Cryptography inNC' *
Benny Applebaum Yuval Ishai Eyal Kushilevitz

Computer Science Department, Technion
{abenny,yuvali,eyalk@cs.technion.ac.il

September 27, 2006

Abstract

We study the parallel time-complexity of basic cryptographic primitives such as one-way functions (OWFs)
and pseudorandom generators (PRGs). Specifically, we study the possibility of implementing instances of these
primitives byNC® functions, namely by functions in which each output bit depends on a constant number of input
bits. Despite previous efforts in this direction, there has been no convincing theoretical evidence supporting this
possibility, which was posed as an open question in several previous works.

We essentially settle this question by providing strong positive evidence for the possibility of cryptography
in NC°. Our main result is that every “moderately easy” OWF (resp., PRG), say computaig'incan be
compiled into a corresponding OWF (resp., “low-stretch” PRG) in which each output bit depends on at most 4
input bits. The existence of OWF and PRGNIC is a relatively mild assumption, implied by most number-
theoretic or algebraic intractability assumptions commonly used in cryptography. A similar compiler can also be
obtained for other cryptographic primitives such as one-way permutations, encryption, signatures, commitment,
and collision-resistant hashing.

Our techniques can also be applied to obtain (unconditional) constructions of “non-cryptographic” PRGs. In
particular, we obtaire-biased generators and a PRG for space-bounded computation in which each output bit
depends on only 3 input bits.

Our results make use of the machineryaridomizing polynomial@shai and Kushilevitz41st FOC$2000),
which was originally motivated by questions in the domain of information-theoretic secure multiparty computa-
tion.

1 Introduction

The efficiency of cryptographic primitives is of both theoretical and practical interest. In this work, we consider tl
guestion of minimizing theparallel time-complexityof basic cryptographic primitives such as one-way functions
(OWFs) and pseudorandom generators (PRGs) [11, 52]. Taking this question to an extreme, it is natural to a
there are instances of these primitives that can be computeohstantparallel time. Specifically, the following
fundamental question was posed in several previous works (e.g., [32, 22, 16, 41, 43)):

Are there one-way functions, or even pseudorandom generato¥s;4a

Recall thatNCY is the class of functions that can be computed by (a uniform family of) constant-depth circuits wit
bounded fan-in. In atvC® function each bit of the output depends on a constant number of input bits. We refer 1
this constant as theutput localityof the function and denote ByC? the class oNC® functions with localityc.

*A preliminary version of this paper appeared in the proceedings of FOCS 2004. Research supported by grant no. 36/03 from the |
Science Foundation.



The above question is qualitatively interesting, since one might be tempted to conjecture that cryptograf
hardness requires some output bits to depend on many input bits. Indeed, this view is advocated by Cryan
Miltersen [16], whereas Goldreich [22] takes an opposite view and suggests a concrete candidate fo™N@W/F in
However, despite previous efforts, there has been no convincing theoretical evidence supporting either a positi
a negative resolution of this question.

1.1 Previous Work

Linial et al. show that pseudoranddomctionscannot be computed even AC° [42]. However, no such impossi-
bility result is known for PRGs. The existence of PRGN has been recently studied in [16, 43]. Cryan and
Miltersen [16] observe that there is no PRGN, and prove that there is no PRGNCY achieving a superlinear
stretch; namely, one that stretchesits ton + w(n) bits®! Mossel et al. [43] extend this impossibility 86CY.
Viola [50] shows that a PRG idC° with superlinear stretch cannot be obtained from a OWF via non-adaptive
black-box constructions. Negative results for other restricted computation models appear in [20, 54].

On the positive side, Impagliazzo and Naor [36] construct a (sublinear-stretch) PRGjirelying on an in-
tractability assumption related to the subset-sum problem. PRG candid2t€$ {or even T¢) are more abundant,
and can be based on a variety of standard cryptographic assumptions including ones related to the intractabili
factoring [39, 44], discrete logarithms [11, 52, 44] and lattice problems [2, 33] (see Remafk 6.6).

Unlike the case of pseudorandom generators, the question of one-way functio@$ isrelatively unexplored.
The impossibility of OWFs ilNCY follows from the easiness of 2-SAT [22, 16].&Btad [32] constructs a fam-
ily of permutations inNC® whose inverses are P-hard to compute. Cryan and Miltersen [16], improving on [1]
present a circuit family iltNC3 whose range decision problem is NP-complete. This, however, gives no evidenc
of cryptographic strength. Since any PRG is also a OWF, all PRG candidates cited above are also OWF candid
(In fact, the one-wayness of &iC! function often serves as the underlying cryptogragssumptior) Finally,
Goldreich [22] suggests a candidate OWRIG®, whose conjectured security does not follow from any well-known
assumption.

1.2 Our Results

As indicated above, the possibility of implementing most cryptographic primitive&ithwas left wide open. We
present a positive answer to this basic question, showing that surprisingly many cryptographic tasks can be perfo
in constant parallel time.

Since the existence of cryptographic primitives implies thag NP, we cannot expect unconditional results
and have to rely on some unproven assumptioHswever, we avoid relying ospecificintractability assumptions.
Instead, we assume the existence of cryptographic primitives in a relatively “high” complexity class and transfc
them to the seemingly degenerate complexity cl€8 without substantial loss of their cryptographic strength.
These transformations are inherently non-black-box, thus providing further evidence for the usefulness of r
black-box techniques in cryptography.

We now give a more detailed account of our results.

A GENERAL COMPILER Our main result is that any OWF (resp., PRG) in a relatively high complexity class, con
taining uniformNC! and evensL/poly, can be efficiently “compiled” into a corresponding OWF (resp., sublinear-
stretch PRG) ilNCY. (The classBL/poly contains the classds/poly andNC! and is contained iNC2. In a

'From here on, we use a crude classification of PRGs into ones having sublinear, linear, or superlinear additive stretch. Note that a
stretching its seed by just one bit can be invokegarallel (on seeds of length) to yield a PRG stretching its seed by~ bits, for an
arbitrarye > 0.

%In some of these constructions it seems necessary to almllectionof NC' PRGs, and use polynomial-time preprocessing to pick
(once and for all) a random instance from this collection. This is similar to the more standard notion of OWF collection (cf. [23], Secti
2.4.2). See Appendix A for further discussion of this slightly relaxed notion of PRG.

3This is not the case for non-cryptographic PRGs suchlziased generators, for which we do obtain unconditional results.

2



non-uniform setting it also contains the cl&ék/poly [51].) The existence of OWF and PRG in this class is a mild
assumption, implied in particular by most number-theoretic or algebraic intractability assumptions commonly u:
in cryptography. Hence, the existence of OWF and sublinear-stretch PRGifollows from a variety of standard
assumptions and is not affected by the potential weakness of a particular algebraic structure. A similar comj
can also be obtained for other cryptographic primitives including one-way permutations, encryption, signatul
commitment, and collision-resistant hashing.

It is important to note that the PRG produced by our compiler will generally have a sublinear additive stret
even if the original PRG has a large stretch. However, one cannot do much better when insisting(GhRRG,
as there is no PRG with superlinear stretciNidi} [43].

OWF WITH OPTIMAL LOCALITY. The above results leave a small gap between the possibility of cryptography i
NCY and the known impossibility of implementing even OWFNI©). We partially close this gap by providing
positive evidence for the existence of OWRNEY. In particular, we construct such OWF based on the intractability
of decoding a random linear code.

NON-CRYPTOGRAPHIC GENERATORS Our techniques can also be applied to obtain unconditional construction:
of non-cryptographic PRGs. In particular, building on @hiased generator ilNC? constructed by Mossel et
al. [43], we obtain a linear-stretehbiased generator itNCY. This generator has optimal locality, answering an
open question posed in [43]. It is also essentially optimal with respect to stretch, since locality 3 does not allow
a superlinear stretch [16]. Our techniques apply also to other types of non-cryptographic PRGs such as genel
for space-bounded computation [6, 45], yielding such generators (with sublinear streXt}.in

1.3 Organization

In Section 2 we provide an overview of our techniques, which evolve around the notion of “randomized encodir
introduced in this work. Following some preliminaries (Section 3), in Section 4 we formally define our notion of ral
domized encoding and discuss some of its variants, properties, and constructions. We then apply randomized e
ings to obtairNC? implementations of different primitives: OWFs (Section 5), cryptographic and non-cryptographi
PRGs (Section 6), and other cryptographic primitives (Section 7). In Section 8 we construct OWF with optimal !
cality based on specific intractability assumptions. We conclude in Section 9 with some further research directi
and open problems. We also call the reader’s attention to Appendix A which discadisetionsof cryptographic
primitives and how they fit in the context of the current work.

2 Overview of Techniques

Our key observation is that instead of computing a given “cryptographic” fungtioi it might suffice to compute
a functionf(x, ) having the following relation tg:

1. For every fixed input: and a uniformly random choice of the output distributiorf(x, r) forms a “random-
ized encoding” off (z), from which f(z) can be decoded. Thatis,ffz) # f(z') then the random variables
f(z,r)andf(2’,7"), induced by a uniform choice of r’, should have disjoint supports.

2. The distribution of this randomized encoding depends only on the encodedffaluand does not further
depend one. Thatis, if f(z) = f(2’) then the random variable&z, ) and f(z/,') should be identically
distributed. Furthermore, we require that the randomized encoding of an outpuMaduefficiently sam-
plable giveny. Intuitively, this means that the output distribution obn inputz reveals no information about
x except what follows fromy (x).

Each of these requirements alone can be satisfied by a trivial furyéﬁerg.,f(x, r)==x andf(x, r) = 0, respec-
tively). However, the combination of the two requirements can be viewed as a non-trivial natural relaxation of 1

3



usual notion of computing. In a sense, the functfodefines an “information-theoretically equivalent” representa-
tion of f. In the following, we refer tof as arandomized encodingf f.

For this approach to be useful in our context, two conditions should be met. First, we need to argue th:
randomized encodinﬁ can besecurelyused as a substitute fgr Second, we hope that this relaxation is sufficiently
liberal, in the sense that it allows to efficiently encode relatively complex functfdmsfunctionsf in NC°. These
two issues are addressed in the following subsections.

2.1 Security of Randomized Encodings

Toiillustrate how a randomized encodifigan inherit the security features pfconsider the case whefds a OWF.
We argue that the hardness of invertiigeduces to the hardness of invertifigindeed, a successful algorithsh
for inverting f can be used to successfully invéras follows: given an output of f, apply the efficient sampling
algorithm guaranteed by requirement 2 to obtain a random encgaifg. Then, used to obtain a preimageér, r)
of § under f, and outputz. It follows from requirement 1 that is indeed a preimage af under f. Moreover, if
y is the image of a uniformly random, theny is the image of a uniformly random pdir, ). Hence, the success
probability of invertingf is the same as that of invertinfg

The above argument can tolerate some relaxations to the notion of randomized encoding. In particular, one
relax the second requirement to allow a small statistical variation of the output distribution. On the other hand
maintain the security of other cryptographic primitives, it may be required to further strengthen this notion. F
instance, whery is a PRG, the above requirements do not guarantee that the outpfdlsqjseudo-random, or
even that its output is longer than its input. However, by imposing suitable “regularity” requirements on the outj
encoding defined by, it can be guaranteed that ffis a PRG then so i§. Thus, different security requirements
suggest different variations of the above notion of randomized encoding.

2.2 Complexity of Randomized Encodings

It remains to address the second issue: can we encode a complex fufidtioan NC° function f? Our best
solutions to this problem rely on the machineryrafidomizing polynomialgjescribed below. But first, we outline

a simple alternative approathased on Barrington’s theorem [7], combined with a randomization technique o
Kilian [40].

Supposef is a boolean function ilNC'. (Non-boolean functions are handled by repeating the following pro-
cedure for each bit of the output.) By Barrington’s theorem, evaluafing, for such a functionf, reduces to
computing an iterated product of polynomially many elements. ., s,, from the symmetric grougs, where
eachs; is determined by a single bit of (i.e., for every: there existg such thats; is a function ofz;). Now, let
flz,r) = (s1r1, 17 Voo, ooy Tt 9Smo1Tm—1, T 1Sm), Where the random inputs are picked uniformly and
independently fronbs. It is not hard to verify that the outpt, . .., t,,) of f is random subject to the constraint
thattity - - - t,, = s152 - - - S, Where the latter product is in one-to-one correspondengéitp It follows thatf is
a randomized encoding gt Moreover,f has constant locality when viewed as a function over the alptabend
thus yields the qualitative result we are after.

However, the above construction falls short of providing a randomized encod¥iginsince it is impossible
to sample a uniform element 8 in NC° (even up to a negligible statistical distanée)lso, this f does not satisfy
the extra “regularity” properties required by more “sensitive” primitives such as PRGs or one-way permutatio
The solutions presented next avoid these disadvantages and, at the same time, apply to a higher complexity
thanNC' and achieve a very small constant locality.

“In fact, a modified version of this approach has been applied for constructing randomizing polynomials in [15].
SBarrington’s theorem generalizes to apply over arbitrary non-solvable groups. Unfortunately, there are no such groups whose orde
power of two.



RANDOMIZING PoLYNOMIALS. The concept of randomizing polynomials was introduced by Ishai and Kushile-:
vitz [37] as a representation of functions by vectors of low-degree multivariate polynomials. (Interestingly, this cc
cept was motivated by questions in the are@nfdrmation-theoreticsecure multiparty computation, which seems
unrelated to the current context.) Randomizing polynomials capture the above encoding question within an algel
framework. Specifically, a representation fff:) by randomizing polynomials is a randomized encodjig, r)

as defined above, in whichandr are viewed as vectors over a finite figfland the outputs of as multivariate
polynomials in the variables andr. In this work, we will always letF = GF(2).

The most crucial parameter of a randomizing polynomials representation is its algidgeee defined as the
maximal (total) degree of the outputs (i.e., the output multivariate polynomials) as a function of the input variab
in z andr. (Note that bothe andr count towards the degree.) Quite surprisingly, it is shown in [37, 38] that every
boolean functiory : {0,1}" — {0, 1} admits a representation lggree-Fandomizing polynomials whose number
of inputs and outputs is at mogtiadraticin its branching program siZe.(Moreover, this degree bound is tight
in the sense that most boolean functions do not admit a degree-2 representation.) Note that a representatiol
non-boolean function can be obtained by concatenating representations of its output bits, using independent b
of random inputs. This concatenation leaves the degree unchanged.

The above positive result implies that functions whose output bits can be computed in the complexity cl;
®L/poly admit an efficient representation by degree-3 randomizing polynomials. This also holds if one requires
most stringent notion of representation required by our applications. We note, however, that different constructi
from the literature [37, 38, 15] are incomparable in terms of their exact efficiency and the security-preserving featt
they satisfy. Hence, different constructions may be suitable for different applications. These issues are discuss
Section 4.

DEGREE VS LocALITY. Combining our general methodology with the above results on randomizing polynomial
already brings us close to our goal, as it enables “degree-3 cryptography”. Taking on from here, we show that
function f : {0,1}" — {0,1}™ of algebraic degreé admits an efficient randomized encodifigf (degreed and)
locality d + 1. That is, each output bit of can be computed by a degrégolynomial ovelGF(2) depending on at
mostd + 1 inputs and random inputs. Combined with the previous results, this allows us to make the final step fri
degree 3 to locality 4.

3 Preliminaries

Probability notation. Let U,, denote a random variable that is uniformly distributed o@rl }". Different oc-
currences o/, in the same statement refer to the same random variable (rather than independent okies). If
a probability distribution, we write: — X to indicate thatr is a sample taken fronX. If S is a set, we write
x €g S to indicate that: is uniformly selected selected frofh Thestatistical distancéetween discrete probabil-
ity distributionsX andY is defined ag X — V|| £ 3>, |Pr[X = 2] — Pr[Y = z]|. Equivalently, the statistical
distance betweeX andY may be defined as the maximum, over all boolean functibnef the distinguishing
advantage Pr[7'(X) = 1] — Pr[T(Y) = 1]|. A functione(-) is said to benegligibleif ¢(n) < n~¢ for anyc > 0
and sufficiently large:. For two distribution ensembles = {X,,} andY = {Y,,}, we write X =Y if X,, andY,,
are identically distributed, and ~ Y if the two ensembles astatistically indistinguishabtenamely,|| X,, — Y,
is negligible inn.

We will rely on the following standard properties of statistical distance.

Fact 3.1 For every distributionsX, Y, Z we have| X — Z|| < | X = Y[+ ||Y — Z|.

By default, the notion of “branching programs” refers here to mod-2 branching programs, which output the parity of the number
accepting paths. See Section 3.



Fact 3.2 For every distributionsX, X', Y, Y’ we havel|(X x X') — (Y xY')|| < || X = Y| + | X' = Y’|, where
A x B denotes the product distribution df, B, i.e., the joint distribution of independent samples frdrand B.

Fact 3.3 For every distributionsX, Y and every functiorf we have| f(X) — f(Y)|| < || X =Y.

Fact3.4 Let {X.}.cz, {Y.}.cz be distribution ensembles. Then, for every distributibrover Z, we have
1(Z,X2) — (Z,Y5)|| = E.z[||X. — Y||]. In particular, if | X, — V.|| < « for everyz € Z, then||(Z, X ;) —
(Z,Yz)| <e.

Branching programs. A branching program (BP) is defined by a tuBP = (G, ¢, s, t), whereG = (V, E) is a
directed acyclic graphy is a labeling function assigning each edge either a positive liigral negative literak; or

the constant 1, angl ¢ are two distinguished nodes 6f. Thesizeof BP is the number of nodes i@. Each input
assignmentv = (wy, ..., wy) naturally induces an unlabeled subgr@pfy, whose edges include alle F such that
¢(e) is satisfied byw (e.g., an edge labeled is satisfied byw if w; = 1). BPs may be assigned different semantics:
in anon-deterministi®P, an inputw is accepted it7,, contains at least one path fronto ¢; in a (counting mody

BP, the BP computes the number of paths frota ¢ modulop. In this work, we will mostly be interested in mod-2
BPs. An example of a mod-2 BP is given in Figure 3.1.

AN

I3 1

(:):::xl-».ﬁiiaa —>|y::};;;<:) s @ @ t

T2 T3

\./

Figure 3.1: A mod-2 branching program computing the majority of three bits (left side), along with the(@raph
induced by the assignment0 (right side).

Function families and representations. We associate with a functiofi : {0,1}* — {0,1}* a function family
{fn}nen, Where f,, is the restriction off to n-bit inputs. We assume all functions to be length regular, namely
their output length depends only on their input length. Hence, we may yyrite{0,1}" — {0, 1}!(*). We will
represent functiong by families of circuits, branching programs, or vectors of polynomials (where each polynomie
is represented by a formal sum of monomials). Whengves taken from a uniform class, we assume that its
representation is uniform as well. That is, the representatigh & generated in timeoly(n) and in particular is

of polynomial size. We will often abuse notation and wrjtinstead off,, even when referring to a function on

bits.

Locality and degree. We say thatf is c-local if each of its output bits depends on at mestput bits! For a
constant, the non-uniform clasd/C? includes allc-local functions. We will sometimes view the binary alphabet
as the finite fieldF = GF(2), and say that a functiofi : 7" — FU'n) has degred if each of its outputs can be
expressed as a multivariate polynomial of degree (at naostjhe inputs.

A boolean function depends on tk& input bit if there exists an assignment such that flippingithinput bit changes the value of the
function.



Complexity classes. For brevity, we use the (somewhat nonstandard) convention that all complexity classes «
polynomial-time uniform unless otherwise stated. For instabt@’ refers to the class of functions admitting
uniformNC? circuits, whereason-uniformiNC? refers to the class of functions admitting non-unifd¥i@® circuits.

We letNL/poly (resp.,®L/poly) denote the class of boolean functions computed by a polynomial-time uniform
family of nondeterministic (resp., modulo-2) BPs. (Recall that in a uniform family of circuits or branching progran
computingf, it should be possible to generate the circuit or branching program compfjtimgtime poly(n).)
Equivalently, the clas&L/poly (resp.,®L/poly) is the class of functions computed BYL (resp.,®L) Turing
machines taking a uniform advice. (The clask/poly contains the classds/poly andNC! and is contained in
NC2. In a non-uniform setting it also contains the clads/poly [51].) We extend boolean complexity classes, such
asNL/poly and®L/poly, to include non-boolean functions by letting the representation indlgdebranching
programs, one for each output. Uniformity requires that/{hhg branching programs be all generated in time

poly(n).

4 Randomized Encoding of Functions

In this section we formally introduce our notion of randomized encoding. In Section 4.1 we introduce seve
variants of randomized encoding and in Section 4.2 we prove some of their useful properties. Finally, in Section
we construciNC§ encodings for branching programs, building on [37, 38].

4.1 Definitions

We start by defining a randomized encoding of a finite funcfiomhis definition will be later extended to a (uniform)
family of functions.

Definition 4.1 (Randomized encoding)Let f : {0,1}" — {0,1}! be a function. We say that a functigh :
{0,1}™ x {0,1}"™ — {0, 1}* is ad-correct,e-privaterandomized encodingf f, if it satisfies the following:

e J-correctness. There exists a deterministi@lgorithm C, called adecodey such that for every input

{0, 13", Pr[C(f(w,Un)) # f(2)] < 6.

e c-privacy. There exists a randomized algorithf) called asimulator such that for every: € {0,1}",

A~

1S(f(x)) = fz, Un)| <e.

We refer to the second input gﬁfas itsrandom inputand tom and s as therandomness complexitgnd output
complexityof f, respectively.

Note that the above definition only refers to théormationaboutx revealed byf(x, r) and does not consider
the complexity of the decoder and the simulator. Intuitively, the funcfiatefines an “information-theoretically
equivalent” representation gf. The correctness property guarantees that ffom f(ac, r) it is possible to recon-
struct f(x) (with high probability), whereas the privacy property guarantees that by s¢&ing cannot learn too
much aboutr (in addition tof(x)). The encoding ig-correct (respe-private), if it correct (resp. private) up to an
“error” of § (resp.¢). This is illustrated by the next example.

Example 4.2 Consider the functiorf(z1,...,2,) = 1 Va2 V...V x,. We define a randomized encodiffig:
{0,1}™ x {0,1}" — {0,1}* by f(w, r)= Qi wirig, ., Yoy TiTis), Wherer = (x1, ..., xp), r = (r;;) for
1 <i<n,1<j<s,andaddition is oveGF(2). First, observe that the distribution ﬁtx, U,s) depends only on
the value off(x). Specifically, letS be a simulator that outputs artuple of zeroes iff (z) = 0, and a uniformly

8We restrict the decoder to be deterministic for simplicity. This restriction does not compromise generality, in the sense that one
transform a randomized decoder to a deterministic one by incorporating the coins of the former in the encoding itself.



chosen string if0,1}* if f(z) = 1. Itis easy to verify thalS(f(z)) is distributed the same g%z, U,,) for any

x € {0,1}". It follows that this randomized encoding is O-private. Also, one can obtain an efficient decdldar
given a sample from the distributionf (z, U,.,) outputs 0 ify = 0° and otherwise outputs 1. Such an algorithm
will err with probability 2%, thusf is 2~%-correct.

On uniform randomized encodings.The above definition naturally extends to functighs{0, 1}* — {0,1}*. In

this case, the parametérsn, s, d, ¢ are all viewed as functions of the input lengthand the algorithmé’, S receive

1" as an additional input. In our default uniform setting, we require fhathe encoding off,,, be computable in
time poly(n) (givenz € {0,1}" andr € {0,1}™™). Thus, in this setting bot(n) ands(n) are polynomially
bounded. We also require both the decoder and the simulator to be efficient. (This is not needed by some o
applications, but is a feature of our constructions.) We formalize these requirements below.

Definition 4.3 (Uniform randomized encoding) Let f : {0,1}* — {0,1}" be a polynomial-time computable
function andl(n) an output length function such théf(x)| = i(|z|) for everyx € {0,1}*. We say thatf :
{0,1}* x {0,1}* — {0,1}* is a d(n)-correct ¢(n)-private uniform randomized encoding §f if the following
holds:

e Length regularity. There exist polynomially-bounded and efficiently computable length funetions s(n)
such that for every: € {0,1}™ andr € {0, 1}, we have f(z,r)| = s(n).

e Efficient evaluation. There exists a polynomial-timevaluation algorithnthat, givenz € {0,1}* andr €
{0, 1}U=D, outputsf (x, 7).

e J-correctness.There exists a polynomial-tintecoderC, such that for every € {0, 1}" we havePr[C(1",

f(@,Uny)) # f(@)] < 6(n).

e c-privacy. There exists a probabilistic polynomial-tilsgnulatorsS, such that for every: € {0,1}" we have

N

1S, f (@) = (@, Upn) || < e(n).

When saying that a uniform encodirfgis in a (uniform) circuit complexity class, we mean that its evaluation
algorithm can be implemented by circuits in this class. For instance, we say fhah NCY if there exists a
polynomial-time circuit generataf such that7(1") outputs ad-local circuit computingf (z, ) on allz € {0,1}"
andr € {0,1}™(),

From here on, a randomized encoding of an efficiently computable function is assumed to be uniform by defz
Moreover, we will freely extend the above definition to apply to a uniform collection of funct#toas{f.}.c~, for
some index se¥ C {0, 1}*. In such a case it is required that the encoded collectica {fz}zez is also uniform,
in the sense that the same efficient evaluation algorithm, decoder, and simulator should apply to the entire colle
when givenz as an additional input. (See Appendix A for a more detailed discussicollettionsof functions and
cryptographic primitives.) Finally, for the sake of simplicity we will sometimes formulate our definitions, claim:
and proofs using finite functions, under the implicit understanding that they naturally extend to the uniform settir

We move on to discuss some variants of the basic definition. Correctness (resp., privacy) can lperégtier
whend = 0 (resp.,e = 0), or statistical whend(n) (resp.,e(n)) is negligible. In fact, we can further relax
privacy to hold only against efficient algorithms, e.qg., to require that for every{0, 1}", every polynomial time
algorithm A distinguishes between the distributiofisf (x)) andf(x, U,,,) with no more than negligible advantage.
Such an encoding is referred to esmputationallyprivate and it suffices for the purpose of many applications
discussed in this paper. (Further details and additional applications appear in [4].) However, while for some of
primitives (such as OWF) computational privacy and statistical correctness will do, others (such as PRGs or one-
permutations) require even stronger properties than perfect correctness and privacy. One such additional prope
that the simulato$, when invoked on a uniformly random string frafd, 1}! (the output domain of), will output a
uniformly random string fror{0, 1}° (the output domain of). We call this propertpalance Note that the balance

8



requirement does not impose any uniformity condition on the outpuft @fhich in fact can be concentrated on a
strict subset of0, 1}.

Definition 4.4 (Balanced randomized encoding)A randomized encoding : {0,1}" x {0,1}™ — {0,1}* of a
functionf : {0,1}" — {0, 1} is calledbalancedf it has a perfectly private simulato$ such thatS(U;) = U,. We
refer to S as abalanced simulator

A last useful property is a syntactic one: we sometimes vianhave the same additive stretchfaSpecifically,
we say thatf is stretch-preservingwith respect tof) if s — (n +m) = [ — n, or equivalentlym = s — [.
We are now ready to define our two main variants of randomized encoding.

Definition 4.5 (Statistical randomized encoding)A statistical randomized encodimga randomized encoding that
is statistically correct and statistically private.

Definition 4.6 (Perfect randomized encoding)A perfect randomized encoding a randomized encoding that is
perfectly correct, perfectly private, balanced, and stretch-preserving.

A combinatorial view of perfect encoding. To gain better understanding of the properties of perfect encoding,
we take a closer look at the relation between a function and its encodingf Ldi,1}"*™ — {0,1}* be an
encoding off : {0,1}* — {0,1}.. The following description addresses the simpler case wfiéseonto. Every

x € {0,1}" is mapped to somg € {0, 1}! by f, and to &"-size multise f (x, r)|r € {0,1}™} which is contained

in {0,1}*. Perfect privacy means that this multiset is common to alktkeéhat share the same image ungdeso

we have a mapping from € {0, 1} to multisets in{0, 1}° of size2™ (such a mapping is defined by the perfect
simulator). Perfect correctness means that these multisets are mutually disjoint. However, even perfect privacy
perfect correctness together do not promise that this mapping coverg@Jligf. The balance property guarantees
that the multisets form a perfect tiling ¢6, 1}°; moreover it promises that each element in these multisets has th
same multiplicity. If the encoding is also stretch-preserving, then the multiplicity of each element must be 1, sot
the multisets are actually sets. Hence, a perfect randomized encoding guarantees the existence of a perfect sin
S whose2! output distributions form a perfect tiling of the spaige 1}° by sets of size™.

Remark 4.7 (A padding convention)We will sometimes view’ as a function of a single input of length+ m(n)
(e.g., when using it as a OWF or a PRG). In this case, we requirg¢ to be monotone non-decreasing, so that
n + m(n) uniquely determines. We apply a standard padding technique for definfiran inputs whose length is
not of the formn, + m(n). Specifically, ifn + m(n) + ¢ < (n + 1) + m(n + 1) we definef’ on inputs of length
n+m(n) +t by applyingf,, on the firstn + m(n) bits and then appending thedditional input bits to the output

of f,. This convention respects the security of cryptographic primitives such as OWF, PRG, and collision-resist
hashing, provided that:(n) is efficiently computable and is sufficiently dense (both of which are guaranteed by
uniform encoding). That is, if the unpadded functipiis secure with respect to its partial domain, then its padded
version f’ is secure in the standard sense, i.e., over the domain of all s¥it§ee a proof for the case of OWF
in [23, Proposition 2.2.3].) Note that the padded functiéhas the same locality and degreefasioreover,f’ also
preserves syntactic properties fffor example it preserves the stretch fofand if f is a permutation then so j&.
Thus, it is enough to prove our results for the partially defined unpadded furfgtaord keep the above conventions
implicit.

Finally, we define two complexity classes that capture the power of randomized encodN(@$.in

Definition 4.8 (The classes SREN, PRENJhe classSREN (resp.,PREN) is the class of functions : {0,1}* —
{0,1}* admitting a statistical (resp., perfect) uniform randomized encodingas.

This can be generally explained by viewing each slice of the padded fungtigre., its restriction to inputs of some fixed length) as a
perfectrandomized encoding of a corresponding slicg of



4.2 Basic Properties

We now put forward some useful properties of randomized encodings. We first argue that an encoding of a r
boolean function can be obtained by concatenating encodings of its output bits, using an independent random |
for each bit. The resulting encoding inherits all the features of the concatenated encodings, and in particular pres:
their perfectness.

Lemma 4.9 (Concatenation) Let f; : {0,1}" — {0,1}, 1 < i < [, be the boolean functions computing the
output bits of a functiory : {0,1}" — {0,1}. If f; : {0,1}" x {0,1}™ — {0,1}% is a d-correcte-private
encoding off;, then the functiory : {0,1}" x {0, 1}™F-+m — {0 1}1++s defined byf(z, (r1,...,m)) =
(fi(z,m1),..., filz,m)) is a(él)-correct, (l)-private encoding of . Moreover, if all f; are perfect then so ig.

A~

Proof:  We start with correctness. L€} be aj-correct decoder fof;. Define a decode? for f by C(y1,-.-,01) =
(C1(91),- - -, Ci(4))- By a union bound argumert; is a(d!)-correct decoder fof as required. R
We turn to analyze privacy. Lef; be ane-private simulator forf;. An (el)-private simulatorS for f can be

naturally defined bys(y) = (Si(y1), - - ., Si(y)), where the invocations of the simulatafsuse independent coins.
Indeed, for every: € {0, 1}" we have:
1S(f () = f(@, Umys -, Un ) = 1(S1(n Si(y) = (Fi(@, Uny)s -, file, Umy))l|
!
< ZIIS vi) = fi(2, Un,)|
S zll

wherey = f(x). The first inequality follows from Fact 3.2 and the independence of the randomness used |
differents, and the second from theprivacy of eachs;.

Note that the simulatof described above is balanced if &l are balanced. Moreover, if aﬁ are stretch
preserving, i.e.s; — 1 = m;, then we havéjﬁzl s;i—1 = Z _,;m; and hencq is also stretch preserving. It follows
that if all f; are perfect then so if. (]

We state the following uniform version of Lemma 4.9, whose proof is implicit in the above.

Lemma 4.10 (Concatenation: uniform version) Let f : {0,1}* — {0,1}* be a polynomial-time computable

function, viewed as a uniform collection of functiohs= {f,.i},en 1<i<i(n); thatis, fni(z) outputs thei bit
of f(z) for all z € {0,1}". Suppose thaf = {fnﬂ-}nemggl(n) is a perfect (resp., statistical) uniform ran-
def

domized encoding of. Then, the functiorf : {0,1}* x {0,1}* — {0,1}* defined byf(z, (r1,...,ry(p)) =
(ﬂx"l(as, T1)yeens ﬁx\,zu:p\)(ﬂfa (1)) IS @ perfect (resp., statistical) uniform randomized encoding. of

Another useful feature of randomized encodings is the following intuitive composition property: suppose \
encodef by g, and then view; as a deterministic function and encode it again. Then, the resulting function (parse
appropriately) is a randomized encodingfofAgain, the resulting encoding inherits the perfectness of the encoding
from which it is composed.

Lemma 4.11 (Composition) Let g(z, r4) be ad,-correct, e -private encoding of (x) and h((x, rg) rp,) be ady-

correct,ep,-private encoding of ((z, r4)) (viewed as a single-argument function). Then, the fungtian (rg,mn)) = =
h((x,rg),rp)is a(dy + 6p)-correct, (e, + €5 )-private encoding of . Moreover, ifg, h are perfect (resp., statistical)
uniform randomized encodings then sg‘:is

10



Proof:  We start with correctness. Lét, be ad,-correct decoder fog andC}, ady,-correct decoder fok. Define
a decoder” for f by C(4) = C,(Cy,(%)). The decode€ errs only if eitherC;, or C, err. Thus, by the union bound
we have for every,

Pr [C(f (@ (g ) # @) < Pr [Cu(h((@.r0).ma)) # g(w,rg)] + PriCy(g(a.ry) # f(z)]
< 5h+5ga

as required.

Privacy is argued similarly. Le$, be ane -private simulator fory and.S;, ane,-private simulator for. We
define a simulatoS for f by S(y) = Sn(Sy(y)). Letting my, m;, denote the randomness complexity o,
respectively, we have for eveny

1S(£(2)) = f(@, Uy, Un DIl = 150(Sg(£())) = h((x, Unm,), U, )
< [15a(Sg(f(2))) = Sn(g(x; Uno))|| + [1Sr(9(x; Um,,)) = (%, Uy ) U, )|
< €g +Eh,

where the first inequality follows from the triangle inequality (Fact 3.1), and the second from Facts 3.3 and 3.4.
It is easy to verify that ifS, and.S;, are balanced then so 4 Moreover, ifg preserves the additive stretch pf

andh preserves the additive stretchgfthenh (hence alsgf) preserves the additive stretch af Thus f is perfect

if both g, h are perfect. All the above naturally carries over to the uniform setting, from which the last part of tr

lemma follows. [ ]
Finally, we prove two useful features oparfectencoding.

Lemma 4.12 (Unique randomness)Supposef is a perfect randomized encoding 6f Then, (a)f satisfies the
following uniqge randorrjnespzroperty: for any inpute, the functionf(x, -) is iniective, namely there are no distinct
r,r’ such thatf(z,r) = f(x,r"). Moreover, (b) iff is a permutation then so i.

Proof:  Letf: {0,1}" — {0,1} andf : {0,1}" x {0,1}™ — {0,1}*. To prove part (a), assume towards a
contradiction thayf does not satisfy the unique randomness property. Then, by perfect privacy, wigrhafg <
[Im(f)| - 2™. On the other hand, lettin§ be a balanced simulator, we have

(/)27 = Py [8() € ()]
> Pr[S(y) € m(f)ly € Im(f)] - Pr [y € Im(f)]
y<U, y—t
)
ol

where the last equality follows from perfect privacy. Sinces stretch preservings(— [ = m), we get from the
above thatlm(f)| > [Im(f)|-2™, and derive a contradiction. )
If fis a permutation then = [ and sincef is stretch preserving, we can wrife: {0,1}* — {0,1}°. Thus, to

prove part (b), it is enough to prove thais injective. Suppose thai(z,r) = f(2/,7'). Then, sincef is injective
and f is perfectly correct it follows that = 2’; hence, by part (a); = r’ and the proof follows. |

4.3 Constructions

In this section we construct randomized encoding®@. We first review a construction from [38] of degree-

3 randomizing polynomials based on mod-2 branching programs and analyze some of its properties. Next,
introduce a general locality reduction technique, allowing to transform a dégeaeoding to a(d + 1)-local
encoding. Finally, we discuss extensions to other types of BPs.

11



o o .«

I r Ty L) * * * * * ok 1 0 0 0 o0 1{2)
0 1 . . -1 * * * * 0k 0O 1 0 0 O 7‘52)
0 0 1 0 —1 * * x % 0O 0 1 0 o0 .
0 0 0 1 " 0 0 -1 x *x =% o 0o o 1 0 .-
0 0 0 0 1 7"(@;1) 0 0 0 -1 * * 0 0 0 0 1 TEQ,)Q
o 0 0 0 0 1 00 0 0 =1 0 0 0 0 0 1

Figure 4.1: The matriceR; (r(), L(x), Ro(r®) (from left to right). The symbok represents a degree-1 polyno-
mial in an input variable.

DEGREE 3 RANDOMIZING POLYNOMIALS FROM MOD-2 BRANCHING PROGRAMS[38]. LetBP = (G, ¢, s, t) be

a mod2 BP of size/, computing a booledfi function f : {0,1}" — {0,1}; thatis, f(z) = 1 if and only if the
number of paths from to ¢ in G, equalsl modulo2. Fix some topological ordering of the vertices@f where

the source vertex is labeledl and the terminal vertekis labeled/. Let A(x) be thel x ¢ adjacency matrix of

G, viewed as a formal matrix whose entries are degree-1 polynomials in the input varab8secifically, the
(i,7) entry of A(x) contains the value of(i,j) on x if (i,7) is an edge in, and O otherwise. (Hencel(x)
contains the constant 0 on and below the main diagonal, and degree-1 polynomials in the input variables abov
main diagonal.) Defind.(z) as the submatrix ofi(x) — I obtained by deleting columsnand rowt (i.e., the first
column and the last row). As before, each entryL¢f) is a degred- polynomial in a single input variable;;
moreover,L(z) contains the constantl in each entry of its second diagonal (the one below the main diagonal) an
the constan® below this diagonal. (See Figure 4.1.)

Fact 4.13 ([38]) f(x) = det(L(x)), where the determinant is computed oG (2).

Proof sketch:  SinceG is acyclic, the number of — ¢ paths inG, mod2 can be written agl + A(z) + A(z)? +
et A@) s = (I - A(x));tl wherel denotes arf x ¢ identity matrix and all arithmetic is ovérF(2). Recall

that L(z) is the submatrix ofA(x) — I obtained by deleting columsiand row¢. Hence, expressing — A(m));tl
using the corresponding cofactor bf- A(x), we have:

L orp det(—L(x))
e Y1)

= det L(x).
|

Let (1) andr(® be vectors ove6iF(2) of length>"\—7 = (') and/ — 2, respectively. Letr;(r()) be an
(¢—1) x (¢—1) matrix with 1’s on the main diagonal)’s below it, and-(!)’s elements in the remainir‘(dgl) entries
above the diagonal (a unique element@f is assigned to each matrix entry). Lt (%)) be an(¢ — 1) x (£ — 1)
matrix with 1’s on the main diagonal;(?)’s elements in the rightmost column, afi@ in each of the remaining
entries. (See Figure 4.1.)

Fact 4.14 ([38]) Let M, M’ be(¢— 1) x (¢ — 1) matrices that contain the constant in each entry of their second
diagonal and the constaritbelow this diagonal. Therlet(M) = det(M’) if and only if there exist(!) andr(?)
such thatR, (r(M) M Ry (r(?)) = M.

9The following construction generalizes naturally to a (counting) md#, computing a functiorf : {0,1}" — Z,. In this work,
however, we will only be interested in the case- 2.

12



Proof sketch: ~ Suppose thaR, (r")M Ry (r®) = M’ for somer() andr(?). Then, sincelet(R;(r(M)) =
det(Ry(r?))) = 1, it follows thatdet (M) = det(M").

For the second direction assume that()/) = det(M’). We show that there there exist) and+( such
that Ry (r(V) M Ry (r(?)) = M’. Multiplying M by a matrixR; (")) on the left is equivalent to adding to each
row of M a linear combination of the rows below it. On the other hand, multiplyifigy a matrix Ry (r(?)) on
the right is equivalent to adding to the last column\éfa linear combination of the other columns. Observe that a
matrix M that contains the constantl in each entry of its second diagonal and the congidrlow this diagonal
can be transformed, using such left and right multiplications, to a canonic ntfreontaining—1’s in its second
diagonal, an arbitrary valugin its top-right entry, and’s elsewhere. Sincéet(R;(r()))) = det(Ry(r?)) = 1,
we havedet(M) = det(H,) = y. Thus, whenlet(M) = det(M’) = y we can writeH,, = Ry (r(V)) M Ry(r?)) =
R1(sW)M'Ry(s?)) for somer™), #(2) s(1) () Multiplying both sides byR; (s(1))~1, Ry(s(?))~1, and observing
that each set of matricd®, () and Ry (-) forms a multiplicative group finishes the proof. |

Lemma 4.15 (implicit in [38]) Let BP be a mod-2 branching program computing the boolean fungtiobefine
a degree-3 functiorf (z, (r(), 7)) whose outputs contain thg) entries on or above the main diagonal of the

matrix Ry (r())L(z) Ry(r®). Then,f is a perfect randomized encoding ff

Proof: We start by showing that the encoding is stretch preserving. The length of the random irfbiﬁ of
m= (') +¢-2= (4 — 1andits output length is = (%). Thus we have = m + 1, and sincef is a boolean
function its encoding’ preserves its stretch.

We now describe the decoder and the simulator. Given an outghtrepresenting a matriz/, the decode€”
simply outputsdet(M). (Note that the entries below the main diagonal of this matrix are constants and therefo
are not included in the output gf) By Facts 4.13 and 4.14let(M) = det(L(z)) = f(x), hence the decoder is
perfect.

The simulatorS, on inputy € {0, 1}, outputs the(ﬁ) entries on and above the main diagonal of the matrix
Ry (rMW)YH, Ry(r?), whererM), () are randomly chosen, ard, is the(¢ — 1) x (£ — 1) matrix that contains-1’s
in its second diagonaj, in its top-right entry, and’s elsewhere.

By Facts 4.13 and 4.14, for everyc {0, 1}" the supports of(x, U,,) and of S(f(x)) are equal. Specifically,
these supports include all strings{ie, 1}° representing matrices with determingit:). Since the supports ¢f(0)
andS(1) form a disjoint partition of the entire spae, 1}° (by Fact 4.14) and sinc& usesn = s — 1 random bits,
it follows that|support(S(b))| = 2™, forb € {0, 1}. Since both the simulator and the encoding miseandom bits,
it follows that both distributionsf (, U,,,) andS(f(z)), are uniform over their support and therefore are equivalent.
Finally, since the supports &f(0) and.S(1) halve the range of (that is,{0, 1}*), the simulator is also balancem.

REDUCING THE LOCALITY. It remains to convert the degree-3 encoding into or€GH. To this end, we show how

to construct for any degreéfunction (wherel is constant) dd + 1)-local perfect encoding. Using the composition
lemma, we can obtain aNC° encoding of a function by first encoding it as a constant-degree function, and the
applying the locality construction.

The idea for the locality construction is to represent a dedneelynomial as a sum of monomials, each having
locality d, and randomize this sum using a variant of the method for randomizing group product, described
Section 2.2. (A direct use of the latter method over the grgumives a(d + 2)-local encoding instead of the
(d + 1)-local one obtained here.)

Construction 4.16 (Locality construction) Let f(z) = Ti(z) + ... + Tj(z), wheref, Ty, ..., T : GF(2)" —
GF(2) and summation is oveEF(2). The local encoding : GF(2)"+(k~1) — GF(2)?* is defined by:

f(x, (T1y ey TRy Ty e 3 7)) gef (T (z) —r1, To(x) — 1o, ..., Ti(x) — 7g,

/ / / / / /
TL— T, Ty T2 = Ty Thg Tkl — Tl 1y Th1 + Tk)-

13



For example, applying the locality construction to the polynomijal, + x2x3 + x4 results in the encodinge; z2 —
T1,T2X3 —T2,T4 — 73,71 — 7"/1’7“3 +ry — 7“/2,7“5 + 7).

Lemma 4.17 (Locality lemma) Let f and f be as in Construction 4.16. Thehjs a perfect randomized encoding
of f. In particular, if f is a degreed polynomial written as a sum of monomials, théis a perfect encoding of
with degreed and localitymax(d + 1, 3).

Proof:  Sincem = 2k — 1 ands = 2k, the encodingf is stretch preserving. Moreover, givén= f(:c,r) we
can decode the value gf(x) by summing up the bits of. It is not hard to verify that such a decoder never errs.
To prove perfect privacy we define a simulator as follows. Giyea {0, 1}, the simulatorS uniformly chooses
2k — 1 random bitsr, ..., 79,1 and outputgry, ..., mox 1,y — (r1 + ... +rox_1)). Obviously,S(y) is uniformly
distributed over th@k-length strings whose bits sum upgaver GF(2). It thus suffices to show that the outputs
of f(z,U,,) are uniformly distributed subject to the constraint that they add yff9. This follows by observing
that, for anyz and any assignment € {0, 1}%*~! to the first2k — 1 outputs off(x, Un), there is a unique way

to set the random inputs, , so that the output of (z, (r, 7)) is consistent witho. Indeed, forl < i < k, the

. . . . def
values ofz, w; uniquely determine;. For1 < i < k — 1, the valuesuvy;,;, r,_, determiner (wherer|, = 0).

Therefore,S(f(x)) = f(x,Uy). Moreover,S is balanced since the supports$f0) and.S(1) halve{0,1}* and
S(y) is uniformly distributed over its support fgre {0, 1}. [ |

In Appendix B we describe a graph-based generalization of Construction 4.16, which in some cases can give
to a (slightly) more compact encodirfg

We now present the main theorem of this section.
Theorem 4.18 ®L/poly C PREN. Moreover, anyf € PREN admits a perfect randomized encodingNa.

Proof:  The first part of the theorem is derived by combining the degree-3 construction of Lemma 4.15 togett
with the Locality Lemma (4.17), using the Composition Lemma (4.11) and the Concatenation Lemma (4.10).
To prove the second part, we first encotlby a perfect encoding in NC° (guaranteed by the fact thiitis in
PREN). Then, sincef is in @L/poly, we can use our constructions (Lemmas 4.15, 4.17, 4.11, 4.10) to perfectl
encodef by a functionf’ in NCY. By the Composition Lemma (4.11)/ perfectly encodes the functigh m

Remark 4.19 An alternative construction of perfect randomized encodingS@{ can be obtained using a ran-
domizing polynomials construction from [38, Sec. 3], which is based on an information-theoretic variant of Yac
garbled circuit technique [53]. This construction yields an encoding with a (large) constant locality, without requ
ing an additional “locality reduction” step (of Construction 4.16). This construction is weaker than the current one
that it only efficiently applies to functions INC! rather tharL /poly. For functions ilNC!, the complexity of this
alternative (in terms of randomness and output length) is incomparable to the complexity of the current construct

There are variants of the above construction that can handle non-deterministic branching programs as well, e
expense of losing perfectness [37, 38]. For instance, it is shown in [37] th& lepresented by a non-deterministic
BP of size/, then the functiory (z, (R1, R2)) £ RiL(z)Ry is a perfectly-private, statistically-correct encodingfof
provided thatR;, R, are uniformly randoni/— 1) x (¢— 1) matrices oveGF (p), wherep is prime ancp > ¢*. (The
matrix L(z) is as defined above, except that here it is interpreted as a matrixGd\gr.) To obtain an encoding
over a binary alphabet, we rely on the facts that one can sample an almost-uniform eler@&t{ippf(up to a
negligible statistical distance) as well as perform multiplication€#(p) usingNC' boolean circuits. Thus, we
get a statisticabinary encoding inNC*, which can be converted (using Theorem 4.18 and the composition lemme

to a statistical encoding iNCY. Based on the above, we get the following theorem:
Theorem 4.20 NL/poly C SREN . Moreover, anyf € SREN admits a statistical randomized encodingNie’§.

Note that the second part of Theorem 4.20 can be proved similarly to the second part of Theorem 4.18.

14



5 One-Way Functions inNC"

A one-way functiofOWF) f : {0,1}* — {0,1}* is a polynomial-time computable function that is hard to invert;
namely, every polynomial time algorithm that tries to invérn input f(x), wherez is picked fromU,,, succeeds
only with a negligible probability. Formally,

Definition 5.1 (One-way function) A functionf : {0,1}* — {0,1}* is called aone-way function(OWF) if it
satisfies the following two properties:

e Easy to compute There exists a deterministic polynomial-time algorithm compufifig).

e Hardtoinvert : For every probabilistic polynomial-time algorithn®, the probabilityPr,. ¢, [B(1", f(z)) €
f~1(f(x))] is negligible inn (where the probability is taken over a uniform choicerand the internal coin
tosses of3).

The functionf is calledweakly one-wayf the second requirement is replaced with the following (weaker) one:

e Slightly hard to invert: There exists a polynomial(-), such that for every probabilistic polynomial-time
algorithm, B, and all sufficiently largex’s Pr,._y, [B(17, f(x)) & f~1(f(z))] > ﬁ (where the probability
is taken over a uniform choice ofand the internal coin tosses &).

The above definition naturally extends to functions whose domain is restricted to some infinite/sab$ét
of the possible input lengths, such as ones defined by a randomized en¢odiscargued in Remark 4.7, such a
partially defined OWF can be augmented into a fully defined OWF provided that thésssblynomially-dense and
efficiently recognizable (which is a feature of functiohsbtained via a uniform encodings).

5.1 KeylLemmas

In the following we show that a perfectly correct and statistically private randomized encbdirmyOWF f is also

a OWF. The idea, as described in Section 2.1, is to argue that the hardness of inf/eeihges to the hardness of
inverting f. The case of a statistical randomized encoding that does not enjoy perfect correctness is more invo
and will be dealt with later in this section.

Lemma 5.2 Suppose thaf : {0,1}* — {0,1}* is hard to invert andf(z,r) is a perfectly correct, statistically
private uniform encoding of. Thenf, viewed as a single-argument function, is also hard to invert.

Proof:  Lets = s(n), m =m(n) be the lengths of the output and of the random inpuf oéspectively. Note that
f is defined on input lengths of the formtm(n); we prove that it is hard to invert on these inputs. Assume, towards

a contradiction, that there is an efficient algorittthinverting f (z, ) with success probability(n +m) > m

for some polynomiaf(-) and infinitely many.’s. We useB to construct an efficient algorithd that invertsf with
similar success. On inpyt™, y), the algorithmB runsS, the statistical simulator of, on the input(1™, y) and gets

a stringy as the output of. Next, B runs the invertef3 on the input(1"*t™ ), getting(z’,7’) as the output of3
(i.e., B “claims” that f(«/, ') = §). B terminates with output’.

COMPLEXITY: SinceS and B are both polynomial-time algorithms, and sineg¢n) is polynomially bounded, it
follows thatB is also a polynomial-time algorithm.

CORRECTNESS We analyze the success probability®fon input(1”, f(z)) wherex — U,,. Let us assume for
a moment that the simulatdt is perfect. Observe that, by perfect correctnesg|if) # f(z’) then the support
sets off(x, U,,) and f (z/, U,,,) are disjoint. Moreover, by perfect privacy the striijyggenerated by3, is always in
the support off (z, U,,). Hence, if B succeeds (that is, indegic= f(z/,')) then so doe®3 (namely,f(z') = ).

15



Finally, observe that (by Fact 3.4) the ingubn which B invokesB is distributed identically tgf,, (U,,, Un(n)), and
thereforeB succeeds with probability ¢(n + m). Formally, we can write,

n -1 Rintm o F—1(n
P BONSE ESUW > P BOTT G € )

A~

_ Pr  [BA™™, fu(x,r) € f(f ()]

ZHUn,T‘HUm(n)

> ¢(n+m).

When S is only statistically private, we lose negligible success probabilities in the first and second transitior
The first loss is due to the fact that the simulator invoked ea f(z) might output (with negligible probability)
which is not in the support of(x, Un,). The second loss is due to the fact that the inpab which B invokesB is
not distributed identically tgf (U,,, U, ), on whichB3 is guaranteed to succeed with probabitity. -+ m). However,
it follows from Fact 3.4 that the second loss is also negligible. ThuS,i&fe(n)-private for a negligible function
e(+), we have

Pr [B(1", f(x)) € f7'(f(2)] >

Pr BA™™ g) e f7Hg)] — e(n
zUn x<—Un,?Q<—S(1",f(x))[ ( y) f (y)] ( )

> b [BA™™, folw, 7)) € fH(f (7)) — e(n) — e(n)
T—Un,r—Upy(n)
1 1

> ¢(n+m)—2€(n)>m—

for some polynomialy/(-) and infinitely manyn’s. It follows that f is not hard to invert, in contradiction to the
hypothesis. |

The efficiency of the simulatd is essential for Lemma 5.2 to hold. Indeed, without this requirement one coulc
encode any one-way permutatigrby the identity functionf(x) = x, which is obviously not one-way. (Note that
the output off (') can be simulated inefficiently based pfi) by inverting f.)

The perfect correctness requirement is also essential for Lemma 5.2 to hold. To see this, consider the folloy
example. Supposg is a one-way permutation. Consider the encodfitig, ) which equalsf (z) except ifr is the
all-zero string, in which casé(a;, r) = x. This is a statistically-correct and statistically-private encodingftist
easily invertible since on valugthe inverter can always retugntself as a possible pre-image. Still, we show below
that such anf (which is only statistically correct) is @istributionally one-way function. We will later show how to
turn a distributionally one-way function INC® into a OWF inNC.

Definition 5.3 (Distributionally one-way function [35]) A polynomial-time computable functigh: {0,1}* —
{0, 1}* is calleddistributionally one-wayf there exists a positive polynomig({-) such that for every probabilistic
polynomial-time algorithmp3, and all sufficiently larger’s, ||(B(17, f(U,)), f(Un)) = (Un, f(U))]| > -+~

p(n)

Before proving that a statistical randomized encoding of a OWF is distributionally one-way, we need the follo
ing lemma.

Lemmab5.4 Letf,g: {0,1}* — {0, 1}* be two functions that differ on a negligible fraction of their domain; that is,
Pr..u, [f(x) # g(z)] is negligible inn. Suppose thaj is slightly hard to invert (but is not necessarily computable
in polynomial time) and thaf is computable in polynomial time. Thehis distributionally one-way.

Proof: Let f, and g, be the restrictions off and g to n-bit inputs, that isf = {f.},9 = {9»}, and
definec(n) £ Pry_y,[f(z) # g(z)]. Let p(n) be the polynomial guaranteed by the assumption thit
slightly hard to invert. Assume, towards a contradiction, thas not distributionally one-way. Then, there ex-

ists a polynomial-time algorithmi3, such that for infinitely many’s, ||[(B(1", fn.(Un)), fn(Un)) — (Un, fo(U))|

16



< #(n). Since (Uy, fn(Un)) = (2, fn(Uy,)) wherez' «— f-1(f.(Uy,)), we get that for infinitely many:’s
|(B(A™, fr(Un)), fu(Un)) — (2, fn(Un))]] < ﬁ(n). It follows that for infinitely manyn’s
1
Pr[B(1", f(Un)) € gn (faUn)] =~ Pr [a" € g (fulUn))] — : (5.1)
@' fi (fn(Un) 2p(n)
We show thatB inverts g with probability greater than — Wln) and derive a contradiction. Specifically, for
infinitely manyn’s we have:
Pr[B(1", ga(Un)) € g5 (9n(Un))] = Pr[B(1", fa(Un)) € g5 (fa(Un))] — (n) (sincef, g aree-closg
1
> Pr ' € g (f(UL)] - —— —eln by Eq. 5.
x%f;l(fn(Un))[ ) 2p(n) ) )
1
= Pr gn (@) = £, (U,)] — — e(n
x’<—fn_1(fn(Un))[ (z7) (Un)] 50(n) (n)
1
= Pr gn(2") = fn(2))] — — e(n sincef(U,) = f(2
B e = fala)] = s = el (sincef (T) = £(@')
1
=1—¢(n)— — e(n sincez’ = U,
() = 5557~ <) ( )
1
>1— — sincee is negligible.
> 1= ( gligiblg

[ |
We now use Lemma 5.4 to prove the distributional one-wayness of a statistically-correct entddisgd on
the one-wayness of a related, perfectly correct, encagling

Lemma 5.5 Suppose thaf : {0,1}* — {0,1}" is a one-way function and(z,r) is a statistical randomized
encoding off. Thenf, viewed as a single-argument function, is distributionally one-way.

Proof: LetC andS be the decoder and the simulator fof Define the functiorjj(x, ) in the following way:

it C(f(z,r)) # f(z) theng(x,r) = f(z,r') for somer’ such thatC(f(z,r')) = f(z) (such an’ exists by

the statistical correctness); otherwigéz, ) = f(z,r). Obviously,g is a perfectly correct encoding ¢f (asC
perfectly decodeg () from g(z, r)). Moreover, by the statistical correctnessgfwe have thaf (z, -) andg(z, -)
differ only on a negligible fraction of the's. It follows thatg is also a statistically-private encoding pflbecause
§(2,Up) = f(z,Un) = S(f(x))). Sincef is hard to invert, it follows from Lemma 5.2 thais also hard to invert.
(Note thatg might not be computable in polynomial time; however the proof of Lemma 5.2 only requires that th
simulator’s running time and the randomness complexity b& polynomially bounded.) Finally, it follows from
Lemma 5.4 thaf is distributionally one-way as required. |

5.2 Main Results
Based on the above, we derive the main theorem of this section:
Theorem 5.6 If there exists a OWF iSREN then there exists a OWF NCY.

Proof: Let f be a OWF inSREN. By Lemma 5.5, we can construct a distrjbutional O\ﬁh‘ﬂ NC?, and
then apply a standard transformation (cf. [35, Lemma 1], [23, p. 96], [52]) to cofivera OWF f” in NC!. This
transformation consists of two steps: Impagliazzo and LuNy¥’8 construction of weak OWF from distributional

17



OWF [35], and Yao'sSNC’ construction of a (standard) OWF from a weak OWF [52] (see [23, Section'2.S]hce

NC! C PREN (Theorem 4.18), we can use Lemma 5.2 to encfdey a OWF inNC?, in particular, by one with

locality 4. |
Combining Lemmas 5.2, 4.12 and Theorem 4.18, we get a similar result for one-way permutations (OWPS).

Theorem 5.7 If there exists a one-way permutationfREN then there exists a one-way permutatiomNiai).

In particular, using Theorems 4.18 and 4.20, we conclude that a OWF (resp., OWR)pnly (resp.,BL/poly)
implies a OWF (resp., OWP) iNC§.

Theorem 5.7 can be extended to trapdoor permutations (TDPs) provided that the perfect encoding satisfie
following randomness reconstructigaroperty: givens andf(a:, ), the randomnesscan be efficiently recovered.

If this is the case, then the trapdoor ptan be used to inve!ft(x, r) in polynomial time (but not iINC?). Firstly,

we computef (z) from f(x,r) using the decoder; secondly, we use the trapdoor-inverter to comgrdgen f(z);

and finally, we use the randomness reconstruction algorithm to comgduben = and f(ac,r). The randomness
reconstruction property is satisfied by the randomized encodings described in Section 4.3 and is preserved L
composition and concatenation. Thus, the existence of trapdoor permutations compuatfjdatiows from their
existence inbL/poly.

More formally, a collection of permutatiods = {f, : D, — D, }.c~ is referred to as a trapdoor permutation if
there exist probabilistic polynomial-time algorithif¥s D, F, F~1) with the following properties. Algorithn is an
index selector algorithm that on inpift selects an index from Z and a corresponding trapdoor féy; algorithm
D is a domain sampler that on inpusamples an element from the domdig; F' is a function evaluator that given
an indexz andx returnsf,(z); and F~! is a trapdoor-inverter that given an indexa corresponding trapdoor
andy € D, returnsf;!(y). Additionally, the collection should be hard to invert, similarly to a standard collection
of one-way permutations. (For formal definition see [23, Definition 2.4.4].) By the above argument we derive t
following theorem.

Theorem 5.8 If there exists a trapdoor permutatioh whose function evaluatdf is in ®L/poly then there exists
a trapdoor permutatior¥ whose function evaluatdr is in NCJ.

Remarks on Theorems 5.6, 5.7 and 5.8.

1. (Constructiveness) In Section 4.3, we give a constructive way of transforming a branching program repres
tation of a functionf into anNC? circuit computing its encoding. It follows that Theorems 5.6, 5.7 can be
made constructive in the following sense: there exists a polynomialgomgilertransforming a branching
program representation of a OWF (resp., OWmito anNC° representation of a corresponding OWF (resp.,
OWP) f. A similar result holds for other cryptographic primitives considered in this paper.

2. (Preservation of security, a finer look) Loosely speaking, the main security loss in the reduction follows frc
the expansion of the input. (The simulator’s running time only has a minor effect on the security, since
is added to the overall running-time of the adversary.) Thus, to achieve a level of security similar to tt
achieved by applying onn-bit inputs, one would need to appfyonn +m(n) bits (the random input part of
the encoding does not contribute to the security). Going through our constructions (bit-by-bit encoding of 1
output based on some sizé:) BPs, followed by the locality construction), we getn) = I(n) - £(n)°M,
wherel(n) is the output length off. If the degree of all nodes in the BPs is bounded by a constant, the
complexity ism(n) = O(l(n) - £(n)?). Itis possible to further reduce the overhead of randomized encoding
for specific representation models, such as balanced formulas, using constructions of randomizing polynon
from [38, 15].

we will later show a degree preserving transformation from a distributional OWF to a OWF (Lemma 8.2); however, in the current cont
the standard transformation suffices.

18



3. (Generalizations) The proofs of the above theorems carry over to OWF whose security holds against effic
non-uniformadversaries (inverters). The same is true for all cryptographic primitives considered in this wor
The proofs also naturally extend to the casedalfectionsof OWF and OWP (see Appendix A for discussion).

4. (Concrete assumptions) The existence of a OWFREN (in fact, even infNC?) follows from the intractabil-
ity of factoring and lattice problems [2]. The existence of a OWdltectionin SREN follows from the in-
tractability of the discrete logarithm problem. Thus, we get OWRS@{ under most standard cryptographic
assumptions. In the case of OWP, we can get a collection of OWR&jrbased on discrete logarithm [11, 52]
(see also Appendix A) or RSA with a small exponent [¥9]The latter assumption is also sufficient for the
construction of TDP ilNCJ.

6 Pseudorandom Generators irNC’

A pseudorandom generatis an efficiently computable functiof : {0,1}" — {0, 1}/ such that: (1)G has a
positive stretch, namely(n) > n, where we refer to the functioiin) — n as thestretchof the generator; and (2)
any “computationally restricted procedur®, called adistinguisher has a negligible advantage in distinguishing
G(Uy) from Uy, Thatis,| Pr[D(1", G(Uy)) = 1] — Pr[D(1", Uy(,,)) = 1]| is negligible inn.

Different notions of PRGs differ mainly in the computational bound imposeB oim the default case afrypto-
graphicPRGs,D can be any probabilistic polynomial-time algorithm (alternatively, polynomial-size circuit family).
In the case ot-biasedgeneratorsD can only compute a linear function of the output bits, namely the exclusive-ol
of some subset of the bits. Other types of PRGs, e.g. for space-bounded computation, have also been consi
The reader is referred to [21, Chapter 3] for a comprehensive and unified treatment of pseudorandomness.

We start by considering cryptographic PRGs. We show thagréectrandomized encoding of such a PRG is
also a PRG. We then obtain a similar result for other types of PRGs.

6.1 Cryptographic Generators

Definition 6.1 (Pseudorandom generator)A pseudorandom generator (PRG) is a polynomial-time computable
function,G : {0,1}"™ — {0, 1}("), satisfying the following two conditions:

e Expansion I(n) > n, foralln € N.

e Pseudorandomness For every probabilistic polynomial-time algorithn1), the distinguishing advantage
| Pr[D(1", G(Uy)) = 1] — Pr[D(1", Uy(y,)) = 1]| is negligible inn.

Remark 6.2 (PRGs with sublinear stretch)An NC° PRG,G, that stretches its input by a single bit can be trans-
formed into anotheNC® PRG,G’, with stretch’ (n) — n = n° for an arbitrary constant < 1. This can be done by
applyingG onn¢ blocks ofn! ¢ bits and concatenating the results. Since the output of any PRG is computationall
indistinguishable from the uniform distribution even by a polynomial number of samples (see [23, Theorem 3.2.
the block generatat’ is also a PRG. This PRG gains a pseudorandom bit from every block, and therefore stretcl
n°n'=¢ = n input bits ton + n° output bits. Obviously’ has the same locality &s.

Remark 6.2 also applies to other types of generators considered in this section, and therefore we only use a

classification of the stretch as being “sublinear”, “linear” or “superlinear”.

Lemma 6.3 Supposes : {0,1}" — {0,1}/™ is a PRG and7 : {0,1}" x {0,1}™™ — {0,1}*(") is a uniform
perfect randomized encoding Gf ThenG, viewed as a single-argument function, is also a PRG.

12Rabin’s factoring-based OWP collection [47] seems insufficient for our purposes, as it cannot be defined over thié steingk of a
given length. The standard modification (cf. [24, p. 767]) does not seem todbE fpoly.

19



Proof:  Since( is stretch preserving, it is guaranteed to expand its seed. To prove the pseudorandomnes
its output, we again use a reducibility argument. Assume, towards a contradiction, that there exists an effic
distinguisherD that distinguishes betwedn, andG (U, U,,) with some non-negligible advantagei.e., ¢ such

thatp(n + m) > m for some polynomiak(-) and infinitely manyn’s. We useD to obtain a distinguishep

betweerl/; andG(U,,) as follows. On inpuy € {0,1}/, run the balanced simulator 6f ony, and invokeD on the
resultingy. If y is taken fromU; then the simulator, being balanced, outptbat is distributed a&;. On the other
hand, ify is taken fromG (U,,) then, by Fact 3.4, the output of the simulator is distributed's,,, U,,,). Thus, the
distinguisherD we get forG has the same advantage as the distinguighéar G. That is, the advantage @ is
¢'(n) = ¢(n + m). Sincem(n) is polynomial, this advantagg is not only non-negligible im + m but also inn,
in contradiction to the hypothesis. |

Remark 6.4 (The role of balance and stretch preservationDropping either the balance or stretch preservation
requirements, Lemma 6.3 would no longer hold. To see this consider the following two examplésbéetPRG,
and Iet(?(x, r) = G(z). Then,G is a perfectly correct, perfectly private, and balanced randomized encoddg of
(the balanced simulator i§(y) = y). However, whenr is sufficiently long,GG does not expand its seed. On the
other hand, we can defir@(z, r) = G(z)0, wherer is a single random bit. Thex; is perfectly correct, perfectly
private and stretch preserving, but its output is not pseudorandom.

Using Lemma 6.3 and Theorem 4.18, we get:

Theorem 6.5 If there exists a pseudorandom generatoAREN (in particular, in &L /poly) then there exists a
pseudorandom generator MCY.

As in the case of OWF, an adversary that breaks the transformed ger@radorbreak, in essentially the same
time, the original generatdr. Therefore, again, although the new PRG uses extra) random input bits, it is not
more secure than the original generator applied tits. Moreover, we stress that the PRGone gets from our
construction has a sublinear stretch evef ifias a large stretch. This follows from the fact that the length) of
the random input is typically superlinear in the input length

Remark 6.6 (On the existence of a PRG ilPREN) The existence of PRGs iIRREN follows from most standard
concrete intractability assumptions. In particular, using Theorem 6.5 (applied to PRG collections) one can const
a collection of PRGs ilNCY based on the intractability of factoring [39, 44] and discrete logarithm [11, 52]. The
existence of PRGs iRREN also follows from the existence IRREN of anyregular OWF; i.e., a OWFf = {f,,}

that maps the same (polynomial-time computable) number of elemeflisiii” to every element itm( f,,). (This

is the case, for instance, for any one-to-one OWF.) Indeed, the PRG construction from [33] (Theorem 5.4), w
applied to a regular OWF, involves only the computation of universal hash functions and hard-core bits, which ca
all be implemented iNC!.23 Thus a regular OWF iPREN can be first transformed into a regular OWRNG

and then, using [33], to a PRG MC'. Combined with Theorem 6.5, this yields a PRG} based on any regular
OWF in PREN 14 This way, for example, one can construct a (single) PRS? based on the intractability of

13In the general case (when the OVWHs not regular) the construction offidtad et al. (see [33, Construction 7.1]) is not in unifof@', as
it requires an additional nonuniform advice of logarithmic length. This (slightly) non-unifé€ih construction translates intoplynomial-
time construction by applying the following steps: (1) construct a polynomial number of PRG candidates (each using a different guess
the non-uniform advice); (2) increase the stretch of each of these candidates using the standard transformation of Goldreich and N
(cf. [23, Theorem 3.3.3]); (3) take the exclusive-or of all PRG candidates to obtain the final PRG. The second step requires polynom
many sequential applications of the PRGs, and therefore this construction isM6t in(If we skip the second step the resulting generator
will not stretch its input.)

1% In fact, the same result can be obtained under a relaxed regularity requirement. Specifically, foragach € Im(f,,) define the
value Dy, (y) = log|fn *(y)| and the random variabl®, = Dy, (f(U,)). The NC* construction of [33, Construction 7.1] needs to
approximate, irpoly(n) time, the expectations of botR,, and RZ. This is trivially possible wherf is regular in the strict sense defined
above, since in this cas®, is concentrated on a single (efficiently computable) value. Using a réd@htconstruction from [30], only the
expectation oR2 needs to be efficiently approximated. We finally note that in a non-uniform computation model one can rely on [33] (whic
gives a nonunifornNC" construction of a PRG from any OWF) and get a PR@énuniforrmaNC§ from anyOWF in SREN..

20



lattice problems [33, 2].

Remark 6.7 (On unconditional NC reductions from PRG to OWF) Our machinery can be used to obtain an
NC? reduction from a PRG to any regular OWF (in particular, to any one-to-one OWF), regardless of the co
plexity of £.1> Moreover, this reduction only makesbéack-boxuse of the underlying regular OWF (given its
regularity parametdiim( f,,)|). The general idea is to encode K€ construction of [33, Construction 7.1] into a
correspondindNC? construction. Specifically, suppo§&z) = g(x, f(q1(x)), ..., f(gm(z))) defines a black-box
construction of a PR@ from a OWF f, whereg is in PREN and theg,’s are inNCP. (The functionsy, q1, ..., ¢

are fixed by the reduction and do not dependfonThen, lettingg((z, y1, ..., ym), ) be a perfecNC® encoding

of g, the functionG(z,7) = §((x, f(q1(x)), ..., f(gm(x))), r) perfectly encode&’, and hence defines a black-box
NC? reduction from a PRG to a OWF. The construction of [33, Construction 7.1] is of the forf{-0f above'®
assuming thaf is regular. Thus(y defines ailNC? reduction from a PRG to a regular OWF.

Comparison with lower bounds. The results of [43] rules out the existence of a superlinear-stretch cryptographi
PRG inNC§. Thus oulNCY cryptographic PRGs are not far from optimal despite their sublinear stretch. In additior
it is easy to see that there is no PRG with degree locality 2 (since we can easily decide whether a given string
is in the range of such a function). It seems likely that a cryptographic PRG with lo8adibgd degre& can be
constructed (e.g., based on its existence in a higher complexity class), but our positive result is one step far in t
of both locality and degree. (See also Table 6.1.)

6.2 <-Biased Generators

The proof of Lemma 6.3 uses the balanced simulator to transform a distinguisher for & Rit@sa distinguisher
for its encodingG. Therefore, if this transformation can be made linear, then the security reduction goes throu
also in the case aof-biased generators.

Definition 6.8 (s-biased generator)Ane-biased generatds a polynomial-time computable functiai,: {0,1}" —
{0,1}!™) satisfying the following two conditions:

e Expansion [(n) > n, foralln € N.
e c-bias: For every linear functiori : {0, 1}/®) — {0, 1} and all sufficiently large:’s
| Pr[L(G(Un)) = 1] = Pr[L(Uyn)) = 1]| < &(n)
(where a functiorL is linearif its degree oveGF(2) is 1). By default, the function(n) is required to be negligible.

Lemma 6.9 LetG be ane-biased generator and a perfect randomized encoding@f Assume that the balanced
simulator S of G is linearin the sense thaf(y) outputs a randomized linear transformation wf{which is not
necessarily a linear function of the simulator’s randomness). T&dn,also an:s-biased generator.

Proof:  LetG : {0,1}" — {0,1}™ and letG : {0,1}" x {0,1}™™ — {0,1}*("), Assume, towards a
contradiction, that? is note-biased; that is, for some linear functidn: {0,1}*(" — {0,1} and infinitely many
n's, | Pr[L(G(Upym)) = 1] — Pr[L(U,) = 1]| > oty > iy Wherem = m(n), s = s(n), andp(-),p/(-) are
polynomials. Using the balance property we get,

1

IPHL(S(G(U))) = 1] = PrL(SW1) = 1]| = | Pr{LGUnn)) = 1] = Pr{L(U) = 11| > s

)

Viola, in a concurrent work [50], obtains anC° reduction of this type.
The functionsy, ..., ¢.» are simply projections there. Interestingly, the red@t' construction from [30] is not of the above form and
thus we cannot encode it into an (unconditiod&{° construction.

21



where S is the balanced simulator &f and the probabilities are taken over the inputs as well as the randomne:
of S. By an averaging argument we can fix the randomness tof some string, and get| Pr[L(S,(G(U,))) =
1] = Pr[L(S,(Uiny)) = 1| > 5 UL wheresS,, is the deterministic function defined by using the constant sping

as the simulator’s random mput. By the linearity of the simulator, the funcfjpn {0,1}! — {0,1}* is linear;
therefore the composition df and S, is also linear, and so the last inequality implies tBats note-biased in
contradiction to the hypothesis. |

We now argue that the balanced simulators obtained in Section 4.3 are all linear in the above sense. In
these simulators satisfy a stronger property: for every fixed random input of the simulator, each bit of the simulat
output is determined by a single bit of its input. This simple structure is due to the fact that we encode non-bool
functions by concatenating the encodings of their output bits. We state here the stronger property as it will be ne
in the next subsection.

Observation 6.10 Let S be a simulator of a randomized encoding (of a function) that is obtained by concatenatin
simulators (i.e.,S is defined as in the proof of Lemma 4.9). Then, fixing the randomnets, the simulator’s
computation has the following simple fori$i; (y) = o1(y1)o2(y2) - - - o1(y1), where eaclr; mapsy; (i.e., thei™ bit

of y) to one of two fixed strings. In particula$, computes a randomized degréédnction of its input.

Recall that the balanced simulator of tN€ encoding for functions imL /poly (promised by Theorem 4.18)
is obtained by concatenating the simulators of boolean functioad.ifpoly. By Observation 6.10, this simulator
is linear. Thus, by Lemma 6.9, we can construct a sublinear-steefiihised generator iNCY from anye-biased
generator inbL/poly. In fact, one can easily obtain a nontriviabiased generator even MC9 by applying the
locality construction to each of the bits of the degree-2 generator defin€d(byr’) = (z,2’, (z,2)), where
(-,-) denotes inner product modulo 2. Again, the resulting encoding is obtained by concatenation and thus.
Observation 6.10 and Lemma 6.9, is alsbiased. (This generator actually fools a much larger class of statistica
tests; see Section 6.3 below.) Thus, we have:

Theorem 6.11 There is a (sublinear-stretch}biased generator ilNCY.

Building on a construction of Mossel et al., it is in fact possible to achieve linear stred@inNamely,
Theorem 6.12 There is a linear-stretch-biased generator itNCY.

Proof: Mossel et al. present anbiased generator iNC® with degree2 and linear stretch ([43], Theorem 153).

Let G be theire-biased generator. We can apply the Iocallty construction (4.16)(using concatenatlon) and get,
by Lemma 6.9 and Observation 6.10,@hiased generatda¥ in NCJ. We now relate the stretch 6f to the stretch

of G. Letn, 7 be the input complexity o/, G (resp.), lets, 5 be the output complexity af, G (resp.), and let - n

be the stretch of;, wherec is a constant. The generaiGris stretch preserving, henée- i = s — n = ¢ - n. Since

G isin NCY, each of its output bits can be represented as a polynomial that has a constant number of monomials
thus the locality construction adds only a constant number of random bits for each outputbiTberefore, the
input length ofG is linear in the input length of!. Hence, s — 7 = s — n = ¢-n = ¢- i for some constant and
thus@ has a linear stretch. [ |

YIn fact, the generator of [43, Theorem 13] igionuniformNC¢ (and it has a slightly superlinear stretch). However, a similar construction
gives are-biased generator inniformNC° with degree 2 and linear stretch. (The locality of this generator is large but constant.) This can b
done by replacing the probabilistic construction given in [43, Lemma 12] with a uniform construction of constant-degree bipartite expan
with some “good” expansion properties — such a construction is given in [13, Theorem 7.1].

22



Comparison with lower bounds. Itis not hard to see that there is adiased generator with degréer locality

2.18 In [16] it was shown that there is no superlinear-stretdsiased generator iNC3. Thus, our linear-stretch
NCY generator (building on the one from [43]) is not only optimal with respect to locality and degree but is als
essentially optimal with respect to stretch.

6.3 Generators for Space-Bounded Computation

We turn to the case of PRGs for space-bounded computation. A standard way of modeling a randomized sf
bounded Turing machine is by having a random tape on which the machine can access the random bits one b
but cannot “go back” and view previous random bits (i.e., any bit that the machine wishes to remember, it must s
in its limited memory). For the purpose of derandomizing such machines, it suffices to construct PRGs that fool
space-bounded distinguisher having a similar one-way access to its input. Following Babai et al. [6], we refel
such distinguishers apace-bounded distinguishers

Definition 6.13 ([6]) (Space-bounded distinguisherp spaces(n) distinguisheis a deterministic Turing machine
M, and an infinite sequence of binary strings= (a1, ..., a,, .. .) called the advice strings, whefe, | = 20(("),

The machine has the following tapes: read-write work tapes, a read-only advice tape, and a read-only input t
on which the tested input string, is given. The input tape has a one-way mechanism to access the tested strir
namely, at any point it may request the next big.ofin addition, onlys(n) cells of the work tapes can be used. Given
an n-bit input, y, the output of the distinguishel/*(y), is the (binary) output of\/ wherey is given on the input
tape anda,, is given on the advice tape.

This class of distinguishers is a proper subset of the distinguishers that can be implemented by é&ngpaa#ag
machine with a two-way access to the input. Nevertheless, even log-space distinguishers are quite powerful,
many distinguishers fall into this category. In particular, this is true for the claléseair distinguishers considered

in Section 6.2.

Definition 6.14 (PRG for space-bounded computation)Ve say that a polynomial-time computable function
{0,1}" — {0,1}'™ is a PRG for space(n) if {(n) > n andG(Uy,) is indistinguishable front/;,,) to any space-
s(n) distinguisher. That is, for every spaeér) distinguisher)/*, the distinguishing advantag®r[M*(G(U,,)) =
1] — Pr[M*(Uy(y) = 1]| is negligible inn.

Several constructions of high-stretch PRGs for space-bounded computation exist in the literature (e.qg., [6,
In particular, a PRG for logspace computation from [6] can be computed using logarithmic space, and thus,
Theorem 4.18, admits an efficient perfect encodiny@f,. It can be shown (see proof of Theorem 6.15) that this
NCY encoding fools logspace distinguishers as well; hence, we can reduce the security of the randomized encc
to the security of the encoded generator, and geN&ff PRG that fools logspace computation. However, as in
the case ot-biased generators, constructing such PRGs with a low stretch is much easier. In fact, the same “ir
product” generator we used in Section 6.2 can do here is well.

Theorem 6.15 There exists a (sublinear-stretch) PRG for sublinear-space computatisa'in

Proof: Consider the inner product generatétz, 2') = (x, 2/, (x,2’)), wherex, 2’ € {0, 1}". It follows from the
average-case hardness of the inner product function for two-party communication complexity [14}ftluds all
sublinear-space distinguishers. (Indeed, a sublinear-space distinguisher implies a sublinear-communication pro
predicting the inner product af andz’. Specifically, the party holding runs the distinguisher until it finishes
readingzr, and then sends its configuration to the party holdifhyy

18A degreel generator contains more thanlinear functions over variables, which must be linearly dependent and thus biased. The
non-existence of a-local generator follows from the fact that every nonlinear function of two input bits is biased.

23



Applying the locality construction t6, we obtain a perfect encoding in NCY. (In fact, we can apply the
locality construction only to the last bit @ and leave the other outputs as they are.) We argueitiaherits the
pseudorandomness 6f. As before, we would like to argue that is a sublinear-space distinguisher breaking
G and S is the balanced simulator of the encoding, tHeiiS(-)) is a sublinear-space distinguisher breakiig
Similarly to the proof of Lemma 6.9, the fact th&f(S(-)) can be implemented in sublinear space will follow from
the simple structure 0. However, in contrast to Lemma 6.9, here it does not suffice to requioebe linear and
we need to rely on the stronger property guaranteed by Observatiot®6.10.

We now formalize the above. As argued in Observation 6.10, fixing the randormredsS, the simulator’'s
computation can be written &$,(y) = o1(y1)o2(y2) - --o1(yi), where eachy; maps a bit ofy to one of two
fixed strings. We can thus uséto turn a sublinear-space distinguishei® breaking(; into a sublinear-space
distinguisher)/® breakingG. Specifically, let the advice’ include, in addition taz, the 2! stringsa;(0), o;(1)
corresponding to a “goods which maintains the distinguishing advantage. (The existence of stallows from
an averaging argument.) The machih& () can now emulate the computation M“(Sp(y)) using sublinear
space and a one-way accesg toy applying) @ in each step to the corresponding stringy; ). |

6.4 Pseudorandom Generators - Conclusion

We conclude this section with Table 6.1, which summarizes some of the PRGs constructed here as well as pre:
ones from [43] and highlights the remaining gaps.

] Type | Stretch | Locality | Degree]
e-biased superlinear | 5 2V
e-biased | n(VR) largek | Q(Vk)
e-biased Q(n?)v Q(n) 2V
e-biased linearv’ 3V 2V

space sublinear< | 3 v 2V
cryptographic *| sublinear< | 4 3

Table 6.1: Summary of known pseudorandom generators. Results of Mossel et al. [43] appear in the top part
results of this paper in the bottom part. A parameter is marked as optiffjdl Wwhen fixing the other parameters

it cannot be improved. A stretch entry is marked withif the stretch is sublinear and cannot be improved to be
superlinear (but might be improved to be linear). The symbol * indicates a conditional result.

7 Other Cryptographic Primitives

In this section, we describe extensions of our results to other cryptographic primitives. AinNgY anplementa-
tions, we can use our machinery in two different ways: (1) compile a primitive in a relatively high complexity clas
(sayNC!) into its randomized encoding and show that the encoding inherits the security properties of this primiti
or (2) use knowmeductionsbetween cryptographic primitives, together wik" primitives we already constructed
(e.g., OWF or PRG), to obtain neMC® primitives. Of course, this approach is useful only when the reduction itself

¥Indeed, in the current model of (non-uniform) space-bounded computatioronétiwayaccess to the input (and two-way access to
the advice), there exist a boolean functiéh computable in sublinear space and a linear functfosuch that the composed function
M(S(~)) is not computable in sublinear space. For instancd%é@h cesYon) = Y1Y2 + Ysya + ... F Yan—1y2n @NAS (21, . .., T2n) =
(T1, Tng1, T2, Tnt2,. ..y Tn, Tan ).

24



is in NC°.2° We mainly adopt the first approach, since most of the known reductions between primitives are not
NC?. (An exception in the case of symmetric encryption will be discussed below.)

7.1 Collision-Resistant Hashing inNC°

We start with a formal definition of collision-resistant hash-functions (CRHFs).

Definition 7.1 (Collision-resistant hashing)Let?, ¢’ : N — N be such that(n) > ¢'(n) and letZ C {0,1}*. A
collection of functiongh. }.c~ is said to becollision-resistanif the following holds:

1. There exists a probabilistic polynomial-tinkey-generatioralgorithm, GG, that on inputl™ outputs anindex
z € Z (of afunctionh.). The functiom., maps strings of length(n) to strings of lengttt’(n).

2. There exists a polynomial-tinevaluationalgorithm that on input € G(17), z € {0, 1}*(") computes:. (z).

3. Collisions are hard to find. Formally, a pairz, z’) is called acollisionfor a functionh,, if = # 2/ buth,(z) =
h.(z"). The collision-resistance requirement states that every probabilistic polynomial-time algd?ittmt
is given input z = G(1™), 1), succeeds in finding a collision far, with a negligible probability im (where
the probability is taken over the coin tosses of bGtand B).

Lemma 7.2 SupposeéH = {h.}.cz is collision resistant and{ = {fzz}zez is a uniform perfect randomized
encoding ofH. ThenH is also collision resistant.

Proof:  Sinceh, is stretch preserving, it is guaranteed to shrink its input,asThe key generation algorithiid

of H is used as the key generation algorithnaf By the uniformity of the collectiorf, there exists an efficient

evaluation algorithm for this collection. Finally, any collisi¢tx, ), («/,7')) underh, (i.e., (z,r) # («/,7') and

h.(z,7) = h.(2',7")), defines a collisioriz, 2/) underh.. Indeed, perfect correctness ensures that) = h. (')

and unique-randomness (see Lemma 4.12) ensures that'. Thus, an efficient algorithm that finds collisions for

H with non-negligible probability yields a similar algorithm fa. |
By Lemma 7.2 and Theorem 4.18, we get:

Theorem 7.3 If there exists a CRHFH = {h.}.cz such that the functior’(z, z) £ h.(z) is in PREN (in
particular, in &L /poly), then there exists a CRHR = {h.}.c such that the mapping, y) — h.(y) is in NCY.

Using Theorem 7.3, we can construct CRHFSNi® based on the intractability of factoring [17], discrete
logarithm [46], or lattice problems [25, 48]. All these candidates are computabi€ inprovided that some pre-
computation is done by the key-generation algorithm. Note that the key generation algorithm of the ragifiting
CRHF is not inNC°. For more details otNC" computation of collections of cryptographic primitives see Ap-
pendix A.

7.2 Encryption in NC°

We turn to the case of encryption. Suppose that (G, E, D) is a public-key encryption scheme, wheras a key
generation algorithm, the encryption functiéite, x, ) encrypts the messageusing the key and randomness
andD(d, y) decrypts the ciphey using the decryption key. As usual, the function&, E, D are polynomial-time
computable, and the scheme provides correct decryption and satisfies indistinguishability of encryptions [29]. Le

20if the reduction is inNNC' one can combine the two approaches: first applyNi®& reduction to ariNC® primitive of type X that
was already constructed (e.g., OWF or PRG) to obtain alNé&W primitive of typeY", and then use the first approach to compile the latter
primitive into anNC° primitive (of typeY’). As in the first approach, this construction requires to prove that a randomized encoding of
primitive Y preserves its security.

25



def

be a randomized encoding &f and letD(d, ) £ D(d, C(4)) be the composition ob with the decodet’ of E.
def

We argue that the scherge= (G, E, D) is also a public-key encryption scheme. The efficiency and correctness c
£ are guaranteed by the uniformity of the encoding and its correctness. Using the efficient simulgtoveo€an
reduce the security f to that of£. Namely, given an efficient adversadythat distinguishes between encryptions
of z andz’ underé, we can breal€ by using the simulator to transform original ciphers into “new” ciphers, and
then invokeA. The same argument holds in the private-key setting. We now formalize this argument.

Definition 7.4 (Public-key encryption) A secure public-key encryption scher(KE) is a triple (G, E, D) of
probabilistic polynomial-time algorithms satisfying the following conditions:

e Viability: On input1™ the key generation algorithn@y, outputs a pair of keyée, d). For every pair(e, d)
such that(e, d) € G(1™), and for every plaintext € {0, 1}*, the algorithmsZ, D satisfy

Pr[D(d, E(e,x)) # x] < e(n)

wheree(n) is a negligible function and the probability is taken over the internal coin tosses of algorfthms
andD.

e Security. (Indistinguishability of encryptions of a single message) For every (non-uniform) polynomial
time distinguisheB, every polynomiap(-), all sufficiently largen’s, and pair of plaintextsc, 2’ such that
|z| = |2'| < p(n), the distinguisher cannot distinguish between encryptionsarfd =’ with more tha%
advantage; namely,
1

Pr B(e,E(e,x)) = 1] — Pr Ble,E(e,2")) =1]] < —,
P [Ble Bles) =1 = Pr (Bl B(e.a) =1]| <

where the probabilities are taken over the coin tosseS of.

The definition of aprivate-keyencryption scheme is similar, except that the distinguisher does not get the the e
cryption keye as an additional input. An extension to multiple-message security, where the indistinguishabili
requirement should hold for encryptions of polynomially many messages, follows naturally (see [24, chapter 5]
formal definitions). In the public-key case, multiple-message security is implied by single-message security as
fined above, whereas in the private-key case it is a strictly stronger notion. In the following we explicitly addre
only the (single-message) public-key case, but the treatment easily holds for the case of private-key encryption
multiple-message security.

Lemma 7.5 Let€ = (G, E, D) be a secure public-key encryption scheme, wh&ee x, r) is vievyed as a polynomial-
time computable function that encrypts the messagsing the key and randomness. Let E((e,x), (r,s)) =

E((e,z,r), s) be a uniform statistical randomlzed encodng)and letD(d, §) = D(d, C(j)) be the composition
of D with the decode€’ of £. Then, the schente < (G E, D) is also a secure public-key encryption scheme.

Proof: Thp uniformity of the encoding guarantees that the functiBrend D can be efficiently computed. The
viability of &£ follows in a straightforward way from the correctness of the decétlemdeed, if(e, d) are in the
support ofG(1"), then for any plaintext we have

Pr{D(d, E(e,z,,5)) # 2] = Pr[D(d, C(E(e,w,r,5))) # 2]

.8

IN

Eg[C’(EA((e, x,r),8)) # E(e,x,r)] + f;r[D(d, E(e,z,1)) # ]

IN

e(n),

26



wheres(-) is negligible inn and the probabilities are also taken over the coin tosséx tife first inequality follows
from the union bound and the second from the viabilit¥ afnd the statistical correctnessiof

We move on to prove the security of the construction. Assume, towards a contradictiofi,ishaot secure.
It follows that there exists an efficient (nonuniform) distinguisBeand a polynomiap(-), such that for infinitely
manyn’s there exist two plaintexts, ' such thatz| = |2/| < p(n), and

P Ble,E(e,x,7,5)) = 1] — P Ble, E(e,',7,8)) = 1]| > —,
(e,d)<—GI(‘1”),7',s[ (6 (6 5T S)) } (e,d)<—GI(‘1"),T,s[ (6 (6 TaT S)) ” p(n)
wherer, s are uniformly chosen random strings of an appropriate length. WeBuseconstruct a distinguisher
B that distinguishes between encryptionsradindz’ under E and derive a contradiction. Define a (non-uniform)

distinguisherB by B(e,y) = B(e, S(y)), wheres is the efficient (statistical) simulator df. Then, for some
negligiblee,

Pr B(e, E(e,x,r)) = 1] — Pr B(e,E(e,2’,r)) =1
(e,d)HG(l"),r[ (e, B =1 (e,d)%G(l"),r[ (e, B ) =1l
= Pr B975E6,$,7‘ =1] — Pr B(e,S(E(e,z',7))) =1
T Bl S Bz ) =1] = Pr | [Ble, SE( ) =1]|
= Pr Be,Ee,x,r,s =1/ Pr B@,E€,$/7T,3 =1|| —eln
B (e,d)HG(l"),r,s[ (e B ) ] (e,d)HG(ln),r,s[ (e, E( ) | = &)

> L—&t(n)>

1
p(n) q(n)’
for some polynomial(-) and infinitely manyn’s. The first inequality is due to statistical privacy and the second
follows from our hypothesis. Hence, we derive a contradiction to the securétyaotl the lemma follows. ]

In particular, if the schemé& = (G, E, D) enables errorless decryption and the encodirig perfectly correct,
then the schemé also enables errorless decryption. Additionally, the above lemma is easily extended to case
private-key encryption with multiple-message security. Thus we get,

Theorem 7.6 If there exists a secure public-key encryption scheme (respectively, a secure private-key encryp
schemef = (G, E, D), such thatF is in SREN (in particular, in NL/pqu), then there exists a secure public-key
encryption scheme (respectively, a secure private-key encryption schem@y, £, D), such thatF is in NCY.

Specifically, one can construct &FC° PKE based on either factoring [47, 28, 10], the Diffie-Hellman Assump-
tion [19, 28] or lattice problems [3, 48]. (These schemes enab¥@h encryption algorithm given a suitable
representation of the key.)

On decryption in NC%.  Our construction provides a¥C® encryption algorithm but does not promise anything
regarding the parallel complexity of the decryption process. This raises the question whether decryption can als
implemented ilNCP. In Appendix C.1, we argue that, in many settings, decryptidiaH is impossible regardless

of the complexity of encryption. In contrast, if the scheme is restrictedioglemessage of a bounded length (even
larger than the key) we can use our machinery to construct a private-key encryption scheme in which both encryy
and decryption can be computedNit’. This can be done by using the output ofG" PRG to mask the plaintext.
Specifically, letE (e, z) = G(e)®z andD(e,y) = y®G(e), wheree is a uniformly random key generated by the key
generation algorithm an@ is a PRG. Unfortunately, the resulting scheme is severely limited by the low stretch ¢
our PRGs. This approach can be also used to give multiple message security, at the price of requiring the encry
and decryption algorithms to maintain a synchronigéte In such a stateful encryption scheme the encryption
and decryption algorithms take an additional input and produce an additional output, corresponding to their s
before and after the operation. The seed of the generator can be used, in this case, as the state of the schel

27



this setting, we can obtain multiple-message security by refreshing the seed of the generator in each invoca
e.g., when encrypting the current bit the encryption algorithm can randomly choose a new seed for the next ses
encrypt it along with current bit, and send this encryption to the receiver (alternatively, see [24, Construction 5.3.
In the resulting scheme both encryption and decryptio\&r€ functions whose inputs include the inner state of
the algorithm.

Theorem 7.6 can be easily extended to stronger notions of security. In particular, randomized encoding prese
security against chosen plaintext attacks (CPA) as well as a-priory chosen ciphertext attacks (CCA1). Howe
randomized encoding does not preserve security against a-posteriori chosen ciphertext attack (CCA2). Still, it
be shown that the encoding of a CCA2-secure scheme enjoys a relaxed security property that suffices for |
applications of CCA2-security. See Appendix C.2 for further discussion.

7.3 Signatures, Commitments, and Zero-Knowledge Proofs

The construction that was used for encryption can be adapted to other cryptographic primitives including (n
interactive) commitments, signatures, message authentication schemes (MACs), and non-interactive zero-know
proofs (for definitions see [23, 24]). In all these cases, we can replace the sender (i.e., the encrypting party, comn
ting party, signer or prover, according to the case) with its randomized encoding and let the receiver (the decryp
party or verifier) use the decoding algorithm to translate the output of the new sender to an output of the origi
one. The security of the resulting scheme reduces to the security of the original one by using the efficient simul
and decoder. In fact, such a construction can also be generalized to the case of interactive protocols such as
knowledge proofs and interactive commitments. As in the case of encryption discussed above, this transforme
results in ariNC? sender but does not promise anything regarding the parallel complexity of the receiver. An inte
esting feature of the case of commitment is that we can also improve the parallel complexity at the receiver’s
(see below). The same holds for applications of commitment such as coin-flipping and ZK proofs. We now brie
sketch these constructions and their security proofs.

SIGNATURES. LetS = (G, S, V) be a signature scheme, whe¥es a key-generation algorithm that generates the
signing and verification key, v), the signing functiorb (s, «, ) computes a signaturgon the document using

the keys and randomness and the verification algorithii (v, «, 3) verifies thatg is a valid signature on: using

the verification kew. The scheme is secure (unforgeable) if it is infeasible to forge a signature in a chosen mess,
attack. Namely, any polynomial-time adversary that gets the verification key and an oracle access to the sig
processS(s, -) fails to produce a valid signatureéon a documend: (with respect to the corresponding verification
key v) for which it has not requested a signature from the oracle.SUs¢ a statistical randomized encoding$f

and letV (v, a, 3) £ V (v, a, C(j3)) be the composition of with the decode€” of the encodingS. We claim that

the schemes £ (G, S, V) is also a signature scheme. Given an advershtiat breaksS, we can brealS by

invoking A arld emulating thg oraclg using ttle simulator of the encoding and the signature orgcléthe forged
signature(a, 5) produced byA is valid underS, then it is translated into a valid signatuke, 5) underS by using

the decoder, i.e = C(3). A similar argument holds also in the private-key setting (i.e., in the case of MACs).

COMMITMENTS. A commitment scheme enables one party (a sender) to commit itself to a value while keeping
secret from another party (the receiver). Later, the sender can reveal the committed value to the receiver, anc
guaranteed that the revealed value is equal to the one determined at the commit stage. We start with the simple
of a perfectly binding, non-interactive commitment. Such a scheme can be defined by a polynomial-time comput:
function SEND(b, ) that outputs a commitmentto the bitb using the randomnesgs We assume, w.l.0.g., that the
scheme has a canonical decommit stage in which the sender rebgaending andr to the receiver, who verifies
that SEND(b, ) is equal to the commitmeit The scheme should be both (computationally) hiding and (perfectly)
binding. Hiding requires that= SEND(b, r) keepsh computationally secret (as formalized in Definition 7.4 for the
case of encryption). Binding means that it is impossible for the sender to open its commitment in two different wa
thatis, there are ne, andr; such thaSEND(0, r9) = SEND(1, 7). Let SEND(b, , s) be some randomized encoding

28



of SEND(b, ). It can be shown that IBEND is a perfectly correct (and statistically private) encodingefp, then
SEND defines a computationally hiding perfectly binding, non-interactive commitment: Hiding follows from the
privacy of the encoding, as argued for the case of encryption in Section 7.2. The binding profBakpdbllows

from the perfect correctness; namely, given a cheating seidfar SEND that produces ambiguous commitment
(ro,75), (r1,7)) such thatSEND(0, 7o, s)) = SEND(1,71,s1), we construct a cheating sendgt for the original
scheme that invokeS* and outputso, ;. By perfect correctness it holds th&END(0,79) = SEND(1,r1) and
hence the new adversary succeeds with the same probability as the origidal one.

Using a standard construction ([9], [23, Construction 4.4.2]), it follows that commitmeNiS'irare implied by
the existence of a 1-1 OWF iRREN . Itis important to note that in contrast to the non-interactive perfectly binding
primitives described so far, here we also improve the parallel complexity at the receiver’s end. Indeed, on in
¢, b, r, s the receiver’s computation consists of computBEj\lD(b,r, s) and comparing the result ® Assuming
SEND is in NC?, the receiver can be implemented byN6° circuit augmented with a single (unbounded fan-in)
AND gate. We refer to this special type AC? circuit as anNC°[AND] circuit. As an immediate application, we
get a 3-round protocol for flipping a coin [9] between@” circuit and arNC°[AND] circuit.

One can apply a similar transformation to other variants of commitment schemes, such as unconditionally hic
(and computationally binding) interactive commitments. Schemes of this type require some initialization pha
which typically involves a random key sent from the receiver to the sender. We can turn such a scheme into a sin
scheme between a\iC? sender and alNC°[AND)] receiver, provided that it conforms to the following structure:
(1) the receiver initializes the scheme logally computing a random kek (say, a prime modulus and powers of
two group elements for schemes based on discrete logarithm) and sending it to the sender; (2) the sender res
with a single message computed by the commitment fun@@wp(b, &, r) which is in PREN (actually, perfect
correctness and statistical privacy suffice); (3) as in the previous case, the scheme has a canonical decommit
in which the sender revealsby sendingb andr to the receiver, who verifies th&ND(b, k, ) is equal to the
commitmente. Using the CRHF-based commitment scheme of [18, 31], one can obtain schemes of the above t
based on the intractability of factoring, discrete logarithm, and lattice problems. Given such a scheme, we rep
the sender’s function by its randomized encoding, and get as a result an unconditionally hiding commitment sch
whose sender is ilNC?. The new scheme inherits the round complexity of the original scheme and thus consis
of only two rounds of interaction. (The security proof is similar to the previous case of perfectly binding, nol
interactive commitment.) If the random kéycannot be computed iNC°[AND] (as in the case of factoring and
discrete logarithm based schemes), one can conipaeee and for all during the generation of the receiver’s circuit
and hardwire the key to the receiver’s circuit. (See Appendix A.)

ZERO-KNOWLEDGE PROOFS We end this section by addressing the case of zero-knowledge protocols. Suppc
that the prover’s computations areSfREN . Then, similarly to the case of encryption, we can compile the prover
into its (statistical) randomized encoding, and obtain a prover whose local computations (viewed as a functiol
its randomness, the common instance of the language, the private witness, and previously received messages)
NC°. The new verifier uses the decoder to translate the prover’'s encoded messages to the corresponding mes
of original protocol, and then invokes the original verifier. The completeness and soundness of the new prot
follow from the correctness of the encoding, and its zero-knowledge property from the privacy of the encoding. (T
verifier can produce transcripts of the new protocol by composing the simulator of the encoding with the simule
of the original protocol.) A similar transformation applies to zero-knowleatgeiments

As before, this general approach does not parallelize the verifier; in fact, the verifier is now required to “wc
harder” and decode the prover's messages. However, we can improve the verifier's complexity by relying on spec
commitment-based, zero-knowledge protocols from the literature. For instance, in the constant-round protoco

2IA modification of this scheme remains secure even if we repBeed with a statistical randomized encoding. However, in this
modification we cannot use the canonical decommitment stage. Instead, the receiver should verify the decommitment by applying the de
C to ¢ and comparing the result to the computation of the original sender; i.e., the receiver checks i{éjreguals toSEND(b, 7). A
disadvantage of this alternative decommitment is that it does not enjoy the enhanced parallelism feature discussed below.

29



Graph 3-Colorability of [26], the computations of the prover and the verifier consist of invoking two commitmen
(of both types, perfectly binding as well as statistically hiding), in addition to saf&computations. Hence, we
can use the parallel commitment schemes described before to construct a constant-round protocol for 3-Colora
between am\C® prover and am\C° verifier. Since 3-Colorability iSNP complete undeACP-reductions, we get
constant-round zero-knowledge proofsAfi” for every language itNP.

7.4 Summary and Discussion

Table 7.1 summarizes the properties of randomized encoding that suffice for encoding different cryptographic pi
itives. (In the case of trapdoor permutations, efficient randomness recovery is also needed.) We note that in s
cases it suffices to usecamputationally-privateandomized encoding, in which the simulator’s output should only
be computationally indistinguishable from that of the encoding. This relaxation, recently studied in [4], allows
construct (some) primitives iNC® under more general assumptions.

| Primitive | Encoding | Efficient simulator| Efficient decoder
One-way function statistical required —
One-way permutation perfect required —
Trapdoor permutation perfect required required
Pseudorandom generator perfect required —
Collision-resistant hashing perfect — —
Encryption (pub., priv.) statistical required required
Signatures, MAC statistical required required
Commit + Decommit perfectly correct required —
Zero-knowlege proof statistical required required

Table 7.1: Sufficient properties for preserving the security of different primitives.

THE CASE OFPRFs. Itis natural to ask why our machinery cannot be applied to pseudorandom functions (PRF
(assuming there exists a PRFREN), as is implied from the impossibility results of Linial et al. [42]. Suppose
that a PRF familyf; () = f(k, x) is encoded by the functiofi k, z, r). There are two natural ways to interpyeas

a collection: (1) to incorporate the randomness into the keygi.g () & f(k:, x,r); (2) to append the randomness

def 7

to the argument of the collection, i.éw,(x,7) = f(k,x,r). To rule out the security of approach (1), it suffices to
note that the mappinﬁ(-, r) is of degree one whenis fixed; thus, to distinguishy, , from a truly random function,
one can check whether the given function is affine (e.qg., verifydhatr) + gx - (y) = grr(z +y) + g&,-(0)). The
same attack applies to the functibp(z, r) obtained by the second approach, by fixing the randomneséore
generally, the privacy of a randomized encoding is guaranteed only when the randomness is secret and is fri
picked, thus our methodology works well for cryptographic primitives which employ fresh secret randomness
each invocation. PRFs do not fit into this category: while the key contains secret randomness, it is not freshly pic
in each invocation.

We finally note that by combining the positive results regarding the existence of various primitNes iith
the negative results of [42] that rule out the possibility of PRFAGY, one can derive a separation between PRFs
and other primitives such as PRGs. In particular, we conclude that it is unlikely that a PRF-geducible to a
PRG.

30



8 One-Way Functions with Optimal Locality

The results presented so far leave a small gap between the strong positive evidence for cryptogfahsrid
the known impossibility of even OWF iNCY. In this section we attempt to close this gap for the case of OWF,
providing positive evidence for the existence of OWRN@Y.

A natural approach for closing the gap would be to reduce the degree of our general construction of random
encodings from 3 to 2. (Indeed, the locality construction transforms a degree-2 encoding intVaiie)inlowever,
the results of [37] provide some evidence against the prospects of this general approach, ruling out the exist
of degree-2 perfectly private encodings for most nontrivial functions. We thus take the following two alternati
approaches: (1) seakrect constructions of degree-2 OWF based on specific intractability assumptions; and (.
employ degree-2 randomized encodings with a weak (but nontrivial) privacy property (sailteeprivacy, which
enables the representation of general functions.

In Section 8.1, we use approach (1) to construct a OWF with optimal locality based on the presumed intractab
of decoding a random linear code. In Section 8.2 we briefly demonstrate the usefulness of approach (2) by sketc
a construction of a OWF with optimal locality based on a OWF that enjoys a certain strong “robustness” prope
which is satisfied by a variant of a OWF candidate suggested in [22]. We note that neither of the above approa
yields a general result in the spirit of the results of the previous sections. Thus, we happen to pay for optimal de
and locality with the loss of generality.

8.1 OWF in NC3 from the Intractability of Decoding Random Linear Codes

Several cryptographic schemes are based on hard problems from the theory of error-correcting codes. In partic
the problem of decoding random linear codes, which is a longstanding open question in coding theory, was sugge
as a basis for one-way functions [27]. An, k, ¢) binary linear codds ak-dimensional linear subspace@GF(2)"
in which the Hamming distance between each two distinct vectors (codewords) is dle&é refer to the ratio
k/n as therate of the code and t@ as its (relativeXistance Such a code can be defined by a n generator
matrix whose rows span the space of codewords. It follows from the Gilbert—Varshamov bound that whene
k/n < 1—Ha(d) —e (whereH is the binary entropy function ands an arbitrarily small positive constant), almost
all & x n generator matrices forim, &, 6)-linear codes.

Before defining our intractability assumption imagine the following “decoding game’ et 1 — HQ(%) —€
for some constart > 0. Pick a randonk x n matrix C representing a linear code (which is with overwhelming
probability an(n, k:,% + ¢) code) and a random information wogd Encoder with C' and transmit the resulting
codewordy = xC over a binary symmetric channel in which every bit is flipped with probab}ljty more than% of
the bits were flipped, output the zero word; otherwise, output the noisy codgvedodg with the code’s description
C. In the former event the adversary always wins (however, note that the probability of this event is negligible).
the latter event, the adversary’s task is to find some codewovtich is at most(n/3)-far from g. The fact that
the noise is random (rather than adversarial) guarantees, by Shannon’s coding theorgiwijltheg unique with
overwhelming probability.

The intractability assumption on which we rely asserts that every polynomial-time adversary lose in the ab
game with noticeable probability. That is, roughly speaking, we assume that it is intractable to cgtresstdom
errors in a random linear code of relative distaécd&/lore precisely:

Intractability Assumption 8.1 (Decoding a random linear code)rhere exists a constant< 1 — Hg(%) such that
the following functionf.qe is a weak OWF?22

) ight(e1€2, . .., ean—1€2n) > /3,
fcode(c7 Z, 6) d:f wetg (.6162 €2an 16277,) n/
(C,2C + (ere,. .., ea,—1€2,)) Otherwise

2In fact, it seems likely that the functiofi.q. is even strongly one-way.

31



whereC is ak x n binary generator matrix witlk = [cn|, x € {0,1}*, e € {0,1}?", weight(-) denotes Hamming
weight, and arithmetic is ove&F (2).

Namely, invertingf..qe ON @ uniformly chosen input corresponds to winning in the above decoding game. (Tw
random bitsg; ande; 1, are multiplied to emulate a noise rate}p} The plausibility of Assumption 8.1 is supported
by the fact that a successful inverter would imply a major breakthrough in coding theory. Similar assumptions w
put forward in [27, 8, 23]. It is possible to base our construction on different variants of this assumption (e.g., one
which the number of errors is bounded by half the minimal distance, as in [27]); the above formulation is preferi
for simplicity (and seems even weaker than the one in [27]).

We now construct a degree-2 OWF assuming the (weak) one-waynéssofConsider the degree-2 function

! . defined byf! . (C,xz,e) £ (C,xC + (erea, . .., ean_162,)). The functionf! .. by itself is not one-way;
indeed, as there is no restriction on the choice,@h inverter can arbitrarily pick and then fixe to be consistent
with C, =, andgy. However, f! .. is still distributionally one-way. This follows by noting thdf . differs from
feode ONly on a negligible fraction of their domain and by using Lemma 5.4. To conclude the proof we need t
following lemma.

Lemma 8.2 A degree-2 distributional OWF implies a degree-2 OWHI@).

Proof:  First observe that a degr@exveak OWF can be transformed into a deg2gstandard) OWF (cf. [52],[23,
Theorem 2.3.2]). Combined with the locality construction, we get that the existence of a degeak-OWF implies

the existence of a degree-2 OWFNCY. Hence it is enough to show how to transform a degree-2 distributional
OWEF into a degree-2 weak OWF.

Let f be a degree-2 distributional OWF. Consider the functitfx, i, h) = (f(z), hi(z),i,h), wherez €
{0,1}™, 4 € {1,...,n}, h : {0,1}" — {0,1}"™ is a pairwise independent hash function, @gdlenotes the-
bit-long prefix of h(z). This function was defined by Impagliazzo and Luby [35], who showed that in this cas:
F is weakly one-way (see also [23, p. 96]). Note that) can be computed as a degree-2 functior @ind (the
representation of} by using the hash famil§t,;,(z) = M + v, whereM is ann x n matrix andv is a vector
of lengthn. However, h;(x) is not of degree 2 when considered as a functiork,of andi, since “chopping”
the lastn — ¢ bits of h(z) raises the degree of the function wheis not fixed. We get around this problem by
applyingn copies ofF’ on independent inputs, where each copy uses a différésamely, we define the function
F'((z@ p@yn_ )y = (2@ 4, hM))2_ . Since each of the's is now fixed, the resulting functiod” can be
computed by degree-2 polynomials o¥&F (2). Moreover, it is not hard to verify that’ is weakly one-way ifF’
is weakly one-way. We briefly sketch the argument. Given an efficient inverting algoBthon F”/, one can invert
y = F(z,i,h) = (f(z), hi(x),i, h) as follows. For every # i, uniformly and independently choosé&), h(/), set
zj = F(2U),j,h19) andz; = y, then invokeB on (z;)"_, and output the™ block of the answer. This inversion
algorithm for F' has the same success probabilityzen a polynomially related input. [ |

Applying Lemma 8.2 tof!_,, we get:

ode

Theorem 8.3 If Assumption 8.1 holds, there is a degree-2 OWK£.

8.2 OWF in NC3 Using Semi-Private Encoding

In this section we briefly address the possibility of obtaining optimal locality for OWF (i.e., locality 3 rather than 4
by relaxing the privacy requirement of the encoding. Further details appear in [5].

We start by sketching an alternative approach for constructing OWEthbased on Assumption 8.1. The basic
idea is the following. Consider the degree-2 functjf,, defined above. This function is not one-way. However,
it is possible to augment it to a (weakly) one-way function by appending to its output a singi¢dyjtindicating
whether the error vectar exceeds the weight threshold. Thatg$e) = 1 iff weight(eiea, ..., eam—1€2,) > n/3.

32



(This ensures that, with high probability, the inverter will be forced to pick a low-weight error.) While we cannc
encode the predicatge) using degree-2 polynomials, it turns out that we can achieve this using the following typ
of semi-privateencoding. Specifically, we relax the simulation requirement to hold only wiien= 0. Thus, the
encoding;?)(e, r) keepse private only whenp(e) = 0, i.e., where defines a low-weight error vector. It is possible to
efficiently construct such a degree-2 semi-private encoding from the branching program representati@riof
can be done by using a variant of the BP construction described in Section 4.3.) Hence, under Assumption 8.1
degree-2 encodini.oq. ((C, =, €), 1) £ (f! 4. (C, z,¢), d(e, ) is weakly one-way.

Given any OWF{f, one could attempt to apply a semi-private encoding as described above to every output bit
f, obtaining a degree-2 functigh However, f will typically not be one-way: every output bit gf that evaluates
to 1 might reveal the entire input (through the corresponding block in the outpf)t dhis motivates the following
notion of arobustOWF. Loosely speaking, a OWFis said to be robust if it remains (slightly) hard to invert even if
a random subset of its output bits are “exposed”, in the sense that all input bits leading to these outputs are reve
Intuitively, the purpose of the robustness requirement is to guarantee that the information leaked by the semi-pri
encoding leaves enough uncertainty about the input to make inversion difficult. It can be shown that: (1) ev
robust OWF with a low locality (say, logarithmic in the number of inputs) can be turned into a OWEJnand
(2) a variant of a OWF candidate from [22] satisfies the latter property, assuming that it is indeed one-way. Thus
intractability assumption of the flavor of the one suggested in [22] implies the existence of QW in

9 Conclusions and Open Problems

Our results provide strong evidence for the possibility of cryptograpiyGfi. They are also close to optimal in
terms of the exact locality that can be achieved. Still, several questions are left for further study. In particular:

e What are the minimal assumptions required for cryptograpiyGfi? For instance, does the existence of an
arbitrary OWF imply the existence of OWF MC®? We show that a OWF itVL /poly implies a OWF in
NCO.

e Is there a PRG with linear stretch or even superlinear stretdtCit? In particular, is there a PRG with linear
stretch inNCY? (The possibility of PRG with superlinear stretchiN@ is ruled out in [43].) We show that
there exists a PRG witsublinearstretch inNC{, assuming the existence of a PRG3ih/poly.

e Can the existence of a OWF (or PRG)NTY be based on more general assumptions? We construct such
OWF under the intractability of decoding a random linear code.

e Is it possible to obtain constamtput locality, i.e., construct primitives in which each input influences only
a constant number of outputs? (A candidate OWF of this type is given in [22].) Note that the results of tf
work only address the case of a constautiputlocality, which does not imply a constant input locality.

e Can our paradigm for achieving better parallelism be of any practical use?

The above gquestions motivate a closer study of the complexity of randomized encodings, which so far was ¢
motivated by questions in the domain of secure multiparty computation. In [4] we continue this study by consider
a relaxed variant of randomized encoding referred teamputationally-privateencoding. We show that, under
relatively mild assumptions, one can encode every polynomial-time computable function by a computationa
private encoding infNC®. This gives new sufficient conditions for cryptographyNit’, as well as newNC"
reductions between different cryptographic primitives.

33



Acknowledgments We are grateful to Oded Goldreich for many useful suggestions and comments that help
improve this writeup, and in particular for simplifying the proof of Lemma 5.4. We also thank Iftach Haitner an
Emanuele Viola for enlightening us about old and new constructions of PRGs from OWFs and for sharing with
the results of [30] and [50]. Finally, we thank Moni Naor and Amir Shpilka for helpful comments.

References

[1] M. Agrawal, E. Allender, , and S. Rudich. Reductions in circuit complexity: An isomorphism theorem and
gap theoremJ. Comput. Syst. S¢b7(2):127-143, 1998.

[2] M. Ajtai. Generating hard instances of lattice problemsPiioc. 28th STOCpages 99-108, 1996. Full version
in Electronic Colloquium on Computational Complexity (ECCC).

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalenemclr29th
STOC pages 284-293, 1997.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials and the
applications. IrProc. 20th Conference on Computational Complexity (C@@ayes 260-274, 2005.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. On one-way functions with optimal locality. Unpublishec
manuscript available at http://www.cs.technion.asadlbenny, 2005.

[6] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom sequences
Proc. 21st STO(pages 1-11, 1989.

[7] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those language:
NC!. In Proc. 18th STOCpages 1-5, 1986.

[8] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning problem
In Advances in Cryptology: Proc. of CRYPTO ,98lume 773 oLNCS pages 278—-291, 1994.

[9] M. Blum. Coin flipping by telephone: a protocol for solving impossible probleésd&ACT Newsl5(1):23-27,
1983.

[10] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides all parti
information. InAdvances in Cryptology: Proc. of CRYPTO ,8®lume 196 oL.LNCS pages 289-302, 1985.

[11] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-randogiAlits].
Comput, 13:850-864, 1984. Preliminary version in FOCS 82.

[12] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen ciphertext security of encryption schemes.
Advances in Cryptology: Proc. of CRYPTO ,@®lume 2729 o NCS pages 565-582, 2003.

[13] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-degree los
expanders. IfProc. 34th STOCpages 659—668, 2002.

[14] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communica
complexity. SIAM J. on Computindl7(2):230—-261, 1988.

[15] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over ring€2rolc
EUROCRYPT '03pages 596613, 2003.

[16] M. Cryan and P. B. Miltersen. On pseudorandom generatd¥<ih In Proc. 26th MFCS2001.

34



[17] I. Damgard. Collision free hash functions and public key signature schemeBrotm Eurocrypt'87 pages
203-216, 1988.

[18] I. Damcard, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schen
and fail-stop signatures. lAdvances in Cryptology: Proc. of CRYPTO ;9%lume 773 ofLNCS pages
250-265, 1994.

[19] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logaritaganoces
in cryptology: Proc. of CRYPTO '84volume 196 ofLNCS pages 10-18, 1985. or IEEE Transactions on
Information Theory, v. IT-31, n. 4, 1985.

[20] A. V. Goldberg, M. Kharitonov, and M. Yung. Lower bounds for pseudorandom number generatém®cin
30th FOCSpages 242—-247, 1989.

[21] O. Goldreich.Modern Cryptography, Probabilistic Proofs and Pseudorandomnesdame 17 ofAlgorithms
and CombinatoricsSpringer-Verlag, 1998.

[22] O. Goldreich. Candidate one-way functions based on expander grgfgwdronic Colloquium on Computa-
tional Complexity (ECCG)7(090), 2000.

[23] O. Goldreich.Foundations of Cryptography: Basic ToolSambridge University Press, 2001.
[24] O. Goldreich.Foundations of Cryptography: Basic ApplicatiorSambridge University Press, 2004.

[25] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice probEetgronic Collo-
quium on Computational Complexi96(042), 1996.

[26] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systeNR. fak of
Cryptology 9(2):167-189, 1996.

[27] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom gener@téid. J. Comput.
22(6):1163-1175, 1993. Preliminary version in Proc. 29th FOCS, 1988.

[28] O. Goldreich and L. Levin. A hard-core predicate for all one-way function®raic. 21st STO(pages 25-32,
1989.

[29] S. Goldwasser and S. Micali. Probabilistic encryptid€S$ 28(2):270-299, 1984. Preliminary version in
Proc. STOC '82.

[30] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate. manuscript, 2005.

[31] S. Halevi and S. Micali. Practicle and provably-secure commitment schemes from collision-free hashing.
Advances in Cryptology: Proc. of CRYPTO ;9%lume 1109 oL NCS pages 201-215, 1996.

[32] J. Hastad. One-way permutationsNC’. Information Processing Letter86:153—155, 1987.

[33] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way functio
SIAM J. Comput.28(4):1364-1396, 1999.

[34] C.Y. Hsiao and L. Reyzin. Finding collisions on a public road, or do secure hash functions need secret coi
In Advances in Cryptology: Proc. of CRYPTO ,&lume 3152 oL NCS pages 92—-105, 2004.

[35] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptograpigc.lof
the 30th FOCSpages 230-235, 1989.

35



[36] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subséosural of
Cryptology 9:199-216, 1996.

[37] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to rounc
efficient secure computation. Froc. 41st FOCSpages 294-304, 2000.

[38] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing polynomiz
In Proc. 29th ICALR pages 244-256, 2002.

[39] M. Kharitonov. Cryptographic hardness of distribution-specific learningrart. 25th STOCpages 372-381,
1993.

[40] J. Kilian. Founding cryptography on oblivious transferProc. 20th STOCpages 20-31, 1988.

[41] M. Krause and S. Lucks. On the minimal hardware complexity of pseudorandom function generators (exten
abstract). IrProc. 18th STACS/olume 2010 oL NCS pages 419-430, 2001.

[42] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnaldili&CM,
40(3):607—620, 1993. Preliminary version in Proc. 30th FOCS, 1989.

[43] E. Mossel, A. Shpilka, and L. Trevisan. @sbiased generators NC°. In Proc. 44th FOCSpages 136-145,
2003.

[44] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random funciicA€&M
51(2):231-262, 2004. Preliminary version in Proc. 38th FOCS, 1997.

[45] N. Nisan. Pseudorandom generators for space-bounded compu@aiatninatorica 12(4):449-461, 1992.

[46] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret shakayafrces in Cryp-
tology: Proc. of CRYPTO '9Qvolume 576 olLNCS pages 129-149, 1991.

[47] M. Rabin. Digitalized signatures and public key functions as intractable as factoring. Technical Report 2:
LCS, MIT, 1979.

[48] O. Regev. New lattice based cryptographic constructionBrda. 35th STOCpages 407-416, 2003.

[49] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryp
tosystemsComm. of the ACM21(2):120-126, 1978.

[50] E. Viola. On constructing parallel pseudorandom generators from one-way functideclri20th Conference
on Computational Complexity (CCages 183— 197, 2005.

[51] A. Wigderson.NL/poly C &L/poly. In Proc. 9th Structure in Complexity Theory Confereruages 59-62,
1994.

[52] A. C. Yao. Theory and application of trapdoor functionsPhoc. 23rd FOCSpages 80-91, 1982.
[53] A. C. Yao. How to generate and exchange secret®rie. 27th FOCSpages 162—-167, 1986.

[54] X. Yu and M. Yung. Space lower-bounds for pseudorandom-generatoPsoén 9th Structure in Complexity
Theory Conferencgages 186-197, 1994.

36



A On Collections of Cryptographic Primitives

In most cases, we view a cryptographic primitive (e.g., a OWF or a PRG) as a single fuhet{on1}* — {0, 1}*.
However, it is often useful to consider more general variants of such primitives, definecbbgaionof functions
{f:}:ez, whereZ C {0,1}* and eachf, is defined over a finite domaifv,. The full specification of such a
collection usually consists of a probabilistic polynomial time key-generation algorithm that chooses an dfidex
function (given a security parametgt), a domain sampler algorithm that samples a random elementfirpgiven

z, and a function evaluation algorithm that compufegr) givenz andz € D.. The primitive should be secure
with respect to the distribution defined by the key-generation and the domain sampler. (See a formal definition
the case of OWF in [23, Definition 2.4.3].)

Collections of primitives arise naturally in the context of parallel cryptography, as they allow to shift “non
parallelizable” operations such as prime number selection and modular exponentiations to the key-generation ¢
(cf. [44]). They also fit naturally into the setting of P-uniform circuits, since the key-generation algorithm can
embedded in the algorithm generating the circuit. Thus, it will be convenient to assumeighatdescription of
a circuit computingf.. When referring to a collection of functions from a given complexity class (3@.,NCY,
or PREN, cf. Definition 4.8) we assume that the key generation algorithm outputs a description of a circuit fro
this class. In fact, one can view collections in our context as a natural relaxation of uniformity, allowing the circt
generator to be randomized. (The above discussion also applies to other P-uniform representation models we
such as branching programs.)

Our usage of collections differs from the standard one in that we insig?.obeing the set oéll strings of a
given length (i.e., the set of all possible inputs for the cirediand restrict the domain sampler to be a trivial one
which outputs a uniformly random string of the appropriate length. This convention guarantees that the primitive
indeed be invoked with the specified parallel complexity, and does not implicitly rely on a (possibly less parall
domain samplef® In most cases, it is possible to modify standard collections of primitives to conform to th
above convention. We illustrate this by outlining a construction oN&it collection of one-way permutations
based on the intractability of discrete logarithm. The key-generator, on ifipamples a random primesuch
that2”~! < p < 2" along with a generatog of Z*, and letsz be a description of alNC! circuit computing
the functionf, , defined as follows. On an-bit input = (viewed as an integer such that< = < 2") define
fpg(®) = ¢® modpif 1 < 2 < pandf,,(x) = x otherwise. It is easy to verify that, , indeed defines a
permutation or{0, 1}". Moreover, it can be computed by &' circuit by incorporating, g, g2, g%, ..., g*" into
the circuit. Finally, assuming the intractability of discrete logarithm, the above collectiweaklyone way. It can
be augmented into a collection of (strongly) one-way permutations by using the standard reduction of strong O
to weak OWF (i.e., using,, (21, ..., %) = (fpg(z1), -, fpg(Tn)))-

When defining the cryptographic security of a collection of primitives, it is assumed that the adversary (e.
inverter or distinguisher) is given the key in addition to its input in the single-function variant of the primitive.
Here one should make a distinction between “private-coin collections”, where this is all of the information availat
to the adversary, and “public-coin collections” in which the adversary is additionally given the internal coin-toss
of the key-generator. (A similar distinction has been recently made in the specific context of collision-resist
hash-functions [34]; also, see the discussion of “enhanced TDP” in [24, App. C.1].) The above example for a O!
collection is of the public-coin type. Any public-coin collection is also a private-coin collection, but the convers
may not be true.

Summarizing, we consider cryptographic primitives in three different settings:

1. (Single function setting.) The circuit fami{/C,, },cn that computes the primitive is constructed by a deter-
ministic polynomial time circuit generator that, given an inptif outputs the circuit’,,. This is the default
setting for most cryptographic primitives.

ZNote that unlike the key-generation algorithm, which can be applied “once and for all”, the domain sampler should be invoked for e:
application of the primitive.

37



2. (Public-coin collection.) The circuit generator is a probabilistic polynomial time algorithm that, onlifiput
samples a circuit from a collection of circuits. The adversary gets as an input the circuit produced by
generator, along with the randomness used to generate it. The experiments defining the success probabil
the adversary incorporate the randomness used by the generator, in addition to the other random variable
in the single function setting, this generation step can be thought of as being done “once and for all”, e.g.
a pre-processing stage. Public-coin collections are typically useful for primitives based on discrete logarit
assumptions, where a large prime group should be set up along with its generator and precomputed expol
of the generator.

3. (Private-coin collection.) Same as (2) except that the adversary does not know the randomness that was us
the circuit generator. This relaxation is typically useful for factoring-based constructions, where the advers
should not learn the trapdoor information associated with the public modulus (see [39, 44]).

We note that our general transformations apply to all of the above settings. In particular, gN€h arimitive
in any of these settings, we obtain a correspondia primitive in the same setting.

B A Generalization of the Locality Construction

In the Locality Construction (4.16), we showed how to encode a debfiwgction by anNC?l+1 encoding. We now
describe a graph based construction that generalizes the previous one. The basic idea is to view thefeasading
graph. The nodes of the graph are labeled by termsaid the edges by random inputs of With each node we
associate an output gfin which we add to its term the labels of the edges incident to the node. Formally,

Construction B.1 (General locality construction)Let f(z) = T3 (x)+. . .+Tx(x), wheref, T, ..., Ty : GF(2)" —
GF(2) and summation is ove&F(2). LetG = (V, E) be a directed graph witlk nodesV = {1,...,k} andm
edges. The encodinfy; : GF(2)"t™ — GF(2)" is defined by:

fo(x, (rij)aper) = (Ti@)+ D ra— D> 1y

JlGieE Jl(.5)eE i=1

From here on, we will identify with the directed gra@hits underlying undirected graph. The above construction
yields a perfect encoding whef is a tree (see Lemma B.2 below). The locality of an output bif@fis the
locality of the corresponding term plus the degree of the node in the graph. The locality construction descril
in Construction 4.16 attempts to minimize the maximal locality of a node in the graph; hence # adigdmmy”

0 terms tof and obtains a tree in which all of thenon-dummy terms of are leaves, and the degree of each
dummy term is at most 3. When the termsfofary in their locality, a more compact encodifigan be obtained by
increasing the degree of nodes which represent terms with lower locality.

Lemma B.2 (Generalized locality lemma)Let f and f¢ be as in Construction B.1. Then,
1. fG is a perfectly correct encoding gf
2. If G is connected, theff; is also a balanced encoding ¢f(and in particular it is perfectly private).

3. If G is a tree, thery; is also stretch preserving; that ige; perfectly encodes.

38



Proof: (1) Givenjj = fg(x,r) we decodef (z) by summing up the bits of. Since each random variabtg;
appears only in thé" and ;™ output bits, it contributes 0 to the overall sum and therefore the bijsabfrays add

up to f(z).
To prove (2) we use the same simulator as in the locality construction (see proof of Lemma 4.17). Namely, gi!
y € {0, 1}, the simulatoiS chooses: — 1 random bitg-, ..., r,_; and outputsry, ..., rg—1,y— (ri+...+7rx_1)).

This simulator is balanced since the supports§ @f) andS(1) halve{0, 1}* andS(y) is uniformly distributed over

its support fory € {0, 1}. We now prove thafq(z, U,,) = S(f(x)). Since the support &(f(x)) contains exactly
2F=1 strings (namely, alk-bit strings whose bits sum up tf{x)), it suffices to show that for any inputand output

w € support(S(f(z))) there are™ /2k~1 random inputs: such thatfc(z, ) = w. (Note thatm > k — 1 sinceG

is connected.) Lel” C E be a spanning tree @f. We argue that for any assignment to the— (k — 1) random
variables that correspond to edgedin 7" there exists an assignment to the other random variables that is consiste
with w andz. Fix some assignment to the edgesrin, 7. We now recursively assign values to the remaining
edges. In each step we make sure that some leaf is consistent witrassigning the corresponding value to the
edge connecting this leaf to the graph. Then, we prune this leaf and repeat the above procedure. Forntegly, let
a leaf which is connected t6 by an edges € T. Assume, without loss of generality, thats an incoming edge

for i. We setre to w; — (T3(2) + 32 j.iep\r Tii — 2-j|G.j)ep\r Tij)» and remove from T'. By this we ensure

that thei" bit of fg(a:, r) is equal tow;. (This equality will not be violated by the following stepsias removed
from 7'.) We continue with the above step until the tree consists of one node. Since the outfuts.of) always
sum up tof (z) it follows that this last bit offg(x, r) is equal to the corresponding bitaf Thus, there are at least
2lEAT| — 9m—(k—1) yalues ofr that lead tow as required.

Finally, to prove (3) note that whef' is a tree we haven = k — 1, and therefore the encoding is stretch
preserving; combined with (1) and () is also perfect. |

C More on Encryption Schemes inNC"

We consider two issues regarding encryption, briefly mentioned in Section 7.2.

C.1 On the Impossibility of NC° Decryption

In this section we show that, in many settings, decryptiolN@ is impossible regardless of the complexity of
encryption. Here we consider standatadtelessencryption schemes in contrast to the discussion at the end o
Section 7.2. We begin with the case of multiple-message security (in either the private-key or public-key settir
If a decryption algorithmD(d, y) is in NC,%, then an adversary that getencrypted messages can correctly guess
the first bits ofall the plaintexts (jointly) with at least—* probability. To do so, the adversary simply guesses at
random thek (or less) bits of the keyl on which the first output bit o> depends, and then computes this first
output bit (which is supposed to be the first plaintext bit) on each ofitbiphertexts using the subkey it guessed.
Whenever the adversary guessesktioits correctly, it succeeds to find the first bitsatif» messages. When > k,

this violates the semantic security of the encryption scheme. Indeed, for the encryption scheme to be secure
adversary’s success probability (when the messages are chosen at random) can only be negligibly |&geér than
(That is, an adversary cannot do much better than simply guessing these first bits.)

Even in the case of a single-message private-key encryption, it is impossible to implement decryN@ﬂ‘n in
with an arbitrary (polynomial) message length. Indeed, when the message length dgeéigtigwhere|d| is the
length of the decryption key), there must be more ttfahits of the output ofD which depend on the saniebits of
the key, in which case we are in the same situation as before. That is, we can guess the value of rabigtthah
the message with constant success probatitity Again, if we consider a randomly chosen message, this violates
semantic security.

39



C.2 Security against CPA, CCA1 and CCA2 Attacks

In this section we address the possibility of applying our machinery to encryption schemes that enjoy stron
notions of security. In particular, we consider schemes that are secure against chosen plaintext attacks (CP#
priory chosen ciphertext attacks (CCA1), and a-posteriori chosen ciphertext attacks (CCA2). In all three attacks
adversary has to win the standard indistinguishability game (i.e., given a ciphegteki(e, m;) find out which of

the two predefined plaintexts,, m; was encrypted), and so the actual difference lies at the power of the adversat
In a CPA attack the adversary can obtain encryptions of plaintexts of his choice (under the key being attack
i.e., the adversary gets an oracle access to the encryption function. In CCA1 attack the adversary may also o
decryptions of his choice (under the key being attacked), but he is allowed to do sbefalgthe challenge is
presented to him. In both cases, the security is preserved under randomized encoding. We briefly sketch the |
idea.

Let B be an adversary that breaks the encodinga a CPA attack (resp. CCAL1 attack). We uSeto obtain
an adversaryB that breaks the original schenfe As in the proof of Lemma 7.53 uses the simulator to translate
the challenge, an encryption of the message, underg, into a challenge, which is an encryption of the same
message undef. Similarly, B answers the encryption queries Bf(to the oracleE) by directing these queries
to the oracleE’ and applying the simulator to the result. Also, in the case of CCA1 attack, whefeasks the
decryption oracleD to decrypt some ciphertext, the adversaryB uses the decoder (of the encoding) to translate
¢ into a ciphertext’ of the same message under the schémend then uses the decryption oratld¢o decryptc’.

This allowsB to emulate the oracled and £, and thus to translate a successful CPA attack (resp. CCA1 attack) o
the new scheme into a similar attack on the original scheme.

The situation is different in the case of a CCA2 attack. As in the case of a CCALl attack, a CCA2 attacker |
an oracle access to the decryption function corresponding to the decryption key in use; however, the adversan
query the oracleven aftethe challenge has been given to him, under the restriction that he cannot ask the oracle
decrypt the challengeitself.

We start by observing that when applying a randomized encoding to a CCA2-secure encryption scheme, Ct
security may be lost. Indeed, in the resulting encryption one can easily modify a given ciphertext challenge
E(e,:z:,r) into a ciphertext’ # ¢ which is also an encryption of the same message under the same encrypti
key. This can be done by applying the decoder (of the randomized enchijimgd then the simulator of) that is
¢ = S(C(¢)). Hence, one can break the encryption by simply asking the decryption oracle to décrypt

It is instructive to understand why the previous arguments fail to generalize to the case of CCA2 security. In
case of CCA1 attacks we transformed an adversattyat breaks the encodirginto an adversan for the original
scheme in the following way: (1) we used the simulator to convert a challeagg (e, my) into a challengé which
is an encryption of the same message urdj€@) whenB asksD to decrypt a ciphertext, the adversanB uses
the decoder (of the encoding) to transléténto a ciphertext’ of the same message under the schémand then
asks the decryption oracle to decryptc’. However, recall that in a CCA2 attack the adversaries are not allowed tc
ask the oracle to decrypt the challenge itself (after the challenge is presentedy. Sacibuté’ # ¢, the adversary
B cannot answer the (legitimate) query®f

To complement the above, we show that when applying a randomized encoding to a CCA2-secure encryg
scheme not all is lost. Specifically, the resulting scheme still satiRiigdayable CCA security (RCCA relaxed
variant of CCA2 security that was suggested in [12]. Loosely speaking, RCCA security captures encryption sche
that are CCA2 secure except that they allow anyone to generate new ciphers that decrypt to the same value as a
ciphertext. More precisely, an RCCA attack is a CCA2 attack in which the adversary cannot ask the oracle to dec
any cipherc’ that decrypts to eithery or m; (cf. [12, Figure 3]). This limitation prevents the problem raised in
the CCA2 proof, in which a legitimate query fér translates by the decoder into an illegitimate query®orThat
is, if ¢ does not decrypt undetto neithermg norm, then (by correctness) the ciphertekbbtained by applying
the decoder t@’ does not decrypt to any of these messages either. Hence, randomized encoding preserves R
security. As argued in [12], RCCA security suffices in most applications of CCA2 security.

40



