNC°.

1.2 Related Work

The existence of PRGs INC" has been recently studied in [10, 17, 3]. Cryan and Mil-
tersen [10] observe that there is no PR®VIA) (i.e., where each output bit depends on
at most two input bits), and prove that there is no PR@I@Q achieving a superlinear
stretch; namely, one that stretchebits ton + w(n) bits. Mossel et al. [17] extend this
impossibility toNCY. Viola [23] shows that an LPRG iAC" cannot be obtained from
a OWF via non-adaptive black-box constructions. This result can be extended to rule
out such a construction even if we start with a PRG whose stretch is sublinear.

On the positive side, Mossel et al. [17] constructed (non-cryptograpHitased
generators with linear stretch and exponentially small bid$G. Later, in [3] it was
shown that, under standard cryptographic assumptions, there are pseudorandom gener-
ators inNCY. However, these PRGs have oslyblinear-stretch

The first application of average-case complexity to inapproximability was suggested
by Feige [12], who derived new inapproximability results under the assumption that re-
futing 3SAT is hard on average on some natural distribution. Alekhnovich [1] continued
this line of research. He considered the problem of determining the maximal number of
satisfiable equations in a linear system chosen at random, and made several conjectures
regarding the average case hardness of this problem. He showed that these conjectures
imply Feige’s assumption as well as several new inapproximability results. While the
works of Feige and Alekhnovich derivetwinapproximability results (that were not
known to hold under the assumption thatZz NP), they did not rely on the relation
with a standard cryptographic assumption or primitive, but rather used specific average
case hardness assumptions tailored to their inapproximability applications. A relation
between the security of a cryptographic primitive and approximation was implicitly
used in [17], where an approximation algorithm for Max 2LIN was used to derive an
upper bound on the stretch of a PRG whose locality is 4.



2 Preliminaries

Probability notation. We useU,, to denote a random variable uniformly distributed
over{0,1}". If X is a probability distribution, or a random variable, we write— X

to indicate thatr is a sample taken fron’X. The min-entropyof a random variableX

is defined adl. (X) < min, log(m). Thestatistical distancédetween discrete
probability distributiond” andY”, denoted|Y — Y|, is defined as the maximum, over
all functions A, of thedistinguishing advantagePr[A(Y) = 1] — Pr[A(Y”) = 1]|.

A function e(-) is said to benegligibleif ¢(n) < n~° for any constant > 0 and
sufficiently largen. We will sometimes useeg(-) to denote an unspecified negligible
function. For two distribution ensemblés(,, },,cy and{Y;, }nen, We write X, = Y,
if X,, andY,, are identically distributed, and’,, ~ Y,, if the two ensembles arsgta-
tistically indistinguishablgnamely,|| X, — Y3, || is negligible inn. A weaker notion of
closeness between distributions is thatomputationaindistinguishability: We write
X, ~ Y, if for every (non-uniform) polynomial-size circuit familyA,, }, the distin-
guishing advantagePr[4, (X,) = 1] — Pr[4,(Y,) = 1]| is negligible. By definition,
X, =Y, implies thatX,, ~ Y,, which in turn implies thatX,, ~ Y,,. A distribution
ensemblg X, } ,<n is said to bepseudorandonf X, ~U,.

We will use the following definition of a pseudorandom generator.

Definition 1. (Pseudorandom generator)A pseudorandom generator (PRG) is a de-
terministic functionG : {0,1}* — {0, 1}* satisfying the following two conditions:

— Expansion There exists atretch functiors : N — N such thats(n) > n for all
n € Nand|G(z)| = s(|z|) forall z € {0,1}*.

— PseudorandomnessThe ensemble$G (U, ) }nen and {Us () bnen are computa-
tionally indistinguishable.

Whens(n) = n + 2(n) we say thatG is a linear-stretchpseudorandom generator
(LPRG). By default, we requit@ to be polynomial time computable.

It will sometimes be convenient to define a PRG by an infinite family of functions
{G,, : {0,1}™(™) — {0,1}*(™}, cy. Such a family can be transformed into a single
function that satisfies Definition 1 via padding. We will also rely:dniased generators
defined similarly to PRGs except that the pseudorandomness holds only against linear
functions. Namely, for a bias function: N — (0,1) we say thatG : {0,1}" —
{0,1}*(") is anc-biased generator if for every non-constant linear funcfiarGF —

GF, and all sufficiently largex’s it holds that| Pr[L(G(U,)) = 1] — 1| < e(n).

Locality. We say thatf : {0,1}™ — {0,1}° is c-local if each of its output bits depends
on at mostc input bits, and thaf : {0,1}* — {0,1}* is c-local if for everyn the
restriction of f to n-bit inputs isc-local. The uniform versions of these classes contain
functions that can be computed in polynomial time.



3 LPRG in NC° implies Hardness of Approximation

In the following we show that if there exists an LPRGN" then there is no polynomial-
time approximation scheme (PTAS) for Max 3SAT; that is, Max 3SAT cannot be effi-
ciently approximated within some multiplicative constant 1. Recall that in the Max
3SAT problem we are given a 3CNF boolean formula wittlauses overn variables,
and our goal is to find an assignment that satisfies the largest possible number of clauses.
The Max¢-CSP problem is a generalization of Max 3SAT in which instead duses
we gets boolean constraint€’ = {C,...,C,} of arity ¢£. Again, our goal is to find
an assignment that satisfies the largest possible number of constraints. (Recall that a
constraintC of arity £ overn variables is a paiff : {0, 1}* — {0,1}, (i1,...,iz)). A
constraintC' is satisfied by an assignmefaty, ..., 0,) if f(oi,...,04,) = 1.)

The following standard lemma shows that in order to prove that Max 3SAT is hard
to approximate, it suffices to prove that M&GCSP is hard to approximate. This follows
by applying Cook’s reduction to transform every constraint into a 3CNF.

Lemma 1. Assume that, for some constadits N ande > 0, there is no polynomial
time (1 + ¢)-approximation algorithm for Max-CSP. Then there is ari > 0 such that
there is no polynomial timél + ¢’)-approximation algorithm for Max 3SAT.

A simple and useful corollary of the PCP Theorem [5, 4] is the inapproximability
of Max 3SAT.

Theorem 1. Assume thaP # NP. Then, there is am > 0 such that there is no
(1 + ¢)-approximatation algorithm for Max 3SAT.

We now prove a similar result under the (stronger) assumption that there exists an
LPRG inNC° without relying on the PCP Theorem.

Theorem 2. Assume that there exists an LPRGNA'. Then, there is am > 0 such
that there is nq1 + ¢)-approximation algorithm for Max 3SAT.

Proof. Let s(n) = cn for some constant > 1, and lets = s(n). LetG : {0,1}" —
{0,1}*™ be an LPRG which is computable NCY. Let0 < ¢ < 1/2 be a constant that
satisfiesH,(e) < 1/2 — 1/(2¢), whereHs(+) is the binary entropy function. Assume
towards a contradiction that there exists a PTAS for Max 3SAT. Then, by Lemma 1,
there exists a PTAS for Ma&CSP. Hence, there exists a polynomial-time algorithm
A, that distinguishes satisfiable instanceg-&SP from instances @tCSP for which

any assignment fails to satisfy a fractioof the constraints. We show that, givep, we

can “break” the LPRG?7; that is, we can construct an efficient (non-uniform) adversary
that distinguishes betwee®(U,,) and U,. Our adversaryB,, will translate a string

y € {0,1}* into an¢-CSP instance, with s constraints such that,

1. If y — G(U,,) theng, is always satisfiable.
2. If y «— U, then, with probabilityl — neg(n), no assignment satisfies more than
(1 — ¢)s constraints ofp,,.



Then, B,, will run A, on ¢, and will outputA.(¢,). The distinguishing advantage of
Bis 1 — neg(n) in contradiction to the pseudorandomness:of

It is left to show how to translatg € {0,1}* into an¢-CSP instance,. We usen
boolean variables, ..., z, that represent the bits of an hypothetical pre-image of
underG. For everyl < i < s we add a constrair; (z) = y; whereG; is the function
that computes théth output bit of G. SinceG; is an/-local function the arity of the
constraint is at most

Suppose first thay < G(U,,). Then, there exists a string € {0,1}" such that
G(o) = y and hence, is satisfiable. We move on to the case in which- U,. Here,
we rely on the fact that such a randanis very likely to be far from every element in
the range of7. More formally, we define a s&AD,, C {0,1}*® such thaty € BAD,,
if ¢, is (1 —¢)-satisfiable; that is, if there exists an assignmest {0, 1}" that satisfies
a fraction(1 — ¢) of the constraints o,,. In this case, the Hamming distance between
y and ImG) is at mosts. Therefore, the size dAD,, is bounded by

|Im(G)| ) (8) < 2n2H2(s)s — 2n(1+cH2(s)) < 2n(1+('(%—2—1p))
ES

Hence,

Pr [, is (1 — ¢) satisfiablé= BAD,, - 27° < 27(-ctlte(3=30)) — 91=) 3

y—Us

which completes the proof. ad

Remark 1.Theorem 2 can tolerate some relaxations to the notion of LPRG. In particu-
lar, since the advantage 6%, is exponentially close to 1, we can consider an LPRG that
satisfies a weaker notion of pseudorandomness in which the distinguisher’s advantage
is bounded byl — 1/p(n) for some polynomiap(n).

Papadimitriou and Yannakakis showed in [20] that if Max 3SAT does not have a
PTAS (i.e., it cannot be approximated up to an arbitrary constant), then several other
problems do not have PTAS as well (e.g., Max Cut, Max 2SAT, Vertex Cover). In
fact, [20] defined the class Max SNP, and showed that Max 3SAT is complete for this
class in the sense that any problem in Max SNP does not have a PTAS unless Max 3SAT
has a PTAS. Hence, we get the following corollary (again, without the PCP machinery):

Corollary 1. Assume that there exists LPRGNi©”. Then, all Max SNP problems do
not have a PTAS.

4 A Construction of LPRG in NC°

For ease of presentation, we describe our construction in a non-uniform way. We will
later discuss a uniform variant of the construction.



4.1 The Assumption

Let m = m(n) be an output length parameter whengn) > n, let¢{ = ¢(n) be a
locality parameter (typically a constant), andlet 1 < 1 be a noise parameter. Let
M n.e be the set of alin x n matrices oveGF2 in which each row contains exactly
¢ ones. Foramatri®f{ € M,, ,, , we denote byD,, (M) the distribution of the random
vector

Mz + e,

wherex — U,, ande € {0, 1} is a random error vector in which each entry is chosen
to be 1 with probability: (independently of other entries), and arithmetic is duék,.

The following assumption is a close variant of a conjecture suggested by Alekhnovich
in [1, Conjecture 1]?

Assumption 3. For anym(n) = O(n), and any constan® < u < 1, there exists a
positive integer, and an infinite family of matricegM,, }nen, My, € My (n), 0,0, SUCH
that

D,u(Mn) ~ Du—&-l/m(n)(Mn)

(Note that since we consider non-uniform distinguishers, we can assumé/that
public and is available to the distinguisher.)

Alekhnovich [1] shows that if the distributioR, (M,,) satisfies the above assump-
tion then it is pseudorandom. (In fact, the original claim proved in [1, Thm. 3.1] deals
with slightly different distributions. However, the proof can be adapted to our setting.)

Lemma 2. For any polynomialn(n) and constanf < p < 1, and any infinite family,
{M,}nen, of m(n) x n matrices overGFs, if D,(M,) = D11 /mm(M,), then
D#(Mn) & Urn(n)'

Proof sketch.The proof follows by combining the following easy claims:

1. Dyitymny(My) = Dy(M,) + 7, Wherer,, € {0,1}™™ is a random vector in
which each entry is chosen to be 1 with probabidityn(n) (independently of other
entries) for some constaat> 1.

2. Let rff”) be the distribution resulting from summirtgr) independent samples
from r,,. Then, for some polynomia(n) it holds thatrf,,(") ~ Unn(n)-

3. Let{A, } be a polynomial-time samplable distribution ensemble @/]é’f("). For
a polynomialt(n), let A" pe the sum (ove6Fy) of t(n) independent samples
from A,,. Suppose thabD,, ~ D, + A, for some distribution ensemblgD,, }.
Then, for every polynomial(n) we haveD,, ~ D,, + Al

2 Our assumption is essentially the same as Alekhnovich’s. The main difference between the two
assumptions is that the noise vectan [1] is a random vector of weighftum], as opposed
to our noise vector whose entries are chosen to be 1 independently with probabitigan
be shown that our assumption is implied by Alekhnovich’s assumption (since our iid noise
vectors can be viewed as a convex combination of noise vectors of fixed weight).



By the first claim and the Lemma’s hypothesis, we haygM,,) ~ D, (M) + 4.
Hence, for some polynomiain),

D,u(Mn) é D, + r;(n) é D, + Um(n) = Um,(n)7

where the first transition is due to the third claim and the second transition is due to the
second claim. a

By combining Assumption 3 and Lemma 2, we get the following proposition:

Proposition 1. Suppose that Assumption 3 holds. Then, forrafy) = O(n), and any
constant) < u < 1, there exists a constaiite N, and an infinite family of matrices
{M, }nen WhereM,, € M, (n) n ¢ SUCh thatD , (M) = Uy,

Remark 2.If the restriction on the density of the matricé$, is dropped, the above
proposition can be based on the conjectured (average case) hardness of decoding a
random linear code (cf., [7,15]). In fact, under the latter assumption we have that
D, (M) = Uy, for mostchoices ofi,,’s.

4.2 The Construction

From here on, we lgt = 2~ for somet € N. Then we can sample each bit of the error
vectore by taking the product of independent random bits. In this case, we can define
anNC" function whose output distribution is pseudorandom. Namely,

fn(x,€) = Myx + E(é)

where

m(n)

t
ze{0,1yn, ee{o, 1}, B@) =[] e
i=1 i=1

Since f.(Un, Up.m(n)) = Dyu(M,,), the distributionf,, (Uy, Uy.m(n)) iS pseudorandom
under Assumption 3 (when the parameters are chosen appropriately). Moreover, the
locality of f,, is ¢ + ¢t = O(1). However,f,, is not a pseudorandom generator as it uses
n 4t - m(n) input bits while it outputs onlyn(n) bits. To overcome this obstacle, we
note that most of the entropy éfwas not “used”. Hence, we can apply extractorto
regain the lost entropy. Of course, in order to get a PRISGN the extractor should also
be computed ilNC®. Moreover, to get a linear stretch we should extract altthe(n)
random bits frome by investing less than additional random bits. In the following,
we show that such extractors can be implemented by usbigsed generators

First, we show that the distribution éfgiven E(¢é) contains (with high probability)
a lot of entropy. In the following we lets = m(n).

Lemma 3. Leté — U,.,,, and E(é) be defined as in Eq. 1. Denote B F(é)] the

distribution ofé given the outcome df(¢). Then, except with probability (2~ m)/3,
it holds that

Hoo ([6[E(8)]) = m(1 — 27" ) log(2" — 1) > ¢ - m(1 - §(t)), 2
wheres(t) = 2720,



Proof. We view E(¢é) as a sequence of. independent Bernoulli trials, each with a
probability2~* of success. Recall thatis composed ofr blocks of lengtht, and that
thei-th bit of E(é) equals the product of the bits in tixh block ofé. Hence, whenever
E(é); = 1 all the bits of thei-th block ofé equal to 1, and whe®(¢); = 0 thei-th
block of ¢ is uniformly distributed ovef0, 1}! \ {1¢}. Consider the case in which at
most2 - 2~*m components ofZ(¢é) are ones. By a Chernoff bound, the probability of
this event is at least— e =2 “™)/3 _|n this case¢ is uniformly distributed over a set of
size at least2 — 1)™(1=2"""") Hence Hoo ([6|E(8)]) = m(1 — 2711 log(2t — 1) >
tm(1 — 6(t)), for §(t) = 2=9®, O

e-biased generators can be used to extract random bits from distributions that con-
tain sufficient randomness. Extractors basedednased generators were previously
used in [6, 11]. Formally,

Lemma 4 ([18,2,16]).Letg : {0,1}* — {0, 1}" be ans-biased generator, and let,,
be a random variable taking values {, 1} whose min-entropy is at leagt Then,

1(g(Us) + X)) = Uyl < e-20np=0/2

It can be shown that for some fixed exponentially small biag = 2~ and
every constant there exists ar-biased generator itNC® that stretches: bits into
cn bits. (The locality of this generator depends«@nHence, whenever exceed some
linear threshold we can extragtbits from X, in NC° by investing onlyn/c random
bits for any arbitrary. (Details are deferred to the full version.) However, in our gase
is very close tan and so we can rely on a weakebiased generator with an arbitrary
linear stretche and biass = 2-"/P°(¢) Recently, Mossel et al. [17] constructed such
ane-biased generator iNC}.

Lemmab5 ([17], Thm. 14). For every constant, there e4xists amr-biased generator
g:{0,1}™ — {0,1}" in NC2 whose bias is at mogt /<" (whereb is some universal
constant that does not depend @n

We remark that the above construction can be implementediform NC° by using
the results of [9, Theorem 7.1.
We can now describe our LPRG.

Construction 4. Lett and{ be positive integers, ang k& > 1 be real numbers that will
be used as stretch factors. Let= kn and let{ M,, € M,, ,, ¢} be an infinite family of
matrices. Ley : {0,1}" — {0,1}°" be thes-biased generator promised by Lemma 5.
We define the function

Gn(x,é,r) - (MRZC + E(é),g(T) + é)a

m
wherez € {03 1}77,7 €€ {07 1}t-m7 re {03 1}t-m/¢27 E(é) = (H;:1 ét‘(i—l)'l‘j)i:l .
3 Theorem 7.1 of [9] gives an explicit family of asymmetric constant-degree bipartite expanders,
which can replace the probabilistic construction given in [17, Lemma 12]. We note that the
locality of the resulting generator dependscwoisee full version for details.



Observe that3,, is anNC? function. We show that if the parameters are chosen
properly then,, is an LPRG.

Lemma 6. Under Assumption 3, there exist constantse N, constantsg;, k > 1, and
a family of matrice M,, € M,, ., ¢} such that the functiot,, defined in Construc-
tion 4 is an LPRG.

Proof. Setk > 1 to be some arbitrary constant and#et= kn. Letc = 2t/(1 — 1/k)
and choose to be a constant satisfying:

Adzef%—é(t)>0, 3)

whered(-) is the negligible function from Eq. 2 arids the bias constant of Lemma 5.
There exists a (large) constargatisfying the above sincggt) = 2~(*) while bt/c® =
O(1/t%). Let/ € N be a constant anV/,, € M,, ,,, ¢} be an infinite family of matrices
satisfying Assumption 3.

First, we show thaf?,, has linear stretch. The input length®f, isn+tm+tm/c =
n(tk + k/2 4+ 1/2). The output length isn(t + 1) = n(tk + k). Hence, sincé > 1,
the constantk + k/2 + 1/2 is smaller than the constati + k, and so the functiory,,
has a linear stretch.

Let =, ¢ andr be uniformly distributed ovef0, 1}", {0, 1}*™ and{0, 1}*"™/¢ re-
spectively. We prove that the distributiai,,, (x,é,r) is pseudorandom. By Lem-
mas 3, 4 and 5 it holds that

[(B(@), &+ 9(r)) — (B(@), Uem)l| < e M3 4 -oem/e)/e* gm=u=s(c)m=1)/
< e—(27tm)/3 +2(5(t)—bt/(z5)7rz

< e (@7'm)/3 4 g-Am neg(m) = neg(n),
where the last inequality is due to Eq. 3. Therefore, by Proposition 1, we get that
(Mpz+E(é), g(r)+é) & (Mpx+E(), Upm) = (Dg—t (M), Uorn) = (Upny Upn) -
O

By the above Lemma we get a construction of LPR®i#’ from Assumption 3.

In fact, in [3] it is shown that such an LPRG can be transformed into an LPRG whose

locality is 4. Hence, we have:
Theorem 5. Under Assumption 3, there exists an LPRGV@!.

Mossel et al. [17] showed that a PRG WCY cannot achieve a superlinear stretch.
Hence, Theorem 5 is essentially optimal with respect to stretch.

Remarks on Theorem 5.

1. (Uniformity) Our construction uses a family of matricgd/,, } satisfying Assump-

tion 3 as a non-uniform advice. We can eliminate this advice and construct an

LPRG inuniformNC by slightly modifying Assumption 3. In particular, we fol-
low Alekhnovich (cf. [1, Remark 1]) and conjecture that any fanjil/,, } of good



expanders satisfy Assumption 3. Hence, our construction can be implemented by
using an explicit family of asymmetric constant-degree bipartite expanders such as
the one givenin [9, Theorem 7.1].

2. (The stretch of the construction) Our techniques do not yiedderlinearstretch
PRG inNC". To see this, consider a variant of Assumption 3 in which we allow
m(n) to be superlinear and lgt(n) be subconstant. (These modifications are nec-
essary to obtain a superlinear PRG.) In this case, the noise distribution cannot be
sampled inNC° (sinceu(n) is subconstant). This problem can be bypassed by
extending Assumption 3 to alternative noise models in which the noise is not iid.
However, it is not clear how such a modification affects the hardness assumption.

5 The Necessity of Expansion

As pointed out in the previous section, our construction of LPRG makes use of ex-
pander graphs. This is also the case in several constructions of “hard functions” with
low locality (e.g., [13,17, 1]). We now show that this is not coincidental at least in the
case of PRGs. Namely, we show that the structure of any LPR&UA contains a
copy of a graph with some expansion property. (In fact, this holds even in the case of
e-biased generators.) Then, we use known lower bounds for expander graphs to rule out
the possibility of exponentially strong PRG with superlinear stretdiaH.
Letg:{0,1}" — {0,1}° be a PRG. We claim that every sebf output bits whose
size isO(logn) touches at leadfS| input bits. Otherwise, there exists a small Satf
output bits and a string € {0, 1}!5! such that®r[gs(U,,) = y] = 0 (wheregs(-) is
the restriction ofy to the output bits o). Hence, an efficient adversary can distinguish
betweerys (U,) andU,s| with advantag@—©(°9") — 1/poly(n), in contradiction to
the pseudorandomness @fMore generally, ifg is e-strong (i.e., cannot be broken by
any efficient adversary with probabilit), then every set of < log(1/¢) output bits
touches at leastinput bits. This claim extends to the casesdbiased generators by
using the Vazirani XOR Lemma [22].
In graph theoretic terms, we have a bipartite gréps: ((In = [n], Out = [¢]), E)
that enjoys some output expansion property. This property is trivial when the output
degree of7 is high (as in standard constructions of PRGs) or whismot much larger
thann (as in theNC® constructions of [3]). However, when the locality is constant
and the stretch is lineafy is a sparse bipartite graph havinginput vertices,s =
n + £2(n) output vertices, and a constant output degree. In the standard cryptographic
setting, where(n) is negligible, we get expansion for sets of s@28og(n)). That is,
G expands (output) sets of size smaller thafogn). Whene < 2-?(") (as in the
e-biased construction of [17]), we get expansion for sets of size at fh@st
Radhakrishnan and Ta-Shma [21] obtained some lower bounds for similar graphs.
In particular, by using [21, Thm. 1.5] it can be shown thay if {0,1}" — {0,1}®
is anNC} function that enjoys the above expansion property for sets of<sizethen
¢ > 2(log(s/t)/log(n/t)). We therefore conclude that there isio”(")-strong PRG
(resp.2—(")_biased generator) with superlinear stretciNig’.
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