
Cryptography in Constant Parallel Time

Benny Applebaum

Cryptography in Constant Parallel Time

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Benny Applebaum

Submitted to the Senate of
the Technion — Israel Institute of Technology

Tamuz 5767 Haifa June 2007

The research thesis was done under the supervision of Assoc. Prof. Yuval Ishai and Prof. Eyal
Kushilevitz in the Computer Science Department.

Acknowledgements

I would like to sincerely thank my supervisors Yuval Ishai and Eyal Kushilevitz. During the
last years, I have spent many hours in conversations with Yuval and Eyal. These long discussions
have taught me invaluable lessons regarding many aspects of the scientific work and it is hard to
overestimate their effect on my scientific perspective. (Of course, any errors or misstatements in
the end result are my responsibility . . .) I consider myself lucky to have been guided by Yuval and
Eyal, and look forward to collaborate with them in the future.

I was also fortunate to have Oded Goldreich as the editor of the journal versions of some of the
works that appear in this dissertation. I am thankful to Oded for his numerous suggestions and
comments that have significantly improved this manuscript in many ways.

During my graduate studies, I had the opportunity to discuss research topics with many different
people. These interactions have been extremely enjoyable and helped me to increase my knowledge
and, more typically, decrease my misconceptions. For this, I would like to thank Omer Barkol,
Rotem Bennet, Eli Ben-Sasson, Eli Biham, Iftach Haitner, Danny Harnik, Moni Naor, Erez Petrank,
Omer Reingold, Ronny Roth, Amir Shpilka, Amnon Ta-Shma, Enav Weinreb and Emanuele Viola.
I am also thankful to Eli Biham, Oded Goldreich, Erez Petrank, and Omer Reingold for serving on
my thesis committee.

I would like to thank all the people from the Computer Science department in the Technion,
with whom I worked and studied, for making my time at the Technion so pleasant. Special thanks
go to my office partner, Boris Kapchits, and my floor mates, Rotem Bennet, Niv Buchbinder, Oren
Katzengold, Jonathan Naor and Sharon Shoham. I really liked all these endless coffee breaks!

Finally, I am grateful to my family and friends for making my life joyful and meaningful. Most
significantly, I would like to thank my parents, Arie and Elka, for their unlimited love and support;
to my brother, Nadav, and my sister, Edna, for showing me some of the roads I have not taken; to
my beloved wife, Hilla, for her sensitivity and wisdom and for sharing her life with me; and to my
daughter, Shira, for making me feel the happiest person on earth.

The generous financial help of the Fein and Gutwirth foundations is gratefully acknowledged.

Contents

Abstract 1

1 Introduction 3
1.1 The Basic Question . 3

1.1.1 Further Perspectives . 4
1.2 Our Research . 5

1.2.1 Results and Organization . 6

2 Preliminaries and Definitions 10
2.1 General . 10
2.2 Statistical and Computational indistinguishability 11

2.2.1 Some useful facts . 11
2.3 Computational Models . 12
2.4 Output locality, input locality and degree . 14

3 Randomized Encoding of Functions 17
3.1 Definitions . 17
3.2 Basic Properties . 21
3.3 More Aspects of Randomized Encoding . 23

3.3.1 The Necessity of Randomness . 23
3.3.2 The Power of Randomized Encoding . 24
3.3.3 Lower Bounds for Locality and Degree . 26

4 Cryptography in NC0 28
4.1 Introduction . 28

4.1.1 Previous Work . 28
4.1.2 Our Results . 29
4.1.3 Overview of Techniques . 30
4.1.4 Organization . 33

4.2 Randomized Encoding in NC0 for Functions in ⊕L/poly,NL/poly 33
4.3 A Generalization of the Locality Construction . 37
4.4 One-Way Functions in NC0 . 38

4.4.1 Key Lemmas . 39
4.4.2 Main Results . 42

4.5 Pseudorandom Generators in NC0 . 43

i

4.5.1 Cryptographic Generators . 44
4.5.2 ε-Biased Generators . 47
4.5.3 Generators for Space-Bounded Computation 49
4.5.4 Pseudorandom Generators — Conclusion . 50

4.6 Collision-Resistant Hashing in NC0 . 50
4.7 Encryption in NC0 . 52

4.7.1 Main Results . 52
4.7.2 On Decryption in NC0 . 54
4.7.3 Security against CPA, CCA1 and CCA2 Attacks 55

4.8 Other Cryptographic Primitives . 56
4.8.1 Signatures . 56
4.8.2 Commitments . 57
4.8.3 Zero-Knowledge Proofs . 60
4.8.4 Instance hiding schemes . 62

4.9 Summary and Discussion . 62
4.9.1 The case of PRFs . 62
4.9.2 Open Problems . 63

5 Computationally Private Randomizing Polynomials and Their Applications 65
5.1 Introduction . 65

5.1.1 Overview of Results and Techniques . 65
5.1.2 Organization . 68

5.2 Computational Encoding in NC0 for Efficiently Computable Functions 69
5.2.1 From PRG to One-Time Encryption . 69
5.2.2 From One-Time Encryption to Computational Encoding 71
5.2.3 Main Results . 74
5.2.4 Proof of Lemma 5.2.11 . 76

5.3 Applications . 80
5.3.1 Relaxed Assumptions for Cryptography in NC0 80
5.3.2 Parallel Reductions between Cryptographic Primitives 82
5.3.3 Secure Multi-Party Computation . 84

6 On Pseudorandom Generators with Linear Stretch in NC0 89
6.1 Introduction . 89

6.1.1 Our Contribution . 90
6.1.2 Related Work . 91

6.2 Preliminaries . 92
6.2.1 Some useful facts . 92

6.3 LPRG in NC0 implies Hardness of Approximation 92
6.4 Using NC0 Implementations of Other Cryptographic Primitives 94

6.4.1 Pseudoentropy Generator . 95
6.4.2 String Commitment . 96

6.5 A Construction of LPRG in NC0 . 97
6.5.1 Overview . 97
6.5.2 The Assumption . 98
6.5.3 The Construction . 100

ii

6.5.4 ε-Biased Generators in Uniform NC0 . 103
6.5.5 Alekhnovich’s Assumption Implies Assumption 6.5.1 105

6.6 The Necessity of Expansion . 107
6.6.1 Actual Results . 107
6.6.2 Discussion . 108

7 Cryptography with Constant Input Locality 110
7.1 Introduction . 110

7.1.1 Our Results . 111
7.1.2 Our Techniques . 112
7.1.3 Previous Work . 112

7.2 Preliminaries . 113
7.3 Randomized Encoding with Constant Input Locality 114
7.4 Primitives with Constant Input Locality and Output Locality 117

7.4.1 Main Assumption: Intractability of Decoding Random Linear Code 117
7.4.2 Pseudorandom Generator in Local33 . 119
7.4.3 Commitment in Local43 . 122
7.4.4 Semantically Secure Public-Key Encryption in LocalO(1)

3 123
7.5 Negative Results for Cryptographic Primitives . 125

7.5.1 Basic Observations . 125
7.5.2 MACs and Signatures . 126
7.5.3 Non-Malleable Encryption . 127
7.5.4 The Impossibility of Implementing a PRG in Local2 128

7.6 Negative Results for Randomized Encodings . 129
7.6.1 A Necessary Condition for Encoding with Low Input Locality 129
7.6.2 Impossibility of Universal Encoding for Linear Functions 131

7.7 Conclusions and Open Questions . 132

8 One-Way Functions with Optimal Output Locality 133
8.1 Introduction . 133

8.1.1 Semi-Private Randomized Encoding and Robust OWF 134
8.1.2 Constructing Robust OWF . 134

8.2 Preliminaries . 135
8.2.1 Semi-Private Randomized Encoding . 135
8.2.2 One-Way Functions . 135

8.3 From Robust OWF to OWF in NC0
3 . 137

8.3.1 A Warmup . 137
8.3.2 The Actual Construction . 138

8.4 A Candidate Robust One-Way Function . 140

A On Collections of Cryptographic Primitives 144

iii

List of Figures

1.2.1 New NC0 reductions . 9

2.3.1 An example of a branching program . 13
2.3.2 Complexity classes inside P . 14

4.2.1 The matrices R1(r(1)), L(x) and R2(r(2)) . 34

6.6.1 A trivial “slightly” unbalanced expander . 109

iv

Abstract

We study the parallel time-complexity of basic cryptographic primitives. Specifically, we consider
the possibility of computing instances of these primitives by NC0 circuits, in which each output bit
depends on a constant number of input bits. Despite previous efforts in this direction, there has
been no convincing theoretical evidence supporting this possibility, which was posed as an open
question in several previous works (e.g., [H̊as87, Gol00, CM01, KL01, MST03]). We essentially
settle this question by providing strong evidence for the possibility of cryptography in NC0. In
particular, we derive the following results:

Cryptographic primitives in NC0. We show that many cryptographic primitives can be real-
ized in NC0 under standard intractability assumptions used in cryptography, such as ones related to
factoring, discrete logarithm, or lattice problems. This includes one-way functions, pseudorandom
generators, symmetric and public key encryption schemes, digital signatures, message authentica-
tion schemes (MACs), commitment schemes, collision resistant hash functions and zero-knowledge
proofs. Moreover, we provide a compiler that transforms an implementation of a cryptographic
primitive in a relatively “high” complexity class into an NC0 implementation. This compiler is also
used to derive new (unconditional) NC0 reductions between different cryptographic primitives. In
some cases, no parallel reductions of this type were previously known, even in NC. Interestingly,
we get non-black-box reductions.

Pseudorandom generators with linear stretch in NC0. We construct an NC0 pseudoran-
dom generator that stretches n random bits into cn pseudorandom bits, for some constant c > 1.
The security of this pseudorandom generator relies on a relatively new intractability assumption
presented by Alekhnovich [Ale03]. (PRGs obtained by the general compiler described above were
limited to stretching a seed of n bits to n + o(n) pseudorandom bits.) We also identify a new
connection between such pseudorandom generators and hardness of approximations for combina-
torial optimization problems. In particular, we show that an NC0 pseudorandom generator with
large (linear) stretch implies that Max 3SAT cannot be efficiently approximated to within some
multiplicative constant. Our argument is quite simple and does not rely on PCP machinery.

Cryptography with constant input locality. We study the possibility of carrying out cryp-
tographic tasks by functions in which each input bit affects a constant number of output bits, i.e.,
functions with constant input locality. (Our previous results have only addressed the case of a
constant output locality, which does not imply a constant input locality.) We (almost) characterize
what cryptographic tasks can be performed with constant input locality. On the negative side,
we show that primitives which require some form of non-malleability (such as digital signatures,

1

message authentication, or non-malleable encryption) cannot be realized with constant input lo-
cality. On the positive side, assuming the intractability of certain problems from the domain of
error correcting codes (namely, hardness of decoding a random linear code or the security of the
McEliece cryptosystem), we obtain new constructions of one-way functions, pseudorandom gener-
ators, commitments, and semantically-secure public-key encryption schemes whose input locality
is constant. Moreover, these constructions also enjoy constant output locality. Therefore, they give
rise to cryptographic hardware that has constant-depth, constant fan-in and constant fan-out.

2

Chapter 1

Introduction

1.1 The Basic Question

Cryptography is concerned with communication and computation in the presence of adversaries. In
the last few decades, the theory of cryptography has been extensively developed and has successfully
provided solutions to many cryptographic challenges. Moreover, due to the evolvement of the
Internet, cryptographic tools are now widely employed both by individuals and by organizations.
Daily actions, such as checking an account balance or electronic commerce, make an essential use
of cryptographic primitives such as encryption schemes and digital signatures.

In this research, we consider the question of minimizing the computational complexity of basic
cryptographic primitives such as one-way functions (functions that are easy to compute but are
hard to invert), pseudorandom generators (functions that stretch a short random seed into a longer
“random-looking” string) [BM84, Yao82], secure encryption schemes, digital signatures, and others.
Pushing this question to an extreme, it is natural to ask whether such primitives can be made
“computationally simple” to the extent that each bit of their output is only influenced by a constant
number of input bits, independently of the desired level of security. Specifically, the following
fundamental question was posed in several previous works (e.g., [H̊as87, Gol00, CM01, KL01,
MST03]):

Is it possible to compute one-way functions, or even pseudorandom generators so that
every bit of the output can be computed by reading a constant number of bits of the
input?

The class of functions which are computationally simple in the above sense is denoted by NC0. We
let NC0

c denote the class of NC0 functions in which each of the output bits depends on at most c
input bits, and refer to the constant c as the output locality of the function (or locality for short).

The above question is qualitatively interesting as it explores the possibility of obtaining crypto-
graphic hardness using “extremely simple” functions. However, functions in NC0 might be consid-
ered to be too degenerate to perform any interesting computational tasks, let alone cryptographic
tasks which are perceived to be inherently complex. Indeed, all common implementations of cryp-
tographic primitives not only require each output bit to depend on many inputs bits, but also
involve rather complex manipulations of these bits.

The possibility of cryptography in NC0 has been studied since the mid-eighties. Several works
have made progress in related directions [H̊as87, GKY89, LMN93, YY94, IN96, NR99, NR04,

3

Gol00, CM01, MST03, Vio05], conjecturing either the existence (e.g., [Gol00]) or the non-existence
(e.g., [CM01]) of cryptographic primitives in NC0. However, despite all this body of work there has
been no significant theoretical evidence supporting either a positive or a negative conclusion.

In this dissertation, we provide a surprising affirmative answer to this question. We prove that
most cryptographic primitives can be implemented by NC0 functions under standard intractability
assumptions commonly used in cryptography (e.g., that factoring large integers is computationally
hard). Specifically, primitives such as one-way functions, encryption, digital signatures, and others
can be computed by extremely “simple” functions, in which every bit of the output depends on
only four bits of the input.

This result is of both theoretical and practical interest. From a theoretical point of view, it is
part of a general endeavor to identify the minimal resources required for carrying out natural com-
putational tasks. From a more practical point of view, an NC0 implementation of a cryptographic
primitive supports an ultimate level of parallelism: in an NC0 function, different output bits can be
computed in parallel without requiring intermediate sequential computations. In particular, such
functions can be computed in constant parallel time, i.e., by constant-depth circuits with bounded
fan-in. Thus, NC0 primitives may give rise to super-fast cryptographic hardware.

1.1.1 Further Perspectives

It is instructive to examine the question of cryptography in NC0 from two distinct perspectives:

• (Applied cryptography) In the community of applied cryptography it is widely accepted that
functions with low locality should not be used as block ciphers or hash functions. Indeed,
several central design principles of block ciphers (e.g., so-called Confusion-Diffusion [Sha49],
Avalanche Criterion [Fei73], Completeness [KD79] and Strict Avalanche Criterion [WT86])
explicitly state that the input-output dependencies of a block cipher should be complex. In
particular, in his seminal paper Feistel asserts that: “The important fact is that all output
digits have potentially become very involved functions of all input digits” [Fei73]. (In fact, this
concern dates back to Shannon [Sha49].) It is easy to justify this principle in the context of
block-ciphers (which are theoretically modeled as pseudorandom functions or permutations),
but it is not clear whether it is also necessary in other cryptographic applications (e.g., one-
way functions, pseudorandom generators, or probabilistic public-key encryption schemes).

• (Complexity theory) The possibility of cryptography in NC0 is closely related to the in-
tractability of Constraint Satisfaction Problems. Inverting a function in NC0

c can be for-
mulated as a Constraint Satisfaction Problem in which each constraint involves at most c
variables (c-CSP). For example, finding an inverse of a string y ∈ {0, 1}n under a function
f : {0, 1}n → {0, 1}n is equivalent to solving a CSP problem over n variables x = x1, . . . , xn

of the form: 



y1 = f1(x),
...

yn = fn(x),

where fi is the function that computes the i-th output bit of f and yi is the i-th bit of y. If
f is in, say, NC0

4 we get an instance of a 4-CSP problem. Constraint satisfaction problems
are well studied in complexity theory and are known to be “hard” in several aspects. In
particular, the Cook-Levin theorem [Coo71, Lev73] shows that it is NP-hard to exactly solve

4

3-CSP problems, while the PCP theorem [ALM+98, AS98] shows that it is NP-hard even to
find an approximate solution. It should be noted that, for several reasons, NP-hardness does
not imply cryptographic hardness. Hence, although these results might indicate that it is
not easy to invert NC0 functions in the worst case, they fall short of proving the existence of
one-way functions in NC0.

1.2 Our Research

Our main goal is to draw the theoretical and practical limitations of cryptography in constant
parallel-time. Hence, we try to characterize the precise computational power needed to fulfil dif-
ferent cryptographic tasks. In particular, we will be interested in questions of the form: Can a
cryptographic primitive P be realized in some low complexity class WEAK? If so, what are the
minimal assumptions required for such an implementation? We usually instantiate these meta-
questions with the class NC0, but we will also consider other complexity classes, such as sub-classes
of NC0 in which the output locality is bounded by some specific constant (e.g., NC0

3), or the class
of functions whose input locality is constant (i.e., functions in which each bit of the input affects
on a constant number of output bits).

Our approach

Our key observation is that instead of computing a given “cryptographic” function f , it might suffice
to compute a related function f̂ which (1) preserves the cryptographic properties of f ; and (2)
admits an efficient implementation. To this end, we rely on the machinery of randomized encoding,
which was introduced in [IK00] (under the algebraic framework of randomizing polynomials). A
randomized encoding of a function f(x) is a randomized mapping f̂(x, r) whose output distribution
depends only on the output of f . Specifically, it is required that: (1) there exists a decoder algorithm
that recovers f(x) from f̂(x, r), and (2) there exists a simulator algorithm that given f(x) samples
from the distribution f̂(x, r) induced by a uniform choice of r. That is, the distribution f̂(x, r)
hides all information about x except for the value f(x).

We show that the security of most cryptographic primitives is inherited by their randomized
encoding. This gives rise to the following paradigm. Suppose that we want to construct some
cryptographic primitive P in some low complexity class WEAK. Then, we can try to encode
functions from a higher complexity class STRONG by functions from WEAK. Now, if we have an
implementation f of the primitive P in STRONG, we can replace f by its encoding f̂ ∈ WEAK and
obtain a low-complexity implementation of P. This approach is extensively used in this dissertation.

Non-black-box techniques. In order to encode a function f , we apply a “compiler” to the
description of f (given in some computational model). This technique is inherently non-black-box
and, in some cases, it also yields parallel non-black-box transformations between different primitives.
That is, the “code” of the NC0-reduction we get, implementing a primitive P using an oracle to
a primitive P ′, depends on the code of the underlying primitive P ′. This should be contrasted
with most known transformations in cryptography, which make a black-box use of the underlying
primitive. We believe that our work provides further evidence for the usefulness of non-black-box
techniques in cryptography.

5

1.2.1 Results and Organization

In the following we give an outline of our results. Some of these results are also summarized
graphically in Tables 1.2.1, 1.2.1, 1.2.3 and Figure 1.2.1. The material presented in this thesis was
obtained in joint works with Yuval Ishai and Eyal Kushilevitz [AIK06b, AIK06a, AIK06c, AIK07,
AIK05].

Chapter 2 — Preliminaries. We set the basic notation and definitions used in this dissertation.
This includes the notions of statistical and computational indistinguishability and some of their
properties, as well as definitions and conventions regarding several computational models. We also
define the main complexity classes mentioned in this thesis and investigate some of their simple
properties.

Chapter 3 — Randomized Encoding of Functions. We define the main variants of random-
ized encoding, including several information-theoretic variants as well as a computational variant.
We investigate several useful properties of this notion, and discuss some of its limitations. Most of
the material in this chapter is based on [AIK06b, Section 4].

Chapter 4 — Cryptography in NC0. We show that randomized encoding preserves the secu-
rity of many cryptographic primitives. We also construct an (information-theoretic) encoding in
NC0

4 for any function in NC1 or even in ⊕L/poly. This result is obtained by relying on the construc-
tions of [IK02] which give a low degree encoding for these classes. The combination of these results
gives a compiler that takes as an input a code of an NC1 implementation of some cryptographic
primitive and generates an NC0

4 implementation of the same primitive. This works for many
cryptographic primitives such as OWFs, PRGs, one-way permutations, trapdoor-permutations,
collision-resistant hash functions, encryption schemes, message authentication schemes, digital sig-
natures, commitments and zero-knowledge proofs. The existence of many of the above primitives in
NC1 is a relatively mild assumption, implied by most number-theoretic or algebraic intractability
assumptions commonly used in cryptography. We remark that in the case of two-party primitives
(e.g., encryption schemes, signatures, commitments, zero-knowledge proofs) our transformation re-
sults in an NC0 sender (i.e., the encrypting party, committing party, signer or prover) but does
not promise anything regarding the parallel complexity of the receiver (the decrypting party or
verifier).1 In fact, we prove that, in all these cases, the receiver cannot be implemented by an
NC0 function, regardless of the complexity of the sender. (See Table 1.2.1.) Our techniques can
also be applied to obtain unconditional constructions of non-cryptographic PRGs. In particular,
building on [MST03], we obtain an ε-biased generator in NC0

3, answering an open question posed
in [MST03]. The material in this chapter is mainly based on [AIK06b].

Chapter 5 — Computationally Private Randomized Encoding and its Applications.
We consider a relaxed notion of randomized encodings, where the “hiding” property of randomized
encoding is relaxed to the computational setting. We construct such an encoding in NC0

4 for

1An interesting feature of the case of commitment is that we can also improve the parallel complexity at the
receiver’s end. Specifically, it can be implemented by an AC0 circuit (or even by a weaker circuit family). This
feature of commitment carries on to some applications of commitments such as distributed coin-flipping and ZK
proofs.

6

every polynomial-time computable function, assuming the existence of a PRG in ⊕L/poly. We
present several applications of computationally private randomized encoding. In particular, we
considerably relax the sufficient assumptions for NC0 constructions of cryptographic primitives (see
Table 1.2.1), obtain new unconditional NC0 transformations between primitives (see Figure 1.2.1),
and simplify the design of constant-round protocols for multiparty computation. This chapter is
based on [AIK06a].

Chapter 6 — Pseudorandom Generators with Linear Stretch in NC0. The aforemen-
tioned constructions of PRGs in NC0 were limited to stretching a seed of n bits to n + o(n) bits.
This leaves open the existence of a PRG with a linear (let alone superlinear) stretch in NC0. We
construct a linear-stretch PRG in NC0

4 under a relatively new intractability assumption presented
by Alekhnovich [Ale03]. The linear stretch of this PRG is essentially optimal as there is no PRG
with superlinear stretch in NC0

4 [MST03]. We also show that the existence of a linear-stretch PRG
in NC0 implies non-trivial hardness of approximation results without relying on PCP machinery.
In particular, it implies (via a simple proof) that Max3SAT is hard to approximate to within some
multiplicative constant. The material of this chapter is based on [AIK06c].

Chapter 7 — Cryptography with Constant Input Locality. We study the possibility of
carrying out cryptographic tasks by functions in which each input bit affects a constant number of
output bits, i.e., functions with constant input locality. (Our previous results have only addressed
the case of a constant output locality, which does not imply a constant input locality.) We (almost)
characterize what cryptographic tasks can be performed with constant input locality. On the
negative side, we show that primitives which require some form of non-malleability (such as digital
signatures, message authentication, or non-malleable encryption) cannot be realized with constant
(or, in some cases, even logarithmic) input locality. On the positive side, assuming the intractability
of some problems from the domain of error correcting codes (namely, hardness of decoding a random
linear code or the security of the McEliece cryptosystem), we obtain new constructions of OWFs,
PRGs, commitments, and semantically-secure public-key encryption schemes whose input locality
is constant. (See Table 1.2.1.) Moreover, these constructions also enjoy constant output locality.
Therefore, they give rise to cryptographic hardware that has constant-depth, constant fan-in and
constant fan-out. As a byproduct, we also construct a pseudorandom generator whose output and
input locality are both optimal (namely, 3). Our positive results rely on a new construction of
randomized encoding with constant input locality, while the negative results shed some light on
the limitation of such an encoding. This chapter is based on [AIK07].

Chapter 8 — One-way Functions with Optimal Output Locality. In Chapter 4 it is shown
that, under relatively mild assumptions, there exist one-way functions (OWFs) in NC0

4. This result
is not far from optimal as there is no OWF in NC0

2. The gap is partially closed in Chapter 7 by
showing that the existence of a OWF (and even a PRG) in NC0

3 is implied by the intractability
of decoding a random linear code. In this chapter we provide further evidence for the existence of
OWF in NC0

3. We construct such a OWF based on the existence of a OWF that enjoys a certain
strong “robustness” property. We also show how to construct such a function assuming that a
random function of locality O(log n) is one-way. (A similar assumption was previously made by
Goldreich [Gol00].) This result is obtained by constructing a new variant of randomized encoding.
This chapter is based on [AIK05].

7

Primitive General assumption Concrete assumption
One-way function ∃ in NL/poly,⊕L/poly factoring, DLOG, lattices
One-way permutation ∃ in ⊕L/poly LRSA, DLOG
Trapdoor permutation ∃ in ⊕L/poly LRSA
Pseudorandom generator ∃ in ⊕L/poly factoring, DLOG, lattices
Collision-resistant hashing ∃ in ⊕L/poly factoring, DLOG, lattices
Public-key encryption

Encrypting ∃ in ⊕L/poly, NL/poly OR ∃ + EPRG factoring, DDH, lattices
Decrypting ×

Symmetric encryption
Encrypting ∃ in ⊕L/poly, NL/poly OR EPRG factoring, DLOG, lattices
Decrypting ×

Signatures, MACs
Signing ∃ in ⊕L/poly, NL/poly OR EPRG factoring, DLOG, lattices
Verifying ×

Non-interactive commitment ∃ in ⊕L/poly, NL/poly OR ∃ + EPRG factoring, DLOG, lattices
2-round stat. hiding commitment

Committing ∃ in ⊕L/poly, NL/poly factoring, DLOG, lattices
Verifying ×

NIZK for NP
Proving ∃ in ⊕L/poly, NL/poly OR ∃ + EPRG factoring
Verifying ×

Constant-round ZK proof for NP
Proving ∃ in ⊕L/poly, NL/poly OR ∃ + EPRG factoring, DLOG, lattices
Verifying ×

Table 1.2.1: Sufficient conditions for NC0 implementations of different primitives. In the case of PRGs
(resp. collision-resistant hashing) we get an NC0 implementation with sublinear stretch (resp. shrinkage).
General assumptions: We write “∃ in C” to denote the assumption that the primitive can be realized in
the complexity class C. When C is omitted, we refer to the class P, that is we assume that the primitive

can be realized at all. We write “EPRG” to denote the existence of a PRG in ⊕L/poly. (The class
⊕L/poly contains the classes L/poly and NC1 and is contained in NC2. See Section 2.3.) The symbol “×”
denote an impossibility result. Concrete assumptions: We use DLOG, LRSA, and DDH to denote the
intractability of the discrete logarithm problem, the RSA problem with low exponent, and the decisional

Diffie-Hellman problem, respectively. For example, the public-key encryption entry states that we can get a
scheme in which the encrypting party is in NC0 under any of the following assumptions: (1) there exists
such a scheme in which the encrypting is realized in ⊕L/poly

⋃
NL/poly; or (2) there exists a PRG in

⊕L/poly and there exists a public-key encryption scheme at all. Moreover, these assumptions are implied
by the intractability of either the factoring problem, the DDH problem or lattice problems. This entry also

says that there is no such scheme in which the decryption is realized by an NC0 function.

8

Primitive Assumption
One-way function code
Pseudorandom generator code
Non-interactive commitment code
Public-key encryption McEliece
Symmetric encryption code
Signatures, MACs ×
Non-malleable encryption ×

Table 1.2.2: Sufficient conditions for implementations of cryptographic primitives with constant input
locality. We use “code” and “McEliece” to denote the intractability of decoding random linear code, and
the intractability of inverting the McEliece cryptosystem [McE78], respectively. The symbol × denotes an
impossibility result. The positive results allow an implementation that enjoys constant input locality and

constant output locality at the same time.

Stretch Output Locality Algebraic Degree Input Locality Reference
sublinear 4 3 — Theorem 4.5.6
linear X 4 3 — Theorem 6.5.11
sublinear 3 X 2 X 3 X Theorem 7.4.9

Table 1.2.3: Pseudorandom generators: stretch vs. locality. A PRG has sublinear (resp. linear) stretch if
it stretches n bits to n + o(n) bits (resp. n + Ω(n) bits). A parameter is marked as optimal (X) if when

fixing the other parameters it cannot be improved. The first construction requires the existence of a PRG
in ⊕L/poly, while the other two are based on concrete assumptions.

1-1 OWF min-PRG

Non-interactive Commitment

Commitment

Signature/MAC

Symmetric-Encryption

Figure 1.2.1: New NC0 reductions. Doubleline arrows denote non-black-box reductions. We write
“min-PRG” to denote a pseudorandom generator G with minimal stretch, i.e., G : {0, 1}n → {0, 1}n+1.

9

Chapter 2

Preliminaries and Definitions

Summary: This chapter presents the basic notation and definitions used in this dissertation.
This includes the notions of statistical and computational indistinguishability and some of their
properties (Section 2.2), as well as definitions and conventions regarding several computational
models (Section 2.3). We also define the main complexity measures mentioned in this thesis,
namely, output locality, input locality, and algebraic degree and investigate some of their simple
properties (Section 2.4).

2.1 General

Basic notation. Let N denote the set of positive integers. For a positive integer n ∈ N, denote by
[n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, let |x| denote the length of x. For a string x ∈ {0, 1}n

and an integer i ∈ [n], let xi denote the i-th bit of x. Similarly, for S ⊆ [n], let xS denote the
restriction of x to the indices in S. We will write x⊕i to denote the string x with the i-th bit flipped.
For a prime p, let Fp denote the finite field of p elements. Let F denote an arbitrary finite field. We
will sometimes abuse notation and identify binary strings with vectors over F2. All vectors will be
regarded by default as column vectors. Let 〈·, ·〉 denote inner product over F2, i.e., for x, y ∈ Fn

2 ,
〈x, y〉 =

∑n
i=1 xi · yi where arithmetic is over F2. For a function f : X → Y and an element y ∈ Y ,

let f−1(y) denote the set {x ∈ X|f(x) = y}. Let Im(f) denote the set
{
y ∈ Y |f−1(y) 6= ∅}. A

function ε(·) from positive integers to reals is said to be negligible if ε(n) < n−c for any c > 0 and
sufficiently large n. We will sometimes use neg(·) to denote an unspecified negligible function.

Probabilistic notation. Let Un denote a random variable that is uniformly distributed over
{0, 1}n. Different occurrences of Un in the same statement refer to the same random variable
(rather than independent ones). If X is a probability distribution, we write x ← X to indicate
that x is a sample taken from X. Let support(X) denote the support of X (i.e., the set of all
elements with non-zero probability), and let E(X) denote the expectation of X. The min-entropy
of a random variable X is defined as H∞(X) def= minx log(1

Pr[X=x]). Let H2(·) denote the binary

entropy function, i.e., for 0 < p < 1, H2(p) def= −p log(p)− (1− p) log(1− p).

Adversarial model. By default we refer to an efficient adversary as a family of polynomial-sized
circuits, or equivalently to probabilistic polynomial-time algorithm that on input of size n gets an

10

advice string of size poly(n). However, all of our results also apply in a uniform setting in which
adversaries are probabilistic polynomial-time algorithms.

2.2 Statistical and Computational indistinguishability

The statistical distance between discrete probability distributions X and Y is defined as SD(X,Y) def=
1
2

∑
z |Pr[X = z] − Pr[Y = z]|. Equivalently, the statistical distance between X and Y may be

defined as the maximum, over all boolean functions T , of the distinguishing advantage |Pr[T (X) =
1]−Pr[T (Y) = 1]|. For two distribution ensembles X = {Xn} and Y = {Yn}, we write X ≡ Y if Xn

and Yn are identically distributed, and X
s≡ Y if the two ensembles are statistically indistinguishable;

namely, SD(Xn, Yn) is negligible in n.
A weaker notion of closeness between distributions is that of computational indistinguishability:

We write {Xn}n∈N
c≡δ(n) {Yn}n∈N if for every (non-uniform) polynomial-size circuit family {An},

the distinguishing advantage |Pr[An(Xn) = 1]−Pr[An(Yn) = 1]| is bounded by δ(n) for sufficiently
large n. When the distinguishing advantage δ(n) is negligible, we write {Xn}n∈N

c≡ {Yn}n∈N. (We
will sometimes simplify notation and write Xn

c≡ Yn.) By definition, Xn ≡ Yn implies that Xn
s≡ Yn

which in turn implies that Xn
c≡ Yn. A distribution ensemble {Xn}n∈N is said to be pseudorandom

if Xn
c≡ Um(n), where m(n) = |Xn|.

2.2.1 Some useful facts

We will rely on the following standard properties of statistical distance (proofs for most of these
facts can be found in [SV03].)

Fact 2.2.1 For every distributions X,Y, Z we have SD(X, Z) ≤ SD(X, Y) + SD(Y,Z).

Fact 2.2.2 For every distributions X,X ′, Y, Y ′ we have

SD((X ×X ′), (Y × Y ′)) ≤ SD(X,Y) + SD(X ′, Y ′),

where A × B denotes the product distribution of A, B, i.e., the joint distribution of independent
samples from A and B.

Fact 2.2.3 For every distributions X and Y and every (possibly randomized) function A, we have
SD(A(X), A(Y)) ≤ SD(X,Y).

For jointly distributed random variables A and B we write B|A=a to denote the conditional
distribution of B given that A = a.

Fact 2.2.4 Suppose that X = (X1, X2) and Y = (Y1, Y2) are probability distributions on a set
D × E such that: (1) X1 and Y1 are identically distributed; and (2) with probability greater than
1− ε over x ← X1, we have SD(X2|X1=x, Y2|Y1=x) ≤ δ. Then SD(X,Y) ≤ ε + δ.

Fact 2.2.5 Let {Xz}z∈Z , {Yz}z∈Z be distribution ensembles. Then, for every distribution Z over
Z, we have SD((Z, XZ), (Z, YZ)) = Ez←Z [SD(Xz, Yz)]. In particular, if SD(Xz, Yz) ≤ ε for every
z ∈ Z, then SD((Z, XZ), (Z, YZ)) ≤ ε.

11

We will also rely on several standard facts about computational indistinguishability (cf. [Gol01a,
Chapter 2]). We begin with the computational versions of Facts 2.2.1, 2.2.2, 2.2.3.

Fact 2.2.6 For every distribution ensembles X, Y and Z, if X
c≡ Y and Y

c≡ Z then X
c≡ Z.

Fact 2.2.7 Let {Xn}, {X ′
n}, {Yn} and {Y ′

n} be distribution ensembles. Suppose that Xn
c≡ Yn and

X ′
n

c≡ Y ′
n. Then (Xn×X ′

n)
c≡ (Yn×Y ′

n), where A×B denotes the product distribution of A, B (i.e.,
the joint distribution of independent samples from A and B).

Fact 2.2.8 Suppose that the distribution ensembles {Xn} and {Yn} are computationally indistin-
guishable. Then for every polynomial-time computable function f we have f(Xn)

c≡ f(Yn).

Consider a case in which two probabilistic (possibly computationally unbounded) algorithms
behave “similarly” on every input, in the sense that their output distributions are computationally
indistinguishable. The following two facts deal with such a situation. Fact 2.2.9 asserts that an
efficient procedure that gets an oracle access to one of these algorithms cannot tell which algorithm it
communicates with. Fact 2.2.10 asserts that the outputs of these algorithms cannot be distinguished
with respect to any (not necessarily efficiently samplable) input distribution.

Fact 2.2.9 Let X and Y be probabilistic algorithms such that for every string family {zn} where
zn ∈ {0, 1}n, it holds that X(zn)

c≡ Y (zn). Then, for any (non-uniform) polynomial-time oracle
machine A, it holds that AX(1n)

c≡ AY (1n) (where A does not have access to the random coins of
the given probabilistic oracle).

Fact 2.2.10 Let X and Y be probabilistic algorithms such that for every string family {zn} where
zn ∈ {0, 1}n, it holds that X(zn)

c≡ Y (zn). Then, for every distribution ensemble {Zn} where Zn is
distributed over {0, 1}n, we have (Zn, X(Zn))

c≡ (Zn, Y (Zn)).

For a randomized algorithm A and an integer i we define Ai to be the randomized algorithm
obtained by composing A exactly i times with itself; that is, A1(x) = A(x) and Ai(x) = A(Ai−1(x)),
where in each invocation a fresh randomness is used. The following fact (which is implicit in [Ale03])
can be proved via a hybrid argument.

Fact 2.2.11 Let {Xn} be a distribution ensemble, and let A be a randomized polynomial-time
algorithm. Suppose that {Xn} c≡ {A(Xn)}. Then, for every polynomial p(·), we have {Xn} c≡
{Ap(n)(Xn)}.

2.3 Computational Models

Branching programs. A branching program (BP) is defined by a tuple BP = (G,φ, s, t), where
G = (V,E) is a directed acyclic graph, φ is a labeling function assigning each edge either a positive
literal xi, a negative literal x̄i or the constant 1, and s, t are two distinguished nodes of G. The
size of BP is the number of nodes in G. Each input assignment w = (w1, . . . , wn) naturally induces
an unlabeled subgraph Gw, whose edges include all e ∈ E such that φ(e) is satisfied by w (e.g.,
an edge labeled xi is satisfied by w if wi = 1). BPs may be assigned different semantics: in a
non-deterministic BP, an input w is accepted if Gw contains at least one path from s to t; in a
(counting) mod-p BP, the BP computes the number of paths from s to t modulo p. In this work,
we will mostly be interested in mod-2 BPs. An example of a mod-2 BP is given in Figure 2.3.1.

12

s tx1

x2

x2

x3

x3

1

1

s t

1

Figure 2.3.1: A mod-2 branching program computing the majority of three bits (left side), along
with the graph G110 induced by the assignment 110 (right side).

Circuits. Boolean circuits are defined in a standard way. That is, we define a boolean circuit C
as a directed acyclic graph with labeled, ordered vertices of the following types: (1) input vertices,
each labeled with a literal xi or x̄i and having fan-in 0; (2) gate vertices, labeled with one of the
boolean functions AND,OR and having fan-in 2; (3) output vertices, labeled “output” and having
fan-in 1 and fan-out 0. The edges of the circuit are referred to as wires. A wire that outgoes from
an input vertex is called an input wire, and a wire that enters an output vertex is called an output
wire. Any input x ∈ {0, 1}n assigns a unique value to each wire in the natural way. The output
value of C, denoted C(x), contains the values of the output wires according to the given predefined
order. The size of a circuit, denoted |C|, is the number of wires in C, and its depth is the maximum
distance from an input to an output (i.e. the length of the longest directed path in the graph).

We say that C = {Cn} is an NCi circuit family if for every n, the circuit Cn is of size poly(n)
and depth O(logi(n)). ACi circuits are defined similarly, except that gates are allowed to have
unbounded fan-in.

NCi-reductions. A circuit with an oracle access to a function g : {0, 1}∗ → {0, 1}∗ is a circuit that
contains, in addition to the bounded fan-in OR, AND gates, special oracle gates with unbounded
fan-in that compute the function g. We say that f : {0, 1}∗ → {0, 1}∗ is NCi reducible to g, and
write f ∈ NCi[g], if f can be computed by a uniform family of polynomial size, O(logi n) depth
circuits with oracle gates to g. (Oracle gates are treated the same as AND/OR gates when defining
depth.) Note that if f ∈ NCi[g] and g ∈ NCj then f ∈ NCi+j .

Function families and representations. We associate with a function f : {0, 1}∗ → {0, 1}∗ a
function family {fn}n∈N, where fn is the restriction of f to n-bit inputs. We assume all functions
to be length regular, namely their output length depends only on their input length. Hence, we
may write fn : {0, 1}n → {0, 1}l(n). We will represent functions f by families of circuits, branching
programs, or vectors of polynomials (where each polynomial is represented by a formal sum of
monomials). Whenever f is taken from a uniform class, we assume that its representation is
uniform as well. That is, the representation of fn is generated in time poly(n) and in particular is
of polynomial size. We will often abuse notation and write f instead of fn even when referring to a
function on n bits. We will also write f : {0, 1}n → {0, 1}l(n) to denote the family {fn : {0, 1}n →
{0, 1}l(n)}n∈N.

13

Complexity classes. For brevity, we use the (somewhat nonstandard) convention that all com-
plexity classes are polynomial-time uniform unless otherwise stated. For instance, NC0 refers to the
class of functions admitting uniform NC0 circuits, whereas non-uniform NC0 refers to the class of
functions admitting non-uniform NC0 circuits. We let NL/poly (resp., ⊕L/poly) denote the class
of boolean functions computed by a polynomial-time uniform family of nondeterministic (resp.,
modulo-2) BPs. (Recall that in a uniform family of circuits or branching programs computing f ,
it should be possible to generate the circuit or branching program computing fn in time poly(n).)
Equivalently, the class NL/poly (resp., ⊕L/poly) is the class of functions computed by NL (resp.,
⊕L) Turing machines taking a uniform advice. We extend boolean complexity classes, such as
NL/poly and ⊕L/poly, to include non-boolean functions by letting the representation include l(n)
branching programs, one for each output. Uniformity requires that the l(n) branching programs
be all generated in time poly(n). Similarly, we denote by P (resp. BPP) the class of functions
that can be computed in polynomial time (resp. probabilistic polynomial time). For instance, a
function f : {0, 1}n → {0, 1}`(n) is in BPP if there exists a probabilistic polynomial-time machine
A such that for every x ∈ {0, 1}n it holds that Pr[A(x) 6= f(x)] ≤ 2−n, where the probability is
taken over the internal coin tosses of A. Figure 2.3.2 describes the relations between complexity
classes inside P.

NC0 AC0 TC0 ⊆ NC1 ⊆ L/poly ⊆ NL/poly,⊕L/poly ⊆ NC2 ⊆ NC ⊆ P

Figure 2.3.2: The relations between complexity classes inside P. The classes ⊕L/poly and
NL/poly contain the class L/poly and are contained in NC2. In a non-uniform setting the class

⊕L/poly contains the class NL/poly [Wig94].

2.4 Output locality, input locality and degree

Output Locality. Let f : {0, 1}n → {0, 1}l be a function. We say that the j-th output bit of
f depends on the i-th input bit if there exists an assignment such that flipping the i-th input bit
changes the value of the j-th output bit of f . The output locality of f is the maximal number of
input bits on which an output bit of f depends. We say that the function f : {0, 1}n → {0, 1}l is
c-local if its output locality is at most c (i.e., each of its output bits depends on at most c input
bits), and that f : {0, 1}∗ → {0, 1}∗ is c-local if for every n the restriction of f to n-bit inputs is
c-local.

Locality may be also defined as a syntactic property. Let C be a boolean circuit with n in-
puts and l outputs. Then, the j-th output wire of C depends on the i-th input wire if there
exists a directed path from i to j. The output locality of a circuit is the maximal number of in-
put wires on which an output wire depends. Recall that the non-uniform class nonuniform-NC0

includes all functions f : {0, 1}n → {0, 1}l(n) which are computable by a circuit family {Cn}
of constant depth, polynomial size and bounded fan-in gates. For a constant c, we define the
class nonuniform-NC0

c as the class of functions which are computable by a circuit family {Cn}

14

of constant depth, polynomial size and bounded fan-in gates whose output locality is at most c.
Clearly, the output locality of a nonuniform-NC0 circuit is constant and therefore we can write
nonuniform-NC0 =

⋃
c∈N nonuniform-NC0

c . The complexity classes NC0 and NC0
c , which are the

uniform versions of the above classes, requires the circuit family {Cn} to be polynomial-time con-
structible.

By definition, every function in nonuniform-NC0
c is c-local. Also, any function in NC0

c is both
c-local and polynomial-time computable. The following proposition asserts that the converse also
holds. That is, if a function is both c-local and polynomial-time computable then it is possible to
efficiently construct an NC0

c circuit that computes it.

Proposition 2.4.1 Let f : {0, 1}n → {0, 1}l(n) be a c-local function which can be computed in
polynomial time. Then, f ∈ NC0. That is, f can be computed by a constant depth circuit family
C = {Cn} with bounded fan-in, and there exist a polynomial-time circuit constructor A such that
A(1n) = Cn.

Proof: We show that given an oracle to a c-local function f , one can efficiently “learn” an NC0

circuit that computes f . First note that it suffices to show how to learn an NC0 circuit for a boolean
c-local function, as in this case we can view f as a sequence of l(n) such functions f (1), . . . , f (l(n)),
one for each output bit of f , and construct an NC0 circuit for f by concatenating the NC0 circuits
for f (1), . . . , f (l(n)).

We now show how to learn the set S∗ of variables that influence the output bit of a boolean
c-local function g. Given such a procedure we can easily compute an NC0 circuit for g (in constant
time) by first recovering the truth table of g (restricted to the bits in S∗) and then converting it
into a circuit via a standard transformation.

Algorithm 1 Learning the set of influencing variables of a c-local function g : {0, 1}n → {0, 1}.
1. Go over all subsets S ⊆ [n] of cardinality ≤ c, where larger sets are processed before smaller

ones.

(a) Let TS be the set of all strings x ∈ {0, 1}n for which x[n]\S = 0n−|S|.

(b) For every input bit i ∈ [n] test whether there exists a witness x ∈ TS for which g(x) 6=
g(x⊕i). (That is, x is a witness for the fact that the output of g depends on the i-th
input bit.)

(c) If all the tests succeed, output S and terminate.

Let S be the output of the algorithm. We prove that S = S∗. First note that S ⊆ S∗, as g
depends on all the input bits of S (for each i ∈ S we found a witness for this dependency). Hence,
since Algorithm 1 processes larger sets before smaller ones, it does not terminate before it reaches
S∗. It is left to show that the algorithm stops when it examines S∗. Fix some i ∈ S∗ and let
x ∈ {0, 1}n be the witness for the fact that g depends on i, namely, g(x) 6= g(x⊕i). Let y ∈ {0, 1}n

be a string for which yS∗ = xS∗ and y[n]\S∗ = 0n−|S∗|. Clearly y ∈ TS∗ . Also, since the indices
outside of S∗ do not affect g, we have g(y) = g(x′) 6= g(x⊕i) = g(y⊕i) and the proposition follows.

Input Locality. The input locality of a function f is the maximal number of output bits on which

15

an input bit of f has influence. We envision circuits as having their inputs at the bottom and their
outputs at the top. Accordingly, for functions `(n),m(n), the class nonuniform-Localm(n)

`(n) (resp.

nonuniform-Local`(n), nonuniform-Localm(n)) includes all functions f : {0, 1}∗ → {0, 1}∗ whose
input locality is `(n) and whose output locality is m(n) (resp. whose input locality is `(n), whose
output locality is m(n)). The uniform versions of these classes contain only functions that can be
computed in polynomial time. (Note that LocalO(1) is equivalent to the class NC0. However, in
most cases we will prefer the notation NC0.) We now prove the following proposition.

Proposition 2.4.2 A function f : {0, 1}n → {0, 1}l(n) is in the class LocalO(1)
O(1) if and only if f can

be computed by polynomial-time constructible circuit family {Cn} of constant depth, whose gates
have bounded fan-in and bounded fan-out.

Proof: Suppose that f ∈ Localm` for some constants `,m ∈ N. Then, as shown in the proof of
Proposition 2.4.1, we can construct, in time poly(n), an NC0 circuit Cn that computes fn. Moreover,
the circuit computing each output bit involves only those input bits on which this output depend.
Hence, the gates of Cn have also bounded fan-out.

To prove the converse direction, note that if fn is computable by a circuit Cn with depth d,
fan-in b, and fan-out c, where b, c, d = O(1), then the input locality of f is at most cd = O(1) and
its output locality is at most bd = O(1). Also, if Cn is constructible in time poly(n), then f ∈ P.

Most of this thesis deals with output locality, hence, by default, the term locality always refers
to output locality.

Degree. We will sometimes view the binary alphabet as the finite field F = F2, and say that
a function f : Fn → Fl(n) has degree d if each of its outputs can be expressed as a multivariate
polynomial of degree (at most) d in the inputs. The output locality of a function trivially upper
bound its degree.

16

Chapter 3

Randomized Encoding of Functions

Summary: In this chapter we formally introduce our notion of randomized encoding which
will be used as a central tool in subsequent chapters. In Section 3.1 we introduce several variants
of randomized encoding and in Section 3.2 we prove some of their useful properties. Finally, in
Section 3.3 we discuss other aspects and limitations of randomized encoding such as the necessity
of randomness, the expressive power of encoding in NC0, and the lowest output locality which is
sufficient to encode all functions.

3.1 Definitions

We start by defining a randomized encoding of a finite function f . This definition will be later
extended to a (uniform) family of functions.

Definition 3.1.1 (Randomized encoding) Let f : {0, 1}n → {0, 1}l be a function. We say that
a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private randomized encoding of f , if it
satisfies the following:

• δ-correctness. There exists a deterministic1 algorithm B, called a decoder, such that for
every input x ∈ {0, 1}n, Pr[B(f̂(x,Um)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a randomized algorithm S, called a simulator, such that for every
x ∈ {0, 1}n, SD(S(f(x)), f̂(x,Um)) ≤ ε.

We refer to the second input of f̂ as its random input and to m and s as the randomness complexity
and output complexity of f̂ , respectively.

Note that the above definition only refers to the information about x revealed by f̂(x, r) and
does not consider the complexity of the decoder and the simulator. Intuitively, the function f̂
defines an “information-theoretically equivalent” representation of f . The correctness property
guarantees that from ŷ = f̂(x, r) it is possible to reconstruct f(x) (with high probability), whereas
the privacy property guarantees that by seeing ŷ one cannot learn too much about x (in addition
to f(x)). The encoding is δ-correct (resp. ε-private), if it correct (resp. private) up to an “error”
of δ (resp., ε). This is illustrated by the next example.

1We restrict the decoder to be deterministic for simplicity. This restriction does not compromise generality, in the
sense that one can transform a randomized decoder to a deterministic one by incorporating the coins of the former
in the encoding itself.

17

Example 3.1.2 Consider the function f(x1, . . . , xn) = x1 ∨ x2 ∨ . . .∨ xn. We define a randomized
encoding f̂ : {0, 1}n × {0, 1}ns → {0, 1}s by f̂(x, r) = (

∑n
i=1 xiri,1, . . . ,

∑n
i=1 xiri,s), where x =

(x1, . . . , xn), r = (ri,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ s, and addition is over F2. First, observe that the
distribution of f̂(x,Uns) depends only on the value of f(x). Specifically, let S be a simulator that
outputs an s-tuple of zeroes if f(x) = 0, and a uniformly chosen string in {0, 1}s if f(x) = 1. It
is easy to verify that S(f(x)) is distributed the same as f̂(x,Uns) for any x ∈ {0, 1}n. It follows
that this randomized encoding is 0-private. Also, one can obtain an efficient decoder B that given
a sample y from the distribution f̂(x, Uns) outputs 0 if y = 0s and otherwise outputs 1. Such an
algorithm will err with probability 2−s, thus f̂ is 2−s-correct.

On uniform randomized encodings. The above definition naturally extends to functions f :
{0, 1}∗ → {0, 1}∗. In this case, the parameters l, m, s, δ, ε are all viewed as functions of the input
length n, and the algorithms B, S receive 1n as an additional input. In our default uniform setting,
we require that f̂n, the encoding of fn, be computable in time poly(n) (given x ∈ {0, 1}n and
r ∈ {0, 1}m(n)). Thus, in this setting both m(n) and s(n) are polynomially bounded. We also
require both the decoder and the simulator to be efficient. (This is not needed by some of the
applications, but is a feature of our constructions.) We formalize these requirements below.

Definition 3.1.3 (Uniform randomized encoding) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function and l(n) an output length function such that |f(x)| = l(|x|) for every
x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a δ(n)-correct ε(n)-private uniform
randomized encoding of f , if the following holds:

• Length regularity. There exist polynomially-bounded and efficiently computable length func-
tions m(n), s(n) such that for every x ∈ {0, 1}n and r ∈ {0, 1}m(n), we have |f̂(x, r)| = s(n).

• Efficient evaluation. There exists a polynomial-time evaluation algorithm that, given x ∈
{0, 1}∗ and r ∈ {0, 1}m(|x|), outputs f̂(x, r).

• δ-correctness. There exists a polynomial-time decoder B, such that for every x ∈ {0, 1}n

we have Pr[B(1n, f̂(x,Um(n))) 6= f(x)] ≤ δ(n).

• ε-privacy. There exists a probabilistic polynomial-time simulator S, such that for every
x ∈ {0, 1}n we have SD(S(1n, f(x)), f̂(x,Um(n))) ≤ ε(n).

When saying that a uniform encoding f̂ is in a (uniform) circuit complexity class, we mean that
its evaluation algorithm can be implemented by circuits in this class. For instance, we say that f̂
is in NC0

d if there exists a polynomial-time circuit generator G such that G(1n) outputs a d-local
circuit computing f̂(x, r) on all x ∈ {0, 1}n and r ∈ {0, 1}m(n).

From here on, a randomized encoding of an efficiently computable function is assumed to be
uniform by default. Moreover, we will freely extend the above definition to apply to a uniform
collection of functions F = {fz}z∈Z , for some index set Z ⊆ {0, 1}∗. In such a case it is required
that the encoded collection F̂ = {f̂z}z∈Z is also uniform, in the sense that the same efficient
evaluation algorithm, decoder, and simulator should apply to the entire collection when given z
as an additional input. (See Appendix A for a more detailed discussion of collections of functions
and cryptographic primitives.) Finally, for the sake of simplicity we will sometimes formulate our
definitions, claims and proofs using finite functions, under the implicit understanding that they
naturally extend to the uniform setting.

18

We move on to discuss some variants of the basic definition. Correctness (resp., privacy) can
be either perfect, when δ = 0 (resp., ε = 0), or statistical, when δ(n) (resp., ε(n)) is negligible. In
fact, we can further relax privacy to hold only against efficient adversaries, e.g., to require that for
every x ∈ {0, 1}n, every polynomial-size circuit family {An} distinguishes between the distributions
S(f(x)) and f̂(x,Um) with no more than negligible advantage. Such an encoding is referred to as
computationally private and it suffices for the purpose of many applications. However, while for
some of the primitives (such as OWF) computational privacy and statistical correctness will do,
others (such as PRGs or one-way permutations) require even stronger properties than perfect
correctness and privacy. One such additional property is that the simulator S, when invoked on a
uniformly random string from {0, 1}l (the output domain of f), will output a uniformly random
string from {0, 1}s (the output domain of f̂). We call this property balance. Note that the balance
requirement does not impose any uniformity condition on the output of f , which in fact can be
concentrated on a strict subset of {0, 1}l.

Definition 3.1.4 (Balanced randomized encoding) A randomized encoding f̂ : {0, 1}n ×
{0, 1}m → {0, 1}s of a function f : {0, 1}n → {0, 1}l is called balanced if it has a perfectly private
simulator S such that S(Ul) ≡ Us. We refer to S as a balanced simulator.

A last useful property is a syntactic one: we sometimes want f̂ to have the same additive stretch
as f . Specifically, we say that f̂ is stretch-preserving (with respect to f) if s− (n + m) = l − n, or
equivalently m = s− l.

We are now ready to define our three main variants of randomized encoding.

Definition 3.1.5 (Perfect randomized encoding) A perfect randomized encoding is a ran-
domized encoding that is perfectly correct, perfectly private, balanced, and stretch-preserving.

Definition 3.1.6 (Statistical randomized encoding) A statistical randomized encoding is a
randomized encoding that is statistically correct and statistically private.

Definition 3.1.7 (Computational randomized encoding) Let f = {fn : {0, 1}n → {0, 1}`(n)}
be a function family. We say that the function family f̂ = {f̂n : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)}
is a computational randomized encoding of f (or computational encoding for short), if it satisfies
the following requirements:

• Statistical correctness. There exists a polynomial-time decoder B, such that for every
x ∈ {0, 1}n, we have Pr[B(1n, f̂n(x,Um(n))) 6= fn(x)] ≤ δ(n), for some negligible function
δ(n).

• Computational privacy. There exists a probabilistic polynomial-time simulator S, such that
for any family of strings {xn}n∈N where |xn| = n, we have S(1n, fn(xn))

c≡ f̂n(xn, Um(n)).

We will also refer to perfectly correct computational encodings, where the statistical correctness
requirement is strengthened to perfect correctness. (In fact, the construction of Section 5.2 yields
such an encoding.)

19

A combinatorial view of perfect encoding. To gain better understanding of the properties
of perfect encoding, we take a closer look at the relation between a function and its encoding. Let
f̂ : {0, 1}n+m → {0, 1}s be an encoding of f : {0, 1}n → {0, 1}l. The following description addresses
the simpler case where f is onto. Every x ∈ {0, 1}n is mapped to some y ∈ {0, 1}l by f , and to a
2m-size multiset {f̂(x, r)|r ∈ {0, 1}m} which is contained in {0, 1}s. Perfect privacy means that this
multiset is common to all the x’s that share the same image under f ; so we have a mapping from
y ∈ {0, 1}l to multisets in {0, 1}s of size 2m (such a mapping is defined by the perfect simulator).
Perfect correctness means that these multisets are mutually disjoint. However, even perfect privacy
and perfect correctness together do not promise that this mapping covers all of {0, 1}s. The balance
property guarantees that the multisets form a perfect tiling of {0, 1}s; moreover it promises that
each element in these multisets has the same multiplicity. If the encoding is also stretch-preserving,
then the multiplicity of each element must be 1, so that the multisets are actually sets. Hence,
a perfect randomized encoding guarantees the existence of a perfect simulator S whose 2l output
distributions form a perfect tiling of the space {0, 1}s by sets of size 2m.

Remark 3.1.8 (A padding convention) We will sometimes view f̂ as a function of a single
input of length n + m(n) (e.g., when using it as a OWF or a PRG). In this case, we require m(·)
to be monotone non-decreasing, so that n + m(n) uniquely determines n. We apply a standard
padding technique for defining f̂ on inputs whose length is not of the form n + m(n). Specifically,
if n + m(n) + t < (n + 1) + m(n + 1) we define f̂ ′ on inputs of length n + m(n) + t by applying
f̂n on the first n + m(n) bits and then appending the t additional input bits to the output of f̂n.
This convention respects the security of cryptographic primitives such as OWF, PRG, and collision-
resistant hashing, provided that m(n) is efficiently computable and is sufficiently dense (both of
which are guaranteed by a uniform encoding). That is, if the unpadded function f̂ is secure with
respect to its partial domain, then its padded version f̂ ′ is secure in the standard sense, i.e., over
the domain of all strings.2 (See a proof for the case of OWF in [Gol01a, Proposition 2.2.3].) Note
that the padded function f̂ ′ has the same locality and degree as f̂ . Moreover, f̂ ′ also preserves
syntactic properties of f̂ ; for example it preserves the stretch of f̂ , and if f̂ is a permutation then
so is f̂ ′. Thus, it is enough to prove our results for the partially defined unpadded function f̂ , and
keep the above conventions implicit.

Finally, we define three complexity classes that capture the power of randomized encodings in
NC0.

Definition 3.1.9 (The classes PREN, SREN, CREN) The class PREN (resp., SREN ,
CREN) is the class of functions f : {0, 1}∗ → {0, 1}∗ admitting a perfect (resp., statistical, compu-
tational) uniform randomized encoding in NC0. (As usual, NC0 is polynomial-time uniform.)

It follows from the definitions that PREN ⊆ SREN ⊆ CREN .3 We will later show that
⊕L/poly ⊆ PREN (Theorem 4.2.6), NL/poly ⊆ SREN (Theorem 4.2.8), and, assuming that
there exists a PRG in PREN , the class CREN is equal to the class BPP (Theorem 5.2.15).

2This can be generally explained by viewing each slice of the padded function f̂ ′ (i.e., its restriction to inputs of
some fixed length) as a perfect randomized encoding of a corresponding slice of f̂ .

3We also note that if CREN 6= SREN then there exist two polynomial-time constructible ensembles which are
computationally indistinguishable but not statistically close. In [Gol90] it is shown that such ensembles implies the
existence of infinitely often OWF, i.e., a polynomial-time computable function which is hard to invert for infinitely
many input lengths (see [Gol01a, Def. 4.5.4] for formal definition).

20

Moreover, functions in all of these classes admit an encoding of degree 3 and (output) locality 4
(Corollary 4.2.9).

3.2 Basic Properties

We now put forward some useful properties of randomized encodings. We first argue that an
encoding of a non-boolean function can be obtained by concatenating encodings of its output bits,
using an independent random input for each bit. The resulting encoding inherits all the features
of the concatenated encodings, and in particular preserves their perfectness.

Lemma 3.2.1 (Concatenation) Let fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ l, be the boolean functions
computing the output bits of a function f : {0, 1}n → {0, 1}l. If f̂i : {0, 1}n × {0, 1}mi → {0, 1}si is
a δ-correct ε-private encoding of fi, then the function f̂ : {0, 1}n × {0, 1}m1+...+ml → {0, 1}s1+...+sl

defined by f̂(x, (r1, . . . , rl))
def= (f̂1(x, r1), . . . , f̂l(x, rl)) is a (δl)-correct, (εl)-private encoding of f .

Moreover, if all f̂i are perfect then so is f̂ .

Proof: We start with correctness. Let Bi be a δ-correct decoder for f̂i. Define a decoder B for
f̂ by B(ŷ1, . . . , ŷl) = (B1(ŷ1), . . . , Bl(ŷl)). By a union bound argument, B is a (δl)-correct decoder
for f̂ as required.

We turn to analyze privacy. Let Si be an ε-private simulator for f̂i. An (εl)-private simulator S
for f̂ can be naturally defined by S(y) = (S1(y1), . . . , Sl(yl)), where the invocations of the simulators
Si use independent coins. Indeed, for every x ∈ {0, 1}n we have:

SD(S(f(x)), f̂(x, (Um1 , . . . , Uml
))) = SD((S1(y1), . . . , Sl(yl)), (f̂1(x,Um1), . . . , f̂l(x,Uml

)))

≤
l∑

i=1

SD(Si(yi), f̂i(x,Umi))

≤ εl,

where y = f(x). The first inequality follows from Fact 2.2.2 and the independence of the randomness
used for different i, and the second from the ε-privacy of each Si.

Note that the simulator S described above is balanced if all Si are balanced. Moreover, if all f̂i

are stretch preserving, i.e., si − 1 = mi, then we have
∑l

i=1 si − l =
∑l

i=1 mi and hence f̂ is also
stretch preserving. It follows that if all f̂i are perfect then so is f̂ .

We state the following uniform version of Lemma 3.2.1, whose proof is implicit in the above.

Lemma 3.2.2 (Concatenation: uniform version) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function, viewed as a uniform collection of functions F = {fn,i}n∈N,1≤i≤l(n); that
is, fn,i(x) outputs the i-th bit of f(x) for all x ∈ {0, 1}n. Suppose that F̂ = {f̂n,i}n∈N,1≤i≤l(n) is
a perfect (resp., statistical) uniform randomized encoding of F . Then, the function f̂ : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ defined by f̂(x, (r1, . . . , rl(|x|)))

def= (f̂|x|,1(x, r1), . . . , f̂|x|,l(|x|)(x, rl(|x|))) is a perfect
(resp., statistical) uniform randomized encoding of f .

Another useful feature of randomized encodings is the following intuitive composition property:
suppose we encode f by g, and then view g as a deterministic function and encode it again. Then,

21

the resulting function (parsed appropriately) is a randomized encoding of f . Again, the resulting
encoding inherits the perfectness of the encodings from which it is composed.

Lemma 3.2.3 (Composition) Let g(x, rg) be a δg-correct, εg-private encoding of f(x) and
h((x, rg), rh) be a δh-correct, εh-private encoding of g((x, rg)) (viewed as a single-argument func-
tion). Then, the function f̂(x, (rg, rh)) def= h((x, rg), rh) is a (δg + δh)-correct, (εg + εh)-private
encoding of f . Moreover, if g, h are perfect (resp., statistical) uniform randomized encodings then
so is f̂ .

Proof: We start with correctness. Let Bg be a δg-correct decoder for g and Bh a δh-correct
decoder for h. Define a decoder B for f̂ by B(ŷ) = Bg(Bh(ŷ)). The decoder B errs only if either
Bh or Bg err. Thus, by the union bound we have for every x,

Pr
rg ,rh

[B(f̂(x, (rg, rh))) 6= f(x)] ≤ Pr
rg ,rh

[Bh(h((x, rg), rh)) 6= g(x, rg)]

+Pr
rg

[Bg(g(x, rg)) 6= f(x)]

≤ δh + δg,

as required.
Privacy is argued similarly. Let Sg be an εg-private simulator for g and Sh an εh-private

simulator for h. We define a simulator S for f̂ by S(y) = Sh(Sg(y)). Letting mg, mh denote the
randomness complexity of g, h, respectively, we have for every x,

SD(S(f(x)), f̂(x, (Umg , Umh
))) = SD(Sh(Sg(f(x))), h((x,Umg), Umh

))
≤ SD(Sh(Sg(f(x))), Sh(g(x,Umg)))

+SD(Sh(g(x,Umh
)), h((x,Umg), Umh

))
≤ εg + εh,

where the first inequality follows from the triangle inequality (Fact 2.2.1), and the second from
Facts 2.2.3 and 2.2.5.

It is easy to verify that if Sg and Sh are balanced then so is S. Moreover, if g preserves the
additive stretch of f and h preserves the additive stretch of g then h (hence also f̂) preserves the
additive stretch of f . Thus f̂ is perfect if both g, h are perfect. All the above naturally carries over
to the uniform setting, from which the last part of the lemma follows.

The composition lemma can be easily extended to the computational setting.

Lemma 3.2.4 (Composition of computational encoding) Let g(x, rg) be a computational
encoding of f(x) and h((x, rg), rh) a computational encoding of g((x, rg)), viewing the latter as
a single-argument function. Then, the function f̂(x, (rg, rh)) def= h((x, rg), rh) is a computational
encoding of f(x) whose random inputs are (rg, rh). Moreover, if g, h are perfectly correct then so
is f̂ .

Proof: Correctness follows from the same arguments as in the proof of Lemma 3.2.3. To prove
computational privacy, we again define a simulator S for f̂ by S(y) = Sh(Sg(y)), where Sg (resp.,
Sh) is a computationally-private simulator for g (resp., h). Letting mg(n) and mh(n) denote the

22

randomness complexity of g and h, respectively, and {xn}n∈N be a family of strings where |xn| = n,
we have,

Sh(Sg(f(xn)))
c≡ Sh(g(xn, Umg(n))) (comp. privacy of g, Fact 2.2.8)
c≡ h((xn, Umg(n)), Umh(n)) (comp. privacy of h, Fact 2.2.10).

Hence, the transitivity of the relation
c≡ (Fact 2.2.6) completes the proof.

It follows as a special case that the composition of a computational encoding with a perfect or
a statistical encoding is a computational encoding.

Finally, we prove two useful features of a perfect encoding.

Lemma 3.2.5 (Unique randomness) Suppose f̂ is a perfect randomized encoding of f . Then,
(a) f̂ satisfies the following unique randomness property: for any input x, the function f̂(x, ·) is
injective, namely there are no distinct r, r′ such that f̂(x, r) = f̂(x, r′). Moreover, (b) if f is a
permutation then so is f̂ .

Proof: Let f : {0, 1}n → {0, 1}l and f̂ : {0, 1}n × {0, 1}m → {0, 1}s. To prove part (a), assume
towards a contradiction that f̂ does not satisfy the unique randomness property. Then, by perfect
privacy, we have |Im(f̂)| < |Im(f)| · 2m. On the other hand, letting S be a balanced simulator, we
have

|Im(f̂)| · 2−s = Pr
y←Ul

[S(y) ∈ Im(f̂)]

≥ Pr
y←Ul

[S(y) ∈ Im(f̂)|y ∈ Im(f)] · Pr
y←Ul

[y ∈ Im(f)]

= 1 · |Im(f)|
2l

,

where the last equality follows from perfect privacy. Since g is stretch preserving (s − l = m), we
get from the above that |Im(f̂)| ≥ |Im(f)| · 2m, and derive a contradiction.

If f is a permutation then n = l and since f̂ is stretch preserving, we can write f̂ : {0, 1}s →
{0, 1}s. Thus, to prove part (b), it is enough to prove that f̂ is injective. Suppose that f̂(x, r) =
f̂(x′, r′). Then, since f is injective and f̂ is perfectly correct it follows that x = x′; hence, by
part (a), r = r′ and the proof follows.

3.3 More Aspects of Randomized Encoding

In the followings we address some natural questions regarding the complexity of randomized en-
coding.

3.3.1 The Necessity of Randomness

We begin by asking whether randomization is really needed in order to encode a function f by
a function f̂ with constant output locality (i.e., NC0 function) or constant input locality. The
following observation shows that, at least when f is a boolean function, only trivial functions
admit such an encoding.

23

Observation 3.3.1 If f : {0, 1}n → {0, 1} can be encoded by a function f̂ : {0, 1}n → {0, 1}s

whose output locality (resp. input locality) is c, then the output locality (resp. input locality) of f
is c.

Proof: The privacy of the encoding promises that there exists a pair of strings y0, y1 ∈ {0, 1}s

such that for every x ∈ {0, 1}n we have f̂(x) = yf(x). Also, by perfect correctness, y0 6= y1. Assume,
without loss of generality, that y0 and y1 differ in the first bit. Then, we can compute f(x) by
computing the first bit of f̂(x) or its negation. Thus, the output locality and input locality of f
are equal to those of f̂ .

The above argument relies heavily on the fact that f is a boolean function. Indeed, the claim
does not hold in the case of non-boolean functions. Suppose, for example, that f : {0, 1}n → {0, 1}n

is a permutation. Then it can be trivially encoded in Local11 by the identity function. Moreover,
if f can be computed and inverted in polynomial time, then the encoding allows efficient decoding
and simulation.

3.3.2 The Power of Randomized Encoding

Statistical encoding for functions outside of NC

It is very interesting to find out what is the power of randomized encoding in NC0; that is, which
functions are in SREN . Since our general constructions of statistical randomized encoding apply
only to various logspace classes (e.g., NL/poly,⊕L/poly), one might suspect that SREN is limited
to such functions. It turns out that there are functions in SREN that are not known to be
computable even in NC. Consider, for example, the collection of boolean functions {QRp(x)},
which check whether x is a quadratic residue modulo a prime p (i.e., this collection is indexed
by primes). This collection can be encoded by the collection Q̂Rp(x, r) = xr2 mod p where r is
uniformly chosen from [p]. Since {Q̂Rp} can be approximated (up to a negligible error) by a family
of NC1 circuits (over binary alphabet), we can statistically encode it by an NC0 collection, which,
by composition (Lemma 3.2.3), also encodes the collection {QRp}. However, the collection {QRp}
is not known to be computable in NC.

Randomized Encoding with Unbounded Decoder and Unbounded Simulator

For some applications, we can relax the uniformity of randomized encoding and allow the decoder
and/or the simulator to be computationally unbounded.4 For example, a perfect encoding with an
unbounded simulator and an unbounded decoder still preserves the security of collision resistent
hashing. Moreover, the security of several primitives is preserved by an encoding with an efficient
simulator and an unbounded decoder (see Table 4.9.1). Such variants are also useful for information
theoretic secure computation between computationally unbounded parties (cf. [BMR90]). Hence,
we would like to understand the power of randomized encodings in this setting too.

Of course, whenever the decoder of the encoding is restricted to run in polynomial time we
cannot hope to represent functions that are not efficiently computable (i.e., out of BPP). However,
it turns out that if we do not restrict the running time of the decoder, some functions that are
assumed to be intractable can be encoded by NC0 functions. For example, consider the function GI

4The encoding itself should still be computable in (polynomial-time) uniform NC0.

24

that given a graph G (represented as an n×n adjacency matrix), outputs the lexicographically first
graph H that is isomorphic to G. This function is not known to be computable by a polynomial
time algorithm (as such an algorithm would imply that the graph isomorphism language is in P).
However, we can encode GI by the function ĜI(G, r) = M(r)GMT (r) where M(·) is a mapping
from random bits to (almost) uniformly chosen n× n permutation matrix. It is not hard to verify
that ĜI is a statistical encoding of GI. Also, the encoding ĜI can be computed in NC1, and
therefore GI can be encoded by an NC0 encoding (with an efficient simulator). A similar example
(for a function that is not known to be efficiently computable but can be represented by an NC0

encoding) can be obtained by a variant of the quadratic residuosity function presented above in
which the modulus is a composite.

On the other hand, the following observation shows that “hard” functions are unlikely to have
efficiently computable encodings, even if we allow non-efficient simulation and decoding.

Observation 3.3.2 Let f be a boolean function, L be the language that corresponds to f (i.e.,
L = f−1(1)) and f̂ be a polynomial time computable encoding of f . Then,

1. If the encoding is perfect and the simulator is efficient then L ∈ NP ∩ co−NP.

2. If the encoding is perfect (and the simulator is not necessarily efficient) then L ∈ (non-
uniform) NP/poly∩ (non-uniform) co−NP/poly.

3. If the encoding is statistical and the simulator is efficient then L has a statistical zero-
knowledge proof system.

Proof sketch:

1. We use the randomness of the encoding as a witness; namely, f(x) = b iff ∃r such that
S0̄(b) = f̂(x, r) (i.e., we fix the random coins of the simulator to be the all-zero string.)

2. We use the same argument as in (1), but instead of computing S0̄(b) we use the advice f̂(xb, 0̄),
where 0̄ is the all-zero string and xb is a fixed n-bit string that satisfies f(xb) = b.

3. The protocol is very similar to the standard ZK protocol of graph non-isomorphism [GMR89];
namely, the verifier selects randomly b ∈ {0, 1}: if b = 1 it sends a sample from f̂(x, r),
otherwise it sends a sample from S(0). The prover has to find the bit b; if the prover succeeds
then the verifier accepts, otherwise the verifier rejects. To see that this is indeed a ZK-protocol
(against an honest-verifier), note that f(x) = 1 implies that the distributions f̂(x, r) and S(0)
are almost disjoint, and f(x) = 0 implies that these distributions are statistically close.5

As a corollary we can deduce that in all the above settings one is unlikely to obtain a polynomial
time computable encoding for an NP-hard language.

5In fact, this is a specific instance of the statistical difference problem which was shown to be complete for the
class SZK[SV03].

25

3.3.3 Lower Bounds for Locality and Degree

In Section 4.2 we will show that every function f can be perfectly encoded by a degree 3 encoding
in NC0

4 whose complexity is polynomial in the size of the branching program that computes f .
In [IK00, Corollary 5.9] it was shown that most boolean functions do not admit perfectly-private
randomized encoding of degree 2 regardless of the efficiency of the encoding. (In fact, an exact
characterization of the class of functions that admit such an encoding is given.) Hence, 3 is the
minimal degree which is sufficient to (perfectly) encode all functions. We now show that locality 4
is also minimal with respect to perfect encoding.

We say that a function f : {0, 1}n → {0, 1}l is ε-balanced if SD(f(Un), Ul) ≤ ε. When ε = 0 we
will say that f is balanced. The following claim shows that if a c-local function is 1

2 · 2−c-balanced
then it is actually balanced and its degree is bounded by c− 1.

Claim 3.3.3 Let f : {0, 1}c → {0, 1} be a 1
2 · 2−c-balanced function. Then, f is balanced and its

degree is at most c− 1.

Proof: In the following we will identify the truth table of a function g : {0, 1}c → {0, 1} with a
string z ∈ {0, 1}2c

which is indexed by c-bit strings such that zx = g(x).
First note that when f is not balanced its bias

∣∣Prx[f(x) = 1]− 1
2

∣∣ is at least 2−c. Hence, in this
case SD(f(Un), U1) ≥ 2−c and so it cannot be 1

2 · 2−c-balanced. We conclude that f is balanced.
Now assume, towards a contradiction, that f is a function of degree exactly c. Then we can

write f as a sum of monomials f(x) = T1(x) + . . . + Tk(x) where T1(x) = x1 · . . . · xc and T2, . . . , Tk

are monomials of degree ≤ c − 1. Let z be the truth table of f , and let zi be the truth table of
Ti. The following three claims show that the truth table z of f has an odd number of ones and
thus f cannot be balanced: (1) z = z1 ⊕ . . .⊕ zk; (2) the number of ones in z1 is odd; and (3) for
1 < i ≤ k, the number of ones in zi is even. The first two claims can be easily verified, and claim
(3) follows from the fact that each Ti depends on a strict subset of the inputs.

We also need the following claim.

Claim 3.3.4 Let f : {0, 1}n → {0, 1}l be an ε-balanced function which is perfectly encoded by
f̂ : {0, 1}n × {0, 1}m → {0, 1}s. Then, f̂ is also ε-balanced.

Proof: Let S be the balanced simulator of f̂ . Then,

SD(f̂(Un, Um), Us) ≤ SD(f̂(Un, Um), S(f(Un))) + SD(S(f(Un)), S(Ul)) + SD(S(Ul), Us)
= 0 + SD(S(f(Un)), S(Ul)) + 0
≤ SD(f(Un), Ul) ≤ ε,

where the first inequality follows from Fact 2.2.1, the first equality is due to perfect privacy,
Fact 2.2.5 and the fact that S is a balanced simulator, the second inequality follows from Fact 2.2.3,
and the last inequality is due to the fact that f is ε-balanced.

By combining the above claims and the results of [IK00, Corollary 5.9], we get the following
corollary:

26

Corollary 3.3.5 For sufficiently large n, most boolean functions f : {0, 1}n → {0, 1} cannot be
perfectly encoded by functions f̂ ∈ NC0

3.

Proof: We begin by proving the claim for a function f which is 2−4-balanced and cannot be
perfectly encoded by a degree 2 encoding. Assume, towards a contradiction, that f is perfectly
encoded by a 3-local function f̂ . Then, by Claim 3.3.4, f̂ is also 2−4-balanced and thus, by
Claim 3.3.3, f̂ is a degree-2 encoding and we derive a contradiction.

We complete the proof by noting that most functions satisfy the above properties. Indeed,
for sufficiently large n, all but a negligible fraction of the boolean functions over n-bits are 2−4-
balanced. (This can be proved by choosing a random function and applying a Chernoff bound.)
Also, by [IK00, Corollary 5.9], only negligible fraction of the boolean functions can be perfectly
encoded by degree 2 functions.

In particular, it follows from [IK00, Corollary 5.9] that the function x1 · x2 · x3 + x4 cannot
be perfectly encoded by a degree 2 function, hence, by Corollary 3.3.5, this function cannot be
perfectly encoded by a 3-local function (regardless of the complexity of the encoding).

27

Chapter 4

Cryptography in NC0

Summary: In this chapter we show that randomized encoding preserves the security of many
cryptographic primitives. We also construct an (information-theoretic) encoding in NC0

4 for any
function in NC1 or even ⊕L/poly. The combination of these results gives a compiler that takes as
an input a code of an NC1 implementation of some cryptographic primitive and generates an NC0

4

implementation of the same primitive.

4.1 Introduction

As indicated in Chapter 1, the possibility of implementing most cryptographic primitives in NC0 was
left wide open. We present a positive answer to this basic question, showing that surprisingly many
cryptographic tasks can be performed in constant parallel time. Since the existence of cryptographic
primitives implies that P 6= NP, we cannot expect unconditional results and have to rely on some
unproven assumptions.1 However, we avoid relying on specific intractability assumptions. Instead,
we assume the existence of cryptographic primitives in a relatively “high” complexity class and
transform them to the seemingly degenerate complexity class NC0 without substantial loss of their
cryptographic strength. These transformations are inherently non-black-box, thus providing further
evidence for the usefulness of non-black-box techniques in cryptography.

4.1.1 Previous Work

Linial et al. show that pseudorandom functions cannot be computed even in AC0 [LMN93].2 How-
ever, no such impossibility result is known for pseudorandom generators (PRGs). The existence of
PRGs in NC0 has been recently studied in [CM01, MST03]. Cryan and Miltersen [CM01] observe
that there is no PRG in NC0

2, and prove that there is no PRG in NC0
3 achieving a superlinear

stretch; namely, one that stretches n bits to n + ω(n) bits.3 Mossel et al. [MST03] extend this

1This is not the case for non-cryptographic PRGs such as ε-biased generators, for which we do obtain unconditional
results.

2In fact, the results of [LMN93] show that any pseudorandom function in AC0 can be broken in quasipolynomial
time (i.e., in time O(npolylog(n))). Hence, they do not rule out the existence of very weak pseudorandom functions,
e.g., ones that cannot be broken in time O(nlog log(n)).

3From here on, we use a crude classification of PRGs into ones having sublinear, linear, or superlinear additive
stretch. Note that a PRG stretching its seed by just one bit can be invoked in parallel (on seeds of length nε) to yield
a PRG stretching its seed by n1−ε bits, for an arbitrary ε > 0. Also, an NC0 PRG with some linear stretch can be

28

impossibility to NC0
4. Viola [Vio05] shows that a PRG in AC0 with superlinear stretch cannot be

obtained from a one-way function (OWF) via non-adaptive black-box constructions. This result
can be extended to rule out such a construction even if we start with a PRG whose stretch is
sublinear. Negative results for other restricted computation models appear in [GKY89, YY94].

On the positive side, Impagliazzo and Naor [IN96] construct a (sublinear-stretch) PRG in AC0,
relying on an intractability assumption related to the subset-sum problem. PRG candidates in
NC1 (or even TC0) are more abundant, and can be based on a variety of standard cryptographic
assumptions including ones related to the intractability of factoring [Kha93, NR04], discrete loga-
rithms [BM84, Yao82, NR04] and lattice problems [Ajt96, HILL99] (see Remark 4.5.8).4

Unlike the case of pseudorandom generators, the question of one-way functions in NC0 is rela-
tively unexplored. The impossibility of OWFs in NC0

2 follows from the easiness of 2-SAT [Gol00,
CM01]. H̊astad [H̊as87] constructs a family of permutations in NC0 whose inverses are P-hard to
compute. Cryan and Miltersen [CM01], improving on [AAR98], present a circuit family in NC0

3

whose range decision problem is NP-complete. This, however, gives no evidence of cryptographic
strength. Since any PRG is also a OWF, all PRG candidates cited above are also OWF candidates.
(In fact, the one-wayness of an NC1 function often serves as the underlying cryptographic assump-
tion.) Finally, Goldreich [Gol00] suggests a candidate OWF in NC0, whose conjectured security
does not follow from any well-known assumption.

4.1.2 Our Results

A general compiler

Our main result is that any OWF (resp., PRG) in a relatively high complexity class, containing
uniform NC1 and even ⊕L/poly, can be efficiently “compiled” into a corresponding OWF (resp.,
sublinear-stretch PRG) in NC0

4. The existence of OWF and PRG in this class is a mild assumption,
implied in particular by most number-theoretic or algebraic intractability assumptions commonly
used in cryptography. Hence, the existence of OWF and sublinear-stretch PRG in NC0 follows
from a variety of standard assumptions and is not affected by the potential weakness of a particular
algebraic structure. It is important to note that the PRG produced by our compiler will generally
have a sublinear additive stretch even if the original PRG has a large stretch. However, one cannot
do much better when insisting on an NC0

4 PRG, as there is no PRG with superlinear stretch in
NC0

4 [MST03].
The above results extend to other cryptographic primitives including one-way permutation,

encryption, signature, commitment, and collision-resistant hashing. Aiming at NC0 implementa-
tions, we can use our machinery in two different ways: (1) compile a primitive in a relatively high
complexity class (say NC1) into its randomized encoding and show that the encoding inherits the
security properties of this primitive; or (2) use known reductions between cryptographic primitives,
together with NC0 primitives we already constructed (e.g., OWF or PRG), to obtain new NC0

primitives. Of course, this approach is useful only when the reduction itself is in NC0.5 We mainly

composed with itself a constant number of times to yield an NC0 PRG with an arbitrary linear stretch.
4In some of these constructions it seems necessary to allow a collection of NC1 PRGs, and use polynomial-time

preprocessing to pick (once and for all) a random instance from this collection. This is similar to the more standard
notion of OWF collection (cf. [Gol01a, Section 2.4.2]). See Appendix A for further discussion of this slightly relaxed
notion of PRG.

5If the reduction is in NC1 one can combine the two approaches: first apply the NC1 reduction to an NC0 primitive
of type X that was already constructed (e.g., OWF or PRG) to obtain a new NC1 primitive of type Y , and then use

29

adopt the first approach, since most of the known reductions between primitives are not in NC0.
(An exception in the case of symmetric encryption and zero-knowledge proofs will be discussed in
Section 4.7.)

A caveat. It is important to note that in the case of two-party primitives (such as encryption
schemes, signatures, commitments and zero-knowledge proofs) our compiler yields an NC0 sender
(i.e., encrypting party, committing party, signer or prover, according to the case) but does not
promise anything regarding the parallel complexity of the receiver (the decrypting party or verifier).
In fact, we prove that, in all these cases, it is impossible to implement the receiver in NC0, regardless
of the complexity of the sender. An interesting feature of the case of commitment is that we can also
improve the parallel complexity at the receiver’s end. Specifically, our receiver can be realized by an
NC0 circuit with a single unbounded fan-in AND gate at the top. The same holds for applications
of commitment such as coin-flipping and zero-knowledge proofs.

Parallel reductions

In some cases our techniques yield NC0 reductions between different cryptographic primitives.
(Unlike the results discussed above, here we consider unconditional reductions that do not rely on
unproven assumptions.) Specifically, we get new NC0 constructions of PRG and non-interactive
commitment from one-to-one OWF. (In fact, in the case of PRG the reduction holds even with
more general types of one-way functions.) These reductions are obtained by taking a standard NC1

reduction of a primitive P from a primitive P ′, and applying our compiler to it. This works only
for reductions that makes non-adaptive calls to P ′. The standard reductions of PRGs and non-
interactive commitments from one-to-one OWF (cf. [HILL99, Blu83, GL89]) admit such a structure,
and thus can be compiled into NC0 reductions. (We remark that if the original reduction uses the
underlying primitive P ′ as a black-box than so does the new reduction. This should not be confused
with the fact that the NC0 reduction is obtained by using the “code” of the original reduction.
Indeed, all the the NC0 reductions obtained in this chapter are black-box reductions.)

Non-cryptographic generators

Our techniques can also be applied to obtain unconditional constructions of non-cryptographic
PRGs. In particular, building on an ε-biased generator in NC0

5 constructed by Mossel et al. [MST03],
we obtain a linear-stretch ε-biased generator in NC0

3. This generator has optimal locality, answering
an open question posed in [MST03]. It is also essentially optimal with respect to stretch, since
locality 3 does not allow for a superlinear stretch [CM01]. Our techniques apply also to other types
of non-cryptographic PRGs such as generators for space-bounded computation [BNS89, Nis92],
yielding such generators (with sublinear stretch) in NC0

3.

4.1.3 Overview of Techniques

Our key observation is that instead of computing a given “cryptographic” function f(x), it might
suffice to compute a randomized encoding f̂(x, r) of f . Recall that f̂(x, r) has the following relation
to f :

the first approach to compile the latter primitive into an NC0 primitive (of type Y). As in the first approach, this
construction requires to prove that a randomized encoding of a primitive Y preserves its security.

30

1. (Correctness.) For every fixed input x and a uniformly random choice of r, the output
distribution f̂(x, r) forms a “randomized encoding” of f(x), from which f(x) can be decoded.
That is, if f(x) 6= f(x′) then the random variables f̂(x, r) and f̂(x′, r′), induced by a uniform
choice of r, r′, should have disjoint supports.

2. (Privacy.) There exists a simulator algorithm that given f(x) samples from the distribution
f̂(x, r) induced by a uniform choice of r. That is, the distribution f̂(x, r) hides all the
information about x except for the value f(x). In particular, if f(x) = f(x′) then the random
variables f̂(x, r) and f̂(x′, r′) should be identically distributed.

Each of these requirements alone can be satisfied by a trivial function f̂ (e.g., f̂(x, r) = x and
f̂(x, r) = 0, respectively). However, the combination of the two requirements can be viewed as a
non-trivial natural relaxation of the usual notion of computing. In a sense, the function f̂ defines
an “information-theoretically equivalent” representation of f .

For this approach to be useful in our context, two conditions should be met. First, we need to
argue that a randomized encoding f̂ can be securely used as a substitute for f . Second, we hope
that this relaxation is sufficiently liberal, in the sense that it allows to efficiently encode relatively
complex functions f by functions f̂ in NC0. These two issues are addressed in the following
subsections.

Security of Randomized Encodings

To illustrate how a randomized encoding f̂ can inherit the security features of f , consider the case
where f is a OWF. We argue that the hardness of inverting f̂ reduces to the hardness of inverting
f . Indeed, a successful algorithm A for inverting f̂ can be used to successfully invert f as follows:
given an output y of f , apply the efficient sampling algorithm guaranteed by requirement 2 to
obtain a random encoding ŷ of y. Then, use A to obtain a preimage (x, r) of ŷ under f̂ , and output
x. It follows from requirement 1 that x is indeed a preimage of y under f . Moreover, if y is the
image of a uniformly random x, then ŷ is the image of a uniformly random pair (x, r). Hence, the
success probability of inverting f is the same as that of inverting f̂ .

The above argument can tolerate some relaxations to the notion of randomized encoding. In
particular, one can relax the second requirement to allow the distributions f̂(x, r) and f̂(x′, r′) be
only statistically close, or even computationally indistinguishable. On the other hand, to maintain
the security of other cryptographic primitives, it may be required to further strengthen this notion.
For instance, when f is a PRG, the above requirements do not guarantee that the output of f̂ is
pseudo-random, or even that its output is longer than its input. However, by imposing suitable
“regularity” requirements (e.g., the properties of perfect encoding cf. Definition 3.1.5) on the output
encoding defined by f̂ , it can be guaranteed that if f is a PRG then so is f̂ . Thus, different security
requirements suggest different variations of the above notion of randomized encoding.

Complexity of Randomized Encodings

It remains to address the second issue: can we encode a complex function f by an NC0 function
f̂? Our best solutions to this problem rely on the machinery of randomizing polynomials, described
below. But first, we outline a simple alternative approach6 based on Barrington’s theorem [Bar86],

6In fact, a modified version of this approach has been applied for constructing randomizing polynomials
in [CFIK03].

31

combined with a randomization technique of Kilian [Kil88].
Suppose f is a boolean function in NC1. (Non-boolean functions are handled by concatenation.

See Lemma 3.2.1.) By Barrington’s theorem, evaluating f(x), for such a function f , reduces to
computing an iterated product of polynomially many elements s1, . . . , sm from the symmetric group
S5, where each si is determined by a single bit of x (i.e., for every i there exists j such that si is a
function of xj). Now, let f̂(x, r) = (s1r1, r−1

1 s2r2, . . . , r−1
m−2sm−1rm−1, r−1

m−1sm), where the random
inputs ri are picked uniformly and independently from S5. It is not hard to verify that the output
(t1, . . . , tm) of f̂ is random subject to the constraint that t1t2 · · · tm = s1s2 · · · sm, where the latter
product is in one-to-one correspondence to f(x). It follows that f̂ is a randomized encoding of f .
Moreover, f̂ has constant locality when viewed as a function over the alphabet S5, and thus yields
the qualitative result we are after.

However, the above construction falls short of providing a randomized encoding in NC0, since it
is impossible to sample a uniform element of S5 in NC0 (even up to a negligible statistical distance).7

Also, this f̂ does not satisfy the extra “regularity” properties required by more “sensitive” primitives
such as PRGs or one-way permutations. The solutions presented next avoid these disadvantages
and, at the same time, apply to a higher complexity class than NC1 and achieve a very small
constant locality.

Randomizing polynomials. The concept of randomizing polynomials was introduced by Ishai
and Kushilevitz [IK00] as a representation of functions by vectors of low-degree multivariate poly-
nomials. (Interestingly, this concept was motivated by questions in the area of information-theoretic
secure multiparty computation, which seems unrelated to the current context.) Randomizing poly-
nomials capture the above encoding question within an algebraic framework. Specifically, a repre-
sentation of f(x) by randomizing polynomials is a randomized encoding f̂(x, r) as defined above,
in which x and r are viewed as vectors over a finite field F and the outputs of f̂ as multivariate
polynomials in the variables x and r. In this work, we will always let F = F2.

The most crucial parameter of a randomizing polynomials representation is its algebraic degree,
defined as the maximal (total) degree of the outputs (i.e., the output multivariate polynomials) as a
function of the input variables in x and r. (Note that both x and r count towards the degree.) Quite
surprisingly, it is shown in [IK00, IK02] that every boolean function f : {0, 1}n → {0, 1} admits a
representation by degree-3 randomizing polynomials whose number of inputs and outputs is at most
quadratic in its (mod-2) branching program size (cf. Section 2.3). (Moreover, this degree bound is
tight in the sense that most boolean functions do not admit a degree-2 representation.) Recall that
a representation of a non-boolean function can be obtained by concatenating representations of its
output bits, using independent blocks of random inputs. (See Lemma 3.2.1.) This concatenation
leaves the degree unchanged.

The above positive result implies that functions whose output bits can be computed in the
complexity class ⊕L/poly admit an efficient representation by degree-3 randomizing polynomi-
als. This also holds if one requires the most stringent notion of representation required by our
applications (i.e., perfect encoding). We note, however, that different constructions from the liter-
ature [IK00, IK02, CFIK03] are incomparable in terms of their exact efficiency and the security-
preserving features they satisfy. Hence, different constructions may be suitable for different appli-
cations.

7Barrington’s theorem generalizes to apply over arbitrary non-solvable groups. Unfortunately, there are no such
groups whose order is a power of two.

32

Degree vs. locality. Combining our general methodology with the above results on randomizing
polynomials already brings us close to our goal, as it enables “degree-3 cryptography”. Taking on
from here, we show that any function f : {0, 1}n → {0, 1}m of algebraic degree d admits an efficient
randomized encoding f̂ of (degree d and) locality d + 1. That is, each output bit of f̂ can be
computed by a degree-d polynomial over F2 depending on at most d+1 inputs and random inputs.
Combined with the previous results, this allows us to make the final step from degree 3 to locality
4.

4.1.4 Organization

In Section 4.2 we construct a perfect and statistical encoding in NC0
4 for various log-space classes

(i.e., ⊕L/poly and NL/poly). We then apply randomized encodings to obtain NC0 implementations
of different primitives: OWFs (Section 4.4), cryptographic and non-cryptographic PRGs (Section
4.5), collision-resistent hashing (Section 4.6), public-key and symmetric encryption (Section 4.7)
and other cryptographic primitives (Section 4.8). We conclude in Section 4.9 with a summary of
the results obtained in this chapter.

4.2 Randomized Encoding in NC0 for Functions in ⊕L/poly,NL/poly

In this section we construct randomized encodings in NC0. We first review a construction from [IK02]
of degree-3 randomizing polynomials based on mod-2 branching programs and analyze some of its
properties. Next, we introduce a general locality reduction technique, allowing to transform a
degree-d encoding to a (d+1)-local encoding. Finally, we discuss extensions to other types of BPs.

Degree-3 randomizing polynomials from mod-2 branching programs [IK02]. Let BP =
(G,φ, s, t) be a mod-2 BP of size `, computing a boolean8 function f : {0, 1}n → {0, 1}; that is,
f(x) = 1 if and only if the number of paths from s to t in Gx equals 1 modulo 2. Fix some
topological ordering of the vertices of G, where the source vertex s is labeled 1 and the terminal
vertex t is labeled `. Let A(x) be the ` × ` adjacency matrix of Gx viewed as a formal matrix
whose entries are degree-1 polynomials in the input variables x. Specifically, the (i, j) entry of A(x)
contains the value of φ(i, j) on x if (i, j) is an edge in G, and 0 otherwise. (Hence, A(x) contains
the constant 0 on and below the main diagonal, and degree-1 polynomials in the input variables
above the main diagonal.) Define L(x) as the submatrix of A(x)− I obtained by deleting column
s and row t (i.e., the first column and the last row). As before, each entry of L(x) is a degree-1
polynomial in a single input variable xi; moreover, L(x) contains the constant −1 in each entry of
its second diagonal (the one below the main diagonal) and the constant 0 below this diagonal. (See
Figure 4.2.1.)

Fact 4.2.1 ([IK02]) f(x) = det(L(x)), where the determinant is computed over F2.

Proof sketch: Since G is acyclic, the number of s − t paths in Gx mod 2 can be written as
(I + A(x) + A(x)2 + . . . + A(x)`)s,t = (I −A(x))−1

s,t where I denotes an `× ` identity matrix and all
arithmetic is over F2. Recall that L(x) is the submatrix of A(x)− I obtained by deleting column s

8The following construction generalizes naturally to a (counting) mod-p BP, computing a function f : {0, 1}n → Zp.
In this work, however, we will only be interested in the case p = 2.

33

0
BBBBBBB@

1 r
(1)
1 r

(1)
2 · · r

(1)
`−2

0 1 · · · ·
0 0 1 · · ·
0 0 0 1 · ·
0 0 0 0 1 r

(1)

(`−1
2)

0 0 0 0 0 1

1
CCCCCCCA

0
BBBBBB@

∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗

0 −1 ∗ ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 0 0 −1 ∗ ∗
0 0 0 0 −1 ∗

1
CCCCCCA

0
BBBBBBB@

1 0 0 0 0 r
(2)
1

0 1 0 0 0 r
(2)
2

0 0 1 0 0 ·
0 0 0 1 0 ·
0 0 0 0 1 r

(2)
`−2

0 0 0 0 0 1

1
CCCCCCCA

Figure 4.2.1: The matrices R1(r(1)), L(x) and R2(r(2)) (from left to right). The symbol ∗
represents a degree-1 polynomial in an input variable.

and row t. Hence, expressing (I −A(x))−1
s,t using the corresponding cofactor of I −A(x), we have:

(I −A(x))−1
s,t = (−1)s+t det(−L(x))

det(I −A(x))
= detL(x).

Let r(1) and r(2) be vectors over F2 of length
∑`−2

i=1 i =
(
`−1
2

)
and `−2, respectively. Let R1(r(1))

be an (` − 1) × (` − 1) matrix with 1’s on the main diagonal, 0’s below it, and r(1)’s elements in
the remaining

(
`−1
2

)
entries above the diagonal (a unique element of r(1) is assigned to each matrix

entry). Let R2(r(2)) be an (` − 1) × (` − 1) matrix with 1’s on the main diagonal, r(2)’s elements
in the rightmost column, and 0’s in each of the remaining entries. (See Figure 4.2.1.)

Fact 4.2.2 ([IK02]) Let M, M ′ be (`− 1)× (`− 1) matrices that contain the constant −1 in each
entry of their second diagonal and the constant 0 below this diagonal. Then, det(M) = det(M ′) if
and only if there exist r(1) and r(2) such that R1(r(1))MR2(r(2)) = M ′.

Proof sketch: Suppose that R1(r(1))MR2(r(2)) = M ′ for some r(1) and r(2). Then, since
det(R1(r(1))) = det(R2(r(2))) = 1, it follows that det(M) = det(M ′).

For the second direction assume that det(M) = det(M ′). We show that there there exist r(1)

and r(2) such that R1(r(1))MR2(r(2)) = M ′. Multiplying M by a matrix R1(r(1)) on the left is
equivalent to adding to each row of M a linear combination of the rows below it. On the other
hand, multiplying M by a matrix R2(r(2)) on the right is equivalent to adding to the last column
of M a linear combination of the other columns. Observe that a matrix M that contains the
constant −1 in each entry of its second diagonal and the constant 0 below this diagonal can be
transformed, using such left and right multiplications, to a canonic matrix Hy containing −1’s in its
second diagonal, an arbitrary value y in its top-right entry, and 0’s elsewhere. Since det(R1(r(1))) =
det(R2(r(2))) = 1, we have det(M) = det(Hy) = y. Thus, when det(M) = det(M ′) = y we can
write Hy = R1(r(1))MR2(r(2)) = R1(s(1))M ′R2(s(2)) for some r(1), r(2), s(1), s(2). Multiplying both
sides by R1(s(1))−1, R2(s(2))−1, and observing that each set of matrices R1(·) and R2(·) forms a
multiplicative group finishes the proof.

34

Lemma 4.2.3 (implicit in [IK02]) Let BP be a mod-2 branching program computing the boolean
function f . Define a degree-3 function f̂(x, (r(1), r(2))) whose outputs contain the

(
`
2

)
entries on

or above the main diagonal of the matrix R1(r(1))L(x)R2(r(2)). Then, f̂ is a perfect randomized
encoding of f .

Proof: We start by showing that the encoding is stretch preserving. The length of the random
input of f̂ is m =

(
`−1
2

)
+ `− 2 =

(
`
2

)− 1 and its output length is s =
(

`
2

)
. Thus we have s = m+1,

and since f is a boolean function its encoding f̂ preserves its stretch.
We now describe the decoder and the simulator. Given an output of f̂ , representing a matrix

M , the decoder B simply outputs det(M). (Note that the entries below the main diagonal of this
matrix are constants and therefore are not included in the output of f̂ .) By Facts 4.2.1 and 4.2.2,
det(M) = det(L(x)) = f(x), hence the decoder is perfect.

The simulator S, on input y ∈ {0, 1}, outputs the
(

`
2

)
entries on and above the main diagonal of

the matrix R1(r(1))HyR2(r(2)), where r(1), r(2) are randomly chosen, and Hy is the (`− 1)× (`− 1)
matrix that contains −1’s in its second diagonal, y in its top-right entry, and 0’s elsewhere.

By Facts 4.2.1 and 4.2.2, for every x ∈ {0, 1}n the supports of f̂(x,Um) and of S(f(x)) are equal.
Specifically, these supports include all strings in {0, 1}s representing matrices with determinant
f(x). Since the supports of S(0) and S(1) form a disjoint partition of the entire space {0, 1}s (by
Fact 4.2.2) and since S uses m = s − 1 random bits, it follows that |support(S(b))| = 2m, for
b ∈ {0, 1}. Since both the simulator and the encoding use m random bits, it follows that both
distributions, f̂(x,Um) and S(f(x)), are uniform over their support and therefore are equivalent.
Finally, since the supports of S(0) and S(1) halve the range of f̂ (that is, {0, 1}s), the simulator is
also balanced.

Reducing the locality. It remains to convert the degree-3 encoding into one in NC0. To this
end, we show how to construct for any degree-d function (where d is constant) a (d + 1)-local
perfect encoding. Using the composition lemma, we can obtain an NC0 encoding of a function by
first encoding it as a constant-degree function, and then applying the locality construction.

The idea for the locality construction is to represent a degree-d polynomial as a sum of monomi-
als, each having locality d, and randomize this sum using a variant of the method for randomizing
group product, described in Section 4.1.3. (A direct use of the latter method over the group Z2

gives a (d + 2)-local encoding instead of the (d + 1)-local one obtained here.)

Construction 4.2.4 (Locality construction) Let f(x) = T1(x)+. . .+Tk(x), where f, T1, . . . , Tk :
Fn

2 → F2 and summation is over F2. The local encoding f̂ : Fn+(2k−1)
2 → F2k

2 is defined by:

f̂(x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1))

def= (T1(x)− r1, T2(x)− r2, . . . , Tk(x)− rk,

r1 − r′1, r
′
1 + r2 − r′2, . . . , r

′
k−2 + rk−1 − r′k−1, r

′
k−1 + rk).

For example, applying the locality construction to the polynomial x1x2 + x2x3 + x4 results in the
encoding (x1x2 − r1, x2x3 − r2, x4 − r3, r1 − r′1, r

′
1 + r2 − r′2, r

′
2 + r3).

Lemma 4.2.5 (Locality lemma) Let f and f̂ be as in Construction 4.2.4. Then, f̂ is a per-
fect randomized encoding of f . In particular, if f is a degree-d polynomial written as a sum of
monomials, then f̂ is a perfect encoding of f with degree d and locality max(d + 1, 3).

35

Proof: Since m = 2k − 1 and s = 2k, the encoding f̂ is stretch preserving. Moreover, given
ŷ = f̂(x, r) we can decode the value of f(x) by summing up the bits of ŷ. It is not hard to
verify that such a decoder never errs. To prove perfect privacy we define a simulator as follows.
Given y ∈ {0, 1}, the simulator S uniformly chooses 2k − 1 random bits r1, . . . , r2k−1 and outputs
(r1, . . . , r2k−1, y − (r1 + . . . + r2k−1)). Obviously, S(y) is uniformly distributed over the 2k-length
strings whose bits sum up to y over F2. It thus suffices to show that the outputs of f̂(x,Um) are
uniformly distributed subject to the constraint that they add up to f(x). This follows by observing
that, for any x and any assignment w ∈ {0, 1}2k−1 to the first 2k − 1 outputs of f̂(x,Um), there
is a unique way to set the random inputs ri, r

′
i so that the output of f̂(x, (r, r′)) is consistent with

w. Indeed, for 1 ≤ i ≤ k, the values of x,wi uniquely determine ri. For 1 ≤ i ≤ k − 1, the values
wk+i, ri, r

′
i−1 determine r′i (where r′0

def= 0). Therefore, S(f(x)) ≡ f̂(x,Um). Moreover, S is balanced
since the supports of S(0) and S(1) halve {0, 1}s and S(y) is uniformly distributed over its support
for y ∈ {0, 1}.

In Section 4.3 we describe a graph-based generalization of Construction 4.2.4, which in some
cases can give rise to a (slightly) more compact encoding f̂ .

We now present the main theorem of this section.

Theorem 4.2.6 ⊕L/poly ⊆ PREN . Moreover, any f ∈ ⊕L/poly admits a perfect randomized
encoding in NC0

4 whose degree is 3.

Proof: The theorem is derived by combining the degree-3 construction of Lemma 4.2.3 together
with the Locality Lemma (4.2.5), using the Composition Lemma (3.2.3) and the Concatenation
Lemma (3.2.2).

Remark 4.2.7 An alternative construction of perfect randomized encodings in NC0 can be ob-
tained using a randomizing polynomials construction from [IK02, Sec. 3], which is based on an
information-theoretic variant of Yao’s garbled circuit technique [Yao86]. This construction yields
an encoding with a (large) constant locality, without requiring an additional “locality reduction”
step (of Construction 4.2.4). This construction is weaker than the current one in that it only effi-
ciently applies to functions in NC1 rather than ⊕L/poly. For functions in NC1, the complexity of
this alternative (in terms of randomness and output length) is incomparable to the complexity of
the current construction.

There are variants of the above construction that can handle non-deterministic branching pro-
grams as well, at the expense of losing perfectness [IK00, IK02]. In particular, Theorem 2 in [IK02]
encodes non-deterministic branching programs by perfectly-correct statistically-private functions
of degree 3 (over F2). Hence, by using Lemmas 4.2.5, 3.2.3, we get a perfectly-correct statistically-
private encoding in NC0

4 for functions in NL/poly. (In fact, we can also use [IK00, IK02] to obtain
perfectly-private statistically-correct encoding in NC0

4 for non-deterministic branching programs.)
Based on the above, we get the following theorem:

Theorem 4.2.8 NL/poly ⊆ SREN . Moreover, any f ∈ NL/poly admits a perfectly-correct
statistically-private randomized encoding in NC0

4.

We can rely on Theorem 4.2.6 to derive the following corollary.

36

Corollary 4.2.9 Any function f in PREN (resp., SREN , CREN) admits a perfect (resp., sta-
tistical, computational) randomized encoding of degree 3 and locality 4 (i.e., in NC0

4).

Proof: We first encode f by a perfect (resp., statistical, computational) encoding f̂ in NC0,
guaranteed by the fact that f is in PREN (resp., SREN , CREN). Then, since f̂ is in ⊕L/poly,
we can use Theorem 4.2.6 to perfectly encode f̂ by a function f̂ ′ in NC0

4 whose degree is 3. By the
Composition Lemmas (3.2.3, 3.2.4), f̂ ′ perfectly (resp. statistically, computationally) encodes the
function f .

4.3 A Generalization of the Locality Construction

In the Locality Construction (4.2.4), we showed how to encode a degree d function by an NC0
d+1

encoding. We now describe a graph based construction that generalizes the previous one. The
basic idea is to view the encoding f̂ as a graph. The nodes of the graph are labeled by terms of
f and the edges by random inputs of f̂ . With each node we associate an output of f̂ in which we
add to its term the labels of the edges incident to the node. Formally,

Construction 4.3.1 (General locality construction) Let f(x) = T1(x) + . . . + Tk(x), where
f, T1, . . . , Tk : Fn

2 → F2 and summation is over F2. Let G = (V, E) be a directed graph with k nodes
V = {1, . . . , k} and m edges. The encoding f̂G : Fn+m

2 → Fk
2 is defined by:

f̂G(x, (ri,j)(i,j)∈E) def=


Ti(x) +

∑

j|(j,i)∈E

rj,i −
∑

j|(i,j)∈E

ri,j




k

i=1

.

From here on, we will identify with the directed graph G its underlying undirected graph. The
above construction yields a perfect encoding when G is a tree (see Lemma 4.3.2 below). The
locality of an output bit of f̂G is the locality of the corresponding term plus the degree of the node
in the graph. The locality construction described in Construction 4.2.4 attempts to minimize the
maximal locality of a node in the graph; hence it adds k “dummy” 0 terms to f and obtains a tree
in which all of the k non-dummy terms of f are leaves, and the degree of each dummy term is at
most 3. When the terms of f vary in their locality, a more compact encoding f̂ can be obtained
by increasing the degree of nodes which represent terms with lower locality.

Lemma 4.3.2 (Generalized locality lemma) Let f and f̂G be as in Construction 4.3.1. Then,

1. f̂G is a perfectly correct encoding of f .

2. If G is connected, then f̂G is also a balanced encoding of f (and in particular it is perfectly
private).

3. If G is a tree, then f̂G is also stretch preserving; that is, f̂G perfectly encodes f .

Proof: (1) Given ŷ = f̂G(x, r) we decode f(x) by summing up the bits of ŷ. Since each random
variable ri,j appears only in the i-th and j-th output bits, it contributes 0 to the overall sum and
therefore the bits of ŷ always add up to f(x).

37

To prove (2) we use the same simulator as in the locality construction (see proof of Lemma 4.2.5).
Namely, given y ∈ {0, 1}, the simulator S chooses k − 1 random bits r1, . . . , rk−1 and outputs
(r1, . . . , rk−1, y − (r1 + . . . + rk−1)). This simulator is balanced since the supports of S(0) and
S(1) halve {0, 1}k and S(y) is uniformly distributed over its support for y ∈ {0, 1}. We now prove
that f̂G(x,Um) ≡ S(f(x)). Since the support of S(f(x)) contains exactly 2k−1 strings (namely,
all k-bit strings whose bits sum up to f(x)), it suffices to show that for any input x and output
w ∈ support(S(f(x))) there are 2m/2k−1 random inputs r such that f̂G(x, r) = w. (Note that
m ≥ k − 1 since G is connected.) Let T ⊆ E be a spanning tree of G. We argue that for any
assignment to the m− (k − 1) random variables that correspond to edges in E \ T there exists an
assignment to the other random variables that is consistent with w and x. Fix some assignment to
the edges in E \T . We now recursively assign values to the remaining edges. In each step we make
sure that some leaf is consistent with w by assigning the corresponding value to the edge connecting
this leaf to the graph. Then, we prune this leaf and repeat the above procedure. Formally, let i be
a leaf which is connected to T by an edge e ∈ T . Assume, without loss of generality, that e is an
incoming edge for i. We set re to wi − (Ti(x) +

∑
j|(j,i)∈E\T rj,i −

∑
j|(i,j)∈E\T ri,j), and remove i

from T . By this we ensure that the i-th bit of f̂G(x, r) is equal to wi. (This equality will not be
violated by the following steps as i is removed from T .) We continue with the above step until the
tree consists of one node. Since the outputs of f̂G(x, r) always sum up to f(x) it follows that this
last bit of f̂G(x, r) is equal to the corresponding bit of w. Thus, there are at least 2|E\T | = 2m−(k−1)

values of r that lead to w as required.
Finally, to prove (3) note that when G is a tree we have m = k− 1, and therefore the encoding

is stretch preserving; combined with (1) and (2) f̂G is also perfect.

4.4 One-Way Functions in NC0

A one-way function (OWF) f : {0, 1}∗ → {0, 1}∗ is a polynomial-time computable function that
is hard to invert; namely, every (non-uniform) polynomial time algorithm that tries to invert f on
input f(x), where x is picked from Un, succeeds only with a negligible probability. Formally,

Definition 4.4.1 (One-way function) A function f : {0, 1}∗ → {0, 1}∗ is called a one-way
function (OWF) if it satisfies the following two properties:

• Easy to compute: There exists a deterministic polynomial-time algorithm computing f(x).

• Hard to invert: For every non-uniform polynomial-time algorithm, A, we have

Pr
x←Un

[A(1n, f(x)) ∈ f−1(f(x))] ≤ neg(n).

The function f is called weakly one-way if the second requirement is replaced with the following
(weaker) one:

• Slightly hard to invert: There exists a polynomial p(·), such that for every (non-uniform)
polynomial-time algorithm, A, and all sufficiently large n’s

Pr
x←Un

[A(1n, f(x)) /∈ f−1(f(x))] >
1

p(n)
.

38

The above definition naturally extends to functions whose domain is restricted to some infinite
subset I ⊂ N of the possible input lengths, such as ones defined by a randomized encoding f̂ . As
argued in Remark 3.1.8, such a partially defined OWF can be augmented into a fully defined OWF
provided that the set I is polynomially-dense and efficiently recognizable (which is a feature of
functions f̂ obtained via a uniform encodings).

4.4.1 Key Lemmas

In the following we show that a perfectly correct and statistically (or even computationally) private
randomized encoding f̂ of a OWF f is also a OWF. The idea, as described in Section 4.1.3, is
to argue that the hardness of inverting f̂ reduces to the hardness of inverting f . The case of a
randomized encoding that does not enjoy perfect correctness is more involved and will be dealt
with later in this section.

Lemma 4.4.2 Suppose that f : {0, 1}∗ → {0, 1}∗ is a one-way function and f̂(x, r) is a perfectly
correct, computationally private encoding of f . Then f̂ , viewed as a single-argument function, is
also one-way.

Proof: Let s = s(n), m = m(n) be the lengths of the output and of the random input of f̂
respectively. Note that f̂ is defined on input lengths of the form n+m(n); we prove that it is hard
to invert on these inputs. Assume, towards a contradiction, that there is an efficient adversary Â
inverting f̂(x, r) with success probability φ(n+m) > 1

q(n+m) for some polynomial q(·) and infinitely

many n’s. We use Â to construct an efficient adversary A that inverts f with similar success. On
input (1n, y), the adversary A runs S, the statistical simulator of f̂ , on the input (1n, y) and gets
a string ŷ as the output of S. Next, A runs the inverter Â on the input (1n+m, ŷ), getting (x′, r′)
as the output of Â (i.e., Â “claims” that f̂(x′, r′) = ŷ). A terminates with output x′.

Complexity: Since S and Â are both polynomial-time algorithms, and since m(n) is polynomially
bounded, it follows that A is also a polynomial-time algorithm.

Correctness: We analyze the success probability of A on input (1n, f(x)) where x ← Un. Let
us assume for a moment that the simulator S is perfect. Observe that, by perfect correctness, if
f(x) 6= f(x′) then the support sets of f̂(x,Um) and f̂(x′, Um) are disjoint. Moreover, by perfect
privacy the string ŷ, generated by Â, is always in the support of f̂(x, Um). Hence, if Â succeeds (that
is, indeed ŷ = f̂(x′, r′)) then so does A (namely, f(x′) = y). Finally, observe that (by Fact 2.2.5) the
input ŷ on which A invokes Â is distributed identically to f̂n(Un, Um(n)), and therefore A succeeds
with probability ≥ φ(n + m). Formally, we can write,

Pr
x←Un

[A(1n, f(x)) ∈ f−1(f(x))] ≥ Pr
x←Un,ŷ←S(1n,f(x))

[Â(1n+m, ŷ) ∈ f̂−1(ŷ)]

= Pr
x←Un,r←Um(n)

[Â(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))]

≥ φ(n + m).

We now show that when S is computationally private, we lose only negligible success probability
in the above; that is, A succeeds with probability ≥ φ(n + m) − neg(n). To see this, it will be
convenient to define a distinguisher D that on input (1n, y, ŷ) computes (x′, r′) = Â(1n+m, ŷ),
and outputs 1 if f(x′) = y and 0 otherwise. Clearly, the success probability of A on f(Un)

39

can be written as Prx←Un [D(1n, f(x), S(f(x))) = 1]. On the other hand, we showed above that
Prx←Un,r←Um(n)

[D(1n, f(x), f̂(x, r)) = 1] ≥ φ(n+m). Also, by the computational privacy of S, and
Facts 2.2.10, 2.2.8, we have

(f(Un), S(f(Un)))
c≡ (f(Un), f̂(Un, Um(n))).

Hence, since D is polynomial-time computable, we have

Pr
x←Un

[D(1n, f(x), S(f(x))) = 1] ≥ Pr
x←Un,r←Um(n)

[D(1n, f(x), f̂(x, r)) = 1]− neg(n)

≥ φ(n + m)− neg(n) >
1

q(n + m)
− neg(n) >

1
q′(n)

,

for some polynomial q′(·) and infinitely many n’s. It follows that f is not hard to invert, in
contradiction to the hypothesis.

The efficiency of the simulator S is essential for Lemma 4.4.2 to hold. Indeed, without this
requirement one could encode any one-way permutation f by the identity function f̂(x) = x, which
is obviously not one-way. (Note that the output of f̂(x) can be simulated inefficiently based on
f(x) by inverting f .)

The perfect correctness requirement is also essential for Lemma 4.4.2 to hold. To see this,
consider the following example. Suppose f is a one-way permutation. Consider the encoding
f̂(x, r) which equals f(x) except if r is the all-zero string, in which case f̂(x, r) = x. This is a
statistically-correct and statistically-private encoding, but f̂ is easily invertible since on value ŷ the
inverter can always return ŷ itself as a possible pre-image. Still, we show below that such an f̂
(which is only statistically correct) is a distributionally one-way function. We will later show how
to turn a distributionally one-way function in NC0 into a OWF in NC0.

Definition 4.4.3 (Distributionally one-way function [IL89]) A polynomial-time computable
function f : {0, 1}∗ → {0, 1}∗ is called distributionally one-way if there exists a positive polynomial
p(·) such that for every (non-uniform) polynomial-time algorithm, A, and all sufficiently large n’s,
SD((A(1n, f(Un)), f(Un)), (Un, f(Un))) > 1

p(n) .

Before proving that a randomized encoding of a OWF is distributionally one-way, we need the
following lemma.

Lemma 4.4.4 Let f, g : {0, 1}∗ → {0, 1}∗ be two functions that differ on a negligible fraction of
their domain; that is, Prx←Un [f(x) 6= g(x)] is negligible in n. Suppose that g is slightly hard to
invert (but is not necessarily computable in polynomial time) and that f is computable in polynomial
time. Then, f is distributionally one-way.

Proof: Let fn and gn be the restrictions of f and g to n-bit inputs, that is f = {fn} , g = {gn},
and define ε(n) def= Prx←Un [f(x) 6= g(x)]. Let p(n) be the polynomial guaranteed by the assumption
that g is slightly hard to invert. Assume, towards a contradiction, that f is not distributionally
one-way. Then, there exists a polynomial-time algorithm, A, such that for infinitely many n’s,
SD((A(1n, fn(Un)), fn(Un)), (Un, fn(Un))) ≤ 1

2p(n) . Since (Un, fn(Un)) ≡ (x′, fn(Un)) where x′ ←

40

f−1
n (fn(Un)), we get that for infinitely many n’s SD((A(1n, fn(Un)), fn(Un)), (x′, fn(Un))) ≤ 1

2p(n) .
It follows that for infinitely many n’s

Pr[A(1n, f(Un)) ∈ g−1
n (fn(Un))] ≥ Pr

x′←f−1
n (fn(Un))

[x′ ∈ g−1
n (fn(Un))]− 1

2p(n)
. (4.4.1)

We show that A inverts g with probability greater than 1 − 1
p(n) and derive a contradiction.

Specifically, for infinitely many n’s we have:

Pr[B(1n, gn(Un)) ∈ g−1
n (gn(Un))] ≥ Pr[B(1n, fn(Un)) ∈ g−1

n (fn(Un))]− ε(n)

≥ Pr
x′←f−1

n (fn(Un))
[x′ ∈ g−1

n (f(Un))]− 1
2p(n)

− ε(n)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(Un)]− 1

2p(n)
− ε(n)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(x′)]− 1

2p(n)
− ε(n)

= 1− ε(n)− 1
2p(n)

− ε(n)

≥ 1− 1
p(n)

,

where the first inequality is due to the fact that f and g are ε-close, the second inequality uses
(4.4.1), the second equality follows since f(Un) = f(x′), the third equality is due to x′ ≡ Un, and
the last inequality follows since ε is negligible.

We now use Lemma 4.4.4 to prove the distributional one-wayness of a statistically-correct
encoding f̂ based on the one-wayness of a related, perfectly correct, encoding g.

Lemma 4.4.5 Suppose that f : {0, 1}∗ → {0, 1}∗ is a one-way function and f̂(x, r) is a computa-
tional randomized encoding of f . Then f̂ , viewed as a single-argument function, is distributionally
one-way.

Proof: Let B and S be the decoder and the simulator of f̂ . Define the function ĝ(x, r) in the
following way: if B(f̂(x, r)) 6= f(x) then ĝ(x, r) = f̂(x, r′) for some r′ such that B(f̂(x, r′)) = f(x)
(such an r′ exists by the statistical correctness); otherwise, ĝ(x, r) = f̂(x, r). Obviously, ĝ is
a perfectly correct encoding of f (as B perfectly decodes f(x) from ĝ(x, r)). Moreover, by the
statistical correctness of B, we have that f̂(x, ·) and ĝ(x, ·) differ only on a negligible fraction of the
r’s. It follows that ĝ is also a computationally-private encoding of f (because ĝ(x, Um)

s≡ f̂(x, Um)
c≡

S(f(x))). Since f is hard to invert, it follows from Lemma 4.4.2 that ĝ is also hard to invert. (Note
that ĝ might not be computable in polynomial time; however the proof of Lemma 4.4.2 only requires
that the simulator’s running time and the randomness complexity of ĝ be polynomially bounded.)
Finally, it follows from Lemma 4.4.4 that f̂ is distributionally one-way as required.

41

4.4.2 Main Results

Based on the above, we derive the main theorem of this section:

Theorem 4.4.6 If there exists a OWF in CREN then there exists a OWF in NC0
4.

Proof: Let f be a OWF in CREN . By Lemma 4.4.5, we can construct a distributional OWF f̂
in NC0, and then apply a standard transformation (cf. [IL89, Lemma 1], [Gol01a, p. 96], [Yao82]) to
convert f̂ to a OWF f̂ ′ in NC1. This transformation consists of two steps: Impagliazzo and Luby’s
NC1 construction of weak OWF from distributional OWF [IL89], and Yao’s NC0 construction of
a (standard) OWF from a weak OWF [Yao82] (see [Gol01a, Section 2.3]).9 Since NC1 ⊆ PREN
(Theorem 4.2.6), we can use Lemma 4.4.2 to encode f̂ ′ by a OWF in NC0, in particular, by one
with locality 4.

Combining Lemmas 4.4.2, 3.2.5 and Corollary 4.2.9, we get a similar result for one-way permu-
tations (OWPs).

Theorem 4.4.7 If there exists a one-way permutation in PREN then there exists a one-way
permutation in NC0

4.

In particular, using Theorems 4.2.6 and 4.2.8, we conclude that a OWF (resp., OWP) in NL/poly
or ⊕L/poly (resp., ⊕L/poly) implies a OWF (resp., OWP) in NC0

4.

Theorem 4.4.7 can be extended to trapdoor permutations (TDPs) provided that the perfect
encoding satisfies the following randomness reconstruction property: given x and f̂(x, r), the ran-
domness r can be efficiently recovered. If this is the case, then the trapdoor of f can be used to
invert f̂(x, r) in polynomial time (but not in NC0). Firstly, we compute f(x) from f̂(x, r) using
the decoder; secondly, we use the trapdoor-inverter to compute x from f(x); and finally, we use
the randomness reconstruction algorithm to compute r from x and f̂(x, r). The randomness recon-
struction property is satisfied by the randomized encodings described in Section 4.2 and is preserved
under composition and concatenation. Thus, the existence of trapdoor permutations computable
in NC0

4 follows from their existence in ⊕L/poly.
More formally, a collection of permutations F = {fz : Dz → Dz}z∈Z is referred to as a trapdoor

permutation if there exist probabilistic polynomial-time algorithms (I, D, F, F−1) with the following
properties. Algorithm I is an index selector algorithm that on input 1n selects an index z from Z
and a corresponding trapdoor for fz; algorithm D is a domain sampler that on input z samples an
element from the domain Dz; F is a function evaluator that given an index z and x returns fz(x);
and F−1 is a trapdoor-inverter that given an index z, a corresponding trapdoor t and y ∈ Dz

returns f−1
z (y). Additionally, the collection should be hard to invert, similarly to a standard

collection of one-way permutations. (For formal definition see [Gol01a, Definition 2.4.4].) By the
above argument we derive the following theorem.

Theorem 4.4.8 If there exists a trapdoor permutation F whose function evaluator F is in ⊕L/poly
then there exists a trapdoor permutation F̂ whose function evaluator F̂ is in NC0

4.

9We will later show a degree preserving transformation from a distributional OWF to a OWF (Lemma 8.2.3);
however, in the current context the standard transformation suffices.

42

Remarks on Theorems 4.4.6, 4.4.7 and 4.4.8.

1. (Constructiveness) In Section 4.2, we give a constructive way of transforming a branching
program representation of a function f into an NC0 circuit computing its encoding f̂ . It
follows that Theorems 4.4.6, 4.4.7 can be made constructive in the following sense: there
exists a polynomial-time compiler transforming a branching program representation of a OWF
(resp., OWP) f into an NC0 representation of a corresponding OWF (resp., OWP) f̂ . A
similar result holds for other cryptographic primitives considered in this paper.

2. (Preservation of security, a finer look) Loosely speaking, the main security loss in the reduction
follows from the expansion of the input. (The simulator’s running time only has a minor effect
on the security, since it is added to the overall running-time of the adversary.) Thus, to achieve
a level of security similar to that achieved by applying f on n-bit inputs, one would need to
apply f̂ on n + m(n) bits (the random input part of the encoding does not contribute to the
security). Going through our constructions (bit-by-bit encoding of the output based on some
size-`(n) BPs, followed by the locality construction), we get m(n) = l(n) ·`(n)O(1), where l(n)
is the output length of f . If the degree of all nodes in the BPs is bounded by a constant,
the complexity is m(n) = O(l(n) · `(n)2). It is possible to further reduce the overhead of
randomized encoding for specific representation models, such as balanced formulas, using
constructions of randomizing polynomials from [IK02, CFIK03].

3. (Generalizations) The proofs of the above theorems carry over to OWF whose security holds
against efficient uniform adversaries (inverters). The same is true for all cryptographic prim-
itives considered in this work. The proofs also naturally extend to the case of collections of
OWF and OWP (see Appendix A for discussion).

4. (Concrete assumptions) The existence of a OWF in SREN (in fact, even in NC1) follows
from the intractability of factoring and lattice problems [Ajt96]. The existence of a OWF
collection in SREN follows from the intractability of the discrete logarithm problem. Thus,
we get OWFs in NC0

4 under most standard cryptographic assumptions. In the case of OWP,
we can get a collection of OWPs in NC0

4 based on discrete logarithm [BM84, Yao82] (see
also Appendix A) or RSA with a small exponent [RSA78].10 The latter assumption is also
sufficient for the construction of TDP in NC0

4.

4.5 Pseudorandom Generators in NC0

A pseudorandom generator is an efficiently computable function G : {0, 1}n → {0, 1}l(n) such that:
(1) G has a positive stretch, namely l(n) > n, where we refer to the function l(n)−n as the stretch
of the generator; and (2) any “computationally restricted procedure” D, called a distinguisher,
has a negligible advantage in distinguishing G(Un) from Ul(n). That is, |Pr[D(1n, G(Un)) = 1] −
Pr[D(1n, Ul(n)) = 1]| is negligible in n.

Different notions of PRGs differ mainly in the computational bound imposed on D. In the
default case of cryptographic PRGs, D can be any non-uniform polynomial-time algorithm (alter-
natively, polynomial-time algorithm). In the case of ε-biased generators, D can only compute a

10Rabin’s factoring-based OWP collection [Rab79] seems insufficient for our purposes, as it cannot be defined over
the set of all strings of a given length. The standard modification (cf. [Gol04, p. 767]) does not seem to be in
⊕L/poly.

43

linear function of the output bits, namely the exclusive-or of some subset of the bits. Other types
of PRGs, e.g. for space-bounded computation, have also been considered. The reader is referred
to [Gol98, Chapter 3] for a comprehensive and unified treatment of pseudorandomness.

We start by considering cryptographic PRGs. We show that a perfect randomized encoding of
such a PRG is also a PRG. We then obtain a similar result for other types of PRGs.

4.5.1 Cryptographic Generators

Definition 4.5.1 (Pseudorandom generator) A pseudorandom generator (PRG) is a poly-
nomial-time computable function, G : {0, 1}n → {0, 1}l(n), satisfying the following two conditions:

• Expansion: l(n) > n, for all n ∈ N.

• Pseudorandomness: The ensembles {G(Un)}n∈N and
{
Ul(n)

}
n∈N are computationally in-

distinguishable.

Remark 4.5.2 (PRGs with sublinear stretch) An NC0 pseudorandom generator, G, that
stretches its input by a single bit can be transformed into another NC0 PRG, G′, with stretch l′(n)−
n = nc for an arbitrary constant c < 1. This can be done by applying G on nc blocks of n1−c bits
and concatenating the results. Since the output of any PRG is computationally-indistinguishable
from the uniform distribution even by a polynomial number of samples (see [Gol01a, Theorem
3.2.6]), the block generator G′ is also a PRG. This PRG gains a pseudorandom bit from every
block, and therefore stretches ncn1−c = n input bits to n + nc output bits. Obviously, G′ has the
same locality as G.

Remark 4.5.3 (PRGs with linear stretch) We can also transform an NC0
d pseudorandom

generator, G : {0, 1}n → {0, 1}cn, with some linear stretch factor c > 1 into another NC0 PRG,
G′{0, 1}n → {0, 1}c′n, with arbitrary linear stretch factor c′ > 1 and larger (but constant) output
locality d′. This can be done by composing G with itself a constant number of times. That is, we
let G′(x) def= Gdlogc c′e(x) where Gi+1(x) def= G(Gi(x)) and G0(x) def= x. Since the output of a PRG is
pseudorandom even if it is invoked on a pseudorandom seed (see [Gol01a, p. 176]), the composed
generator G′ is also a PRG. Clearly, this PRG stretches n input bits to c′n output bits and its
locality is ddlogc c′e = O(1).11

Remark 4.5.2 also applies to other types of generators considered in this section, and therefore
we only use a crude classification of the stretch as being “sublinear”, “linear” or “superlinear”.

Lemma 4.5.4 Suppose G : {0, 1}n → {0, 1}l(n) is a PRG and Ĝ : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)

is a perfect randomized encoding of G. Then Ĝ, viewed as a single-argument function, is also a
PRG.

Proof: Since Ĝ is stretch preserving, it is guaranteed to expand its seed. To prove the pseudo-
randomness of its output, we again use a reducibility argument. Assume, towards a contradiction,
that there exists an efficient distinguisher D̂ that distinguishes between Us and Ĝ(Un, Um) with
some non-negligible advantage φ; i.e., φ such that φ(n+m) > 1

q(n+m) for some polynomial q(·) and

11We can also increase the stretch factor by using the standard construction of Goldreich-Micali [Gol01a, Sec. 3.3.2].

In this case the locality of G′ will be dd(c′−1)/(c−1)e.

44

infinitely many n’s. We use D̂ to obtain a distinguisher D between Ul and G(Un) as follows. On
input y ∈ {0, 1}l, run the balanced simulator of Ĝ on y, and invoke D̂ on the resulting ŷ. If y is
taken from Ul then the simulator, being balanced, outputs ŷ that is distributed as Us. On the other
hand, if y is taken from G(Un) then, by Fact 2.2.5, the output of the simulator is distributed as
Ĝ(Un, Um). Thus, the distinguisher D we get for G has the same advantage as the distinguisher D̂
for Ĝ. That is, the advantage of D is φ′(n) = φ(n + m). Since m(n) is polynomial, this advantage
φ′ is not only non-negligible in n + m but also in n, in contradiction to the hypothesis.

Remark 4.5.5 (The role of balance and stretch preservation) Dropping either the balance
or stretch preservation requirements, Lemma 4.5.4 would no longer hold. To see this consider the
following two examples. Let G be a PRG, and let Ĝ(x, r) = G(x). Then, Ĝ is a perfectly correct,
perfectly private, and balanced randomized encoding of G (the balanced simulator is S(y) = y).
However, when r is sufficiently long, Ĝ does not expand its seed. On the other hand, we can define
Ĝ(x, r) = G(x)0, where r is a single random bit. Then, Ĝ is perfectly correct, perfectly private and
stretch preserving, but its output is not pseudorandom.

Using Lemma 4.5.4, Theorem 4.2.6 and Corollary 4.2.9, we get:

Theorem 4.5.6 If there exists a pseudorandom generator in PREN (in particular, in ⊕L/poly)
then there exists a pseudorandom generator in NC0

4.

As in the case of OWF, an adversary that breaks the transformed generator Ĝ can break, in
essentially the same time, the original generator G. Therefore, again, although the new PRG uses
extra m(n) random input bits, it is not more secure than the original generator applied to n bits.
Moreover, we stress that the PRG Ĝ one gets from our construction has a sublinear stretch even
if G has a large stretch. This follows from the fact that the length m(n) of the random input is
typically superlinear in the input length n. However, when G is in NC0, we can transform it into
a PRG Ĝ in NC0

4 while (partially) preserving its stretch. Formally,

Theorem 4.5.7 If there exists a pseudorandom generator with linear stretch in NC0 then there
exists a pseudorandom generator with linear stretch in NC0

4.

Proof: Let G be a PRG with linear stretch in NC0. We can apply Theorem 4.2.6 to G and
get, by Lemma 4.5.4, a PRG Ĝ in NC0

4. We now relate the stretch of Ĝ to the stretch of G. Let
n, n̂ be the input complexity of G, Ĝ (resp.), let s, ŝ be the output complexity of G, Ĝ (resp.), and
let c · n be the stretch of G, where c is a constant. The generator Ĝ is stretch preserving, hence
ŝ − n̂ = s − n = c · n. Since G is in NC0, each of its output bits is computable by a constant
size branching program and thus our construction adds only a constant number of random bits for
each output bit of G. Therefore, the input length of Ĝ is linear in the input length of G. Hence,
ŝ− n̂ = s− n = c · n = ĉ · n̂ for some constant ĉ and thus Ĝ has a linear stretch.

Remark 4.5.8 (On the existence of a PRG in PREN) The existence of PRGs in PREN
follows from most standard concrete intractability assumptions. In particular, using Theorem 4.5.6
(applied to PRG collections) one can construct a collection of PRGs in NC0

4 based on the intractabil-
ity of factoring [Kha93, NR04] and discrete logarithm [BM84, Yao82]. The existence of PRGs in

45

PREN also follows from the existence in PREN of any regular OWF; i.e., a OWF f = {fn} that
maps the same (polynomial-time computable) number of elements in {0, 1}n to every element in
Im(fn). (This is the case, for instance, for any one-to-one OWF.) Indeed, the PRG construction
from [HILL99] (Theorem 5.4), when applied to a regular OWF f , involves only the computation of
universal hash functions and hard-core bits, which can all be implemented in NC1.12 Thus a regular
OWF in PREN can be first transformed into a regular OWF in NC0 and then, using [HILL99],
to a PRG in NC1. Combined with Theorem 4.5.6, this yields a PRG in NC0

4 based on any regular
OWF in PREN .13 This way, for example, one can construct a (single) PRG in NC0

4 based on the
intractability of lattice problems [HILL99, Ajt96].

Remark 4.5.9 (On unconditional NC0 reductions from PRG to OWF) Our machinery can
be used to obtain an NC0 reduction from a PRG to any regular OWF (in particular, to any one-to-
one OWF), regardless of the complexity of f .14 Moreover, this reduction only makes a black-box use
of the underlying regular OWF f (given its regularity parameter |Im(fn)|). The general idea is to
encode the NC1 construction of [HILL99, Construction 7.1] into a corresponding NC0 construction.
Specifically, suppose G(x) = g(x, f(q1(x)), . . . , f(qm(x))) defines a black-box construction of a PRG
G from a OWF f , where g is in PREN and the qi’s are in NC0. (The functions g, q1, ..., qm are
fixed by the reduction and do not depend on f .) Then, letting ĝ((x, y1, . . . , ym), r) be a perfect
NC0 encoding of g, the function Ĝ(x, r) = ĝ((x, f(q1(x)), . . . , f(qm(x))), r) perfectly encodes G,
and hence defines a black-box NC0 reduction from a PRG to a OWF. The construction of [HILL99,
Construction 7.1] is of the form of G(x) above,15 assuming that f is regular. Thus, Ĝ defines an
NC0 reduction from a PRG to a regular OWF.

Comparison with lower bounds. The results of [MST03] rules out the existence of a superlinear-
stretch cryptographic PRG in NC0

4. Thus our NC0
4 cryptographic PRGs are not far from optimal

despite their sublinear stretch. In addition, it is easy to see that there is no PRG with degree 1
or locality 2 (since we can easily decide whether a given string is in the range of such a function).
It seems likely that a cryptographic PRG with locality 3 and degree 2 can be constructed (e.g.,
based on its existence in a higher complexity class), but Theorem 4.5.6 is one step far in terms

12In the general case (when the OWF f is not regular) the construction of H̊astad et al. (see [HILL99, Construc-
tion 7.1]) is not in uniform NC1, as it requires an additional nonuniform advice of logarithmic length. This (slightly)
non-uniform NC1 construction translates into a polynomial-time construction by applying the following steps: (1)
construct a polynomial number of PRG candidates (each using a different guess for the non-uniform advice); (2) in-
crease the stretch of each of these candidates using the standard transformation of Goldreich and Micali (cf. [Gol01a,
Theorem 3.3.3]); (3) take the exclusive-or of all PRG candidates to obtain the final PRG. The second step requires
polynomially many sequential applications of the PRGs, and therefore this construction is not in NC1. (If we skip
the second step the resulting generator will not stretch its input.)

13 In fact, the same result can be obtained under a relaxed regularity requirement. Specifically, for each n and
y ∈ Im(fn) define the value Df,n(y) = log |f−1

n (y)| and the random variable Rn = Df,n(f(Un)). The NC1 construction
of [HILL99, Construction 7.1] needs to approximate, in poly(n) time, the expectations of both Rn and R2

n. This is
trivially possible when f is regular in the strict sense defined above, since in this case Rn is concentrated on a single
(efficiently computable) value. Using a recent NC1 construction from [HHR06], only the expectation of R2

n needs
to be efficiently approximated. We finally note that in a non-uniform computation model one can rely on [HILL99]
(which gives a nonuniform-NC1 construction of a PRG from any OWF) and get a PRG in nonuniform-NC0

4 from any
OWF in SREN .

14Viola, in a concurrent work [Vio05], obtains an AC0 reduction of this type.
15The functions q1, ..., qm are simply projections there. Interestingly, the recent NC1 construction from [HHR06] is

not of the above form and thus we cannot encode it into an (unconditional) NC0 construction.

46

of both locality and degree.16 See also Table 4.5.1. (These gaps will be partially closed later in
this work. Specifically, in Chapter 6 we construct a PRG with locality 4 and linear stretch whose
security follows from a specific intractability assumption proposed by Alekhnovich in [Ale03], while
in Chapter 7 we construct a PRG with locality 3 and degree 2 under the assumption that it is hard
to decode a random linear code. Moreover, the latter construction also enjoys an optimal input
locality.)

4.5.2 ε-Biased Generators

The proof of Lemma 4.5.4 uses the balanced simulator to transform a distinguisher for a PRG G
into a distinguisher for its encoding Ĝ. Therefore, if this transformation can be made linear, then
the security reduction goes through also in the case of ε-biased generators.

Definition 4.5.10 (ε-biased generator) An ε-biased generator is a polynomial-time computable
function, G : {0, 1}n → {0, 1}l(n), satisfying the following two conditions:

• Expansion: l(n) > n, for all n ∈ N.

• ε-bias: For every linear function L : {0, 1}l(n) → {0, 1} and all sufficiently large n’s

|Pr[L(G(Un)) = 1]− Pr[L(Ul(n)) = 1]| < ε(n)

(where a function L is linear if its degree over F2 is 1). By default, the function ε(n) is required to
be negligible.

Lemma 4.5.11 Let G be an ε-biased generator and Ĝ a perfect randomized encoding of G. Assume
that the balanced simulator S of Ĝ is linear in the sense that S(y) outputs a randomized linear
transformation of y (which is not necessarily a linear function of the simulator’s randomness).
Then, Ĝ is also an ε-biased generator.

Proof: Let G : {0, 1}n → {0, 1}l(n) and let Ĝ : {0, 1}n×{0, 1}m(n) → {0, 1}s(n). Assume, towards
a contradiction, that Ĝ is not ε-biased; that is, for some linear function L : {0, 1}s(n) → {0, 1} and
infinitely many n’s, |Pr[L(Ĝ(Un+m)) = 1] − Pr[L(Us) = 1]| > 1

p(n+m) > 1
p′(n) , where m = m(n),

s = s(n), and p(·), p′(·) are polynomials. Using the balance property we get,

|Pr[L(S(G(Un))) = 1]− Pr[L(S(Ul)) = 1]| = |Pr[L(Ĝ(Un+m)) = 1]− Pr[L(Us) = 1]| > 1
p′(n)

,

where S is the balanced simulator of Ĝ and the probabilities are taken over the inputs as well as
the randomness of S. By an averaging argument we can fix the randomness of S to some string
ρ, and get |Pr[L(Sρ(G(Un))) = 1] − Pr[L(Sρ(Ul(n))) = 1]| > 1

p′(n) , where Sρ is the deterministic
function defined by using the constant string ρ as the simulator’s random input. By the linearity
of the simulator, the function Sρ : {0, 1}l → {0, 1}s is linear; therefore the composition of L and
Sρ is also linear, and so the last inequality implies that G is not ε-biased in contradiction to the
hypothesis.

16Note that there exists a PRG with locality 3 if and only if there exists a PRG with degree 2. The “if” direction
follows from Lemma 4.2.5 and Lemma 4.5.4, while the “only if” direction follows from Claim 3.3.3 and the fact that
each output of an NC0 PRG must be balanced.

47

We now argue that the balanced simulators obtained in Section 4.2 are all linear in the above
sense. In fact, these simulators satisfy a stronger property: for every fixed random input of the
simulator, each bit of the simulator’s output is determined by a single bit of its input. This simple
structure is due to the fact that we encode non-boolean functions by concatenating the encodings
of their output bits. We state here the stronger property as it will be needed in the next subsection.

Observation 4.5.12 Let S be a simulator of a randomized encoding (of a function) that is ob-
tained by concatenating simulators (i.e., S is defined as in the proof of Lemma 3.2.1). Then,
fixing the randomness ρ of S, the simulator’s computation has the following simple form: Sρ(y) =
σ1(y1)σ2(y2) · · ·σl(yl), where each σi maps yi (i.e., the i-th bit of y) to one of two fixed strings. In
particular, S computes a randomized degree-1 function of its input.

Recall that the balanced simulator of the NC0
4 encoding for functions in ⊕L/poly (promised by

Theorem 4.2.6) is obtained by concatenating the simulators of boolean functions in ⊕L/poly. By
Observation 4.5.12, this simulator is linear. Thus, by Lemma 4.5.11, we can construct a sublinear-
stretch ε-biased generator in NC0

4 from any ε-biased generator in ⊕L/poly. In fact, one can easily
obtain a nontrivial ε-biased generator even in NC0

3 by applying the locality construction to each
of the bits of the degree-2 generator defined by G(x, x′) = (x, x′, 〈x, x′〉), where 〈·, ·〉 denotes inner
product modulo 2. Again, the resulting encoding is obtained by concatenation and thus, by Ob-
servation 4.5.12 and Lemma 4.5.11, is also ε-biased. (This generator actually fools a much larger
class of statistical tests; see Section 4.5.3 below.) Thus, we have:

Theorem 4.5.13 There is a (sublinear-stretch) ε-biased generator in NC0
3.

Building on a construction of Mossel et al., it is in fact possible to achieve linear stretch in NC0
3.

Namely,

Theorem 4.5.14 There is a linear-stretch ε-biased generator in NC0
3.

Proof: Mossel et al. present an ε-biased generator in NC0 with degree 2 and linear stretch
([MST03], Theorem 13).17 Let G be their ε-biased generator. We can apply the locality construction
(4.2.4) to G (using concatenation) and get, by Lemma 4.5.11 and Observation 4.5.12, an ε-biased
generator Ĝ in NC0

3. We now relate the stretch of Ĝ to the stretch of G. Let n, n̂ be the input
complexity of G, Ĝ (resp.), let s, ŝ be the output complexity of G, Ĝ (resp.), and let c · n be the
stretch of G, where c is a constant. The generator Ĝ is stretch preserving, hence ŝ−n̂ = s−n = c·n.
Since G is in NC0, each of its output bits can be represented as a polynomial that has a constant
number of monomials and thus the locality construction adds only a constant number of random
bits for each output bit of G. Therefore, the input length of Ĝ is linear in the input length of G.
Hence, ŝ− n̂ = s− n = c · n = ĉ · n̂ for some constant ĉ and thus Ĝ has a linear stretch.

17In fact, the generator of [MST03, Theorem 13] is in nonuniform-NC0
5 (and it has a slightly superlinear stretch).

However, a similar construction gives an ε-biased generator in uniform NC0 with degree 2 and linear stretch. (The
locality of this generator is large but constant.) This can be done by replacing the probabilistic construction given
in [MST03, Lemma 12] with a uniform construction of constant-degree bipartite expander with some “good” expansion
properties – such a construction is given in [CRVW02, Theorem 7.1].

48

Comparison with lower bounds. It is not hard to see that there is no ε-biased generator
with degree 1 or locality 2.18 In [CM01] it was shown that there is no superlinear-stretch ε-biased
generator in NC0

3. Thus, our linear-stretch NC0
3 generator (building on the one from [MST03]) is

not only optimal with respect to locality and degree but is also essentially optimal with respect to
stretch.

4.5.3 Generators for Space-Bounded Computation

We turn to the case of PRGs for space-bounded computation. A standard way of modeling a
randomized space-bounded Turing machine is by having a random tape on which the machine
can access the random bits one by one but cannot “go back” and view previous random bits
(i.e., any bit that the machine wishes to remember, it must store in its limited memory). For the
purpose of derandomizing such machines, it suffices to construct PRGs that fool any space-bounded
distinguisher having a similar one-way access to its input. Following Babai et al. [BNS89], we refer
to such distinguishers as space-bounded distinguishers.

Definition 4.5.15 ([BNS89]) (Space-bounded distinguisher) A space-s(n) distinguisher is
a deterministic Turing machine M , and an infinite sequence of binary strings a = (a1, . . . , an, . . .)
called the advice strings, where |an| = 2O(s(n)). The machine has the following tapes: read-write
work tapes, a read-only advice tape, and a read-only input tape on which the tested input string, y,
is given. The input tape has a one-way mechanism to access the tested string; namely, at any point
it may request the next bit of y. In addition, only s(n) cells of the work tapes can be used. Given
an n-bit input, y, the output of the distinguisher, Ma(y), is the (binary) output of M where y is
given on the input tape and an is given on the advice tape.

This class of distinguishers is a proper subset of the distinguishers that can be implemented by
a space-s(n) Turing machine with a two-way access to the input. Nevertheless, even log-space
distinguishers are quite powerful, and many distinguishers fall into this category. In particular, this
is true for the class of linear distinguishers considered in Section 4.5.2.

Definition 4.5.16 (PRG for space-bounded computation) We say that a polynomial-time
computable function G : {0, 1}n → {0, 1}l(n) is a PRG for space s(n) if l(n) > n and G(Un) is
indistinguishable from Ul(n) to any space-s(n) distinguisher. That is, for every space-s(n) distin-
guisher Ma, the distinguishing advantage |Pr[Ma(G(Un)) = 1]−Pr[Ma(Ul(n)) = 1]| is negligible in
n.

Several constructions of high-stretch PRGs for space-bounded computation exist in the litera-
ture (e.g., [BNS89, Nis92]). In particular, a PRG for logspace computation from [BNS89] can be
computed using logarithmic space, and thus, by Theorem 4.2.6, admits an efficient perfect encoding
in NC0

4. It can be shown (see proof of Theorem 4.5.17) that this NC0
4 encoding fools logspace dis-

tinguishers as well; hence, we can reduce the security of the randomized encoding to the security
of the encoded generator, and get an NC0

4 PRG that fools logspace computation. However, as in
the case of ε-biased generators, constructing such PRGs with a low stretch is much easier. In fact,
the same “inner product” generator we used in Section 4.5.2 can do here is well.

18A degree 1 generator contains more than n linear functions over n variables, which must be linearly dependent
and thus biased. The non-existence of a 2-local generator follows from the fact that every nonlinear function of two
input bits is biased.

49

Theorem 4.5.17 There exists a (sublinear-stretch) PRG for sublinear-space computation in NC0
3.

Proof: Consider the inner product generator G(x, x′) = (x, x′, 〈x, x′〉), where x, x′ ∈ {0, 1}n.
It follows from the average-case hardness of the inner product function for two-party communica-
tion complexity [CG88] that G fools all sublinear-space distinguishers. (Indeed, a sublinear-space
distinguisher implies a sublinear-communication protocol predicting the inner product of x and x′.
Specifically, the party holding x runs the distinguisher until it finishes reading x, and then sends
its configuration to the party holding x′.)

Applying the locality construction to G, we obtain a perfect encoding Ĝ in NC0
3. (In fact, we

can apply the locality construction only to the last bit of G and leave the other outputs as they
are.) We argue that Ĝ inherits the pseudorandomness of G. As before, we would like to argue that
if M̂ is a sublinear-space distinguisher breaking Ĝ and S is the balanced simulator of the encoding,
then M̂(S(·)) is a sublinear-space distinguisher breaking G. Similarly to the proof of Lemma 4.5.11,
the fact that M̂(S(·)) can be implemented in sublinear space will follow from the simple structure
of S. However, in contrast to Lemma 4.5.11, here it does not suffice to require S to be linear and
we need to rely on the stronger property guaranteed by Observation 4.5.12.19

We now formalize the above. As argued in Observation 4.5.12, fixing the randomness ρ of S,
the simulator’s computation can be written as Sρ(y) = σ1(y1)σ2(y2) · · ·σl(yl), where each σi maps
a bit of y to one of two fixed strings. We can thus use S to turn a sublinear-space distinguisher
M̂a breaking Ĝ into a sublinear-space distinguisher Ma′ breaking G. Specifically, let the advice a′

include, in addition to a, the 2l strings σi(0), σi(1) corresponding to a “good” ρ which maintains
the distinguishing advantage. (The existence of such ρ follows from an averaging argument.) The
machine Ma′(y) can now emulate the computation of M̂a(Sρ(y)) using sublinear space and a one-
way access to y by applying M̂a in each step to the corresponding string σi(yi).

4.5.4 Pseudorandom Generators — Conclusion

We conclude this section with Table 4.5.1, which summarizes some of the PRGs constructed here
as well as previous ones from [MST03] and highlights the remaining gaps. We will partially close
these gaps in Chapters 6 and 7 under specific intractability assumptions. (In particular, we will
construct a PRG with locality 4 and linear stretch, as well as a PRG with output locality 3, input
locality 3, and degree 2.)

4.6 Collision-Resistant Hashing in NC0

We start with a formal definition of collision-resistant hash-functions (CRHFs).

Definition 4.6.1 (Collision-resistant hashing) Let `, `′ : N→ N be such that `(n) > `′(n) and
let Z ⊆ {0, 1}∗. A collection of functions {hz}z∈Z is said to be collision-resistant if the following
holds:

19Indeed, in the current model of (non-uniform) space-bounded computation with one-way access to the input (and
two-way access to the advice), there exist a boolean function M̂ computable in sublinear space and a linear function
S such that the composed function M̂(S(·)) is not computable in sublinear space. For instance, let M̂(y1, . . . , y2n) =
y1y2 + y3y4 + . . . + y2n−1y2n and S(x1, . . . , x2n) = (x1, xn+1, x2, xn+2, . . . , xn, x2n).

50

Type Stretch Locality Degree
ε-biased superlinear 5 2 X
ε-biased nΩ(

√
k) large k Ω(

√
k)

ε-biased Ω(n2)X Ω(n) 2 X
ε-biased linear X 3 X 2 X
space sublinear Xr 3 X 2 X

cryptographic * sublinear Xr 4 3

Table 4.5.1: Summary of known pseudorandom generators. Results of Mossel et al. [MST03]
appear in the top part and results of this paper in the bottom part. A parameter is marked as

optimal (X) if when fixing the other parameters it cannot be improved. A stretch entry is marked
with Xr if the stretch is sublinear and cannot be improved to be superlinear (but might be

improved to be linear). The symbol * indicates a conditional result.

1. There exists a probabilistic polynomial-time key-generation algorithm, G, that on input 1n

outputs an index z ∈ Z (of a function hz). The function hz maps strings of length `(n) to
strings of length `′(n).

2. There exists a polynomial-time evaluation algorithm that on input z ∈ G(1n), x ∈ {0, 1}`(n)

computes hz(x).

3. Collisions are hard to find. Formally, a pair (x, x′) is called a collision for a function hz

if x 6= x′ but hz(x) = hz(x′). The collision-resistance requirement states that every non-
uniform polynomial-time algorithm A, that is given input (z = G(1n), 1n), succeeds in finding
a collision for hz with a negligible probability in n (where the probability is taken over the coin
tosses of both G and A).

Lemma 4.6.2 Suppose H = {hz}z∈Z is collision resistant and Ĥ = {ĥz}z∈Z is a perfect random-
ized encoding of H. Then Ĥ is also collision resistant.

Proof: Since ĥz is stretch preserving, it is guaranteed to shrink its input as hz. The key
generation algorithm G of H is used as the key generation algorithm of Ĥ. By the uniformity
of the collection Ĥ, there exists an efficient evaluation algorithm for this collection. Finally, any
collision ((x, r), (x′, r′)) under ĥz (i.e., (x, r) 6= (x′, r′) and ĥz(x, r) = ĥz(x′, r′)), defines a collision
(x, x′) under hz. Indeed, perfect correctness ensures that hz(x) = hz(x′) and unique-randomness
(see Lemma 3.2.5) ensures that x 6= x′. Thus, an efficient algorithm that finds collisions for Ĥ with
non-negligible probability yields a similar algorithm for H.

By Lemma 4.6.2, Theorem 4.2.6 and Corollary 4.2.9, we get:

Theorem 4.6.3 If there exists a CRHF H = {hz}z∈Z such that the function h′(z, x) def= hz(x) is in
PREN (in particular, in ⊕L/poly), then there exists a CRHF Ĥ = {ĥz}z∈Z such that the mapping
(z, y) 7→ ĥz(y) is in NC0

4.

51

Using Theorem 4.6.3, we can construct CRHFs in NC0 based on the intractability of factor-
ing [Dam88], discrete logarithm [Ped91], or lattice problems [GGH96, Reg03]. All these candidates
are computable in NC1 provided that some pre-computation is done by the key-generation algo-
rithm. Note that the key generation algorithm of the resulting NC0 CRHF is not in NC0. For more
details on NC0 computation of collections of cryptographic primitives see Appendix A.

4.7 Encryption in NC0

We turn to the case of encryption. We first show that computational encoding preserves the security
of semantically-secure encryption scheme both in the public-key and in the private-key setting.
This result provides an NC0 encryption algorithm but does not promise anything regarding the
parallel complexity of the decryption process. This raises the question whether decryption can also
be implemented in NC0. In Section 4.7.2 we show that, except for some special settings (namely,
private-key encryption which is secure only for single message of bounded length or stateful private-
key encryption), decryption in NC0 is impossible regardless of the complexity of encryption. Finally,
in Section 4.7.3 we explore the effect of randomized encoding on encryption schemes which enjoy
stronger notions of security. In particular, we show that randomized encoding preserves security
against chosen plaintext attacks (CPA) as well as a-priory chosen ciphertext attacks (CCA1).
However, randomized encoding does not preserve security against a-posteriori chosen ciphertext
attack (CCA2). Still, we show that the encoding of a CCA2-secure scheme enjoys a relaxed security
property that suffices for most applications of CCA2-security.

4.7.1 Main Results

Suppose that E = (G,E,D) is a public-key encryption scheme, where G is a key generation al-
gorithm, the encryption function E(e, x, r) encrypts the message x using the key e and random-
ness r, and D(d, y) decrypts the cipher y using the decryption key d. As usual, the functions
G,E,D are polynomial-time computable, and the scheme provides correct decryption and satis-
fies indistinguishability of encryptions [GM84b]. Let Ê be a randomized encoding of E, and let
D̂(d, ŷ) def= D(d,C(ŷ)) be the composition of D with the decoder B of Ê. We argue that the scheme
Ê def= (G, Ê, D̂) is also a public-key encryption scheme. The efficiency and correctness of Ê are
guaranteed by the uniformity of the encoding and its correctness. Using the efficient simulator
of Ê, we can reduce the security of Ê to that of E . Namely, given an efficient adversary Â that
distinguishes between encryptions of x and x′ under Ê , we can break E by using the simulator to
transform original ciphers into “new” ciphers, and then invoke Â. The same argument holds in the
private-key setting. We now formalize this argument.

Definition 4.7.1 (Public-key encryption) A secure public-key encryption scheme (PKE) is a
triple (G,E,D) of probabilistic polynomial-time algorithms satisfying the following conditions:

• Viability: On input 1n the key generation algorithm, G, outputs a pair of keys (e, d). For
every pair (e, d) such that (e, d) ∈ G(1n), and for every plaintext x ∈ {0, 1}∗, the algorithms
E,D satisfy

Pr[D(d,E(e, x)) 6= x)] ≤ ε(n)

where ε(n) is a negligible function and the probability is taken over the internal coin tosses of
algorithms E and D.

52

• Security: For every polynomial `(·), and every families of plaintexts {xn}n∈N and {x′n}n∈N
where xn, x′n ∈ {0, 1}`(n), it holds that

(e ←G1(1n), E(e, xn))
c≡ (e ←G1(1n), E(e, x′n)), (4.7.1)

where G1(1n) denotes the first element in the pair G(1n).

The definition of a private-key encryption scheme is similar, except that the public key is omit-
ted from the ensembles. That is, instead of Equation 4.7.1 we require that E(G1(1n), xn)

c≡
E(G1(1n), x′n). An extension to multiple-message security, where the indistinguishability require-
ment should hold for encryptions of polynomially many messages, follows naturally (see [Gol04,
chapter 5] for formal definitions). In the public-key case, multiple-message security is implied by
single-message security as defined above, whereas in the private-key case it is a strictly stronger
notion. In the following we explicitly address only the (single-message) public-key case, but the
treatment easily holds for the case of private-key encryption with multiple-message security.

Lemma 4.7.2 Let E = (G, E, D) be a secure public-key encryption scheme, where E(e, x, r) is
viewed as a polynomial-time computable function that encrypts the message x using the key e and
randomness r. Let Ê((e, x), (r, s)) = Ê((e, x, r), s) be a computational randomized encoding of E

and let D̂(d, ŷ) def= D(d,B(ŷ)) be the composition of D with the decoder B of Ê. Then, the scheme
Ê def= (G, Ê, D̂) is also a secure public-key encryption scheme.

Proof: The uniformity of the encoding guarantees that the functions Ê and D̂ can be efficiently
computed. The viability of Ê follows in a straightforward way from the correctness of the decoder
B. Indeed, if (e, d) are in the support of G(1n), then for any plaintext x we have

Pr
r,s

[D̂(d, Ê(e, x, r, s)) 6= x] = Pr
r,s

[D(d,B(Ê(e, x, r, s))) 6= x]

≤ Pr
r,s

[B(Ê((e, x, r), s)) 6= E(e, x, r)] + Pr
r

[D(d, E(e, x, r)) 6= x]

≤ ε(n),

where ε(·) is negligible in n and the probabilities are also taken over the coin tosses of D; the first
inequality follows from the union bound and the second from the viability of E and the statistical
correctness of Ê.

We move on to prove the security of the construction. Let S be the efficient computational
simulator of Ê. Then, for every polynomial `(·), and every families of plaintexts {xn}n∈N and
{x′n}n∈N where xn, x′n ∈ {0, 1}`(n), it holds that

(e ←G1(1n), Ê(e, xn, rn, sn))
c≡ (e ←G1(1n), S(E(e, xn, rn))) (by the privacy of Ê, Fact 2.2.10)
c≡ (e ←G1(1n), S(E(e, x′n, rn))) (by the security of E , Fact 2.2.8)
c≡ (e ←G1(1n), Ê(e, x′n, rn, sn)) (by the privacy of Ê, Fact 2.2.10),

where rn and sn are uniformly chosen random strings of an appropriate length. Hence, the security
of Ê follows from the transitivity of the relation

c≡ (Fact 2.2.6).

In particular, if the scheme E = (G,E, D) enables errorless decryption and the encoding Ê
is perfectly correct, then the scheme Ê also enables errorless decryption. Additionally, the above
lemma is easily extended to case of private-key encryption with multiple-message security. Thus
we get,

53

Theorem 4.7.3 If there exists a secure public-key encryption scheme (respectively, a secure private-
key encryption scheme) E = (G,E,D), such that E is in CREN (in particular, in NL/poly or
⊕L/poly), then there exists a secure public-key encryption scheme (respectively, a secure private-
key encryption scheme) Ê = (G, Ê, D̂), such that Ê is in NC0

4.

Specifically, one can construct an NC0 PKE based on either factoring [Rab79, GL89, BG85],
the Diffie-Hellman Assumption [Gam85, GL89] or lattice problems [AD97, Reg03]. (These schemes
enable an NC1 encryption algorithm given a suitable representation of the key.)

4.7.2 On Decryption in NC0

Our construction provides an NC0 encryption algorithm but does not promise anything regarding
the parallel complexity of the decryption process. This raises the question whether decryption can
also be implemented in NC0.

Negative results

We now show that, in many settings, decryption in NC0 is impossible regardless of the complexity
of encryption. Here we consider standard stateless encryption schemes. We begin with the case of
multiple-message security (in either the private-key or public-key setting). If a decryption algorithm
D(d, y) is in NC0

k, then an adversary that gets n encrypted messages can correctly guess the first
bits of all the plaintexts (jointly) with at least 2−k probability. To do so, the adversary simply
guesses at random the k (or less) bits of the key d on which the first output bit of D depends, and
then computes this first output bit (which is supposed to be the first plaintext bit) on each of the
n ciphertexts using the subkey it guessed. Whenever the adversary guesses the k bits correctly, it
succeeds to find the first bits of all n messages. When n > k, this violates the semantic security
of the encryption scheme. Indeed, for the encryption scheme to be secure, the adversary’s success
probability (when the messages are chosen at random) can only be negligibly larger than 2−n.
(That is, an adversary cannot do much better than simply guessing these first bits.)

Even in the case of a single-message private-key encryption, it is impossible to implement
decryption in NC0

k with an arbitrary (polynomial) message length. Indeed, when the message
length exceeds (2|d|)k (where |d| is the length of the decryption key), there must be more than 2k

bits of the output of D which depend on the same k bits of the key, in which case we are in the
same situation as before. That is, we can guess the value of more than 2k bits of the message with
constant success probability 2−k. Again, if we consider a randomly chosen message, this violates
semantic security.

Positive results

In contrast to the above, if the scheme is restricted to a single message of a bounded length (even
larger than the key) we can use our machinery to construct a private-key encryption scheme in which
both encryption and decryption can be computed in NC0. This can be done by using the output
of an NC0 PRG to mask the plaintext. Specifically, let E(e, x) = G(e)⊕ x and D(e, y) = y⊕G(e),
where e is a uniformly random key generated by the key generation algorithm and G is a PRG.
Unfortunately, the resulting scheme is severely limited by the low stretch of our PRGs. This
approach can be also used to give multiple message security, at the price of requiring the encryption
and decryption algorithms to maintain a synchronized state. In such a stateful encryption scheme

54

the encryption and decryption algorithms take an additional input and produce an additional
output, corresponding to their state before and after the operation. The seed of the generator can
be used, in this case, as the state of the scheme. In this setting, we can obtain multiple-message
security by refreshing the seed of the generator in each invocation; e.g., when encrypting the current
bit the encryption algorithm can randomly choose a new seed for the next session, encrypt it along
with current bit, and send this encryption to the receiver (alternatively, see [Gol04, Construction
5.3.3]). In the resulting scheme both encryption and decryption are NC0 functions whose inputs
include the inner state of the algorithm.

4.7.3 Security against CPA, CCA1 and CCA2 Attacks

In this section we address the possibility of applying our machinery to encryption schemes that
enjoy stronger notions of security. In particular, we consider schemes that are secure against chosen
plaintext attacks (CPA), a-priory chosen ciphertext attacks (CCA1), and a-posteriori chosen cipher-
text attacks (CCA2). In all three attacks the adversary has to win the standard indistinguishability
game (i.e., given a ciphertext c = E(e,mb) find out which of the two predefined plaintexts m0,m1

was encrypted), and so the actual difference lies at the power of the adversary. In a CPA attack
the adversary can obtain encryptions of plaintexts of his choice (under the key being attacked), i.e.,
the adversary gets an oracle access to the encryption function. In CCA1 attack the adversary may
also obtain decryptions of his choice (under the key being attacked), but he is allowed to do so only
before the challenge is presented to him. In both cases, the security is preserved under randomized
encoding. We briefly sketch the proof idea.

Let Â be an adversary that breaks the encoding Ê via a CPA attack (resp. CCA1 attack). We
use Â to obtain an adversary A that breaks the original scheme E . As in the proof of Lemma 4.7.2,
A uses the simulator to translate the challenge c, an encryption of the message mb under E , into
a challenge ĉ, which is an encryption of the same message under Ê . Similarly, A answers the
encryption queries of Â (to the oracle Ê) by directing these queries to the oracle E and applying
the simulator to the result. Also, in the case of CCA1 attack, whenever Â asks the decryption oracle
D̂ to decrypt some ciphertext ĉ′, the adversary A uses the decoder (of the encoding) to translate ĉ′

into a ciphertext c′ of the same message under the scheme E , and then uses the decryption oracle
D to decrypt c′. This allows A to emulate the oracles D̂ and Ê, and thus to translate a successful
CPA attack (resp. CCA1 attack) on the new scheme into a similar attack on the original scheme.

The situation is different in the case of a CCA2 attack. As in the case of a CCA1 attack, a
CCA2 attacker has an oracle access to the decryption function corresponding to the decryption key
in use; however, the adversary can query the oracle even after the challenge has been given to him,
under the restriction that he cannot ask the oracle to decrypt the challenge c itself.

We start by observing that when applying a randomized encoding to a CCA2-secure encryption
scheme, CCA2 security may be lost. Indeed, in the resulting encryption one can easily modify a
given ciphertext challenge ĉ = Ê(e, x, r) into a ciphertext ĉ′ 6= ĉ which is also an encryption of the
same message under the same encryption key. This can be done by applying the decoder (of the
randomized encoding Ê) and then the simulator on ĉ, that is ĉ′ = S(C(ĉ)). Hence, one can break
the encryption by simply asking the decryption oracle to decrypt ĉ′.

It is instructive to understand why the previous arguments fail to generalize to the case of CCA2
security. In the case of CCA1 attacks we transformed an adversary Â that breaks the encoding
Ê into an adversary A for the original scheme in the following way: (1) we used the simulator to
convert a challenge c = E(e,mb) into a challenge ĉ which is an encryption of the same message

55

under Ê ; (2) when Â asks D̂ to decrypt a ciphertext ĉ′, the adversary A uses the decoder (of the
encoding) to translate ĉ′ into a ciphertext c′ of the same message under the scheme E , and then
asks the decryption oracle D to decrypt c′. However, recall that in a CCA2 attack the adversaries
are not allowed to ask the oracle to decrypt the challenge itself (after the challenge is presented).
So if c′ = c but ĉ′ 6= ĉ, the adversary A cannot answer the (legitimate) query of Â.

To complement the above, we show that when applying a randomized encoding to a CCA2-
secure encryption scheme not all is lost. Specifically, the resulting scheme still satisfies Replayable
CCA security (RCCA), a relaxed variant of CCA2 security that was suggested in [CKN03]. Loosely
speaking, RCCA security captures encryption schemes that are CCA2 secure except that they allow
anyone to generate new ciphers that decrypt to the same value as a given ciphertext. More precisely,
an RCCA attack is a CCA2 attack in which the adversary cannot ask the oracle to decrypt any
cipher c′ that decrypts to either m0 or m1 (cf. [CKN03, Figure 3]). This limitation prevents the
problem raised in the CCA2 proof, in which a legitimate query for D̂ translates by the decoder
into an illegitimate query for D. That is, if ĉ′ does not decrypt under Ê to neither m0 nor m1,
then (by correctness) the ciphertext c′ obtained by applying the decoder to ĉ′ does not decrypt to
any of these messages either. Hence, randomized encoding preserves RCCA security. As argued
in [CKN03], RCCA security suffices in most applications of CCA2 security.

4.8 Other Cryptographic Primitives

The construction that was used for encryption can be adapted to other cryptographic primitives
including (non-interactive) commitments, signatures, message authentication schemes (MACs), and
non-interactive zero-knowledge proofs (for definitions see [Gol01a, Gol04]). In all these cases, we
can replace the sender (i.e., the encrypting party, committing party, signer or prover, according
to the case) with its randomized encoding and let the receiver (the decrypting party or verifier)
use the decoding algorithm to translate the output of the new sender to an output of the original
one. The security of the resulting scheme reduces to the security of the original one by using the
efficient simulator and decoder. In fact, such a construction can also be generalized to the case of
interactive protocols such as zero-knowledge proofs and interactive commitments. As in the case
of encryption discussed above, this transformation results in an NC0 sender but does not promise
anything regarding the parallel complexity of the receiver. (In all these cases, we show that it is
impossible to implement the receiver in NC0.) An interesting feature of the case of commitment is
that we can also improve the parallel complexity at the receiver’s end (see below). The same holds
for applications of commitment such as coin-flipping and ZK proofs. We now briefly sketch these
constructions and their security proofs.

4.8.1 Signatures

Let S = (G,S, V) be a signature scheme, where G is a key-generation algorithm that generates
the signing and verification keys (s, v), the signing function S(s, α, r) computes a signature β
on the document α using the key s and randomness r, and the verification algorithm V (v, α, β)
verifies that β is a valid signature on α using the verification key v. The three algorithms run
in probabilistic polynomial time, and the scheme provides correct verification for legal signatures
(ones that were produced by the signing function using the corresponding signing key). The scheme
is secure (unforgeable) if it is infeasible to forge a signature in a chosen message attack. Namely,

56

any (non-uniform) polynomial-time adversary that gets the verification key and an oracle access
to the signing process S(s, ·) fails to produce a valid signature β on a document α (with respect
to the corresponding verification key v) for which it has not requested a signature from the oracle.
(When the signing algorithm is probabilistic, the attacker does not have an access to the random
coin tosses of the signing algorithm.)

Let Ŝ be a computational randomized encoding of S, and let V̂ (v, α, β̂) def= V (v, α,B(β̂)) be the
composition of V with the decoder B of the encoding Ŝ. We claim that the scheme Ŝ def= (G, Ŝ, V̂)
is also a signature scheme. The efficiency and correctness of Ŝ follow from the uniformity of the
encoding and its correctness. To prove the security of the new scheme we use the simulator to
transform an attack on Ŝ into an attack on S. Specifically, given an adversary Â that breaks Ŝ,
we can break S by invoking Â and emulating the oracle Ŝ using the simulator of the encoding and
the signature oracle S. By Fact 2.2.9, the output of Â when interacting with the emulated oracle is
computationally indistinguishable from its output when interacting with the actual signing oracle
Ŝ(s, ·). Moreover, if the forged signature (α, β̂) produced by Â is valid under Ŝ, then it is translated
into a valid signature (α, β) under S by using the decoder, i.e., β = B(β̂). Hence, if the scheme Ŝ
can be broken with non-negligible probability, then so can the scheme S. A similar argument holds
also in the private-key setting (i.e., in the case of MACs).20 We will later (Remark 5.3.3) show
that signatures and MACs whose signing algorithm is in NC0

4 can be based on the intractability of
factoring, the discrete logarithm problem, and lattice problems.

Impossibility of NC0 verification. It is not hard to see that the verification algorithm V cannot
be realized in NC0. Indeed, if V ∈ NC0

k one can forge a signature on any document α by simply
choosing a random string β′ of an appropriate length. This attack succeeds with probability 2−k

since: (1) the verification algorithm checks the validity of the signature by reading at most k bits
of the signature; and (2) the probability that β′ agrees with the correct signature β on the bits
which are read by V is at least 2−k.

4.8.2 Commitments

A commitment scheme enables one party (a sender) to commit itself to a value while keeping it
secret from another party (the receiver). Later, the sender can reveal the committed value to the
receiver, and it is guaranteed that the revealed value is equal to the one determined at the commit
stage.

Non-interactive commitments

We start with the simple case of a perfectly binding, non-interactive commitment. Such a scheme
can be defined by a polynomial-time computable function Send(b, r) that outputs a commitment c
to the bit b using the randomness r. We assume, w.l.o.g., that the scheme has a canonical decommit
stage in which the sender reveals b by sending b and r to the receiver, who verifies that Send(b, r)
is equal to the commitment c. The scheme should be both (computationally) hiding and (perfectly)
binding. Hiding requires that c = Send(b, r) keeps b computationally secret, that is Send(0, Un)

c≡
20Our NC0 signing algorithm is probabilistic but this is unavoidable. Indeed, while a signing algorithm may

generally be deterministic (see [Gol04, p. 506]), an NC0 signing algorithm cannot be deterministic as in this case an
adversary can efficiently learn it and use it to forge messages.

57

Send(1, Un). Binding means that it is impossible for the sender to open its commitment in two
different ways; that is, there are no r0 and r1 such that Send(0, r0) = Send(1, r1).

Let ˆSend(b, r, s) be a perfectly-correct computationally-private encoding of Send(b, r). Then
ˆSend defines a computationally-hiding perfectly-binding, non-interactive commitment. Hiding fol-

lows from the privacy of the encoding, as argued for the case of encryption in Lemma 4.7.2. Namely,
it holds that

ˆSend(0, r, s)
c≡ S(Send(0, r, s))

c≡ S(Send(1, r, s))
c≡ ˆSend(1, r, s)

where r and s are uniformly chosen strings of an appropriate length (the first and third transitions
follow from the privacy of ˆSend and Fact 2.2.10, while the second transition follows from the hiding
of Send and Fact 2.2.8). The binding property of ˆSend follows from the perfect correctness; namely,
if there exists an ambiguous pair (r0, s0), (r1, s1) such that ˆSend(0, r0, s0) = ˆSend(1, r1, s1), then
by perfect correctness it holds that Send(0, r0) = Send(1, r1) which contradicts the binding of the
original scheme.21 So when the encoding is in NC0 we get a commitment scheme whose sender is
in NC0.

In fact, in contrast to the primitives described so far, here we also improve the parallel complex-
ity at the receiver’s end. Indeed, on input ĉ, b, r, s the receiver’s computation consists of computing

ˆSend(b, r, s) and comparing the result to ĉ. Assuming ˆSend is in NC0, the receiver can be im-
plemented by an NC0 circuit augmented with a single (unbounded fan-in) AND gate. We refer to
this special type of AC0 circuit as an ANDn ◦ NC0 circuit. This extension of NC0 is necessary as
the locality of the function f that the receiver computes cannot be constant. (See the end of this
subsection.)

Remark 4.8.1 (Unconditional NC0 construction of non-interactive commitment from
1-1 OWF) We can use our machinery to obtain an unconditional NC0 reduction from a non-
interactive commitment scheme to any one-to-one OWF. Moreover, this reduction only makes a
black-box use of the underlying OWF f . As in the case of the NC0 reduction from PRGs to
regular OWFs (Remark 4.5.9), the idea is to encode a non-adaptive black-box NC1 reduction
into a corresponding NC0 construction. Specifically, the reduction of Blum [Blu83] (instantiated
with the Goldreich-Levin hardcore predicate [GL89]) has the following form: Send(b, (x, r)) =
(f(x), r, 〈x, r〉 ⊕ b) where x, r are two random strings of length n. Whenever f is one-to-one
OWF the resulting function Send is a perfectly binding, non-interactive commitment (see [Gol01a,
Construction 4.4.2]). Then, letting ĝ((x, r, b), s) be a perfect NC0 encoding of 〈x, r〉⊕b, the function

ˆSend(b, (x, r, s)) = (f(x), r, ĝ(x, r, b, s)) perfectly encodes Send, and hence defines a black-box NC0

reduction from a non-interactive commitment scheme to a one-to-one OWF.

It follows that non-interactive commitments in NC0 are implied by the existence of a 1-1 OWF in
PREN or by the existence of a non-interactive commitment in PREN (actually, perfect correctness
and computational privacy suffice). (We will later show that such a scheme can be based on the
intractability of factoring or discrete logarithm. See Remark 5.3.3.)

21A modification of this scheme remains secure even if we replace Send with a randomized encoding which is only
statistically-correct. However, in this modification we cannot use the canonical decommitment stage. Instead, the
receiver should verify the decommitment by applying the decoder B to ĉ and comparing the result to the computation
of the original sender; i.e., the receiver checks whether B(ĉ) equals to Send(b, r). A disadvantage of this alternative
decommitment is that it does not enjoy the enhanced parallelism feature discussed below. Also the resulting scheme
is only statistically binding.

58

Interactive commitments

While the existence of an arbitrary OWF is not known to imply non-interactive commitment
scheme, it is possible to use OWFs to construct an interactive commitment scheme [Nao91]. In
particular, the PRG based commitment scheme of [Nao91] has the following simple form: First
the receiver chooses a random string k ∈ {0, 1}3n and sends it to the sender, then the sender
that wishes to commit to the bit b chooses a random string r ∈ {0, 1}n and sends the value of
the function Send(b, k, r) to the receiver. (The exact definition of the function Send(b, k, r) is
not important in our context.) To decommit the sender sends the randomness r and the bit b
and the receiver accepts if Send(b, k, r) equals to the message he had received in the commit
phase. Computational hiding requires that for any string family {kn} where kn ∈ {0, 1}3n, it
holds that (kn,Send(0, kn, Un))

c≡ (kn,Send(1, kn, Un)). Perfect binding requires that, except with
negligible probability (over the randomness of the receiver k), there are no r0 and r1 such that
Send(0, k, r0) = Send(1, k, r1).

Again, if we replace Send by a computationally-private perfectly-correct encoding ˆSend, we get
a (two-round) interactive commitment scheme (this follows by combining the previous arguments
with Fact 2.2.10). Moreover, as in the non-interactive case, when the encoding is in NC0 the
receiver’s computation in the decommit phase is in ANDn ◦NC0. Since the receiver’s computation
in the commit phase is also in NC0, we get an ANDn ◦ NC0 receiver. (In Remark 5.3.3 we show
that such a scheme can be based on the intractability of factoring, discrete logarithm or lattices
problems.) As an immediate application, we obtain a constant-round protocol for coin flipping over
the phone [Blu83] between an NC0 circuit and an ANDn ◦NC0 circuit.

Statistically hiding commitments

One can apply a similar transformation to other variants of commitment schemes, such as uncon-
ditionally hiding (and computationally binding) interactive commitments. (Of course, to preserve
the security of such schemes the privacy of the encoding will have to be statistical rather than
computational.) Unconditionally hiding commitments require some initialization phase, which typ-
ically involves a random key sent from the receiver to the sender. We can turn such a scheme into
a similar scheme between an NC0 sender and an ANDn ◦ NC0 receiver, provided that it conforms
to the following structure: (1) the receiver initializes the scheme by locally computing a random
key k (say, a prime modulus and powers of two group elements for schemes based on discrete loga-
rithm) and sending it to the sender; (2) the sender responds with a single message computed by the
commitment function Send(b, k, r) which is in PREN (actually, perfect correctness and statistical
privacy suffice); (3) as in the previous case, the scheme has a canonical decommit stage in which
the sender reveals b by sending b and r to the receiver, who verifies that Send(b, k, r) is equal to
the commitment c. Statistical hiding requires that for any string family {kn} where kn ∈ {0, 1}n,
it holds that (kn,Send(0, kn, Um(n)))

s≡ (kn,Send(1, kn, Um(n))), where m(n) is the number of ran-
dom coins the sender uses. Computational binding requires that, except with negligible probability
(over the randomness of the receiver k), an efficient adversary cannot find r0 and r1 such that
Send(0, k, r0) = Send(1, k, r1).

Using the CRHF-based commitment scheme of [DPP94, HM96], one can obtain schemes of the
above type based on the intractability of factoring, discrete logarithm, and lattice problems. Given
such a scheme, we replace the sender’s function by its randomized encoding, and get as a result
a statistically hiding commitment scheme whose sender is in NC0. The new scheme inherits the

59

round complexity of the original scheme and thus consists of only two rounds of interaction. (The
security proof is similar to the case of perfectly binding, non-interactive commitment, only this time
we use Facts 2.2.5, 2.2.3 instead of Facts 2.2.10, 2.2.8.) If the random key k cannot be computed in
ANDn ◦NC0 (as in the case of factoring and discrete logarithm based schemes), one can compute k
once and for all during the generation of the receiver’s circuit and hardwire the key to the receiver’s
circuit. (See Appendix A.)

Impossibility of an NC0 receiver

We show that, in any of the above settings, the receiver cannot be realized in NC0. Recall that
in the decommit stage the sender opens his commitment to the bit b by sending a single message
(b,m) to the receiver, which accepts or reject it according to b,m and his view v of the commitment
stage. (This is the case in all the aforementioned variants.) Suppose that the receiver’s computation
f(b, m, v) is in NC0

k. Consider an (honest) execution of the protocol up to the decommit stage in
which the sender commits to 1, and the view of the receiver is v. There are two cases: (1) there
exists an ambiguous opening m0, m1 for which f(0,m0) = f(1, m1) = accept; and (2) there is no
ambiguous opening, i.e., for all m we have f(0, m) = reject and f(1,m1) = accept for some m1.
We show that we can either break the binding property (in the first case) or the hiding property
(in the second case). Indeed, in the first case the sender can choose two random strings m′

0,m
′
1

of an appropriate length. The probability that m′
0 (resp., m′

1) agrees with m0 (resp., m1) on
the bits which are read by the receiver is at least 2−k. Hence, with probability 2−2k, we have
f(0,m′

0) = f(1,m′
1) = accept and the binding property is violated. Now consider case (2). Let r

be the substring of m which is read by the receiver. Since |r| ≤ k the receiver can efficiently find b
(before the decommit stage) by going over all possible r’s and checking whether there exists an r
such that f(b, r, v) = accept. We conclude that the locality of the receiver’s computation f should
be super-logarithmic.

4.8.3 Zero-Knowledge Proofs

We move on to the case of zero-knowledge proofs. For simplicity, we begin with the simpler case
of non-interactive zero knowledge proofs (NIZK). Such proof systems are similar to standard zero-
knowledge protocols except that interaction is traded for the use of a public random string σ to
which both the prover and the verifier have a read-only access. More formally, a NIZK (with an
efficient prover) for an NP relation R(x,w) is a pair of probabilistic polynomial-time algorithms
(P, V) that satisfies the following properties:

• (Completeness) for every (x,w) ∈ R, it holds that Pr[V (x, σ, P (x,w, σ)) = 1] > 1− neg(|x|);
• (Soundness) for every x /∈ LR (i.e., x such that ∀w, (x,w) /∈ R) and every prover algorithm

P ∗ we have that Pr[V (x, σ, P ∗(x, σ)) = 1] < neg(|x|);
• (Zero-knowledge) there exists a probabilistic polynomial-time simulator M such that for ev-

ery string sequence {(xn, wn)} where (xn, wn) ∈ R it holds that {(xn, σ, P (xn, wn, σ))} c≡
{M(xn)}

(where in all the above σ is uniformly distributed over {0, 1}poly(|x|)).
Similarly to the previous cases, we can compile the prover into its computational randomized

encoding P̂ , while the new verifier V̂ uses the decoder B to translate the prover’s encoded message ŷ

60

to the corresponding message of the original prover, and then invokes the original verifier (i.e., V̂ =
V (x, σ,B(ŷ))). The completeness and soundness of the new protocol follow from the correctness
of the encoding. The zero-knowledge property follows from the privacy of the encoding. That is,
to simulate the new prover we define a simulator M̂ that invokes the simulator M of the original
scheme and then applies the simulator S of the encoding to the third entry of M ’s output. By
Fact 2.2.10 and the privacy of P̂ it holds that (x, σ, P̂ (x,w, σ, r))

c≡ (x, σ, S(P (x,w, σ))) (where r

is the randomness of the encoding P̂) while Fact 2.2.8 ensures that (x, σ, S(P (x,w, σ)))
c≡ M̂(x).

The above construction generalizes to interactive ZK-proofs with an efficient prover. In this
case, we can encode the prover’s computation (viewed as a function of its input, the NP-witness he
holds, his private randomness and all the messages he has received so far), while the new receiver
uses the decoder to translate the messages and then invokes the original protocol. The resulting
protocol is still computational ZK proof. (The proof is similar to the case of NIZK above, but relies
on Fact 2.2.9 instead of Fact 2.2.8.) The same construction works for ZK arguments (in which the
soundness holds only against computationally bounded cheating prover). When the encoding is
statistically-private the above transformation also preserves the statistical ZK property. That is, if
the original protocol provides a statistically-close simulation then so does the new protocol.

As before, this general approach does not parallelize the verifier; in fact, the verifier is now
required to “work harder” and decode the prover’s messages. However, we can improve the verifier’s
complexity by relying on specific, commitment-based, zero-knowledge protocols from the literature.
For instance, in the constant-round protocol for Graph 3-Colorability of [GK96], the computations
of the prover and the verifier consist of invoking two commitments (of both types, perfectly binding
as well as statistically hiding), in addition to some AC0 computations. Hence, we can use the parallel
commitment schemes described before to construct a constant-round protocol for 3-Colorability
between an AC0 prover and an AC0 verifier. Since 3-Colorability is NP complete under AC0-
reductions, we get constant-round zero-knowledge proofs in AC0 for every language in NP. (We
will later show that the existence of such a protocol is implied by the intractability of factoring,
the discrete logarithm problem, and lattice problems. See Remark 5.3.3.)

Impossibility of an NC0 verifier. Again, it is impossible to obtain an NC0 verifier (for non-
trivial languages). Suppose that we have a ZK-proof for a language L whose verifier V is in NC0

k.
First, observe that in such a proof system the soundness error is either 0, or larger than 2−k = Ω(1).
Hence, since we require a negligible error probability, the soundness must be perfect. Thus, we can
efficiently decide whether a string x is in L by letting the verifier interact with the simulator. If
x ∈ L then, except with negligible probability, the verifier should accept (as otherwise we can
distinguish between the interaction with the simulator to the interaction with the real prover.) On
the other hand, if x /∈ L then, due to the perfect soundness, the verifier always rejects. Therefore,
L ∈ BPP. In fact, if the round complexity of the protocol is t = O(1) as in the aforementioned
constructions (and the verifier is in NC0

k), then L must be in NC0
tk. (This is true for any interactive

proof protocol, not necessarily ZK.) To see this, note that the verifier computes its output based
on at most tk bits of x. If L /∈ NC0

tk then there exist an input x ∈ L and an input y /∈ L which
agree on the tk bits read by V . Let v be a view of V which makes him accept x. Then, the same
view makes V accept y, in contradiction to the perfect soundness.

61

4.8.4 Instance hiding schemes

An instance hiding scheme (IHS) allows a powerful machine (an oracle) to help a more limited user
compute some function f on the user’s input x; the user wishes to keep his input private and so he
cannot just send it to the machine. We assume that the user is an algorithm from a low complexity
class WEAK whereas the oracle is from a higher complexity class STRONG. In a (non-adaptive,
single-oracle) IHS the user first transforms his input x into a (randomized) encrypted instance
y = E(x, r) and then asks the oracle to compute z = g(y). The user should be able to recover
the value of f(x) from z by applying a decryption algorithm D(x, r, z) (where D ∈ WEAK) such
that D(x, r, g(E(x, r)) = f(x). The hiding of the scheme requires that E(x, r) keeps x secret, i.e.,
for every string families {xn} and {x′n} (where |xn| = |x′n|), the ensembles E(xn, r) and E(x′n, r)
are indistinguishable with respect to functions in STRONG. The default setting of instance hiding
considered in the literature refers to a probabilistic polynomial-time user and a computationally
unbounded machine. (See [Fei93] for a survey on IHS schemes.) We will scale this down and let
the user be an NC0 function and the oracle be a probabilistic polynomial time machine.

The notion of randomized encoding naturally gives rise to IHS in the following way: Given f we
define a related function h(x, r) = f(x)⊕r (where |r| = |f(x)|). Let ĥ((x, r), s) be a computational
randomized encoding of h whose decoder is B. Then, we define E(x, (r, s)) = ĥ((x, r), s), g(y) =
B(y) and D(x, r, z) = r ⊕ z. The correctness of the scheme follows from the correctness of the
encoding. To prove the privacy note that, by Fact 2.2.10, it holds that

ĥ(xn, r, s)
c≡ S(f(xn)⊕ r) ≡ S(f(yn)⊕ r)

c≡ ĥ(yn, r, s).

Hence, we can construct such a scheme where WEAK = NC0 and STRONG = CREN . (Recall that
CREN ⊆ BPP and thus computational privacy indeed fools a CREN oracle.)

4.9 Summary and Discussion

Table 4.9.1 summarizes the properties of randomized encoding that suffice for encoding different
cryptographic primitives. (In the case of trapdoor permutations, efficient randomness recovery
is also needed.) As mentioned before, in some cases it suffices to use a computationally-private
randomized encoding. This relaxation allows to construct (some) primitives in NC0 under more
general assumptions. (See Theorem 5.3.1.)

4.9.1 The case of PRFs

It is natural to ask why our machinery cannot be applied to pseudorandom functions (PRFs)
(assuming there exists a PRF in PREN), as is implied from the impossibility results of Linial
et al. [LMN93]. Suppose that a PRF family fk(x) = f(k, x) is encoded by the function f̂(k, x, r).
There are two natural ways to interpret f̂ as a collection: (1) to incorporate the randomness into the
key, i.e., gk,r(x) def= f̂(k, x, r); (2) to append the randomness to the argument of the collection, i.e.,
hk(x, r) def= f̂(k, x, r). To rule out the security of approach (1), it suffices to note that the mapping
f̂(·, r) is of degree one when r is fixed; thus, to distinguish gk,r from a truly random function, one can
check whether the given function is affine (e.g., verify that gk,r(x)+ gk,r(y) = gk,r(x+ y)+ gk,r(0)).
The same attack applies to the function hk(x, r) obtained by the second approach, by fixing the
randomness r. More generally, the privacy of a randomized encoding is guaranteed only when

62

Primitive Encoding Efficient simulator Efficient decoder
One-way function computational required —
One-way permutation perfect required —
Trapdoor permutation perfect required required
Pseudorandom generator perfect required —
Collision-resistant hashing perfect — —
Encryption (pub., priv.) computational required required
Signatures, MAC computational required required
Perfectly-binding commitment perfectly correct required —

comp. private
Statistically-hiding commitment perfectly correct required —

stat. private
Zero-knowledge proof computational required required
Stat. ZK proof/arguments statistical required required
Instance hiding computational required required

Table 4.9.1: Sufficient properties for preserving the security of different primitives.

the randomness is secret and is freshly picked, thus our methodology works well for cryptographic
primitives which employ fresh secret randomness in each invocation. PRFs do not fit into this
category: while the key contains secret randomness, it is not freshly picked in each invocation.

We finally note that by combining the positive results regarding the existence of various primi-
tives in NC0 with the fact that PRFs cannot be implemented in NC0 (as this class is learnable), one
can derive a separation between PRFs and other primitives such as PRGs. In particular, there is
no NC0 construction from PRGs to PRFs, unless factoring is easy on the average (more generally,
unless there is no PRG in ⊕L/poly). We can also rule out a wide family of AC0 constructions of
PRFs from PRGs (including black-box constructions). Specifically, suppose that there exists an
AC0 construction of PRF F from PRG G which preserves the security of the underlying PRG in
the sense that any adversary that breaks F in quasipolynomial time (e.g., npolylog(n)) yields an
adversary that breaks G in quasipolynomial time. (This property is respected by black-box reduc-
tions.) Then, since any PRF in AC0 can be broken in quasipolynomial time [LMN93], one can
break any PRG in NC0 in quasipolynomial time, which, by our results, implies a quasipolynomial
time algorithm for factoring (on the average), or more generally, a quasipolynomial time attack on
every PRG in ⊕L/poly.

4.9.2 Open Problems

The results described in this chapter provide strong evidence for the possibility of cryptography
in NC0. They are also close to optimal in terms of the exact locality that can be achieved. Still,
several questions are left for further study. In particular:

• What are the minimal assumptions required for cryptography in NC0? For instance, does the
existence of an arbitrary OWF imply the existence of OWF in NC0? We show that a OWF
in NL/poly implies a OWF in NC0.

63

• Can the existence of a OWF (or PRG) in NC0
3 be based on general assumptions such are

the ones that suffice for implementations in NC0
4? In Chapters 7 and 8 we construct such a

OWF (and even a PRG) under concrete intractability assumptions (e.g., the intractability of
decoding a random linear code).

• Can our paradigm for achieving better parallelism be of any practical use?

The above questions motivate a closer study of the complexity of randomized encodings, which
so far was only motivated by questions in the domain of secure multiparty computation.

64

Chapter 5

Computationally Private
Randomizing Polynomials and Their
Applications

Summary: In this chapter, we study the notion of computational randomized encoding (cf. Def-
inition 3.1.7) which relaxes the privacy property of statistical randomized encoding. We construct
a computational encoding in NC0

4 for every polynomial-time computable function, assuming the ex-
istence of a cryptographic pseudorandom generator (PRG) in ⊕L/poly. (The latter assumption is
implied by most standard intractability assumptions used in cryptography.) This result is obtained
by combining a variant of Yao’s garbled circuit technique with previous “information-theoretic”
constructions of randomizing polynomials.

We present several applications of computational randomized encoding. In particular, we relax
the sufficient assumptions for parallel constructions of cryptographic primitives, obtain new parallel
reductions between primitives, and simplify the design of constant-round protocols for multiparty
computation.

5.1 Introduction

In Chapter 4 we showed that functions in ⊕L/poly (resp. NL) admit a perfect (resp. statisti-
cal) randomized encoding in NC0

4. A major question left open by these results is whether every
polynomial-time computable function admits an encoding in NC0. In this chapter we consider the
relaxed notion of computational randomized encoding. As we saw in Chapter 4, computationally
private encodings are sufficient for most applications. Thus, settling the latter question for the
relaxed notion may be viewed as a second-best alternative.

5.1.1 Overview of Results and Techniques

We construct a computationally private encoding in NC0
4 for every polynomial-time computable

function, assuming the existence of a “minimal” cryptographic pseudorandom generator, namely
one that stretches its seed by just one bit, in ⊕L/poly.1 We refer to the latter assumption as the

1It is not known whether such a minimal PRG implies a PRG in the same class that stretches its seed by a linear
or superlinear amount.

65

“Easy PRG” (EPRG) assumption. (This assumption can be slightly relaxed, e.g., to also be implied
by the existence of a PRG in NL/poly; see Remark 5.2.17.) We note that EPRG is a very mild
assumption. In particular, it is implied by most concrete intractability assumptions commonly
used in cryptography, such as ones related to factoring, discrete logarithm, or lattice problems
(see Remark 4.5.8). It is also implied by the existence in ⊕L/poly of a one-way permutation or,
using [HILL99], of any regular one-way function (OWF); i.e., a OWF f = {fn} that maps the same
(polynomial-time computable) number of elements in {0, 1}n to every element in Im(fn). (This is
the case, for instance, for any one-to-one OWF.)2 The NC0 encoding we obtain under the EPRG
assumption has degree 3 and locality 4. Its size is nearly linear in the circuit size of the encoded
function.

We now give a high-level overview of our construction. Recall that we wish to encode a
polynomial-time computable function by an NC0 function. To do this we rely on a variant of Yao’s
garbled circuit technique [Yao86]. Roughly speaking, Yao’s technique allows to efficiently “encrypt”
a boolean circuit in a way that enables to compute the output of the circuit but “hides” any other
information about the circuit’s input. These properties resemble the ones required for randomized
encoding.3 Moreover, the garbled circuit enjoys a certain level of locality (or parallelism) in the
sense that gates are encrypted independently of each other. Specifically, each encrypted gate is
obtained by applying some cryptographic primitive (typically, a high-stretch PRG or an encryption
scheme with special properties), on a constant number of (long) random strings and, possibly, a
single input bit. However, the overall circuit might not have constant locality (it might not even
be computable in NC) as the cryptographic primitive being used in the gates might be sequential
in nature. Thus, the bottleneck of the construction is the parallel time complexity of the primitive
being used.

In Chapter 4 we showed (via “information theoretic” randomized encoding) that under relatively
mild assumptions many cryptographic primitives can be computed in NC0. Hence, we can try to
plug one of these primitives into the garbled circuit construction in order to obtain an encoding
with constant locality. However, a direct use of this approach would require stronger assumptions4

than EPRG and result in an NC0 encoding with inferior parameters. Instead, we use the following
variant of this approach.

Our construction consists of three steps. The first step is an NC0 implementation of one-time
symmetric encryption using a minimal PRG as an oracle. (Such an encryption allows to encrypt
a single message whose length may be polynomially larger than the key. Note that we are only
assuming the existence of a minimal PRG, i.e., a PRG that stretches its seed only by one bit.
Such a PRG cannot be directly used to encrypt long messages.) The second and main step of the
construction relies on a variant of Yao’s garbled circuit technique [Yao86] to obtain an encoding
in NC0 which uses one-time symmetric encryption as an oracle. By combining these two steps we
get an encoding that can be computed by an NC0 circuit which uses a minimal PRG as an oracle.
Finally, using the EPRG assumption and Theorem 4.2.6, we apply a final step of “information-
theoretic” encoding to obtain an encoding in NC0 with degree 3 and locality 4.

2Using [HILL99] or [HHR06] this regularity requirement can be relaxed. See Footnote 13 in Chapter 4.
3This similarity is not coincidental as both concepts were raised in the context of secure multiparty computation.

Indeed, an information theoretic variant of Yao’s garbled circuit technique was already used in [IK02] to construct
low degree randomized encoding for NC1 functions.

4Previous presentations of Yao’s garbled circuit relied on primitives that seem less likely to allow an NC0 imple-
mentation. Specifically, [BMR90, NPS99] require linear stretch PRG and [LP04] requires symmetric encryption that
enjoys some additional properties.

66

The above result gives rise to several types of cryptographic applications, discussed below.

Relaxed assumptions for cryptography in NC0

In Chapter 4 we showed that the existence of most cryptographic primitives in NC0 follows from
their existence in higher complexity classes such as ⊕L/poly, which is typically a very mild as-
sumption. This result was obtained by combining the results on (information-theoretic) random-
ized encodings mentioned above with the fact that the security of most cryptographic primitives is
inherited by their randomized encoding.

Using our construction of computationally private encodings, we can further relax the suffi-
cient assumptions for cryptographic primitives in NC0. As we saw in Chapter 4, the security of
most primitives is also inherited by their computationally private encoding. This is the case even
for relatively “sophisticated” primitives such as public-key encryption, digital signatures, (com-
putationally hiding) commitments, and (interactive or non-interactive) zero-knowledge proofs (see
Table 4.9.1). Thus, given that these primitives at all exist,5 their existence in NC0 follows from the
EPRG assumption, namely from the existence of a PRG in complexity classes such as ⊕L/poly.
Previously (using the results of Chapter 4), the existence of each of these primitives in NC0 would
only follow from the assumption that this particular primitive can be implemented in the above
classes, a seemingly stronger assumption than EPRG.

It should be noted that we cannot obtain a similar result for some other primitives, such as one-
way permutations and collision-resistant hash functions. The results for these primitives obtained
in Chapter 4 rely on certain regularity properties of the encoding that are lost in the transition to
computational privacy.

Parallel reductions between cryptographic primitives

In Chapter 4 we also obtained new NC0 reductions between cryptographic primitives. (Unlike the
results discussed above, here we consider unconditional reductions that do not rely on unproven
assumptions.) In particular, known NC1-reductions from PRG to one-way permutations [GL89] or
even to more general types of one-way functions [HILL99, Vio05, HHR06] can be encoded into NC0-
reductions (see Remark 4.5.9). However, these NC0-reductions crucially rely on the very simple
structure of the NC1-reductions from which they are derived. In particular, it is not possible to use
the results of Chapter 4 for encoding general NC1-reductions (let alone polynomial-time reductions)
into NC0-reductions.

As a surprising application of our technique, we get a general “compiler” that converts an
arbitrary (polynomial-time) reduction from a primitive P to a PRG into an NC0-reduction from P
to a PRG. This applies to all primitives P that are known to be equivalent to a one-way function, and
whose security is inherited by their computationally-private encoding. In particular, we conclude
that symmetric encryption,6 commitment, and digital signatures are all NC0-reducible to a minimal
PRG (hence also to a one-way permutation or more general types of one-way functions).

No parallel reductions of this type were previously known, even in NC. The known construction
of commitment from a PRG [Nao91] requires a linear-stretch PRG (expanding n bits into n +

5This condition is redundant in the case of signatures and commitments, whose existence follows from the existence
of a PRG. We will later describe a stronger result for such primitives.

6 By symmetric encryption we refer to (probabilistic) stateless encryption for multiple messages, where the parties
do not maintain any state information other than the key. If parties are allowed to maintain synchronized states,
symmetric encryption can be easily reduced in NC0 to a PRG.

67

Ω(n) bits), which is not known to be reducible in parallel to a minimal PRG. Other primitives,
such as symmetric encryption and signatures, were not even known to be reducible in parallel
to a polynomial-stretch PRG. For instance, the only previous parallel construction of symmetric
encryption from a “low-level” primitive is based on the parallel PRF construction of [NR99]. This
yields an NC1-reduction from symmetric encryption to synthesizers, a stronger primitive than a
PRG. Thus, we obtain better parallelism and at the same time rely on a weaker primitive. The
price we pay is that we cannot generally guarantee parallel decryption. (See Section 5.3.2 for further
discussion.)

An interesting feature of the new reductions is their non-black-box use of the underlying PRG.
That is, the “code” of the NC0-reduction we get (implementing P using an oracle to a PRG) depends
on the code of the PRG. This should be contrasted with most known reductions in cryptography,
which make a black-box use of the underlying primitive. In particular, this is the case for the
abovementioned NC0-reductions based on Chapter 4. (See [RTV04] for a thorough taxonomy of
reductions in cryptography.)

Application to secure computation

The notion of randomizing polynomials was originally motivated by the goal of minimizing the
round complexity of secure multi-party computation [Yao86, GMW87, BOGW88, CCD88]. The
main relevant observations made in [IK00] were that: (1) the round complexity of most general
protocols from the literature is related to the degree of the function being computed; and (2) if f is
represented by a vector f̂ of degree-d randomizing polynomials, then the task of securely computing
f can be reduced to that of securely computing some deterministic degree-d function f̂ ′ which is
closely related to f̂ . This reduction from f to f̂ ′ is fully non-interactive, in the sense that a protocol
for f can be obtained by invoking a protocol for f̂ and applying a local computation on its outputs
(without additional interaction).

A useful corollary of our results is that under the EPRG assumption, the task of securely com-
puting an arbitrary polynomial-time computable function f reduces (non-interactively) to that of
securely computing a related degree-3 function f̂ ′. This reduction is only computationally secure.
Thus, even if the underlying protocol for f̂ ′ is secure in an information-theoretic sense, the re-
sulting protocol for f will only be computationally secure. (In contrast, previous constructions
of randomizing polynomials maintained information-theoretic security, but only efficiently applied
to restricted function classes such as ⊕L/poly.) This reduction gives rise to new, conceptually
simpler, constant-round protocols for general functions. For instance, a combination of our result
with the classical “BGW protocol” [BOGW88] gives a simpler, and in some cases more efficient,
alternative to the constant-round protocol of Beaver, Micali and Rogaway [BMR90] (though relies
on a stronger assumption).

5.1.2 Organization

In Section 5.2 we construct a computationally private encoding in NC0 for every polynomial-time
computable function. Applications of this construction are discussed in Section 5.3. In particular,
in Section 5.3.1 we relax the sufficient assumptions for parallel constructions of cryptographic prim-
itives, in Section 5.3.2 we obtain new parallel reductions between primitives, and in Section 5.3.3
simplify the design of constant-round protocols for multiparty computation.

68

5.2 Computational Encoding in NC0 for Efficiently Computable
Functions

In this section we construct a perfectly correct computational encoding of degree 3 and locality 4
for every efficiently computable function. Our construction consists of three steps. In Section 5.2.1,
we describe an NC0 implementation of one-time symmetric encryption using a minimal PRG as an
oracle (i.e., a PRG that stretches its seed by just one bit). In Section 5.2.2 we describe the main
step of the construction, in which we encode an arbitrary circuit using an NC0 circuit which uses
one-time symmetric encryption as an oracle. This step is based on a variant of Yao’s garbled circuit
technique [Yao86]. (The privacy proof of this construction is deferred to Section 5.2.4.) Combining
the first two steps, we get a computational encoding in NC0 with an oracle to a minimal PRG.
Finally, in Section 5.2.3, we derive the main result by relying on the existence of an “easy PRG”,
namely, a minimal PRG in ⊕L/poly.

Remark 5.2.1 Recall that the definition of computational randomized encoding uses n both as
an input length parameter and as a cryptographic “security parameter” quantifying computational
privacy (see Definition 3.1.7). When describing our construction, it will be convenient to use a
separate parameter k for the latter, where computational privacy will be guaranteed as long as
k ≥ nε for some constant ε > 0.

5.2.1 From PRG to One-Time Encryption

An important tool in our construction is a one-time symmetric encryption; that is, a (probabilistic)
private-key encryption that is semantically secure [GM84b] for encrypting a single message. We
describe an NC0-reduction from such an encryption to a minimal PRG, stretching its seed by a
single bit. We start by defining minimal PRG and one-time symmetric encryption.

Definition 5.2.2 Let G : {0, 1}k → {0, 1}`(k) be a PRG (see Definition 4.5.1). We say that G is
a minimal PRG if it stretches its input by one bit (i.e., `(k) = k + 1). When `(k) = k + Ω(k) we
say that G is a linear-stretch PRG. We refer to G as a polynomial-stretch PRG if `(k) = Ω(kc)
for some constant c > 1.

Definition 5.2.3 (One-time symmetric encryption) A one-time symmetric encryption scheme
is a pair (E, D), of probabilistic polynomial-time algorithms satisfying the following conditions:

• Correctness: For every k-bit key e and for every plaintext m ∈ {0, 1}∗, the algorithms E, D

satisfy De(Ee(m)) = m (where Ee(m) def= E(e,m) and similarly for D).

• Security: For every polynomial `(·), and every families of plaintexts {xk}k∈N and {x′k}k∈N
where xk, x

′
k ∈ {0, 1}`(k), it holds that

{EUk
(xk)}k∈N

c≡ {EUk
(x′k)}k∈N.

The integer k serves as the security parameter of the scheme. The scheme is said to be `(·)-one-
time symmetric encryption scheme if correctness and security hold with respect to plaintexts whose
length is bounded by `(k).

69

The above definition enables to securely encrypt polynomially long messages under short keys.
This is an important feature that will be used in our garbled circuit construction described in Sec-
tion 5.2.2. In fact, it would suffice for our purposes to encrypt messages of some fixed polynomial7

length, say `(k) = k2. This could be easily done in NC0 if we had oracle access to a PRG with a
corresponding stretch. Given such a PRG G, the encryption can be defined by Ee(m) = G(e)⊕m
and the decryption by De(c) = G(e) ⊕ c. However, we would like to base our construction on a
PRG with a minimal stretch.

From the traditional “sequential” point of view, such a minimal PRG is equivalent to a PRG
with an arbitrary polynomial stretch (cf. [Gol01a, Thm. 3.3.3]). In contrast, this is not known
to be the case with respect to parallel reductions. It is not even known whether a linear-stretch
PRG is NC-reducible to a minimal PRG (see [Vio05] for some relevant negative results). Thus, a
minimal PRG is a more conservative assumption from the point of view of parallel cryptography.
Moreover, unlike a PRG with linear stretch, a minimal PRG is reducible in parallel to one-way
permutations and other types of one-way functions (see Remark 4.5.9).

The above discussion motivates a direct parallel construction of one-time symmetric encryption
using a minimal PRG, i.e., a construction that does not rely on a “stronger” type of PRG as an
intermediate step. We present such an NC0 construction below.

Construction 5.2.4 (From PRG to one-time symmetric encryption) Let G be a mini-
mal PRG that stretches its input by a single bit, let e be a k-bit key, and let m be a (k + `)-
bit plaintext. Define the probabilistic encryption algorithm Ee(m, (r1, . . . , r`−1))

def= (G(e) ⊕ r1,
G(r1) ⊕ r2, . . . , G(r`−2) ⊕ rl−1, G(r`−1) ⊕m), where ri ← Uk+i serve as the coin tosses of E. The
decryption algorithm De(c1, . . . , c`−1) sets r0 = e, ri = ci⊕G(ri−1) for i = 1, . . . , `, and outputs r`.

We prove the security of Construction 5.2.4 via a standard hybrid argument.

Lemma 5.2.5 The scheme (E, D) described in Construction 5.2.4 is a one-time symmetric en-
cryption scheme.

Proof: Construction 5.2.4 can be easily verified to satisfy the correctness requirement. We now
prove the security of this scheme. Assume, towards a contradiction, that Construction 5.2.4 is not
secure. It follows that there is a polynomial `(·) and two families of strings x = {xk} and y = {yk}
where |xk| = |yk| = k+`(k), such that the distribution ensembles Ee(xk) and Ee(yk) where e ← Uk,
can be distinguished by a polynomial size circuit family {Ak} with non-negligible advantage ε(k).

We use a hybrid argument to derive a contradiction. Fix some k. For a string m of length k+`(k)
we define for 0 ≤ i ≤ `(k) the distributions Hi(m) in the following way. The distribution H0(m) is
defined to be Er0(m, (r1, . . . , rl−1)) where ri ← Uk+i. For 1 ≤ i ≤ `(k), the distribution Hi(m) is
defined exactly as Hi−1(m) only that the string G(ri−1) is replaced with a random string wi−1, which
is one bit longer than ri−1 (that is, wi−1 ← Uk+i). Observe that for every m ∈ {0, 1}k+`(k), all the
`(k) strings of the hybrid H`(k)(m) are distributed uniformly and independently (each of them is the
result of XOR with a fresh random string wi). Therefore, in particular, H`(k)(xk) ≡ H`(k)(yk). Since
H0(xk) ≡ Ee(xk) as well as H0(yk) ≡ Ee(yk), it follows that our distinguisher Ak distinguishes,
w.l.o.g., between H`(k)(xk) and H0(xk) with at least ε(k)/2 advantage. Then, since there are `(k)
hybrids, there must be 1 ≤ i ≤ `(k) such that the neighboring hybrids, Hi−1(xk),Hi(xk), can be
distinguished by Ak with ε(k)

2`(k) advantage.

7Applying the construction to circuits with a bounded fan-out, even linear length would suffice.

70

We now show how to use Ak to distinguish a randomly chosen string from an output of the
pseudorandom generator. Given a string z of length k + i (that is either sampled from G(Uk+i−1)
or from Uk+i), we uniformly choose the strings rj ∈ {0, 1}k+j for j = 1, . . . , `(k) − 1. We feed Ak

with the sample (r1, . . . , ri−1, z ⊕ ri, G(ri) ⊕ ri+1, . . . , G(r`(k)−1) ⊕ xk). If z is a uniformly chosen
string then the above distribution is equivalent to Hi(xk). On the other hand, if z is drawn from
G(Ui) then the result is distributed exactly as Hi−1(xk), since each of the first i − 1 entries of
Hi−1(xk) is distributed uniformly and independently of the remaining entries (each of these entries
was XOR-ed with a fresh and unique random wj). Hence, we constructed an adversary that breaks
the PRG with non-negligible advantage ε(k)

2`(k) , deriving a contradiction.

Since the encryption algorithm described in Construction 5.2.4 is indeed an NC0 circuit with
oracle access to a minimal PRG, we get the following lemma.

Lemma 5.2.6 Let G be a minimal PRG. Then, there exists one-time symmetric encryption scheme
(E, D) in which the encryption function E is in NC0[G].

Note that the decryption algorithm of the above construction is sequential. We can parallelize
it (without harming the parallelization of the encryption) at the expense of strengthening the
assumption we use.

Claim 5.2.7 Let PG (resp. LG) be a polynomial-stretch (resp. linear-stretch) PRG. Then, for
every polynomial p(·) there exists a p(·)-one-time symmetric encryption scheme (E, D) such that
E ∈ NC0[PG] and D ∈ NC0[PG] (resp. E ∈ NC0[LG] and D ∈ NC1[LG]).

Proof: Use Construction 5.2.4 (where |ri| = |G(ri−1)|). When the stretch of G is polynomial
(resp. linear) the construction requires only O(1) (resp. O(log k)) invocations of G, and therefore,
so does the decryption algorithm.

5.2.2 From One-Time Encryption to Computational Encoding

Let f = {fn : {0, 1}n → {0, 1}`(n)}n∈N be a polynomial-time computable function, computed by
the uniform circuit family {Cn}n∈N. We use a one-time symmetric encryption scheme (E,D) as a
black box to encode f by a perfectly correct computational encoding f̂ = {f̂n}n∈N. Each f̂n will
be an NC0 circuit with an oracle access to the encryption algorithm E, where the latter is viewed
as a function of the key, the message, and its random coin tosses. The construction uses a variant
of Yao’s garbled circuit technique [Yao86]. Our notation and terminology for this section borrow
from previous presentations of Yao’s construction in [Rog91, NPS99, LP04].8 Before we describe
the actual encoding it will be convenient to think of the following “physical” analog that uses locks
and boxes.

8Security proofs for variants of this construction were given implicitly in [Rog91, TX03, LP04] in the context of
secure computation. However, they cannot be directly used in our context for different reasons. In particular, the
analysis of [LP04] relies on a special form of symmetric encryption and does not achieve perfect correctness, while
that of [Rog91, TX03] relies on a linear-stretch PRG.

71

A physical encoding. To each wire of the circuit we assign a pair of keys: a 0-key that represents
the value 0 and a 1-key that represents the value 1. For each of these pairs we randomly color one
key black and the other key white. This way, given a key one cannot tell which bit it represents
(since the coloring is random). For every gate of the circuit, the encoding consists of four double-
locked boxes – a white-white box (which is locked by the white keys of the wires that enter the
gate), a white-black box (locked by the white key of the left incoming wire and the black key of
the right incoming wire), a black-white box (locked by the black key of the left incoming wire and
the white key of the right incoming wire) and a black-black box (locked by the black keys of the
incoming wires). Inside each box we put one of the keys of the gate’s output wires. Specifically,
if a box is locked by the keys that represent the values α, β then for every outgoing wire we put
in the box the key that represents the bit g(α, β), where g is the function that the gate computes.
For example, if the gate is an OR gate then the box which is locked by the incoming keys that
represent the bits (0, 1) contains all the 1-keys of the outgoing wires. So if one has a single key for
each of the incoming wires, he can open only one box and get a single key for each of the outgoing
wires. Moreover, as noted before, holding these keys does not reveal any information about the
bits they represent.

Now, fix some input x for fn. For each wire, exactly one of the keys corresponds to the value
of the wire (induced by x); we refer to this key as the active key and to the second key as the
inactive key. We include in the encoding of fn(x) the active keys of the input wires. (This is the
only place in which the encoding depends on the input x.) Using these keys and the locked boxes
as described above, one can obtain the active keys of all the wires by opening the corresponding
boxes in a bottom-to-top order. To make this information useful (i.e., to enable decoding of fn(x)),
we append to the encoding the semantics of the output wires; namely, for each output wire we
expose whether the 1-key is white or black. Hence, the knowledge of the active key of an output
wire reveals the value of the wire.

The actual encoding. The actual encoding is analogous to the above physical encoding. We
let random strings play the role of physical keys. Instead of locking a value in a double-locked
box, we encrypt it under the XOR of two keys. Before formally defining the construction, we need
the following notation. Denote by x = (x1, . . . , xn) the input for fn. Let k = k(n) be a security
parameter which may be set to nε for an arbitrary positive constant ε (see Remark 5.2.1). Let
Γ(n) denote the number of gates in Cn. For every 1 ≤ i ≤ |Cn|, denote by bi(x) the value of the
i-th wire induced by the input x; when x is clear from the context we simply use bi to denote the
wire’s value.

Our encoding f̂n(x, (r,W)) consists of random inputs of two types: |Cn| pairs of strings W 0
i ,W 1

i ∈
{0, 1}2k, and |Cn| bits (referred to as masks) denoted r1, . . . , r|Cn|.

9 The strings W 0
i ,W 1

i will serve
as the 0-key and the 1-key of the i-th wire, while the bit ri will determine which of these keys is
the black key. We use ci to denote the value of wire i masked by ri; namely, ci = bi ⊕ ri. Thus, ci

is the color of the active key of the i-th wire (with respect to the input x). As before, the encoding
f̂n(x, (r,W)) will reveal each active key W bi

i and its color ci but will hide the inactive keys W 1−bi
i

and the masks ri of all the wires (except the masks of the output wires). Intuitively, since the
active keys and inactive keys are distributed identically, the knowledge of an active key W bi

i does
not reveal the value bi.

9In fact, each application of the encryption scheme will use some additional random bits. To simplify notation,
we keep these random inputs implicit.

72

The encoding f̂n consists of the concatenation of O(|Cn|) functions, which include several entries
for each gate and for each input and output wire. In what follows ⊕ denotes bitwise-xor on strings;
when we want to emphasize that the operation is applied to single bits we will usually denote it by
either + or −. We use ◦ to denote concatenation. For every β ∈ {0, 1} and every i, we view the
string W β

i as if it is partitioned into two equal-size parts denoted W β,0
i , W β,1

i .

Construction 5.2.8 Let Cn be a circuit that computes fn. Then, we define f̂n(x, (r,W)) to be the
concatenation of the following functions of (x, (r,W)).
Input wires: For an input wire i, labeled by a literal ` (either some variable xu or its negation) we
append the function W `

i ◦ (` + ri).
Gates: Let t ∈ [Γ(n)] be a gate that computes the function g ∈ {AND, OR} with input wires i, j and
output wires y1, . . . , ym. We associate with this gate 4 functions that are referred to as gate labels.
Specifically, for each of the 4 choices of ai, aj ∈ {0, 1}, we define a corresponding function Q

ai,aj

t .
This function can be thought of as the box whose color is (ai, aj). It is defined as follows:

Q
ai,aj

t (r,W) def= E
W

ai−ri,aj
i ⊕W

aj−rj ,ai
j

(
W

g(ai−ri,aj−rj)
y1 ◦ (g(ai − ri, aj − rj) + ry1) ◦ . . . (5.2.1)

◦W
g(ai−ri,aj−rj)
ym ◦ (g(ai − ri, aj − rj) + rym)

)
,

where E is a one-time symmetric encryption algorithm. (For simplicity, the randomness of E is
omitted.) That is, the colored keys of all the output wires of this gate are encrypted under a key that
depends on the keys of the input wires of the gate. Note that Q

ai,aj

t depends only on the random
inputs. We refer to the label Q

ci,cj

t that is indexed by the colors of the active keys of the input wires
as an active label, and to the other three labels as the inactive labels.
Output wires: For each output wire i of the circuit, we add the mask of this wire ri.

It is not hard to verify that f̂n is in NC0[E]. In particular, a term of the form W `
i is a 3-local

function of W 0
i ,W 1

i and `, since its j-th bit depends on the j-th bit of W 0
i , the j-th bit of W 1

i and
on the literal `. Similarly, the keys that are used in the encryptions are 8-local functions, and the
arguments to the encryption are 6-local functions of (r,W).

We will now analyze the complexity of f̂n. The output complexity and randomness complexity
of f̂ are both dominated by the complexity of the gate labels. Generally, the complexity of these
functions is poly(|Cn| · k) (since the encryption E is computable in polynomial time).10 However,
when the circuit Cn has bounded fan-out (say 2) each invocation of the encryption uses poly(k)
random bits and outputs poly(k) bits. Hence, the overall complexity is O(|Cn|) ·poly(k) = O(|Cn| ·
nε) for an arbitrary constant ε > 0. Since any circuit with unbounded fan-out of size |Cn| can
be (efficiently) transformed into a bounded-fanout circuit whose size is O(|Cn|) (at the price of
a logarithmic factor in the depth), we get an encoding of size O(|Cn| · nε) for every (unbounded
fan-out) circuit family {Cn}.

Let µ(n), s(n) be the randomness complexity and the output complexity of f̂n respectively. We
claim that the function family f̂ = {f̂n : {0, 1}n × {0, 1}µ(n) → {0, 1}s(n)}n∈N defined above is
indeed a computationally randomized encoding of the family f . We start with perfect correctness.

10Specifically, the encryption is always invoked on messages whose length is bounded by `(n)
def
= O(|Cn| · k), hence

we can use `(n)-one-time symmetric encryption.

73

Lemma 5.2.9 (Perfect correctness) There exists a polynomial-time decoder algorithm B such
that for every n ∈ N and every x ∈ {0, 1}n and (r,W) ∈ {0, 1}µ(n), it holds that

B(1n, f̂n(x, (r,W))) = fn(x).

Proof: Let α = f̂n(x, (r,W)) for some x ∈ {0, 1}n and (r,W) ∈ {0, 1}µ(n). Given α, our decoder
computes, for every wire i, the active key W bi

i and its color ci. Then, for an output wire i, the
decoder retrieves the mask ri from α and computes the corresponding output bit of fn(x); i.e.,
outputs bi = ci − ri. (Recall that the masks of the output wires are given explicitly as part of α.)
The active keys and their colors are computed by scanning the circuit from bottom to top.

For an input wire i the desired value, W bi
i ◦ci, is given as part of α. Next, consider a wire y that

goes out of a gate t, and assume that we have already computed the desired values of the input
wires i, j of this gate. We use the colors ci, cj of the active keys of the input wires to select the active
label Q

ci,cj

t of the gate t (and ignore the other 3 inactive labels of this gate). Consider this label
as in Equation (5.2.1); recall that this cipher was encrypted under the key W

ci−ri,cj

i ⊕ W
cj−rj ,ci

j

= W
bi,cj

i ⊕W
bj ,ci

j . Since we have already computed the values ci, cj ,W
bi
i and W

bj

j , we can decrypt
the label Q

ci,cj

t (by applying the decryption algorithm D). Hence, we can recover the encrypted
plaintext, that includes, in particular, the value W

g(bi,bj)
y ◦ (g(bi, bj) + ry), where g is the function

that gate t computes. Since by definition by = g(bi, bj), the decrypted string contains the desired
value.

Remark 5.2.10 By the description of the decoder it follows that if the circuit Cn is in NCi, then
the decoder is in NCi[D], where D is the decryption algorithm. In particular if D is in NCj then the
decoder is in NCi+j . This fact will be useful for some of the applications discussed in Section 5.3.

To argue computational privacy we need to prove the following lemma, whose proof is deferred
to Section 5.2.4.

Lemma 5.2.11 (Computational privacy) There exists a probabilistic polynomial-time simu-
lator S, such that for any family of strings {xn}n∈N, |xn| = n, it holds that S(1n, fn(xn))

c≡
f̂n(xn, Uµ(n)).

Remark 5.2.12 (Information-theoretic variant) Construction 5.2.8 can be instantiated with a
perfect (information-theoretic) encryption scheme, yielding a perfectly private randomized encoding.
(The privacy proof given in Section 5.2.4 can be easily modified to treat this case.) However, in such
an encryption the key must be as long as the encrypted message [Sha49]. It follows that the wires’
key length grows exponentially with their distance from the outputs, rendering the construction
efficient only for NC1 circuits. This information-theoretic variant of the garbled circuit construction
was previously suggested in [IK02]. We will use it in Section 5.2.3 for obtaining a computational
encoding with a parallel decoder.

5.2.3 Main Results

Combining Lemmas 5.2.9, 5.2.11, and 5.2.6 we get an NC0 encoding of any efficiently computable
function using an oracle to a minimal PRG.

74

Theorem 5.2.13 Suppose f is computed by a uniform family {Cn} of polynomial-size circuits. Let
G be a (minimal) PRG. Then, f admits a perfectly correct computational encoding f̂ in NC0[G].
The complexity of f̂ is O(|Cn| · nε) (for an arbitrary constant ε > 0).

We turn to the question of eliminating the PRG oracles. We follow the natural approach of
replacing each oracle with an NC0 implementation. (A more general but less direct approach will
be described in Remark 5.2.17.) Using Theorem 4.5.6, a minimal PRG in NC0 is implied by a PRG
in PREN , and in particular by a PRG in NC1 or even ⊕L/poly. Thus, we can base our main
theorem on the following “easy PRG” assumption.

Assumption 5.2.14 (Easy PRG (EPRG)) There exists a PRG in ⊕L/poly.

As discussed in Section 5.1.1, EPRG is a very mild assumption. In particular, it is implied
by most standard cryptographic intractability assumptions, and is also implied by the existence in
⊕L/poly of one-way permutations and other types of one-way functions.

Combining Theorem 5.2.13 with the EPRG assumption, we get a computational encoding in
NC0 for every efficiently computable function. To optimize its parameters we apply a final step
of perfect encoding, yielding a computational encoding with degree 3 and locality 4 (see Corol-
lary 4.2.9). Thus, we get the following main theorem.

Theorem 5.2.15 Suppose f is computed by a uniform family {Cn} of polynomial-size circuits.
Then, under the EPRG assumption, f admits a perfectly correct computational encoding f̂ of degree
3, locality 4 and complexity O(|Cn| · nε) (for an arbitrary constant ε > 0).

Corollary 5.2.16 Under the EPRG assumption, CREN = BPP.

Proof: Let f(x) be a function in BPP. It follows that there exists a function f ′(x, z) ∈ P such
that for every x ∈ {0, 1}n it holds that Prz[f ′(x, z) 6= f(x)] ≤ 2−n. Let f̂ ′((x, z), r) be the NC0

computational encoding of f ′ promised by Theorem 5.2.15. Since f ′ is a statistical encoding of f
(the simulator and the decoder are simply the identity functions), it follows from Lemma 3.2.4 that
f̂(x, (z, r)) def= f̂ ′((x, z), r) is a computational encoding of f in NC0.

Conversely, suppose f ∈ CREN and let f̂ be an NC0 computational encoding of f . A BPP
algorithm for f can be obtained by first computing ŷ = f̂(x, r) on a random r and then invoking
the decoder on ŷ to obtain the output y = f(x) with high probability.

Remark 5.2.17 (Relaxing the EPRG assumption) The EPRG assumption is equivalent to
the existence of a PRG in NC0 or in PREN . It is possible to base Theorem 5.2.15 on a seem-
ingly more liberal assumption by taking an alternative approach that does not rely on a perfect
encoding. The idea is to first replace each PRG oracle with an implementation G from some class
C, and only then apply a (perfectly correct) statistical encoding to the resulting NC0[G] circuit.
Thus, we need G to be taken from a class C such that NC0[C] ⊆ SREN . It turns out that the class
NL/poly satisfies this property. In particular, by [Imm88] it holds that NC0[NL/poly] = NL/poly,
and by Theorem 4.2.8 we have NL/poly ⊆ SREN (and furthermore, functions in NL/poly admit
a statistical NC0 encoding with perfect correctness). Thus, we can replace ⊕L/poly in the EPRG
assumption with NL/poly. Another alternative is to assume the existence of a one-time symmetric
encryption (E, D) whose encrypting algorithm E is in SREN . According to Theorem 4.7.3 the

75

last assumption is equivalent to the existence of one-time symmetric encryption (with negligible
decryption error) whose encryption algorithm is in NC0. Hence by plugging this scheme to Con-
struction 5.2.8, we obtain a computationally private, statistically correct randomized encoding in
NC0 for any polynomial-time computable function (and in particular derive Corollary 5.2.16). In
fact, we can even obtain perfect correctness (as in Theorem 5.2.15) by assuming the existence of
one-time symmetric encryption in NL/poly (which, using Theorems 4.7.3, 4.2.8, implies such an
errorless scheme in NC0). Note that (PRG ∈ ⊕L/poly) =⇒ (PRG ∈ NL/poly) =⇒ (one-time
encryption ∈ NL/poly), while the converse implications are not known to hold.

On the parallel complexity of the decoder. As we shall see in Section 5.3, it is sometimes
useful to obtain a computational encoding whose decoder is also parallelized. Recall that if the
circuit computing f is an NCi circuit and the decryption algorithm (used in the construction) is
in NCj , we obtain a parallel decoder in NCi+j (see Remark 5.2.10). Unfortunately, we cannot
use the parallel symmetric encryption scheme of Construction 5.2.4 for this purpose because of its
sequential decryption.

We can get around this problem by strengthening the EPRG assumption. Suppose we have a
polynomial-stretch PRG in NC1. (This is implied by some standard cryptographic assumptions,
see [NR04].) In such a case, by Claim 5.2.7, we can obtain a one-time symmetric encryption scheme
(E, D) (for messages of a fixed polynomial length) in which both E and D are in NC1. Our goal is
to turn this into a scheme (Ê, D̂) in which the encryption Ê is in NC0 and the decryption is still
in NC1. We achieve this by applying to (E,D) the encoding given by the information-theoretic
variant of the garbled circuit construction (see Remark 5.2.12 or [IK02]). That is, Ê is a (perfectly
correct and private) NC0 encoding of E, and D̂ is obtained by composing D with the decoder of
the information-theoretic garbled circuit. (The resulting scheme (Ê, D̂) is still a secure encryption
scheme, see Theorem 4.7.3.) Since the symmetric encryption (E′, D′) employed by the information-
theoretic garbled circuit is in NC0, its decoder can be implemented in NC1[D′] = NC1. Thus, D̂ is
also in NC1 (as NC0[decoder] = NC1). Combining this encryption scheme with Construction 5.2.8,
we get a computational encoding of a function f ∈ NCi with encoding in NC0 and decoding in
NCi+1. Assuming there exists a linear-stretch PRG in NC1, we can use a similar argument to
obtain an NC0 encoding for f whose decoding in NCi+2. (In this case we use the linear-PRG part
of Claim 5.2.7.) Summarizing, we have the following:

Claim 5.2.18 Suppose there exists a PRG with polynomial stretch (resp. linear stretch) in NC1.
Then, every function f ∈ NCi admits a perfectly-correct computational encoding in NC0 whose
decoder is in NCi+1 (resp. NCi+2).

5.2.4 Proof of Lemma 5.2.11

The simulator

We start with the description of the simulator S. Given 1n and fn(x), for some x ∈ {0, 1}n, the
simulator chooses, for every wire i of the circuit Cn, an active key and a color; namely, S selects a
random string W bi

i of length 2k(n), and a random bit ci. (Recall that bi denotes the value of the
i-th wire induced by the input x. The simulator, of course, does not know this value.) For an input
wire i, the simulator outputs W bi

i ◦ci. For a gate t with input wires i, j and output wires y1, . . . , ym

the simulator computes the active label Q
ci,cj

t = E
W

bi,cj
i ⊕W

bj ,ci
j

(W by1
y1 ◦cy1 ◦ . . .◦W bym

ym ◦cym) and sets

76

the other three inactive labels of this gate to be encryptions of all-zeros strings of appropriate length
under random keys; that is, for every two bits (ai, aj) 6= (ci, cj), the simulator chooses uniformly a

k(n)-bit string Rai,aj and outputs Q
ai,aj

l = ERai,aj
(0|W

by1
y1

◦cy1◦...◦W
bym
ym ◦cym |). Finally, for an output

wire i, the simulator outputs ri = ci − bi (recall that bi is known since fn(x) is given).
Since Cn can be constructed in polynomial time and since the encryption algorithm runs in

polynomial time the simulator is also a polynomial-time algorithm. We refer to the gate labels
constructed by the simulator as “fake” gate labels and to gate labels of f̂n as “real” gate labels.

Assume, towards a contradiction, that there exists a (non-uniform) polynomial-size circuit fam-
ily {An}, a polynomial p(·), a string family {xn}, |xn| = n, such that for infinitely many n’s it
holds that

∆(n) def= |Pr[An(S(1n, fn(xn))) = 1]− Pr[An(f̂n(xn, Uµ(n))) = 1]| > 1
p(n)

.

We use a hybrid argument to show that such a distinguisher can be used to break the encryption
hence deriving a contradiction.

Hybrid encodings

From now on we fix n and let k = k(n). We construct a sequence of hybrid distributions that depend
on xn, and mix “real” gates labels and “fake” ones, such that one endpoint corresponds to the
simulated output (in which all the gates have “fake” labels) and the other endpoint corresponds to
f̂n(xn, Uµ(n)) (in which all the gates have real labels). Hence, if the extreme hybrids can be efficiently
distinguished then there must be two neighboring hybrids that can be efficiently distinguished.

The hybrids Hn
t . First, we order the gates of Cn in topological order. That is, if the gate t uses

the output of gate t′, then t′ < t. Now, for every t = 0, . . . ,Γ(n), we define the hybrid algorithm
Hn

t that constructs “fake” labels for the first t gates and “real” labels for the rest of the gates:

1. For every wire i uniformly choose two 2k-bit strings W bi
i ,W 1−bi

i and a random bit ci.

2. For every input wire i output W bi
i ◦ ci.

3. For every gate t′ ≤ t with input wires i, j and output wires y1, . . . , ym output

Q
ci,cj

t′ = E
W

bi,cj
i ⊕W

bj ,ci
j

(W by1
y1 ◦ cy1 ◦ . . . ◦W

bym
ym ◦ cym),

and for every choice of (ai, aj) ∈ {0, 1}2 that is different from (ci, cj), uniformly choose a k-bit

string Rai,aj and output Q
ai,aj

t′ = ERai,aj
(0|W

by1
y1

◦cy1◦...◦W
bym
ym ◦cym |).

4. For every gate t′ > t, let g be the function that t′ computes (AND or OR), let i, j be the
input wires of t′ and let y1, . . . , ym be its output wires. Use xn to compute the value of
bi(xn), bj(xn), and set ri = ci − bi and rj = cj − bj . For every choice of (ai, aj) ∈ {0, 1}2,
compute Q

ai,aj

t′ exactly as in Equation 5.2.1, and output it.

5. For every output wire i compute bi and output ri = ci − bi.

77

Claim 5.2.19 There exist some 0 ≤ t ≤ Γ(n)−1 such that An distinguishes between Hn
t and Hn

t+1

with advantage ∆(n)
Γ(n) .

Proof: First, note that Hn
t uses the string xn only when constructing real labels, that is in Step 4.

Steps 1–3 can be performed without any knowledge on xn, and Step 5 requires only the knowledge
of fn(xn). Obviously, the algorithm Hn

Γ(n) is just a different description of the simulator S, and
therefore S(1n, fn(xn)) ≡ Hn

Γ(n). We also claim that the second extreme hybrid, Hn
0 coincides with

the distribution of the “real” encoding, f̂n(xn, Uµ(n)). To see this note that (1) the strings W 0
i ,W 1

i

are chosen uniformly and independently by Hn
0 , as they are in f̂n(xn, Uµ(n)); and (2) since Hn

0

chooses the ci’s uniformly and independently and sets ri = ci − bi then the ri’s themselves are also
distributed uniformly and independently exactly as they are in f̂n(xn, Uµ(n)). Since for every gate
t the value of Q

ai,aj

t is a function of the random variables, and since it is computed by Hn
0 in the

same way as in f̂n(xn, Uµ(n)), we get that Hn
0 ≡ f̂n(xn, Uµ(n)).

Hence, we can write

∆(n) = |Pr[An(Hn
0) = 1]− Pr[An(Hn

Γ(n)) = 1]| ≤
Γ(n)−1∑

t=0

|Pr[An(Hn
t) = 1]− Pr[An(Hn

t+1) = 1]|,

and so there exists some 0 ≤ t ≤ Γ(n) − 1 such that An distinguishes between Hn
t and Hn

t+1 with
advantage ∆(n)

Γ(n) .

Distinguishing fake gates from real gates

We now show that distinguishing Hn
t and Hn

t+1 allows to distinguish whether a single gate is real
or fake. To do this, we define two random experiments Pn(0) and Pn(1), that produce a real gate
and a fake gate, correspondingly.

The experiments Pn(0), Pn(1). Let i, j be the input wires of the gate t, let y1, . . . , ym be the
output wires of t, let g be the function that gate t computes, and let bi, bj , by1 , . . . , bym be the values
of the corresponding wires induced by the input xn. For σ ∈ {0, 1}, define the distribution Pn(σ)
as the output distribution of the following random process:

• Uniformly choose the 2k-bit strings W bi
i , W 1−bi

i ,W
bj

j ,W
1−bj

j ,W
by1
y1 , W

1−by1
y1 , . . . ,W

bym
ym ,W

1−bym
ym ,

and the random bits ci, cj , cy1 , . . . , cym .

• If σ = 0 then set Q
ci,cj

t and the other three Q
ai,aj

t exactly as in Step 3 of Hn
t .

• If σ = 1 then set Q
ai,aj

t exactly as in Step 4 of Hn
t ; that is, set ri = ci − bi, rj = cj − bj , and

for every choice of (ai, aj) ∈ {0, 1}2, let

Q
ai,aj

t = E
W

ai−ri,aj
i ⊕W

aj−rj ,ai
j

(
W

g(ai−ri,aj−rj)
y1 ◦ (g(ai − ri, aj − rj) + ry1) ◦ . . .

◦W
g(ai−ri,aj−rj)
ym ◦ (g(ai − ri, aj − rj) + rym)

)
.

• Output (W bi
i ,W

bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . ,W

bym
ym , W

1−bym
ym , ci, cj , cy1 , . . . , cym , Q0,0

t , Q0,1
t , Q1,0

t , Q1,1
t).

78

Claim 5.2.20 There exist a polynomial size circuit A′n that distinguishes between Pn(0) and Pn(1)
with advantage ∆(n)

Γ(n) .

Proof: The adversary A′n uses the output of Pn(σ) to construct one of the hybrids Hn
t and Hn

t+1,
and then uses An to distinguish between them. Namely, given the output of Pn, the distinguisher
A′n invokes the algorithm Hn

t where the values of (W bi
i , W

bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . , W

bym
ym ,W

1−bym
ym ,

ci, cj , cy1 , . . . , cym , Q0,0
t , Q0,1

t , Q1,0
t , Q1,1

t) are set to the values given by Pn. By the definition of Pn,
when Pn(0) is invoked we get the distribution of Hn

t , that is the gate t is “fake”; on the other
hand, if Pn(1) is invoked then the gate t is “real” and we get the distribution of Hn

t+1. Hence, by
Claim 5.2.19, A′n has the desired advantage. Finally, since Hn

t runs in polynomial time (when xn

is given), the size of A′n is indeed polynomial.

A delicate point. Note that Pn does not output the inactive keys of the wires i and j (which is
crucial for Claim 5.2.21 to hold). However, the hybrid distributions use inactive keys of wires that
either enter a real gate or leave a real gate (in the first case the inactive keys are used as the keys of
the gate label encryption whereas in the latter case, the inactive keys are being encrypted). Hence,
we do not need these inactive keys to construct the rest of the distribution Hn

t (or Hn
t+1), as i and

j are output wires of gates that precedes t and therefore are “fake” gates. This is the reason for
which we had to sort the gates. On the other hand, the process Pn must output the inactive keys
of the output wires of the gate y1, . . . , ym, since these wires might enter as inputs to another gate
t′ > t which is a “real” gate in both Hn

t and Hn
t+1.

Deriving a contradiction

We now define a related experiment P ′
n in which some of the randomness used by Pn is fixed.

Specifically, we fix the random strings W
by1
y1 , W

1−by1
y1 , . . . , W

bym
ym ,W

1−bym
ym , ci, cj , cy1 , . . . , cym to

some value such that the resulting experiments still can be distinguished by A′n with advantage
∆(n)
Γ(n) . (The existence of such strings is promised by an averaging argument.) For simplicity, we omit
the fixed strings from the output of this new experiment. The experiments P ′

n(0) and P ′
n(1) can

still be distinguished by some polynomial size circuit with advantage ∆(n)
Γ(n) . (Such distinguisher can

be constructed by incorporating the omitted fixed strings into A′n.) Hence, by the contradiction
hypothesis, it follows that this advantage is greater than 1

Γ(n)p(n) for infinitely many n’s. As Γ(n)
is polynomial in n (since Cn is of polynomial size) we deduce that the distribution ensembles
{P ′

n(0)}n∈N and {P ′
n(1)}n∈N are not computationally indistinguishable, in contradiction with the

following claim.

Claim 5.2.21 {P ′
n(0)}n∈N

c≡ {P ′
n(1)}n∈N.

Proof: Fix some n. For both distributions P ′
n(0) and P ′

n(1), the first two entries (i.e., W bi
i ,W

bj

j)

are two uniformly and independently 2k(n)-length strings, and the active label Q
bi,bj

t is a function of
W bi

i ,W
bj

j and the fixed strings. Hence, the distributions P ′
n(0) and P ′

n(1) differ only in the inactive
labels Q

ai,aj

t for (ai, aj) 6= (ci, cj). In P ′
n(0) each of these entries is an all-zeros string that was

encrypted under uniformly and independently chosen key Rai,aj . In the second distribution P ′
n(1),

79

the entry Q
ai,aj

t is an encryption of a “meaningful” message that was encrypted under the key
W

ai−ri,aj

i ⊕W
aj−rj ,ai

j , since (ai, aj) 6= (ci, cj) at least one of the strings W
ai−ri,aj

i ,W
aj−rj ,ai

j is not

given in the output of P ′
n(1) as part of W bi

i ,W
bj

j . Also, each of the strings W
ai−ri,aj

i ,W
aj−rj ,ai

j was
chosen uniformly and it appears only in Q

ai,aj

t and not in any of the other gate labels, therefore the
key W

ai−ri,aj

i ⊕W
aj−rj ,ai

j is distributed uniformly and independently of the other entries of P ′
n(1)’s

output. So all the entries of both P ′
n(1) and P ′

n(0) are independent. Moreover, the security of the
encryption scheme implies that the ensemble {Qai,aj

t } for (ai, aj) 6= (ci, cj) produced by P ′
n(1) is

computationally indistinguishable from the corresponding ensemble produced by P ′
n(0), as in both

cases some p(n)-length message is encrypted under uniformly chosen k(n)-length key. (Recall that
k(n) is polynomial in n by definition, and p(n) = O(|Cn|k(n)) = poly(n)). Hence, by Fact 2.2.7,
the proof follows.

5.3 Applications

5.3.1 Relaxed Assumptions for Cryptography in NC0

In Chapter 4 we showed that computational randomized encoding preserves the security of many
cryptographic primitives.11 It follows from Theorem 5.2.15 that, under the EPRG assumption,
any such primitive can be computed in NC0 if it exists at all (i.e., can be computed in polynomial
time). Formally, we have:

Theorem 5.3.1 Suppose that the EPRG assumption holds. Then,

1. If there exists a public-key encryption scheme (resp., NIZK with an efficient prover or constant-
round ZK proof with an efficient prover for every NP relation), then there exists such a scheme
in which the encryption (prover) algorithm is in NC0

4.

2. If there exists a non-interactive commitment scheme, then there exists such a scheme in which
the sender is in NC0

4 and the receiver is in ANDn ◦NC0.

3. There exists a stateless symmetric encryption scheme (resp., digital signature, MAC, a constant-
round ZK argument for every language in NP) in which the encryption (signing, prover)
algorithm is in NC0

4.

4. There exists a constant-round commitment scheme in which the sender is in NC0
4 and the

receiver is in ANDn ◦NC0.

5. For every polynomial-time computable function we have a (non-adaptive single-oracle) IHS
in which the user is in NC0

5 and the oracle is in BPP.

Note that the existence of (stateless) symmetric encryption, signature, MAC, constant-round com-
mitment scheme and constant-round ZK arguments for NP, does not require any additional as-
sumption other than EPRG. This is a consequence of the fact that they all can be constructed (in
polynomial time) from a PRG (see [Gol01a, Gol04]). For these primitives, we obtain more general
(unconditional) results in the next subsection.

11In some cases, we will need to rely on perfect correctness, which we get “for free” in our main construction. See
Table 4.9.1.

80

Remark 5.3.2 Theorem 5.3.1 reveals an interesting phenomenon. It appears that several cryp-
tographic primitives (e.g., symmetric encryption schemes, digital signatures and MACs) can be
implemented in NC0 despite the fact that their standard constructions rely on pseudorandom func-
tions (PRFs) [GGM86], which cannot be computed even in AC0 [LMN93]. For such primitives, we
actually construct a sequential PRF from the PRG (as in [GGM86]), use it as a building block to
obtain a sequential construction of the desired primitive (e.g., symmetric encryption), and finally
reduce the parallel-time complexity of the resulting function using our machinery. Of course, the
security of the PRF primitive itself is not inherited by its computational (or even perfect) encoding.

Remark 5.3.3 (Concrete assumptions) Theorem 5.3.1 allows an NC0 implementations of many
primitives under several (new) concrete assumptions. In particular, since the EPRG assumption
is implied by the intractability of factoring, the discrete logarithm problem, and lattice problems
(see Remark 4.5.8), we can use any of these assumptions to obtain a digital signature (and MAC)
whose signing algorithm is in NC0

4, as well as a non-interactive commitment scheme in which the
sender is in NC0

4 and the receiver is in ANDn ◦ NC0. Recall that in Section 4.8.2 we showed that,
under the same assumptions, there exists a two-round statistically hiding commitment in which the
sender is in NC0

4 and the receiver is in ANDn ◦NC0. Hence, by combining the two aforementioned
commitments with the ZK protocol of [GK96] (as explained in Section 4.8.3) we get a constant-
round ZK-proof for NP between an AC0 prover and an AC0 verifier assuming any of the above
assumptions. We can also use Theorem 5.3.1 to obtain a NIZK with an NC0

4 prover for NP under
the intractability of factoring. (This follows from the NIZK construction of [FLS00] which can be
based on the intractability of factoring [BY96, Gol04, Section C.4.1].)

Parallelizing the receiver

As mentioned above, the computational encoding promised by Theorem 5.2.15 does not support
parallel decoding. Thus, we get primitives in which the sender (i.e., the encrypting party, commit-
ting party, signer or prover, according to the case) is in NC0 but the receiver (the decrypting party
or verifier) is not known to be in NC, even if we started with a primitive that has an NC receiver.
The following theorem tries to partially remedy this state of affairs. Assuming the existence of a
PRG with a good stretch in NC1, we can rely on Claim 5.2.18 to convert sender-receiver schemes
in which both the receiver and the sender are in NC to ones in which the sender is in NC0 and the
receiver is still in NC.12

Theorem 5.3.4 Let X = (G,S, R) be a sender-receiver cryptographic scheme whose security is re-
spected by computational encoding (e.g., encryption, signature, MAC, commitment scheme, NIZK),
where G is a key-generation algorithm (in case the scheme has one), S ∈ NCs is the algorithm of
the sender and R ∈ NCr is the algorithm of the receiver. Then,

• If there exists a polynomial-stretch PRG in NC1, then there exists a similar scheme X̂ =
(G, Ŝ, R̂) in which Ŝ ∈ NC0 and R̂ ∈ NCmax{s+1,r}.

• If there exists a linear-stretch PRG in NC1, then there exists a a similar scheme X̂ =
(G, Ŝ, R̂), in which Ŝ ∈ NC0 and R̂ ∈ NCmax{s+2,r}.

12Similarly, assuming a linear-stretch PRG in NC1, we can obtain, for every NC function, a (non-adaptive single-
oracle) IHS in which the user is in NC0 and the oracle is in NC.

81

Proof: If there exists a polynomial-stretch (resp. linear-stretch) PRG in NC1, then we can use
Claim 5.2.18 and get a computational encoding Ŝ for S in NC0 whose decoder B is in NCs+1 (resp.
NCs+2). As usual, the new receiver R̂ uses B to decode the encoding, and then applies the original
receiver R to the result. Thus, R̂ is in NCmax{s+1,r} (resp. NCmax{s+2,r}).

5.3.2 Parallel Reductions between Cryptographic Primitives

In the previous section we showed that many cryptographic tasks can be performed in NC0 if they
can be performed at all, relying on the assumption that an easy PRG exists. Although EPRG is a
very reasonable assumption, it is natural to ask what types of parallel reductions between primitives
can be guaranteed unconditionally. In particular, such reductions would have consequences even if
there exists a PRG in, say, NC4.

In this section, we consider the types of unconditional reductions that can be obtained using
the machinery of Section 5.2. We focus on primitives that can be reduced to a PRG (equivalently,
using [HILL99], to a one-way function). We argue that for any such primitive F , its polynomial-
time reduction to a PRG can be collapsed into an NC0-reduction to a PRG. More specifically, we
present an efficient “compiler” that takes the code of an arbitrary PRG G and outputs a description
of an NC0 circuit C, having oracle access to a function G′, such that for any (minimal) PRG G′

the circuit C[G′] implements F .
A compiler as above proceeds as follows. Given the code of G, it first constructs a code for

an efficient implementation f of F . (In case we are given an efficient black-box reduction from F
to a PRG, this code is obtained by plugging the code of G into this reduction.) Then, applying a
constructive form of Theorem 5.2.13 to the code of f , the compiler obtains a code f̂ of an NC0 circuit
which implements F by making an oracle access to a PRG. This code of f̂ defines the required
NC0 reduction from F to a PRG, whose specification depends on the code of the given PRG G.
Thus, the reduction makes a non-black-box use of the PRG primitive, even if the polynomial-time
reduction it is based on is fully black-box.

Based on the above we can obtain the following informal “meta-theorem”:

Meta-Theorem 5.3.5 Let F be a cryptographic primitive whose security is respected by computa-
tional encoding. Suppose that F is polynomial-time reducible to a PRG. Then, F is NC0-reducible
to a (minimal) PRG.

Since a minimal PRG can be reduced in NC0 to one-way permutations or more general types
of one-way functions (see Remark 4.5.9), the minimal PRG in the conclusion of the above theorem
can be replaced by these primitives.

Instantiating F by concrete primitives, we get the following corollary:

Corollary 5.3.6 Let G be a PRG. Then,

• There exists a stateless symmetric encryption scheme (resp., digital signature or MAC) in
which the encryption (signing) algorithm is in NC0[G].

• There exists a constant-round commitment scheme (resp., constant-round coin-flipping pro-
tocol) in which the sender (first party) is in NC0[G] and the receiver (second party) is in
ANDn ◦NC0[G].

82

• For every NP language, there exists a constant-round ZK argument in which the prover is in
NC0[G].

An illustration of the above appears in Figure 1.2.1. Note that items 3,4 of Theorem 5.3.1 can
be derived from the above corollary, up to the exact locality.

Comparison with known reductions

The above results can be used to improve the parallel complexity of some known reductions. For
example, Naor [Nao91] shows a commitment scheme in which the sender is in NC0[LG], where LG
is a linear-stretch PRG. By using his construction, we derive a commitment scheme in which the
sender (respectively, the receiver) is in NC0[G] (respectively, ANDn ◦NC0[G]) where G is a minimal
PRG. Since it is not known how to reduce a linear-stretch PRG to a minimal PRG even in NC, we
get a nontrivial parallel reduction.

Other interesting examples arise in the case of primitives that are based on PRFs, such as
MACs, symmetric encryption, and identification (see [GGM86, NR99, Gol04] for these and other
applications of PRFs). Since the known construction of a PRF from a PRG is sequential [GGM86],
it was not known how to reduce these primitives in parallel to (even a polynomial-stretch) PRG.13

This fact motivated the study of parallel constructions of PRFs in [NR99, NR04]. In particular,
Naor and Reingold [NR99] introduce a new cryptographic primitive called a synthesizer (SYNTH),
and show that PRFs can be implemented in NC1[SYNTH]. This gives an NC1-reduction from
cryptographic primitives such as symmetric encryption to synthesizers. By Corollary 5.3.6, we get
that these primitives are in fact NC0-reducible to a PRG. Since (even a polynomial-stretch) PRG
can be implemented in NC0[SYNTH] while synthesizers are not known to be even in NC[PRG], our
results improve both the complexity of the reduction and the underlying assumption. It should be
noted, however, that our reduction only improves the parallel-time complexity of the encrypting
party, while the constructions of [NR99] yield NC1-reductions on both ends.

In contrast to the above, we show that a synthesizer in NCi can be used to implement encryption
in NCi with decryption in NC.14 First, we use [NR99] to construct an encryption scheme (E, D)
and a polynomial-stretch PRG G such that E and D are in NC1[SYNTH] = NCi+1 and G is
in NC0[SYNTH] = NCi. Next, by Claim 5.2.7 and Remark 5.2.10, we obtain an NC0[G] = NCi

computational encoding Ê for E whose decoder B is in NC2i. (We first use Claim 5.2.7 to construct
one-time symmetric encryption (OE, OD) such that OE and OD are in NC0[G] = NCi. Then, we
encode E by plugging OE into Construction 5.2.8 and obtain an NC0[OE] = NCi computational
encoding Ê for E. By Remark 5.2.10 the decoder B of Ê is in NCi[OD] = NC2i.) To decrypt
ciphers of Ê we invoke the decoder B, and then apply the original decryption algorithm D to the
result. Therefore, the decryption algorithm of our new scheme D̂ is in NCmax(2i,i+1).

Comparison with the reductions of Chapter 4

Some NC0 reductions between cryptographic primitives were also obtained in Chapter 4 (see Re-
marks 4.5.9,4.8.1). In particular, there we considered the following scenario: Let G be a primitive

13Assuming that factoring is intractable (or, more generally, that there exists a PRG in ⊕L/poly) it is provably
impossible to reduce PRFs to (sublinear stretch) PRGs in NC0. See Section 4.9.

14For concreteness, we refer here only to the case of symmetric encryption, the case of other primitives which are
NC0-reducible to a PRF (such as identification schemes and MACs) is analogous.

83

whose security is preserved by randomized encoding. Suppose that G(x) = g(x, f(q1(x)), . . . , f(qm(x)))
defines a black-box construction of a primitive G of type G from a primitive f of type F where g is
in SREN (or PREN) and the qi’s are in NC0. (The functions g, q1, ..., qm are fixed by the reduction
and do not depend on f .) Then, letting ĝ((x, y1, . . . , ym), r) be an NC0 encoding of g, the function
Ĝ(x, r) = ĝ((x, f(q1(x)), . . . , f(qm(x))), r) encodes G, and hence defines a (non-adaptive) black-box
NC0 reduction from G to F . An important example for such a reduction is the transformation of
OWF to PRG from [HILL99, Const. 7.1] applied to a regular OWF (see Remark 4.5.9). In this
case, the transformation is in NC1 and thus is improved to be in NC0.15 Unlike these previous
reductions, the current results are not restricted to non-adaptive black-box reductions which are
computable in SREN . However, the reductions of this chapter are inherently non black-box and
their structure depends on the code implementing the given oracle.

5.3.3 Secure Multi-Party Computation

Secure multi-party computation (MPC) allows several parties to evaluate a function of their inputs
in a distributed way, so that both the privacy of their inputs and the correctness of the outputs
are maintained. These properties should hold, to the extent possible, even in the presence of
an adversary who may corrupt at most t parties. This is typically formalized by comparing the
adversary’s interaction with the real process, in which the uncorrupted parties run the specified
protocol on their inputs, with an ideal function evaluation process in which a trusted party is
employed. The protocol is said to be secure if whatever the adversary “achieves” in the real process
it could have also achieved by corrupting the ideal process. A bit more precisely, it is required that
for every adversary A interacting with the real process there is an adversary A′ interacting with
the ideal process, such that outputs of these two interactions are indistinguishable from the point of
view of an external environment. See, e.g., [Can00, Can01, Gol04], for more detailed and concrete
definitions.

There is a variety of different models for secure computation. These models differ in the power
of the adversary, the network structure, and the type of “environment” that tries to distinguish
between the real process and the ideal process. In the information-theoretic setting, both the
adversary and the distinguishing environment may be computationally unbounded, whereas in the
computational setting they are both bounded to probabilistic polynomial time.

The notion of randomizing polynomials was originally motivated by the goal of minimizing the
round complexity of MPC. The motivating observation of [IK00] was that the round complexity of
most general protocols from the literature (e.g., those of [GMW87, BOGW88, CCD88]) is related
to the algebraic degree of the function being computed. Thus, by reducing the task of securely
computing f to that of securely computing some related low-degree function, one can obtain round-
efficient protocols for f .

Randomizing polynomials (or low-degree randomized encodings) provide precisely this type of
reduction. More specifically, suppose that the input x to f is distributed between the parties, who
wish to all learn the output f(x). If f is represented by a vector f̂(x, r) of degree-d randomizing
polynomials, then the secure computation of f can be non-interactively reduced to that of f̂ , where
the latter is viewed as a randomized function of x. This reduction only requires each party to
invoke the decoder of f̂ on its local output, obtaining the corresponding output of f . The secure

15Similar examples are the NC1 transformation of one-to-one OWF to non-interactive commitment scheme
(cf. [Blu83]) and of distributionally OWF into standard OWF (cf. [IL89]).

84

computation of f̂ , in turn, can be non-interactively reduced to that of a related deterministic
function f̂ ′ of the same degree d. The idea is to let f̂ ′(x, r1, . . . , rt+1) def= p(x, r1⊕ . . .⊕ rt+1) (where
t is a bound on the number of corrupted parties), assign each input vector rj to a distinct player,
and instruct it to pick it at random. (See [IK00] for more details.) This second reduction step is
also non-interactive. Thus, any secure protocol for f̂ ′ or f̂ gives rise to a secure protocol for f with
the same number of rounds. The non-interactive nature of the reduction makes it insensitive to
almost all aspects of the security model.

Previous constructions of (perfect or statistical) randomizing polynomials [IK00, IK02, CFIK03]
provided information-theoretic reductions of the type discussed above. In particular, if the protocol
used for evaluating f̂ ′ is information-theoretically secure, then so is the resulting protocol for f .
The main limitation of these previous reductions is that they efficiently apply only to restricted
classes of functions, typically related to different log-space classes. This situation is remedied in
the current work, where we obtain (under the EPRG assumption) a general secure reduction from
a function f to a related degree-3 function f̂ ′. The main price we pay is that the security of the
reduction is no longer information-theoretic. Thus, even if the underlying protocol for f̂ ′ is secure
in the information-theoretic sense, the resulting protocol for f will only be computationally secure.

To formulate the above we need the following definitions.

Definition 5.3.7 (Secure computation) Let f(x1, . . . , xn) be an m-party functionality, i.e., a
(possibly randomized) mapping from m inputs of equal length into m outputs. Let π be an m-party
protocol. We formulate the requirement that π securely computes f by comparing the following “real
process” and “ideal process”.

The real process. A t-bounded adversary A attacking the real process is a probabilistic poly-
nomial-time algorithm, who may corrupt up to t parties and observe all of their internal data. At
the end of the interaction, the adversary may output an arbitrary function of its view, which con-
sists of the inputs, the random coin tosses, and the incoming messages of the corrupted parties. We
distinguish between passive vs. active adversaries and between adaptive vs. non-adaptive adver-
saries. If the adversary is active, it has full control over the messages sent by the corrupted parties,
whereas if it is passive, it follows the protocol’s instructions (but may try to deduce information by
performing computations on observed data). When the set of corrupted parties has to be chosen in
advance, we say that the adversary is non-adaptive, and otherwise say that it is adaptive. Given an
m-tuple of inputs (x1, . . . , xm) ∈ ({0, 1}n)m, the output of the real process is defined as the random
variable containing the concatenation of the adversary’s output with the outputs and identities of
the uncorrupted parties. We denote this output by Realπ,A(x1, . . . , xm).

The ideal process. In the ideal process, an incorruptible trusted party is employed for computing
the given functionality. That is, the “protocol” in the ideal process instructs each party to send its
input to the trusted party, who computes the functionality f and sends to each party its output. The
interaction of a t-bounded adversary A′ with the ideal process and the output of the ideal process
are defined analogously to the above definitions for the real process. The adversary attacking the
ideal process will also be referred to as a simulator. We denote the output of the ideal process on
the inputs (x1, . . . , xm) ∈ ({0, 1}n)m by Idealf,A′(x1, . . . , xm).

The protocol π is said to t-securely realize the given functionality f with respect to a speci-
fied type of adversary (namely, passive or active, adaptive or non-adaptive) if for any probabilis-

85

tic polynomial-time t-bounded adversary A attacking the real process, there exists a probabilistic
polynomial-time t-bounded simulator A′ attacking the ideal process, such that for any sequence of
m-tuples {x̄n} such that x̄n ∈ ({0, 1}n)m, it holds that Realπ,A(x̄n)

c≡ Idealf,S(x̄n).

Secure reductions. To define secure reductions, consider the following hybrid model. An m-
party protocol augmented with an oracle to the m-party functionality g is a standard protocol in
which the parties are allowed to invoke g, i.e., a trusted party to which they can securely send
inputs and receive the corresponding outputs. The notion of t-security generalizes to protocols
augmented with an oracle in the natural way.

Definition 5.3.8 Let f and g be m-party functionalities. A t-secure reduction from f to g is an m-
party protocol that given an oracle access to the functionality g, t-securely realizes the functionality
f (with respect to a specified type of adversary). We say that the reduction is non-interactive if it
involves a single call to f (and possibly local computations on inputs and outputs), but no further
communication.

Appropriate composition theorems, (e.g. [Gol04, Thms. 7.3.3, 7.4.3]), guarantee that the call to
g can be replaced by any secure protocol realizing g, without violating the security of the high-level
protocol for f .16 Using the above terminology, Theorem 5.2.15 has the following corollary.

Theorem 5.3.9 Suppose the EPRG assumption holds. Let f(x1, . . . , xm) be an m-party func-
tionality computed by a (uniform) circuit family of size s(n). Then, for any ε > 0, there is a
non-interactive, computationally (m − 1)-secure reduction from f to either of the following two
efficient functionalities:

• A randomized functionality f̂(x1, . . . , xm) of degree 3 (over F2) with a random input and
output of length O(s(n) · nε) each;

• A deterministic functionality f̂ ′(x′1, . . . , x
′
m) of degree 3 (over F2) with input length O(m ·

s(n) · nε) and output length O(s(n) · nε).

Both reductions are non-interactive in the sense that they involve a single call to f̂ or f̂ ′ and
no further interaction. They both apply regardless of whether the adversary is passive or active,
adaptive or non-adaptive.

Proof: The second item follows from the first via standard (non-interactive, degree-preserving)
secure reduction from randomized functionalities to deterministic functionalities (see [Gol04,
Prop. 7.3.4]). Thus we will only prove the first item. Assume, without loss of generality, that
f is a deterministic functionality that returns the same output to all the parties.17 Let f̂(x, r) be
the computational encoding of f(x) promised by Theorem 5.2.15. (Recall that f̂ is indeed a degree

16Actually, for the composition theorem to go through, Definition 5.3.7 should be augmented by providing players
and adversaries with auxiliary inputs. We ignore this technicality here, and note that the results in this section apply
(with essentially the same proofs) to the augmented model as well.

17To handle randomized functionalities we use the non-interactive secure reduction mentioned above. Now, we
can (m − 1)-securely reduce f to a single-output functionality by letting each party to mask its output fi with a
private randomness. That is, f ′((x1, r1) . . . , (xm, rm)) = ((f1(x1)⊕ r1) ◦ . . . ◦ (f1(xm)⊕ rm)). As both reductions are
non-interactive the resulting reduction is also non-interactive. Moreover, the circuit size of f ′ is linear in the size of
the circuit that computes the original function.

86

3 function having O(s(n) ·nε) random inputs and outputs.) The following protocol (m−1)-securely
reduces the computation of f(x) to f̂(x, r) (where f̂ is viewed as a randomized functionality whose
randomness is r).

• Inputs: Party i gets input xi ∈ {0, 1}n.

• Party i invokes the (randomized) oracle f̂ with query xi, and receives an output ŷ.

• Outputs: Each party locally applies the decoder B of the encoding to the answer ŷ received
from the oracle, and outputs the result.

We start by showing that the reduction is (m − 1)-secure against a passive non-adaptive ad-
versary. Let A be such an adversary that attacks some set I ⊂ [m] of the players. Then, the
output of the real process is (A(xI , f̂(x, r)), B(f̂(x, r)), Ī) where xI = (xi)i∈I , Ī

def= [m]\ I and r is a
uniformly chosen string of an appropriate length. We define a (passive non-adaptive) simulator A′

that attacks the ideal process in the natural way: that is, A′(xI , y) = A(xI , S(y)), where y is the
answer received from the trusted party (i.e., f(x)) and S is the computationally private simulator
of the encoding. Thus, the output of the ideal process is (A′(xI , f(x)), f(x), Ī). By the definition
of A′, the privacy of the encoding f̂ and Fact 2.2.8, we have,

Ideal(x) ≡ (A(xI , S(f(x))), f(x), Ī)
c≡ (A(xI , f̂(x, r)), B(f̂(x, r)), Ī) ≡ Real(x),

which finishes the proof.
We now sketch the security proof for the case of an adversary A which is both adaptive and

active. (The non-adaptive active case as well as the adaptive passive case are treated similarly.)
An attack by A has the following form: (1) Before calling the oracle f̂ , in each step A may decide
(according to his current view) to corrupt some party i and learn its input xi. (2) When the oracle
f̂ is invoked A changes the input of each corrupted party i to some value x′i, which is handed to the
f̂ oracle. (3) After the parties call the oracle on some (partially corrupted) input x′ = (x′I , xĪ), the
oracle returns a randomized encoding f̂(x′) to the adversary, and now A may adaptively corrupt
additional parties. Finally, A outputs some function of its entire view. For every such adversary we
construct a simulator A′ that attacks the ideal process by invoking A and emulating his interaction
with the real process. Namely, (1) Before the call to the trusted party we let A choose (in each
step) which party to corrupt and feed it with the input we learn; (2) When the trusted party
is invoked we let A pick x′I according to its current view and send these x′I to the f oracle; (3)
Given the result y = f(x′I , xĪ) returned by the oracle, we invoke the simulator (of the encoding)
on y and feed the result to A. Finally, we let A pick new corrupted players as in step (1). We
claim that in each step of the protocol the view of A when interacting with the real process is
computationally indistinguishable from the view of A when it is invoked by A′ in the ideal process.
(In fact, before the call to the oracle these views are identically distributed.) Hence, the outputs
of the two processes are also computationally indistinguishable.

A high-level corollary of Theorem 5.3.9 is that computing arbitrary polynomial-time computable
functionalities is as easy as computing degree-3 functionalities. Thus, when designing new MPC
protocols, it suffices to consider degree-3 functionalities which are often easier to handle.

More concretely, Theorem 5.3.9 gives rise to new, conceptually simpler, constant-round proto-
cols for general functionalities. For instance, a combination of this result with the “BGW proto-
col” [BOGW88] gives a simpler alternative to the constant-round protocol of Beaver, Micali, and

87

Rogaway [BMR90]. The resulting protocol will be more round-efficient, and in some cases (depend-
ing on the number of parties and the “easiness” of the PRG) even more communication-efficient
than the protocol of [BMR90]. On the downside, Theorem 5.3.9 relies on a stronger assumption
than the protocol from [BMR90] (an easy PRG vs. an arbitrary PRG).

An interesting open question, which is motivated mainly from the point of view of the MPC
application, is to come up with an “arithmetic” variant of the construction. That is, given an arith-
metic circuit C, say with addition and multiplication gates, construct a vector of computationally
private randomizing polynomials of size poly(|C|) which makes a black-box use of the underlying
field. The latter requirement means that the same polynomials should represent C over any field,
ruling out the option of simulating arithmetic field operations by boolean operations. Such a result
is known for weaker arithmetic models such as formulas and branching programs (see [CFIK03]).

88

Chapter 6

On Pseudorandom Generators with
Linear Stretch in NC0

Summary: We consider the question of constructing cryptographic pseudorandom generators
in NC0 with large stretch. Our previous constructions of such PRGs were limited to stretching a
seed of n bits to n + o(n) bits. This leaves open the existence of a PRG with a linear (let alone
superlinear) stretch in NC0. In this chapter we study this question and obtain the following main
results:

1. We show that the existence of a linear-stretch PRG in NC0 implies non-trivial hardness
of approximation results without relying on PCP machinery. In particular, it implies that
Max3SAT is hard to approximate to within some multiplicative constant.

2. We construct a linear-stretch PRG in NC0 under a specific intractability assumption related
to the hardness of decoding “sparsely generated” linear codes. Such an assumption was
previously conjectured by Alekhnovich [Ale03].

6.1 Introduction

A cryptographic pseudorandom generator (PRG) (cf. Definition 4.5.1) is a deterministic function
that stretches a short random seed into a longer string that cannot be distinguished from random
by any polynomial-time observer. In this chapter, we study the existence of PRGs that both (1)
admit fast parallel computation and (2) stretch their seed by a significant amount.

Considering the first goal alone, we showed in Chapter 4 that the ultimate level of parallelism
can be achieved under most standard cryptographic assumptions. Specifically, any PRG in ⊕L/poly
(the existence of which follows, for example, from the intractability of factoring) can be efficiently
“compiled” into a PRG in NC0. However, the PRGs produced by this compiler only stretch their
seed by a sublinear amount: from n bits to n + O(nε) bits for some constant ε < 1. Thus, these
PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just one bit can
be used to construct a PRG that stretches its seed by any polynomial number of bits [Gol01a,
Sec. 3.3.2]. However, all known constructions of this type are inherently sequential. Thus, we
cannot use known techniques for turning an NC0 PRG with a sublinear stretch into one with a
linear, let alone superlinear, stretch.

89

The above state of affairs leaves open the existence of a linear-stretch PRG (LPRG) in NC0;
namely, one that stretches a seed of n bits into n+Ω(n) output bits.1 (In fact, there was no previous
evidence for the existence of LPRGs even in the higher complexity class AC0.) This question is
the main focus of this chapter. The question has a very natural motivation from a cryptographic
point of view. Indeed, most cryptographic applications of PRGs either require a linear stretch (for
example Naor’s bit commitment scheme [Nao91]2), or alternatively depend on a larger stretch for
efficiency (this is the case for the standard construction of a stream cipher or stateful symmetric
encryption from a PRG, see [Gol04]). Thus, the existence of an LPRG in NC0 would imply better
parallel implementations of other cryptographic primitives.

6.1.1 Our Contribution

LPRG in NC0 implies hardness of approximation. We give a very different, and somewhat
unexpected, motivation for the foregoing question. We observe that the existence of an LPRG in
NC0 directly implies non-trivial and useful hardness of approximation results. Specifically, we show
(via a simple argument) that an LPRG in NC0 implies that Max3SAT (and hence all MaxSNP
problems such as Max-Cut, Max2SAT and Vertex Cover [PY91]) cannot be efficiently approxi-
mated to within some multiplicative constant. This continues a recent line of work, initiated by
Feige [Fei02] and followed by Alekhnovich [Ale03], that provides simpler alternatives to the tra-
ditional PCP-based approach by relying on stronger assumptions. Unlike these previous works,
which rely on very specific assumptions, our assumption is of a more general flavor and may serve
to further motivate the study of cryptography in NC0. On the down side, the conclusions we get
are weaker and in particular are implied by the PCP theorem. In contrast, some inapproximability
results from [Fei02, Ale03] could not be obtained using PCP machinery. It is instructive to note
that by applying our general argument to the sublinear-stretch PRGs in NC0 from Chapter 4 we
only get “uninteresting” inapproximability results that follow from standard padding arguments
(assuming P 6= NP). Furthermore, we do not know how to obtain stronger inapproximability re-
sults based on a superlinear-stretch PRG in NC0. Thus, our main question of constructing LPRGs
in NC0 captures precisely what is needed for this application.

Constructing an LPRG in NC0. We present a construction of an LPRG in NC0 under a specific
intractability assumption related to the hardness of decoding “sparsely generated” linear codes.
Such an assumption was previously made by Alekhnovich in [Ale03]. The starting point of our
construction is a modified version of a PRG from [Ale03] that has a large output locality (that
is, each output bit depends on many input bits) but has a simple structure. We note that the
output distribution of this generator can be sampled in NC0; however the seed length of this NC0

sampling procedure is too large to gain any stretch. To solve this problem we observe that the
seed has large entropy even when the output of the generator is given. Hence, we can regain the
stretch by employing a randomness extractor in NC0 that uses a “sufficiently short” seed to extract
randomness from sources with a “sufficiently high” entropy. We construct the latter by combining

1Recall that an NC0 LPRG can be composed with itself a constant number of times to yield an NC0 PRG with
an arbitrary linear stretch. See Remark 4.5.3.

2In Chapter 5 we showed that there is an NC0 construction of a commitment scheme from an arbitrary PRG
including one with sublinear stretch (see Corollary 5.3.6). However, this construction makes a non-black-box use of
the underlying PRG, and is thus quite inefficient. The only known parallel construction that makes a black-box use
of the PRG is Naor’s original construction, which requires the PRG to have linear stretch.

90

the known construction of randomness extractors from ε-biased generators [NN93, BSSVW03] with
previous constructions of ε-biased generator in NC0 [MST03]. Our LPRG can be implemented with
locality 4; the stretch of this LPRG is essentially optimal, as it is known that no PRG with locality 4
can have a superlinear stretch [MST03]. However, the existence of superlinear-stretch PRG with
possibly higher (but constant) locality remains open.

By combining the two main results described above, one gets non-trivial inapproximability
results under the intractability assumption from [Ale03]. These (and stronger) results were directly
obtained in [Ale03] from the same assumption without constructing an LPRG in NC0. Our hope is
that future work will yield constructions of LPRGs in NC0 under different, perhaps more standard,
assumptions, and that the implications to hardness of approximation will be strengthened.

LPRG in NC0 and Expanders. Finally, we observe that the input-output graph of any LPRG
in NC0 enjoys some non-trivial expansion property. This connection implies that a (deterministic)
construction of an LPRG in NC0 must use some non-trivial combinatorial objects. (In particular,
one cannot hope that “simple” transformations, such as those given in Chapter 4, will yield LPRGs
in NC0.) The connection with expanders also allows to rule out the existence of exponentially-strong
PRGs with superlinear stretch in NC0.

6.1.2 Related Work

The first application of average-case complexity to inapproximability was suggested by Feige [Fei02],
who derived new inapproximability results under the assumption that refuting 3SAT is hard on
average on some natural distribution. In [Ale03] Alekhnovich continued this line of research. He
considered the problem of determining the maximal number of satisfiable equations in a linear
system chosen at random, and made several conjectures regarding the average case hardness of
this problem. He showed that these conjectures imply Feige’s assumption as well as several new
inapproximability results. While the works of Feige and Alekhnovich derived new inapproximability
results (that were not known to hold under the assumption that P 6= NP), they did not rely on the
relation with a standard cryptographic assumption or primitive, but rather used specific average
case hardness assumptions tailored to their inapproximability applications. A relation between the
security of a cryptographic primitive and approximation was implicitly used in [MST03], where an
approximation algorithm for Max2LIN was used to derive an upper bound on the stretch of a PRG
whose locality is 4.

Organization. The rest of this paper is structured as follows. We begin with a discussion of
notation and preliminaries (Section 6.2). In Section 6.3 we prove that an LPRG in NC0 implies
that Max3SAT cannot be efficiently approximated to within some multiplicative constant. Then in
Section 6.4 we extend these results and show how to derive the inapproximability of Max3SAT from
NC0 implementations of other cryptographic primitives. In Section 6.5 we present a construction
of an LPRG in NC0. This construction uses an NC0 implementation of an ε-biased generator as
an ingredient. A uniform construction of such an ε-biased generator is described in Section 6.5.4.
Finally, in Section 6.6, we discuss the connection between LPRG in NC0 to expander graphs.

91

6.2 Preliminaries

Pseudorandom generators. Recall that a PRG, G : {0, 1}n → {0, 1}s(n) is a deterministic
function that stretches a short random seed into a longer pseudorandom string (see Definition 4.5.1).
When s(n) = n + Ω(n) we say that G is a linear-stretch pseudorandom generator (LPRG). By
default, we require G to be polynomial-time computable. It will sometimes be convenient to
define a PRG by an infinite family of functions {Gn : {0, 1}m(n) → {0, 1}s(n)}n∈N, where m(·)
and s(·) are polynomials. Such a family can be transformed into a single function that satisfies
Definition 4.5.1 via padding (see Remark 3.1.8). We will also rely on ε-biased generators, defined
similarly to PRGs except that the pseudorandomness holds only against linear functions over F2.
(See Definition 4.5.10.)

Expanders. In the followings think of m as larger than n. We say that a bipartite graph G = ((L =
[m], R = [n]), E) is (K, α) expanding if every set of left vertices S of size smaller than K has at least
α·|S| right neighbors. A family of bipartite graphs {Gn}n∈N where Gn = ((L = [m(n)], R = [n]), E)
is expanding if for some constants α and β and sufficiently large n the graph Gn is (β ·m(n), α)
expanding. A family of m(n)× n binary matrices {Mn}n∈N is expanding if the family of bipartite
graphs {Gn}n∈N represented by {Mn}n∈N (i.e., Mn is the adjacency matrix of Gn) is expanding.

6.2.1 Some useful facts

We will use the following well known bound on the sum of binomial coefficients.

Fact 6.2.1 For 0 < p ≤ 1/2 we have
∑pn

i=0

(
n
i

) ≤ 2nH2(p).

The bias of a Bernoulli random variable X is defined to be |Pr[X = 1]− 1
2 |. We will need the

following fact which estimates the bias of sum of independent random coins (cf. [MST03, Shp06]).

Fact 6.2.2 Let X1, . . . , Xt be independent binary random variables. Suppose that for some 0 <
δ < 1

2 and every i it holds that bias(Xi) ≤ δ. Then, bias(
⊕t

i=1 Xi) ≤ 1
2(2δ)t.

6.3 LPRG in NC0 implies Hardness of Approximation

In the following we show that if there exists an LPRG in NC0 then there is no polynomial-time
approximation scheme (PTAS) for Max3SAT; that is, Max3SAT cannot be efficiently approximated
within some multiplicative constant r > 1. Recall that in the Max3SAT problem we are given a
3CNF boolean formula with s clauses over n variables, and the goal is to find an assignment
that satisfies the largest possible number of clauses. The Max `-CSP problem is a generalization
of Max3SAT in which instead of s clauses we get s boolean constraints C = {C1, . . . , Cs} of
arity `. Again, our goal is to find an assignment that satisfies the largest possible number of
constraints. (Recall that a constraint C of arity ` over n variables is an `-local boolean function
f : {0, 1}n → {0, 1}, and it is satisfied by an assignment (σ1, . . . , σn) if f(σ1, . . . , σn) = 1.)

A simple and useful corollary of the PCP Theorem [ALM+98, AS98] is the inapproximability
of Max3SAT.

Theorem 6.3.1 Assume that P 6= NP. Then, there is an ε > 0 such that there is no (1 + ε)-
approximatation algorithm for Max3SAT.

92

We will prove a similar result under the (stronger) assumption that there exists an LPRG in
NC0. Our proof, however, does not rely on the PCP Theorem.

Theorem 6.3.2 Assume that there exists an LPRG in NC0. Then, there is an ε > 0 such that
there is no (1 + ε)-approximation algorithm for Max3SAT.

The proof of Theorem 6.3.2 follows by combining the following Fact 6.3.3 and Lemma 6.3.4.
The first fact shows that in order to prove that Max3SAT is hard to approximate, it suffices to
prove that Max `-CSP is hard to approximate. This standard result follows by applying Cook’s
reduction to transform every constraint into a 3CNF.

Fact 6.3.3 Assume that, for some constants ` ∈ N and ε > 0, there is no polynomial time (1 + ε)-
approximation algorithm for Max `-CSP. Then there is an ε′ > 0 such that there is no polynomial
time (1 + ε′)-approximation algorithm for Max3SAT.

Thus, the heart of the proof of Theorem 6.3.2 is showing that the existence of an LPRG in NC0
`

implies that there is no PTAS for Max `-CSP.

Lemma 6.3.4 Let ` be a positive integer, and c > 1 be a constant such that G : {0, 1}n → {0, 1}cn

is an LPRG which is computable in NC0
` . Then, there is no 1/(1− ε)-approximation algorithm for

Max `-CSP, where 0 < ε < 1/2 is a constant that satisfies H2(ε) < 1− 1/c.

For ε = 1/10 (i.e., ≈ 1.1-approximation) the constant c = 2 will do, whereas for ε = 0.49 (i.e.,
≈ 2-approximation) c = 3500 will do.
Proof: Let s = s(n) = cn. Assume towards a contradiction that there exists an 1/(1 − ε)-
approximation algorithm for Max `-CSP where H2(ε) < 1− 1/c. Then, there exists a polynomial-
time algorithm A that given an `-CSP instance φ outputs 1 if φ is satisfiable, and 0 if φ is ε-
unsatisfiable (i.e., if every assignment fails to satisfy at least a fraction ε of the constraints). We show
that, given such A, we can “break” the LPRG G; that is, we can construct an efficient (non-uniform)
adversary that distinguishes between G(Un) and Us. Our adversary Bn will (deterministically)
translate a string y ∈ {0, 1}s into an `-CSP instance φy with s constraints such that the following
holds:

1. If y ← G(Un) then φy is always satisfiable.

2. If y ← Us then, with probability 1−neg(n) over the choice of y, no assignment satisfies more
than (1− ε)s constraints of φy.

Then, Bn will run A on φy and will output A(φy). The distinguishing advantage of B is 1−neg(n)
in contradiction to the pseudorandomness of G.

It is left to show how to translate y ∈ {0, 1}s into an `-CSP instance φy. We use n boolean
variables x1, . . . , xn that represent the bits of an hypothetical pre-image of y under G. For every
1 ≤ i ≤ s we add a constraint Gi(x) = yi where Gi is the function that computes the i-th output
bit of G. Since Gi is an `-local function the arity of the constraint is at most `.

Suppose first that y ← G(Un). Then, there exists a string σ ∈ {0, 1}n such that G(σ) = y and
hence φy is satisfiable. We move on to the case where y ← Us. Here, we rely on the fact that such
a random y is very likely to be far from every element in the range of G. More formally, define
a set BADn ⊆ {0, 1}s such that y ∈ BADn if φy is (1 − ε)-satisfiable; that is, if there exists an

93

assignment σ ∈ {0, 1}n that satisfies at least (1−ε) fraction of the constraints of φy. In other words,
the Hamming distance between y and G(σ) is at most εs. Hence, all the elements of BADn are
εs-close (in Hamming distance) to some string in Im(G). Therefore, the size of BADn is bounded
by

|Im(G)| ·
εs∑

i=0

(
s

i

)
≤ 2n2H2(ε)s = 2(1+cH2(ε))n,

where the first inequality is due to Fact 6.2.1. Let α
def= c−(1+c ·H2(ε)) which is a positive constant

since H2(ε) < 1− 1/c. Hence, we have

Pr
y←Us

[φy is (1− ε) satisfiable] = |BADn| · 2−s ≤ 2(1+cH2(ε))n−cn = 2−αn = neg(n),

which completes the proof.

Remark 6.3.5 Lemma 6.3.4 can tolerate some relaxations to the notion of LPRG. In particular,
since the advantage of Bn is exponentially close to 1, we can consider an LPRG that satisfies a
weaker notion of pseudorandomness in which the distinguisher’s advantage is bounded by 1−1/p(n)
for some polynomial p(n). In Section 6.4 we consider additional cryptographic primitives that imply
the inapproximability of Max3SAT.

Lemma 6.3.4 implies the following corollary.

Corollary 6.3.6 Suppose there exists a PRG in NC0
` with an arbitrary linear stretch; i.e., for

every c > 0 there exists a PRG G : {0, 1}n → {0, 1}c·n ∈ NC0
` . Then, Max `-CSP cannot be

approximated to within any constant δ < 2 that is arbitrarily close to 2.

Remark 6.3.7 Corollary 6.3.6 is tight, as any CSP problem of the form G(x) = y (for any y ∈
{0, 1}s) can be easily approximated within a factor of 2. To see this, note that the function Gi(x)
which computes the i-th output bit of G must be balanced, i.e., Prx[Gi(x) = 1] = 1/2. (Otherwise,
since Gi ∈ NC0, the function Gi has a constant bias and so G(Un) cannot be pseudorandom.)
Therefore, a random assignment is expected to satisfy 1/2 of the constraints of the instance G(x) =
y. This algorithm can be derandomized by using the method of conditional expectations.

Papadimitriou and Yannakakis [PY91] defined a class MaxSNP, in which Max3SAT is complete
in the sense that any problem in MaxSNP has a PTAS if and only if Max3SAT has a PTAS. Hence,
we get the following corollary (again, without the PCP machinery):

Corollary 6.3.8 Assume that there exists an LPRG in NC0. Then, all Max SNP problems (e.g.,
Max-Cut, Max2SAT, Vertex Cover) do not have a PTAS.

6.4 Using NC0 Implementations of Other Cryptographic Primi-
tives

In the following we extend the results of the Section 6.3, and show that the inapproximability of
Max3SAT can be based on NC0 implementations of the following primitives: (1) pseudoentropy

94

generator that gains a linear amount of computational entropy; (2) string commitment of linear
size; and (3) public-key encryption whose ciphertext length is linear in the message length. We
start by abstracting the proof of Theorem 6.3.2. That is, we show that the following assumption
imply the inapproximability of Max3SAT.

Consider a pair of distribution ensembles A and B, a parameter δ, and a constant ε. The
assumption holds if (1) A is samplable by NC0 circuits; (2) the computational distance between A
and B is bounded by δ; and (3) the probability that the outcome of B will be ε-close to the support
of A is smaller than 1− δ. More formally, we assume the following.

Intractability Assumption 6.4.1 There exist two distribution ensembles {An}n∈N and {Bn}n∈N
where An and Bn are distributed over {0, 1}s(n), and the ensemble {An} is samplable by an NC0

circuit family. There exists a function δ(n) : N→ [0, 1], and a constant ε > 0 such that the following
holds:

1. {An} c≡δ(n) {Bn}. That is, every polynomial-size circuit family distinguishes {An} from {Bn}
with advantage at most δ(n) for sufficiently large n.

2. With probability smaller than 1−δ(n) a string b ← Bn is ε-close (in normalized Hamming dis-
tance) to some string in the support of An. That is, Prb←Bn [∃a ∈ support(An) s.t. dist(a, b) ≤
ε · s(n)] < 1− δ(n), where dist(a, b) denotes the Hamming distance between the strings a and
b.

This assumption is implied by the existence of an LPRG in NC0. Indeed, if G : {0, 1}n → {0, 1}cn is
an LPRG in NC0 then Assumption 6.4.1 holds with respect to An = G(Un), Bn = Ucn, δ(n) = 1/n
and a constant 0 < ε < 1/2 that satisfies 1 + c · H2(ε) < c. (This is implicitly shown in the proof
of Lemma 6.3.4.)

Lemma 6.4.2 Assumption 6.4.1 implies that there is no PTAS for Max3SAT.

Proof sketch: The proof is very similar to the proof of Lemma 6.3.4. Let G ∈ NC0
` be the

circuit that samples the distribution An. Assume towards a contradiction that the claim does not
hold. Then, there exists an algorithm D that given an `-CSP instance φ outputs 1 if φ is satisfiable,
and 0 if φ is ε-unsatisfiable. We use this procedure to distinguish {An} from {Bn} with advantage
greater than δ(n). Given a challenge y ∈ {0, 1}s(n), we translate it into an `-CSP instance φy of
the form G(x) = y, and output D(φy). If y ← An then φy is always satisfiable. On the other hand,
if y ← Bn then, with probability larger than δ(n), the formula φy is ε-unsatisfiable.

6.4.1 Pseudoentropy Generator

We now show that an NC0 implementation of a relaxed notion of LPRG implies Assumption 6.4.1.
In particular, instead of being pseudorandom, the distribution G(Un) is only required to be com-
putationally close to some distribution whose min-entropy is (much) larger. Moreover, we allow a
non-negligible distinguishing advantage. This relaxation can be considered as a weak pseudoentropy
generator that gains a linear amount of computational entropy cf.[HILL99, BSW03].

Lemma 6.4.3 (Weak LPRG in NC0 ⇒ inapproximability) Suppose that there exist an NC0

function G : {0, 1}n → {0, 1}s(n) and a distribution ensemble {Bn}, such that:

95

• {G(Un)} c≡δ(n) {Bn} for some δ(n) such that δ(n) ≤ 1− 2−o(s(n)).

• H∞(Bn)− n = Ω(s(n)).

Then, there is no PTAS for Max3SAT.

Proof: Let An
def= G(Un). We show that An, Bn, δ(n) and some constant ε < 1/2 satisfy

Assumption 6.4.1. Indeed, the only non-trivial part is item (2). Let BADε,n ⊆ {0, 1}s(n) be the set
of all strings which are ε-close to Im(G). Then,

Pr
b←Bn

[b is ε-close to Im(G)] =
∑

y∈BADε,n

Pr
b←Bn

[b = y]

≤

|Im(G)| ·

εs(n)∑

i=0

(
s(n)

i

)
 · 2−H∞(Bn)

≤ 2n+s(n)·H2(ε)−H∞(Bn) ≤ 2−Ω(s(n)) < 1− δ(n),

where the second inequality is due to Fact 6.2.1, the third inequality holds for sufficiently small
(constant) ε, and the last inequality holds for sufficiently large n .

6.4.2 String Commitment

Another sufficient assumption is an NC0 implementation of a non-interactive string commitment
with a constant information rate, namely one in which the length of the commitment is linear
in that of the committed string. A non-interactive commitment scheme is defined by a function
Com : {0, 1}n × {0, 1}m(n) → {0, 1}s(n) such that:

1. (Binding) For every pair of different strings x, y ∈ {0, 1}n the supports of Com(x,Um(n)) and
Com(y, Um(n)) are disjoint.

2. (Hiding) For every pair of string families {xn}n∈N and {yn}n∈N where xn, yn ∈ {0, 1}n, we
have Com(xn, Um(n))

c≡ Com(yn, Um(n)).

In fact, for our purpose we can relax the hiding property to be Com(xn, Um(n))
c≡δ(n) Com(yn, Um(n))

where δ(n) = 1− 2−o(n).

Lemma 6.4.4 (Constant rate string commitment in NC0 ⇒ inapproximability) Let c > 1
be a constant. Suppose that there exists a (non-interactive) commitment scheme Com : {0, 1}n ×
{0, 1}m(n) → {0, 1}c·n computable in NC0. Then, there is no PTAS for Max3SAT.

Proof: Let ε be a sufficiently small constant for which H2(ε)·c < 0.9. Let An
def= Com(Un, Um(n))

and Bn
def= Com(0n, Um(n)). We show that An, Bn, δ(n) = 1−2−o(n) and ε satisfy Assumption 6.4.1.

Again, we focus on proving that the second item of the assumption holds.
Fix some r ∈ {0, 1}m(n). There are at most

∑εcn
i=0

(
cn
i

) ≤ 2H2(ε)cn ≤ 20.9n strings which are
ε-close to Com(0n, r). Hence, by the binding property, we have

Pr[Com(0n, r) is ε-close to support(Com(Un, Um(n)))] ≤ 20.9n−n = 2−0.1n.

96

Thus,

Pr
r←Um(n)

[Com(0n, r) is ε-close to support(Com(Un, Um(n)))] ≤ 2−0.1n < 1− δ(n),

where the last inequality holds for sufficiently large n.

Public-Key Encryption. Suppose we have an error-free public-key encryption scheme whose
encryption algorithm is in NC0 and whose information rate is constant (i.e., the ciphertext length
is linear in the message length). Then, we can construct a (collection of) constant-rate NC0 non-
interactive commitments. (Set Come(x, r) def= Ee(x, r) where Ee(x, r) is the encryption function
which encrypts the message x using the key e and randomness r.) Hence, such a scheme also
implies the inapproximability of Max3SAT.

6.5 A Construction of LPRG in NC0

6.5.1 Overview

We start with an informal description of our construction. Consider the following distribution: fix
a sparse matrix M ∈ {0, 1}m×n in which every row contains a constant number of ones, multiply
it with a random n-bit vector x, and add a noise vector e ∈ {0, 1}m which is uniformly distributed
over all m-bits vectors whose Hamming weight is dµ ·me. (For concreteness, think of m = 5n and
µ = 0.1.) That is, we consider the distribution D̂µ(M) def= M ·x+ e, where all arithmetic is over F2.

Consider the distribution D̂µ+m−1(M) which is similar to the previous distribution except that
this time the noise vector is uniformly distributed over m-bit vectors whose weight is (µ+1/m)·m =
µm + 1. Alekhnovich conjectured in [Ale03, Conjecture 1] that for a proper choice of M these
distributions are computationally indistinguishable. He also showed that if indeed this is the case,
then D̂µ(M) is pseudorandom; that is, D̂µ(M) is computationally indistinguishable from Um. Since
the distribution D̂µ(M) can be sampled (efficiently) by using roughly n + log

(
m

µ·m
) ≤ n + mH2(µ)

random bits, it gives rise to a pseudorandom generator with linear stretch (when the parameters
are chosen properly).

We would like to sample D̂µ(M) by an NC0 function. Indeed, since the rows of M contains only
a constant number of ones, we can easily compute the product Mx in NC0 (recall that M itself is
fixed). Unfortunately, we do not know how to sample the noise vector e by an NC0 function. To
solve this, we change the noise distribution. That is, we consider a slightly different distribution
Dµ(M) in which each entry of the noise vector e is chosen to be 1 with probability µ (independently
of other entries). We adopt Alekhnovich’s conjecture to this setting; namely, we assume that Dµ(M)
cannot be distinguished efficiently from Dµ+m−1(M). (In fact, the new assumption is implied by the
original one. See Section 6.5.5.) Similarly to the previous case, we show that under this assumption
Dµ(M) is pseudorandom.

Now, whenever µ = 2−t for some integer t, we can sample each bit of the noise vector by taking
the product of t random bits. Hence, in this case Dµ(M) is samplable in NC0 (as we think of µ as a
constant). The problem is that our NC0 procedure which samples Dµ(M) consumes more bits than
it produces (i.e., it consumes n+t·m bits and produces m bits). Hence, we lose the stretch. To solve
this, we note that most of the entropy of the seed was not used. Thus, we can gain more output bits

97

by applying a randomness extractor to the seed. To be useful, this randomness extractor should
be computable in NC0. We construct such an extractor by relying on the construction of ε-biased
generator in NC0 of [MST03].

For ease of presentation, we describe our construction in a non-uniform way. We will later
discuss a uniform variant of the construction.

6.5.2 The Assumption

Let m = m(n) be an output length parameter where m(n) > n, let ` = `(n) be a locality parameter
(typically a constant), and let 0 < µ < 1/2 be a noise parameter. Let Mm,n,` be the set of all m×n
matrices over F2 in which each row contains at most ` ones. For a matrix M ∈ Mm,n,` denote by
Dµ(M) the distribution of the random m-bit vector

Mx + e,

where x ← Un and e ∈ {0, 1}m is a random error vector in which each entry is chosen to be 1 with
probability µ (independently of other entries), and arithmetic is over F2. The following assumption
is a close variant of a conjecture suggested by Alekhnovich in [Ale03, Conjecture 1]. 3

Intractability Assumption 6.5.1 For any m(n) = O(n), and any constant 0 < µ < 1/2, there
exists a positive integer `, and an infinite family of matrices {Mn}n∈N, Mn ∈Mm(n),n,`, such that

Dµ(Mn)
c≡ Dµ+m(n)−1(Mn)

(Note that since we consider non-uniform distinguishers, we can assume that Mn is public and is
available to the distinguisher.)

Remark 6.5.2 Note that in Assumption 6.5.1 we do not require {Mn} to be polynomial-time
computable. We will later present a uniform construction based on the following version of As-
sumption 6.5.1. For any m(n) = O(n), any constant 0 < µ < 1/2, and any infinite family of
m(n) × n binary matrices {Mn}n∈N, if {Mn} is expanding then Dµ(Mn)

c≡ Dµ+m(n)−1(Mn). This
assumption seems likely as argued by Alekhnovich [Ale03, Remark 1].

The following lemma shows that if the distribution Dµ(Mn) satisfies the above assumption then
it is pseudorandom. (The proof is very similar to the proof of [Ale03, Theorem 3.1], and it is given
here for completeness.)

Lemma 6.5.3 For any polynomial m(n) and constant 0 < µ < 1/2, and any infinite family,
{Mn}n∈N, of m(n)× n matrices over F2, if Dµ(Mn)

c≡ Dµ+m(n)−1(Mn), then Dµ(Mn)
c≡ Um(n).

3Our assumption is essentially the same as Alekhnovich’s. The main difference between the two assumptions
is that the noise vector e in [Ale03] is a random vector of weight exactly dµme, as opposed to our noise vector
whose entries are chosen to be 1 independently with probability µ. In Section 6.5.5 we show that our assumption is
implied by Alekhnovich’s assumption. Intuitively, the implication follows from the fact that our noise vectors can be
viewed as a convex combination of noise vectors of fixed weight. We do not know whether the converse implication
holds. Indeed, a distribution D which can be described as a convex combination of distributions D1, . . . , Dn may be
pseudorandom even if each of the distributions Di is not pseudorandom.

98

Proof: Let m = m(n). Let rn denote the distribution of an m-bit vector in which each entry
is chosen to be 1 with probability c/m (independently of other entries) where c is the constant
1/(1− 2µ). As shown next, we can write

Dµ+m−1(Mn) ≡ Dµ(Mn) + rn. (6.5.1)

To see this, let e, e′ ∈ {0, 1}m be noise vectors of rate µ, µ + 1/m respectively. Then, to prove
Eq. 6.5.1 it suffices to show that e′ ≡ e + rn. Indeed, the entries of e + rn are iid Bernoulli random
variables whose success probability is

µ · (1− (m(1− 2µ))−1) + (1− µ) · (m(1− 2µ))−1 = µ + m(n)−1.

Now, by Eq. 6.5.1 and the lemma’s hypothesis, we have

Dµ(Mn)
c≡ Dµ(Mn) + rn. (6.5.2)

Let ri
n be the distribution resulting from summing (over Fm

2) i independent samples from rn. Let
p(·) be a polynomial. Then, by Fact 2.2.11, we get that

Dµ(Mn)
c≡ Dµ(Mn) + rp(n)

n . (6.5.3)

Recall that rn is a vector of iid Bernoulli random variables whose success probability is Θ(1/m).
Hence, for some polynomial p(·) (e.g., p(n) = nm) it holds that

rp(n)
n

s≡ Um(n). (6.5.4)

(To see this, note that r
p(n)
n is a vector of iid Bernoulli random variables whose success probability

is, by Fact 6.2.2, 1/2± (1/2−Θ(1/m))p(n) = 1/2± neg(n).) By combining Eq. 6.5.3 and 6.5.4, we
have

Dµ(Mn)
c≡ Dµ(Mn) + rp(n)

n
s≡ Dµ(Mn) + Um(n) ≡ Um(n),

and the lemma follows.

By combining Assumption 6.5.1 and Lemma 6.5.3, we get the following.

Proposition 6.5.4 Suppose that Assumption 6.5.1 holds. Then, for any m(n) = O(n), and any
constant 0 < µ < 1/2, there exists a constant ` ∈ N, and an infinite family of matrices {Mn}n∈N
where Mn ∈Mm(n),n,` such that Dµ(Mn)

c≡ Um(n).

Remark 6.5.5 If the restriction on the density of the matrices Mn is dropped, the above propo-
sition can be based on the conjectured (average case) hardness of decoding a random linear code
(cf., [BFKL94, GKL93]). In fact, under the latter assumption we have that Dµ(Mn)

c≡ Um(n) for
most choices of Mn’s.

99

6.5.3 The Construction

From here on, we let µ = 2−t for some t ∈ N. Then, we can sample each bit of the error vector e
by taking the product of t independent random bits. This naturally gives rise to an NC0 function
whose output distribution is pseudorandom, namely,

fn(x, y) = Mnx + E(y)

where

x ∈ {0, 1}n, y ∈ {0, 1}t·m(n), E(y) =




t∏

j=1

yt·(i−1)+j




m(n)

i=1

. (6.5.5)

Since fn(Un, Ut·m(n)) ≡ Dµ(Mn), the distribution fn(Un, Ut·m(n)) is pseudorandom under As-
sumption 6.5.1 (when the parameters are chosen appropriately). Moreover, the locality of fn is
` + t = O(1). However, fn is not a pseudorandom generator as it uses n + t ·m(n) input bits while
it outputs only m(n) bits. To overcome this obstacle, we note that most of the entropy of y was
not “used”. Indeed, we use the t ·m(n) random bits of y to sample the distribution E(y) whose
entropy is only m(n) · H2(2−t) < (t + 2) · 2−t ·m(n). Hence, we can apply an extractor to regain
the lost entropy. Of course, in order to get a PRG in NC0 the extractor should also be computed
in NC0. Moreover, to get a linear stretch we should extract almost all of the t ·m(n) random bits
from y while investing less than m additional random bits. In the following, we show that such
extractors can be implemented by using ε-biased generators.

First, we show that the distribution of y given E(y) contains (with high probability) a lot of
entropy. In the following we let m = m(n).

Lemma 6.5.6 Let y ← Ut·m and E(y) be defined as in Eq. 6.5.5. Denote by [y|E(y)] the distribu-
tion of y given the outcome of E(y). Then, except with probability e−(2−tm)/3 over the choice of y,
it holds that

H∞([y|E(y)]) ≥ (1− δ(t)) · tm, (6.5.6)

where δ(t) = 2−Ω(t).

Proof: We view E(y) as a sequence of m independent Bernoulli trials, each with a probability
2−t of success. Recall that y is composed of m blocks of length t, and that the i-th bit of E(y)
equals the product of the bits in the i-th block of y. Hence, whenever E(y)i = 1 all the bits of
the i-th block of y equal to 1, and when E(y)i = 0 the i-th block of y is uniformly distributed
over {0, 1}t \ {

1t
}
. Consider the case in which at most 2 · 2−tm components of E(y) are ones.

By a Chernoff bound, the probability of this event is at least 1 − e−(2−tm)/3. In this case, y is
uniformly distributed over a set of size at least (2t − 1)(1−2−t+1)m. Hence, conditioning on the
event that at most 2 · 2−tm components of E(y) are ones, the min-entropy of [y|E(y)] is at least
m(1− 2−t+1) log(2t − 1) ≥ tm(1− δ(t)), for δ(t) = 2−Ω(t).

ε-biased generators can be used to extract random bits from distributions that contain sufficient
randomness. Extractors based on ε-biased generators were previously used in [DS05].

100

Lemma 6.5.7 ([DS05, Lemma 4]) Let g : {0, 1}n → {0, 1}s be an ε-biased generator, and let
Xs be a random variable taking values in {0, 1}s whose min-entropy is at least (1− δ) · s, for some
δ ≥ 0. Then,

SD((g(Un) + Xs), Us) ≤ ε · 2δ·s/2−1/2 ,

where vector addition is taken over F2.

The above lemma follows directly by analyzing the affect of a random step over a Cayley graph
whose generator set is an ε-biased set (cf. [GW97, Lemma 2.3] and [NN93, AR94]).

Recently, Mossel et al. [MST03] constructed an ε-biased generator in nonuniform-NC0
5 with an

arbitrary linear stretch and exponentially small bias.

Lemma 6.5.8 ([MST03, Thm. 14]) For every constant c, there exists an ε-biased generator g :
{0, 1}n → {0, 1}cn in nonuniform-NC0

5 whose bias is at most 2−bn/c4 (where b > 0 is some universal
constant that does not depend on c).

In Section 6.5.4 we provide an uniform version of the above lemma in which the bias is only
2−n/polylog(c). The price we pay is in the locality which grows polylogarithmically with the stretch
constant c. (See Theorem 6.5.12.)

We can now describe our LPRG.

Construction 6.5.9 Let t and ` be positive integers, and c, k > 1 be real numbers that will effect
the stretch factor. Let m = kn and let {Mn ∈ Mn,m,`} be an infinite family of matrices. Let
g : {0, 1}tm/c → {0, 1}tm be the ε-biased generator promised by Lemma 6.5.8. We define the
function

Gn(x, y, r) = (Mnx + E(y), g(r) + y),

where x ∈ {0, 1}n, y ∈ {0, 1}t·m, r ∈ {0, 1}t·m/c, E(y) =
(∏t

j=1 yt·(i−1)+j

)m

i=1
. Thus, Gn :

{0, 1}n+tm+ tm
c → {0, 1}m+tm.

Observe that Gn is in nonuniform-NC0. We show that if the parameters are chosen properly
then Gn is an LPRG.

Lemma 6.5.10 Under Assumption 6.5.1, there exist constants t, ` ∈ N, constants c, k > 1, and a
family of matrices {Mn ∈ Mn,m,`} such that the function Gn defined in Construction 6.5.9 is an
LPRG.

Proof: Let k > 1 be some arbitrary constant and m = m(n) = kn. Let c and t be constants
such that:

c = 2t/(1− 1/k)

and

∆ def= t

(
b

c5
− δ(t)

)
> 0, (6.5.7)

where δ(·) is the negligible function from Eq. 6.5.6 and b is the bias constant of Lemma 6.5.8. Such
constants c and t do exist since δ(t) = 2−Ω(t) while b/c5 = Θ(1/t5). Let ` ∈ N be a constant and
{Mn ∈Mn,m,`} be an infinite family of matrices satisfying Assumption 6.5.1.

101

First, we show that Gn has linear stretch. The input length of Gn is n + tm + tm/c = (tk +
k/2 + 1/2) · n. The output length is (t + 1) ·m = (tk + k) · n. Hence, since k > 1, the function Gn

has a linear stretch.
Let x, y and r be uniformly distributed over {0, 1}n, {0, 1}t·m and {0, 1}t·m/c respectively. We

prove that the distribution GMn(x, y, r) is pseudorandom. By Fact 2.2.4 and Lemmas 6.5.6, 6.5.7
and 6.5.8 it holds that

SD((E(y), y + g(r)), (E(y), Ut·m)) ≤ e−(2−tm)/3 + 2−b·(tm/c)/c4 · 2tm·δ(t)/2−1/2

≤ e−(2−tm)/3 + 2(−b/c5+δ(t))·tm

≤ e−(2−tm)/3 + 2−∆m = neg(m) = neg(n),

where the last inequality is due to Eq. 6.5.7. Therefore, by Fact 2.2.3 and Proposition 6.5.4, we get
that

(Mnx + E(y), g(r) + y)
s≡ (Mnx + E(y), Ut·m) ≡ (D2−t(Mn), Ut·m)

c≡ (Um, Ut·m),

and the lemma follows.

By the above lemma we get a construction of LPRG in nonuniform-NC0 from Assumption 6.5.1.
Moreover, by combining the above with Theorem 4.5.7 we have:

Theorem 6.5.11 Under Assumption 6.5.1, there exists an LPRG in nonuniform-NC0
4.

Mossel et al. [MST03] showed that a PRG in nonuniform-NC0
4 cannot achieve a superlinear stretch.

Hence, Theorem 6.5.11 is essentially optimal with respect to stretch.

Remarks on Theorem 6.5.11.

1. (Uniformity) Our construction uses two non-uniform advices: (1) a family of good ε-biased
generators in NC0 as in Lemma 6.5.8; and (2) a family of matrices {Mn} satisfying Assump-
tion 6.5.1. In Section 6.5.4 we eliminate the use of the first advice by proving a uniform
version of Lemma 6.5.8. We can also eliminate the second advice and construct an LPRG
in uniform NC0

4 by using an explicit variant of Assumption 6.5.1. In particular, we follow
Alekhnovich (cf. [Ale03, Remark 1]) and conjecture that any family of matrices {Mn} that
represent graphs with good expansion satisfies Assumption 6.5.1. Hence, our construction can
be implemented by using an explicit family of asymmetric constant-degree bipartite expanders
such as the one given in [CRVW02, Theorem 7.1].

2. (PRG with constant input locality) A variant of our construction also gives a PRG G in
NC0 in which each input bit affects a constant number of output bits. Namely, G enjoys
from constant output locality and constant input locality at the same time. This can be
done by instantiating Construction 6.5.9 with a family of matrices {Mn} in which each row
and each column contain a constant number of 1’s, and in addition, employing an ε-biased
generator with constant input locality and constant output locality. It turns out that the
instantiation proposed in the previous item (which is based on [CRVW02, Theorem 7.1]
and Theorem 6.5.12) satisfies these conditions. Thus, assuming that Assumption 6.5.1 holds
whenever {Mn} is expanding, we get a (uniform) LPRG with constant output locality and
constant input locality. In Chapter 7, we will construct a (collection) of PRGs with better
(optimal) input and output locality under a weaker assumption (namely, the intractability of
decoding random linear code). However, the construction of Chapter 7 is limited to sublinear
stretch.

102

3. (The stretch of the construction) Our techniques do not yield a PRG with superlinear stretch
in NC0. To see this, consider a variant of Assumption 6.5.1 in which we allow m(n) to be
superlinear. If we let µ(n) to be a constant, then, by information-theoretic arguments, we
need Ω(m(n)) random bits to sample the noise vector (i.e., the entropy of the noise vector
is Ω(m(n))), and so we get only linear stretch. On the other hand, if we set µ(n) to be
subconstant, then the noise distribution cannot be sampled in NC0 (as any bit of an NC0-
samplable distribution depends on a constant number of random bits). This problem can be
bypassed by extending Assumption 6.5.1 to alternative noise models in which the noise is not
independently and identically distributed. However, it is not clear how such a modification
affects the hardness assumption. (Also note that we do not know how to reduce the locality
of a superlinear PRG in NC0 while preserving its superlinear stretch. In particular, applying
the transformations of Chapter 4 to such a PRG, will result in a linear PRG with locality 4.)

6.5.4 ε-Biased Generators in Uniform NC0

In [MST03, Theorem 14], Mossel et al. constructed an ε-biased generator in nonuniform-NC0
5 with

an arbitrary linear stretch cn and bias ε = 2−Ω(n/c4).4 We generalize their construction and provide
a complementary result which gives a better tradeoff between the bias and stretch and allows a
uniform implementation. However, the locality of our construction grows with the stretch constant.

Theorem 6.5.12 For every constant c, there exist an ε-biased generator g : {0, 1}n → {0, 1}cn in
uniform NC0 whose bias is ε = 2−n/polylog(c) and its output locality is ` = polylog(c). Moreover,
the input locality of g is constant (which depends on c).

As in [MST03], our generator is obtained by XORing the outputs of two functions: a generator
g(s) which is robust against linear functions that involve small number of output bits (“small tests”)
and a generator g(l) which is robust against linear functions that involve large number of output
bits (“large tests”). More precisely, for a random variable X = (X1, . . . , Xn) ranging over {0, 1}n,
a set S ⊆ {1, . . . , n}, and an integer 0 < k ≤ n, we define

biasS(X) def=

∣∣∣∣∣Pr[
⊕

i∈S

Xi = 0]− 1
2

∣∣∣∣∣ ,

biask(X) def= max
S⊆{1,...,n},|S|=k

biasS(X),

bias(X) def= max
0<k≤n

biask(X) = max
S⊆{1,...,n},S 6=∅

biasS(X) .

Then, we prove Theorem 6.5.12 by using the following two lemmas (whose proofs is postponed to
Sections 6.5.4, 6.5.4):

Lemma 6.5.13 (Generator against small tests) For every constant c, there exist a function
g(s) : {0, 1}n → {0, 1}cn in uniform NC0

polylog(c) such that for sufficiently large n’s and every
0 < k ≤ Ω(n/polylog(c)), we have biask(g(s)(Un)) = 0. Moreover, the input locality of g(s) is
constant (which depends on c).

4In fact, cn can be slightly super-linear.

103

Lemma 6.5.14 (Generator against large tests) For every constant c, there exist a function
g(l) : {0, 1}n → {0, 1}cn in uniform NC0

O(log(c)) such that for sufficiently large n’s and every k ∈
{1, . . . , cn}, we have biask(g(l)(Un)) ≤ 2−k/5. Moreover, the input locality of g(s) is constant (which
depends on c).

Given these two lemmas we can prove Theorem 6.5.12.
Proof of Theorem 6.5.12: Let c be a constant. Let g(s) : {0, 1}n → {0, 1}2cn and g(l) :
{0, 1}n → {0, 1}2cn be the generators promised by Lemmas 6.5.13, 6.5.14 (instantiate with the
constant 2c). Then, the function g(x, y) = g(s)(x) ⊕ g(l)(y) satisfies Theorem 6.5.12. To see this,
observe that for any independent random variables X and Y and any non-uniform statistical test T ,
the success probability of T on the random variable X⊕Y is not larger than its success probability
on X (or Y).

Proof of Lemma 6.5.13

Let M be an m×n matrix over F2 such that every subset of k rows of M are linearly independent.
Then, it is well known that the function f : {0, 1}n → {0, 1}m that maps x into M · x is a k-wise
independent generator (cf. [ABI86]). That is, for every 0 < j ≤ k, we have biasj(f(Un)) = 0. If each
row of M contains at most ` ones then the function f is in nonuniform-NC0

` . It turns out that there
exists a (uniform) family of such matrices whose parameters match the parameters of Lemma 6.5.13.
Specifically, we use the following result which is a corollary of [CRVW02, Theorem 7.1].

Lemma 6.5.15 ([CRVW02]) For every constant c there exists a family of matrices {Mn}n∈N
such that

• Mn is an cn× n matrix over F2.

• Every row of Mn has at most polylog(c) ones.

• Every column of Mn has at most d(c) ones for some function d(·).
• Every subset of k = Ω(n/polylog(c)) rows of Mn are linearly independent.

• Mn can be constructed in time poly(n).

Hence, the generator for small tests can be defined as g(s)(x) = Mn · x.

Proof of Lemma 6.5.14

We will need the following standard claim that can be proved via the probabilistic method (see [Gol01b,
Lecture 8, Prop. 2.1]).

Claim 6.5.16 For sufficiently large n, there exists an ε-biased generator f : {0, 1}n → {0, 1}2n/2

whose bias is ε = 2−n/4.

We can now prove Lemma 6.5.14. Let c be the desired stretch constant. Let ` = 4 log c. Let
m = 2`/2 and f : {0, 1}` → {0, 1}m be an ε-biased generator whose bias is ε = 2−`/4 as promised
by Claim 6.5.16. (Since c is a constant, such f can be found by using exhaustive search.) Our

104

generator will partition its n-bit input x into b = bn/`c blocks x(1), . . . , x(b) of length ` each.
Then, the generator will apply f to each block separately, and concatenate the result. Namely,
g(l)(x) def= (f(x(1)), . . . , f(x(b))). The output locality of g(l) is `, its input locality is m = 2`/2 = c2

and its output length is bm =
⌊

c2n
4 log c

⌋
which is larger than cn for sufficiently large c.

We now analyze the bias of g(l). To simplify notation, we index the outputs of g(l) by pairs
(j, i) and let g

(l)
j,i (x) = fi(x(j)) (where 1 ≤ j ≤ b, 1 ≤ i ≤ m and fi(x) denotes the i-th output bit

of f(x)). Let S ⊆ {1, . . . b} × {1, . . .m} be a linear test of cardinality k. Let Sj be the restriction
of S to the indices of the j-th block, i.e., Sj = {i : (j, i) ∈ S}. Then, S1, . . . , Sb is a partition of S.
Let T = {i : Si 6= ∅} ⊆ {1, . . . , b}. Hence, for x ← Un, we have

biasS(g(l)(x)) = bias


⊕

j∈T

⊕

i∈Sj

fi(x(j))


 .

Since f is an ε-biased generator, for each j ∈ T we have that bias(
⊕

i∈Sj
fi(x(j))) ≤ ε. Since g(l)(x)

is partitioned into blocks of length `, the test S contains output bits coming from at least k/`
different blocks and so |T | ≥ k/`. Thus we can use Fact 6.2.2 to upper bound biasS(g(l)(x)) by

1
2
(2ε)k/` ≤ 1

2
(2−`/4+1)k/` ≤ 1

2
(2−`/5)k/` ≤ 2−k/5,

as required.

6.5.5 Alekhnovich’s Assumption Implies Assumption 6.5.1

We show that Alekhnovich’s Assumption [Ale03, Conjecture 2, Remark 1] implies Assumption 6.5.1.
The main difference between the two assumptions is that the noise vector e in [Ale03] is a random
vector of weight exactly dµme, as opposed to our noise vector whose entries are chosen to be 1
independently with probability µ. The implication follows from the fact that our noise vectors can
be viewed as a convex combination of noise vectors of fixed weight. We give the details below.

Recall that for an m×n matrix M we let D̂µ(M) denote the distribution of M ·x+e, where x is
a random n-bit vector and e is a noise vector which is uniformly distributed over all m-bits vectors
whose Hamming weight is µ · m. The distribution Dµ(M) def= M · x + e is analogous to D̂µ(M),
except that each entry of the noise vector e is chosen to be 1 with probability µ (independently of
other entries).

Intractability Assumption 6.5.17 (Alekhnovich’s Assumption) For any m(n) = O(n), there
exists an infinite family of matrices {Mn}n∈N, Mn ∈ Mm(n),n,3, such that for any constant 0 <
µ0 < 1/2, and function µ(n) that satisfies µ0 < µ(n) < 1/2 for every n, it holds that

D̂µ(n)(Mn)
c≡ D̂µ(n)+m(n)−1(Mn).

Fix a matrix family {Mn}n∈N of size m(n) × n where m(n) is an integer valued function. We
will prove that Assumption 6.5.17 instantiated with the family {Mn}n∈N implies Assumption 6.5.1
instantiated with the same family of matrices. To do this we use the following two intermediate
assumptions.

105

Intractability Assumption 6.5.18 For any constant 0 < µ0 < 1/2, and function µ(n) that
satisfies µ0 < µ(n) < 1/2 for all n’s, D̂µ(n)(Mn)

c≡ Um(n).

Intractability Assumption 6.5.19 For any constant 0 < µ < 1/2, we have Dµ(Mn)
c≡ Um(n).

In [Ale03, Thm. 3.1] it is shown that Assumption 6.5.17 implies Assumption 6.5.18. Hence
to prove that Assumption 6.5.17 implies Assumption 6.5.1 it suffices to show that: (1) Assump-
tion 6.5.18 implies Assumption 6.5.19; and (2) Assumption 6.5.19 implies Assumption 6.5.1.

Lemma 6.5.20 Assumption 6.5.18 implies Assumption 6.5.19.

Proof: Suppose that Assumption 6.5.19 does not hold. Then, for some constant 0 < µ < 1/2,
the distribution Dµ(Mn) is not pseudorandom. That is, there exists a polynomial-size circuit family
{An} and a polynomial q(·) such that

Pr[An(Dµ(Mn)) = 1]− Pr[An(Um(n)) = 1] > 1/q(n), (6.5.8)

for infinitely many n’s. We will show that, for some constant 0 < µ̂0 < 1/2, and function µ̂(n)
that satisfies µ̂0 < µ̂(n) < 1/2, Assumption 6.5.18 is violated. Namely, Pr[An(D̂µ̂(n)(Mn)) =
1]− Pr[An(Um(n)) = 1] > 1/q′(n) for some polynomial q′(·) and infinitely many n’s.

Fix some n for which Eq. 6.5.8 holds, and let m = m(n). Let p
def= Pr[An(Dµ(Mn)) = 1] and

p(k) def= Pr[An(D̂k/m(Mn)) = 1] for 0 ≤ k ≤ m. Let e ∈ {0, 1}m be a random error vector in which
each entry is chosen to be 1 with probability µ (independently of other entries) and let t(k) be the
probability that e contains exactly k ones. We can think of the distribution of e as the outcome
of the following process: first choose 0 ≤ k ≤ m with probability t(k), then choose a random noise
vector of weight k. Hence, we can write,

p =
m∑

k=0

p(k) · t(k).

Let ε > 0 be a constant for which µ · ε < 1/2. Then, by a Chernoff bound, it holds that

∑

k<(1−ε)·µm

t(k) +
∑

k>(1+ε)·µm

t(k) = Pr

[∣∣∣∣∣
m∑

i=1

ei − µm

∣∣∣∣∣ > ε · µm

]
< 2e−ε2µm/3.

Hence, ∑

(1−ε)·µm≤k≤(1+ε)·µm

p(k) · t(k) > p− 2e−ε2µm/3.

Thus, by an averaging argument, there exists some (1− ε) · µm ≤ k ≤ (1− ε) · µm for which

p(k) > p− 2e−ε2µm/3.

Let µ̂(n) be k/m and let µ̂0 be the constant (1− ε) · µm/2. Then, by Eq. 6.5.8, we have

Pr[An(D̂µ̂(n)(Mn)) = 1]− Pr[An(Um(n)) = 1] > 1/q(n)− 2e−ε2µm/3 > 1/q′(n),

where q′(·) is a polynomial. This completes the proof since µ̂0 < µ̂(n) < 1/2 for every n.

It is left to prove the following lemma.

106

Lemma 6.5.21 If Assumption 6.5.19 holds then Assumption 6.5.1 also holds with respect to {Mn}n∈N.

Proof: As shown in the proof of Lemma 6.5.3 we can write Dµ+m−1(Mn) ≡ Dµ(Mn) + rn,
where rn denotes the distribution of an m-bit vector in which each entry is chosen to be 1 with
probability c/m (independently of other entries) for some constant c. Hence, by two invocations of
Assumption 6.5.19, we have

Dµ+m−1(Mn) ≡ Dµ(Mn) + rn
c≡ Um(n) + rn ≡ Um(n)

c≡ Dµ(Mn).

6.6 The Necessity of Expansion

As pointed out in Section 6.5, our construction of LPRG makes use of expander graphs. This is also
the case in several constructions of “hard functions” with low locality (e.g., [Gol00, MST03, Ale03]).
We argue that this is not coincidental, at least in the case of PRGs. Namely, we show that the
input-output graph of any LPRG in NC0 enjoys some expansion property. (In fact, this holds even
in the case of ε-biased generators.) Then, we use known lower bounds for expander graphs to rule
out the possibility of exponentially strong PRG with superlinear stretch in NC0. These results are
discussed from a wider perspective in Section 6.6.2. We start with the technical results.

6.6.1 Actual Results

For a function G : {0, 1}n → {0, 1}s, we define the input-output graph HG = ((Out = [s], In =
[n]), E) to be the bipartite graph whose edges correspond to the input-output dependencies in G;
that is, (i, j) is an edge if and only if the i-th output bit of G depends on the j-th input bit. When
G is a function family, HG denotes a graph family.

Proposition 6.6.1 Let G : {0, 1}n → {0, 1}s(n) be a PRG. Then, the graph (family) HG = ((Out =
[s(n)], In = [n]), E) enjoys the following output expansion property: for every constant c and suffi-
ciently large n, every set of output vertices T ⊆ Out whose size is at most c log n touches at least
|T | input vertices.

Proof: Assume towards a contradiction that there exists a small set T of output vertices that
touches less than |T | input vertices. Let GT (·) be the restriction of G to the output bits of T . Then,
the function GT (·) cannot be onto as it depends on less than |T | input bits. Therefore, there exists
a string z ∈ {0, 1}|T | such that Pr[GT (Un) = z] = 0. Hence, a (non-uniform) distinguisher which
given y ∈ {0, 1}s(n) checks whether yT = z, distinguishes between G(Un) and Us(n) with advantage
2−c log n = 1/nc, in contradiction to the pseudorandomness of G.

More generally, if G is ε-hard (i.e., cannot be broken by any efficient adversary with advantage
ε), then every set of t ≤ log(1/ε) output vertices touches at least t input vertices. This claim also
extends to the case of ε-biased generators.

Proposition 6.6.2 Let G : {0, 1}n → {0, 1}s be an ε-biased generator. Then, every set of t ≤
log(1/ε) output vertices in HG touches at least t input vertices.

107

Proof: Assume towards a contradiction that there exists a set T of output vertices of size
t ≤ log(1/ε) that touches less than t input vertices. Then GT (Un) 6≡ Ut. Therefore, there exists a
linear function L : Ft

2 → F2 that distinguishes between GT (Un) and Ut. Namely, |Pr[L(GT (Un)) =
1]− Pr[L(Ut) = 1]| 6= 0. Since the distribution GT (Un) is sampled by less than t random bits, the
distinguishing advantage of L is larger than 2−t ≥ ε, and so G is not ε-biased in contradiction to
the hypothesis.

The above propositions show that when G is an ε-hard PRG (or even ε-biased generator),
the bipartite graph HG = ((Out = [s(n)], In = [n]), E) enjoys some output expansion property.
Radhakrishnan and Ta-Shma [RTS00] obtained some lower bounds for such graphs.

Proposition 6.6.3 ([RTS00, Theorem 1.5]) Let H = ((V1 = [s], V2 = [n]), E) be a bipartite
graph in which every set S ⊆ V1 of cardinality k touches at least m vertices from V2. Then, the
average degree of V1 is at least Ω

(
log(s/k)
log(m/n)

)

By combining this lower bound with the previous propositions we derive the following limitation
on the strength of PRGs with superlinear stretch in NC0.

Corollary 6.6.4 Let G : {0, 1}n → {0, 1}s be a 2−t-hard PRG (or 2−t-biased generator). Then,
the locality of G is at least Ω

(
log(s/t)
log(n/t)

)
. In particular, there is no 2−Ω(n)-hard PRG, or even a

2−Ω(n)-biased generator, with superlinear stretch in NC0.

6.6.2 Discussion

To put the above results in context, some background on unbalanced bipartite expanders is needed.
Consider a bipartite graph H = ((Out = [s], In = [n]), E) in which each of the output vertices is
connected to at most d inputs. Recall that H is a (K, α)-expander if every set of output vertices S
of size smaller than K has at least α ·|S| input neighbors. We say that the expander is unbalanced if
s > n. Unbalanced expanders have had numerous applications in computer science (see details and
references in [CRVW02]). Today, there are only two such constructions [TSUZ01, CRVW02]. Ta-
Shma et al. [TSUZ01] considered the highly unbalanced case in which n < o(s). They constructed
a (K, α)-expander with degree d = polylog(s), expansion threshold K < sε and almost optimal
expansion factor α = (1 − δ)d, where δ > 0 is an arbitrary constant. Capalbo et al. [CRVW02]
present a construction for the setting in which n is an (arbitrary) constant fraction of s (i.e.,
s = n + Θ(n)). They construct a (K, α)-expander with (nearly) optimal parameters; Namely, the
degree d of the graph is constant, and its expansion parameters are K = Ω(s) and α = (1 − δ)d,
where δ > 0 is an arbitrary constant.

In Section 6.6.1 we showed that if G : {0, 1}n → {0, 1}s is a PRG then its input-output graph
HG = ((Out = [s], In = [n]), E) is an (ω(log n), 1)-expander. This property is trivial to satisfy
when the output degree of HG is unbounded (as in standard constructions of PRGs in which every
output bit depends on all the input bits). It is also easy to construct such a graph with constant
output degree when s(n) is not much larger than n (as in the NC0 constructions of Chapter 4.

To see this, consider the following bipartite graph. First, let C = ((O, I), D) be a bipartite graph
over [2n+1] whose output vertices are the odd integers, its input vertices are the even integers, and
its edges correspond to pairs of consecutive integers, i.e., O = {1, 3, . . . , 2n + 1}, I = {2, 4, . . . , 2n},
and D = {(1, 2), (2, 3), . . . , (2n, 2n + 1)}. That is, C is a chain of length 2n + 1. Let m > n. Take

108

m disjoint copies of C, and let Oi (resp. Ii) be the set of output (resp. input) vertices of the i-th
copy. In addition, add n input vertices I0 = [n] and match them to the first n vertices of each
of the output clusters (i.e., connect the j-th vertex of I0 to the vertex 2j − 1 of each Oi). Let
H = ((Out = O1∪· · ·∪Om, In = I1∪· · ·∪ Im∪ I0), E). (See Figure 6.6.1.) Clearly, H has m(n+1)
output vertices, mn+n input vertices, and each output vertex is connected to at most 3 inputs. It
is not hard to verify that H is (n2, 1)-expanding. However, the number of outputs is only slightly
larger than the number of inputs; i.e., |Out| − |In| = m− n < m which is sublinear in |In| when n
is non-constant.

Figure 6.6.1: The graph H with n = 2 and m = 3. Black circles denote output vertices while
empty circles denote input vertices.

However, when the locality of the pseudorandom generator G is constant and the stretch is
linear, HG is a sparse bipartite graph having n input vertices, s(n) = n+Ω(n) output vertices, and
a constant output degree. It seems that it is not trivial to explicitly construct such a graph that
achieves (ω(log n), 1)-expansion. (Indeed, the construction of [CRVW02] gives similar graphs whose
expansion is even stronger, but this construction is highly non-trivial.) Hence, any construction of
LPRG in NC0 defines a non-trivial combinatorial structure. In particular, one cannot hope that
“simple” deterministic transformations, such as those given in Chapter 4, will yield LPRGs in NC0.

Note that an exponentially strong PRG (or exponentially strong ε-biased generator) with linear
stretch gives an (Ω(n), 1)-expander graph whose output size grows linearly with its input size.
Indeed, the exponentially strong ε-biased generator of [MST03] is based on a similar (but slightly
stronger) unbalanced expander. The above argument shows that such an ingredient is necessary.

109

Chapter 7

Cryptography with Constant Input
Locality

Summary: So far we studied the possibility of implementing cryptographic tasks by functions
with constant output locality. In this chapter we turn to the dual question of constant input locality.
In particular, we ask: Which cryptographic primitives (if any) can be realized by functions with
constant input locality, namely functions in which every bit of the input influences only a constant
number of bits of the output? We (almost) characterize what cryptographic tasks can be performed
with constant input locality. On the negative side, we show that primitives which require some form
of non-malleability (such as digital signatures, message authentication, or non-malleable encryption)
cannot be realized with constant input locality. On the positive side, assuming the intractability of
certain problems from the domain of error correcting codes (namely, hardness of decoding a random
linear code or the security of the McEliece cryptosystem), we obtain new constructions of one-way
functions, pseudorandom generators, commitments, and semantically-secure public-key encryption
schemes whose input locality is constant. Moreover, these constructions also enjoy constant output
locality. Therefore, they give rise to cryptographic hardware that has constant-depth, constant
fan-in and constant fan-out. As a byproduct, we obtain a pseudorandom generator whose output
and input locality are both optimal (namely, 3).

7.1 Introduction

In the previous chapters we showed that, under standard cryptographic assumptions, most crypto-
graphic primitives can be realized by functions with constant output locality, namely ones in which
every bit of the output is influenced by a constant number of bits from the input. In this chapter we
study the complementary question of implementing cryptographic primitives by functions in which
each input bit affects only a constant number of output bits. This was not settled by the previous
chapters. This natural question can be motivated from several distinct perspectives:

• (Theoretical examination of a common practice) A well known design principle for practical
cryptosystems asserts that each input bit must affect many output bits. This principle is
sometimes referred to as Confusion/Diffusion or Avalanche property. It is easy to justify this
principle in the context of block-ciphers (which are theoretically modeled as pseudorandom
functions or permutations), but is it also necessary in other cryptographic applications (e.g.,

110

stream ciphers)?

• (Hardware perspective) Unlike NC0 functions, functions with both constant input locality
and constant output locality can be computed by constant depth circuits with bounded fan-
in and bounded fan-out. Hence, the parallel time complexity of such functions is constant in
a wider class of implementation scenarios.

• (Complexity theoretic perspective) One can state the existence of cryptography in NC0 in
terms of average-case hardness of Constraint Satisfaction Problems in which each constraint
involves a constant number of variables (k-CSPs). The new question can therefore be for-
mulated in terms of k-CSPs with bounded occurrences of each variable. It is known that
NP hardness and inapproximability results can be carried from the CSP setting to this set-
ting [PY91, Coo71], hence it is interesting to ask whether the same phenomenon occurs with
respect to cryptographic hardness as well.

Motivated by the above, we would like to understand which cryptographic tasks (if any) can
be realized with constant input and output locality, or even with constant input locality alone.
Another question considered in this chapter, is that of closing the (small) gap between positive
results for cryptography with locality 4 and the impossibility of cryptography with locality 2.

7.1.1 Our Results

We provide an almost full characterization of the cryptographic tasks that can be realized by
functions with constant input locality. On the negative side, we show that primitives which require
some form of non-malleability (e.g., signatures, MACs, non-malleable encryption schemes) cannot
be realized with constant (or, in some cases, even logarithmic) input locality.

On the positive side, assuming the intractability of some problems from the domain of er-
ror correcting codes, we obtain constructions of pseudorandom generators, commitments, and
semantically-secure public-key encryption schemes with constant input locality and constant output
locality. In particular, we obtain the following results:

• For PRGs, we answer simultaneously both of the above questions. Namely, we construct
a collection1 of PRGs whose output locality and input locality are both 3. We show that
this is optimal in both output locality and input locality. Our construction is based on the
intractability of decoding a random linear code. Previous constructions of PRGs, or even
OWFs, (cf. [Gol00], Chapter 6) which enjoyed constant input locality and constant output
locality at the same time, were based on non-standard intractability assumptions.

• We construct a non-interactive commitment scheme, in the common reference string model,
in which the output locality of the commitment function is 4, and its input locality is 3. The
security of this scheme also follows from the intractability of decoding a random linear code.
(We can also get a non-interactive commitment scheme in the standard model under the
assumption that there exists an explicit binary linear code that has a large minimal distance
but is hard to decode.)

1All of our collections are indexed by a public random key. That is, {Gz}z∈{0,1}∗ is a collection of PRGs if for every
z the function Gz expands its input and the pair (z, Gz(x)) is pseudorandom for random x and z. See Definition 7.2.1.

111

• We construct a semantically secure public-key encryption scheme whose encryption algo-
rithm has input locality 3. This scheme is based on the security of the McEliece cryptosys-
tem [McE78], an assumption which is related to the intractability of decoding a random linear
code, but is seemingly stronger. Our encryption function also has constant output locality,
if the security of the McEliece cryptosystem holds when it is instantiated with some error
correcting code whose relative distance is constant.

• We show that MACs, signatures and non-malleable symmetric or public-key encryption
schemes cannot be realized by functions whose input locality is constant or, in some cases,
even logarithmic in the input length. In fact, we prove that even the weakest versions of these
primitives (e.g., one-time secure MACs) cannot be constructed in this model.

7.1.2 Our Techniques

Our constructions rely again on the machinery of randomized encoding. In Chapter 4 we showed
that the security of most cryptographic primitives is inherited by their randomized encoding. Thus,
in order to construct some cryptographic primitive P in some low complexity class WEAK, one can
try to encode functions from a higher complexity class STRONG by functions from WEAK and then
take an implementation f ∈ STRONG of the primitive P, and replace it by its encoding f̂ ∈ WEAK.
This paradigm was used in Chapters 4, 5. (For example, we showed that STRONG can be NC1 and
WEAK can be the class of functions whose output locality is 4.)

However, it seems hard to adapt this approach to the current setting, since it is not clear whether
there are non-trivial functions that can be encoded by functions with constant input locality. (In
fact, we show that some very simple NC0 functions cannot be encoded in this class.) We solve
this problem by introducing a new construction of randomized encodings. Our construction shows
that there exists a complexity class C of simple (but non-trivial) functions that can be encoded by
functions with constant input locality. Roughly speaking, a function f is in C if each of its output
bits can be written as a sum of terms over F2 such that each input variable of f participates in a
constant number of distinct terms, ranging over all outputs of f . Moreover, if the algebraic degree
of theses terms is constant, then f can be encoded by a function with constant input locality as well
as constant output locality. (In particular, all linear functions over F2 admit such an encoding.)

By relying on the nice algebraic structure of intractability assumptions related to decoding
random linear codes, and using techniques from Chapter 6, we construct PRGs, commitments
and public-key encryption schemes in C whose algebraic degree is constant. Then, we use the
new construction to encode these primitives, and obtain implementations whose input locality and
output locality are both constant.

Interestingly, unlike previous constructions of randomized encodings, the new encoding does
not have a universal simulator nor a universal decoder; that is, one should use different decoders
and simulators for different functions in C. This phenomenon is inherent to the setting of constant
input locality and is closely related to the fact that MACs cannot be realized in this model. See
Section 7.6.2 for a discussion.

7.1.3 Previous Work

Unlike the case of NC0 cryptography, the question of cryptography with constant input locality is
relatively unexplored. (A review of the works that addressed the possibility of NC0 cryptography

112

appears in Section 4.1.1.) However, constructions of primitives with constant input locality are
implicitly given in [Gol00, MST03]. In particular, Goldreich [Gol00] suggested an approach for
constructing OWFs based on expander graphs, an approach whose conjectured security does not
follow from any well-known assumption. This general construction can be instantiated by functions
with constant output locality and constant input locality. In addition, Mossel et al. [MST03]
constructed (non-cryptographic) ε-biased generators with (non-optimal) constant input and output
locality. Also, the construction of linear-stretch PRG in NC0 of Chapter 6, can give an NC0 PRG
with (large) constant input locality under Assumption 6.5.1, which is a non-standard assumption
taken from [Ale03]. (See Item 2 in Remarks on Theorem 6.5.11.)

7.2 Preliminaries

We will consider collections of PRGs.

Definition 7.2.1 (Collection of PRGs) Let p(·) be a polynomial, and let G = {Gz}z∈{0,1}p(n) be
a polynomial-time computable collection of functions where Gz : {0, 1}n → {0, 1}s(n). Then G is a
PRG collection, if it satisfies the following two conditions:

1. Expansion: s(n) > n, for all n ∈ N.

2. Pseudorandomness: {z, Gz(Un)}n∈N
c≡ {z, Us(n)}n∈N, where z ← Up(n).

In particular, if we have a PRG of the form G(x, z) = (G′(x, z), z) then we can transform it into the
PRG collection Gz(x) = G′(x, z). Note, that this definition falls into the category of public-coin
collection (as defined in Appendix A). Moreover, in this case the public-key is simply a random
string.

We will also need the definition of extractors. Recall that the min-entropy of a random variable
X is defined as H∞(X) def= minx log(1

Pr[X=x]).

Definition 7.2.2 (Extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}t is a (k, ε)-extractor if
for every distribution X on {0, 1}n with H∞(X) ≥ k the distribution Ext(X, Ud) is ε-close to the
uniform distribution over {0, 1}t.

An important construction of extractors is based on pairwise independent hashing.

Lemma 7.2.3 (Leftover hashing lemma [HILL99]) Let H = {hz} be a family of pairwise in-
dependent hash functions that map n-bit strings to t-bit strings. Then, the function Ext(x, z) =
(hz(x), z) is a (k, ε) extractor where ε = 2−(k−t)/2.

We note that pairwise independent hash functions can be defined by the mapping hA,b(x) =
Ax + b where A is a t× n binary matrix, b is a t-bit vector and arithmetic is over F2.

In the following definitions, we will use k to denote a random string, which can be either a
public string or a secret key. A commitment scheme in the common reference string model (CRS)
is defined as follows:

Definition 7.2.4 (Commitment scheme) A commitment scheme is a pair (Com,Rec) of prob-
abilistic polynomial-time algorithms satisfying the following conditions:

113

• Viability: For every bit b ∈ {0, 1}, it holds Prk,r[Reck(Comk(b; r), b, r) = reject)] ≤ neg(|k|).
• Hiding: {(k,Comk(0; r))}n

c≡ {(k,Comk(1; r))}n where k ← Un, r ← Up(n), and the polyno-
mial p(·) is the randomness complexity of Com.

• Binding: For every commitment string c, except with negligible probability over the choice
of k, there are no r0 and r1 for which Reck(c, 0, r0) = Reck(c, 1, r1) = accept.

The following definition of Non-Malleable private-key encryption is based on the definition
of [KY00]. Since this definition is used here for negative results, we allow ourselves to use a
simplified version which is considerably weaker than the original definition.

Definition 7.2.5 (Non-malleable private-key encryption) A non-malleable private-key en-
cryption scheme is a pair (E, D) of probabilistic polynomial-time algorithms satisfying the following
conditions:

• Viability: The algorithms E,D satisfy

Pr[Dk(Ek(x)) 6= x)] ≤ neg(|k|).

• Non-Malleability: For an adversary A, consider the following experiment which is indexed
by n, the size of the key: First a random n-bit key k is selected. Then, A outputs a message
space distribution M which consists of strings of equal length (and represented by a prob-
abilistic polynomial-sized circuit), and a binary relation R (which is also represented by a
polynomial-sized circuit). Next, two random strings x, x̃ are chosen from M , and are en-
crypted under k. Let c, c̃ be the resulting ciphertexts. Then, the ciphertext c is given to A,
which in turn outputs a ciphertext c′ 6= c. The advantage of A is defined to be

εA(n) =
∣∣Pr[(Dk(c′), Dk(c)) ∈ R]− Pr[(Dk(c′), Dk(c̃)) ∈ R]

∣∣ .

The scheme is non-malleable if for every (non-uniform) efficient adversary A the advantage
εA(n) of A is negligible in n.

7.3 Randomized Encoding with Constant Input Locality

In this section we will show that functions with a “simple” algebraic structure (and in particular
linear functions over F2) can be encoded by functions with constant input locality. We begin
with the following construction that shows how to reduce the input locality of a function which is
represented as a sum of functions.

Construction 7.3.1 (Basic input locality construction) Let

f(x) = (a(x) + b1(x), a(x) + b2(x), . . . , a(x) + bk(x), c1(x), . . . , cl(x)),

where f : Fn
2 → Fk+l

2 and a, b1, . . . , bk, c1, . . . , cl : Fn
2 → F2. The encoding f̂ : Fn+k

2 → F2k+l
2 is

defined by:

f̂(x, (r1, . . . , rk))
def= (r1 + b1(x), r2 + b2(x), . . . , rk + bk(x),

a(x)− r1, r1 − r2, . . . , rk−1 − rk,

c1(x), . . . , cl(x)).

114

Note that after the transformation the function a(x) appears only once and therefore the locality
of the input variables that appear in a is reduced. In addition, the locality of all the other original
input variables does not increase.2 For example, applying the locality construction to the function
f(x) = (x1x2 + x2, x1x2 + x2x3, x1x2 + x3, x3) results in the encoding f̂(x, r) = (r1 + x2, r2 +
x2x3, r3 + x3, x1x2 − r1, r1 − r2, r2 − r3, x3). Hence, in this case it reduces the locality of x1 from 3
to 1.

Lemma 7.3.2 (Input locality lemma) Let f and f̂ be as in Construction 7.3.1. Then, f̂ is a
perfect randomized encoding of f .

Proof: The encoding f̂ is stretch-preserving since the number of random inputs equals the
number of additional outputs (i.e., k). Moreover, given a string ŷ = f̂(x, r) we can decode the
value of f(x) as follows: To recover a(x) + bi(x), compute the sum yi + yk+1 + yk+2 + . . . + yk+i;
To compute ci(x), simply take y2k+i. This decoder never errs.

Fix some x ∈ {0, 1}n. Let y = f(x) and let ŷ denote the distribution f̂(x,Uk). To prove perfect
privacy, note that: (1) the last l bits of ŷ are fixed and equal to y[k+1...k+l]; (2) the first k bits of
ŷ are independently uniformly distributed; (3) the remaining bits of ŷ are uniquely determined by
y and ŷ1, . . . , ŷk. To see (3), observe that, by the definition of f̂ , we have ŷk+1 = y1 − ŷ1; and for
every 1 < i ≤ k, we also have ŷk+i = yi − ŷi −

∑i−1
j=1 ŷk+j .

Hence, define a perfect simulator as follows. Given y ∈ {0, 1}k+l, the simulator S chooses a
random string r of length k, and outputs (r, s, y[k+1...k+l]), where s1 = y1 − r1 and si = yi − ri −∑i−1

j=0 sj for 1 < i ≤ k. This simulator is also balanced as each of its outputs is a linear function
that contains a fresh random bit. (Namely, the output bit S(y; r)i depends on: (1) ri if 1 ≤ i ≤ k;
or (2) yi−k if k + 1 ≤ i ≤ 2k + l.)

An additive representation of a function f : Fn
2 → Fl

2 is a representation in which each output
bit is written as as a sum (over F2) of functions of the input x. That is, each output bit fi

can be written as fi(x) =
∑

a∈Ti
a(x), where Ti is a set of boolean functions over n variables.

We specify such an additive representation by an l-tuple (T1, . . . , Tl) where Ti is a set of boolean
functions a : Fn

2 → F2. We assume, without loss of generality, that none of the Ti’s contains the
constant functions 0 or 1. The following measures are defined with respect to a given additive
representation of f . For a function a : Fn

2 → F2, define the multiplicity of a to be the number of
Ti’s in which a appears, i.e., #a = |{Ti | a ∈ Ti}|. For a variable xj , we define the rank of xj to be
the number of different boolean functions a which depend on xj and appear in some Ti. That is,
rank(xj) = |{a : Fn

2 → F2 | a depends on xj , a ∈ T1
⋃

. . .
⋃

Tl}|.
Theorem 7.3.3 Let f : Fn

2 → Fl
2 be a function, and fix some additive representation (T1, . . . , Tl)

for f . Then f can be perfectly encoded by a function f̂ : Fn
2 ×Fm

2 → Fs
2 such that the following hold:

1. The input locality of every xj in f̂ is at most rank(xj), and the input locality of the random
inputs ri of f̂ is at most 3.

2. If the output locality of f is i, then the output locality of f̂ is max(i, 2).

3. The randomness complexity of f̂ is m =
∑

a∈T #a, where T =
⋃l

i=1 Ti.

2Note that it is trivial to obtain a deterministic encoding that satisfies only the first property by letting f̂(x) =
(a(x) + b1(x), b2(x)− b1(x), . . . , bk(x)− b1(x), c1(x), . . . , cl(x)).

115

Proof: We will use the following convention. The additive representation of a function ĝ
resulting from applying Construction 7.3.1 to a function g is the (natural) representation induced
by the original additive representation of g. We construct f̂ iteratively via the following process.

• Let f (0) = f, i = 0.

• For j = 1, . . . , n do the following:

– while there exists a function a in f (i) that depends on xj , whose multiplicity is greater
than 1, apply Construction 7.3.1 to f (i). Let f (i+1) be the resulting encoding and let
i = i + 1.

• Let f̂ = f (i).

By Lemma 7.3.2, the function f (i) perfectly encodes the function f (i−1), hence by the composition
property of randomized encodings (Lemma 3.2.3), the final function f̂ perfectly encodes f . The
first item of the theorem follows from the following observations: (1) In each iteration the input
locality and the rank of each original variable xj do not increase. (2) The multiplicity in f̂ of
every function a that depends on some original input variable xj is 1. (3) The input locality of the
random inputs which are introduced by the locality construction is at most 3. The last two items
of the theorem follow directly from the definition of Construction 7.3.1 and the construction of f̂ .

Remarks on Theorem 7.3.3.

1. By Theorem 7.3.3, every linear function admits an encoding of constant input locality, since
each output bit can be written as a sum of degree 1 monomials. More generally, every function
f whose canonic representation as a sum of monomials (i.e., each output bit is written as a
sum of monomials) includes a constant number of monomials per input bit can be encoded
by a function of constant input locality.

2. Interestingly, Construction 7.3.1 does not provide a universal encoding for any natural class of
functions (e.g., the class of linear functions mapping n bits into l bits). This is contrasted with
previous constructions of randomized encoding with constant output locality (cf. Section 4.2).
In fact, in Section 7.6.1 we prove that there is no universal encoding with constant input
locality for the class of linear function L : Fn

2 → F2.

3. When Theorem 7.3.3 is applied to a function family f : {0, 1}n → {0, 1}l(n) then the result-
ing encoding is uniform whenever the additive representation (T1, . . . , Tl) is polynomial-time
computable.

4. In Section 7.6.1, we show that Theorem 7.3.3 is tight in the sense that for each integer i we
can construct a function f in which the rank of x1 is i, and in every encoding f̂ of f the input
locality of x1 is at least i.

In some cases we can combine Theorem 7.3.3 and the output-locality construction (Construc-
tion 4.2.4) to derive an encoding which enjoys low input locality and output locality at the same
time. In particular, we will use the following lemma which is a refinement of Lemma 4.2.5.

116

Lemma 7.3.4 (implicit in Chapter 4) Let f : Fn
2 → Fl

2 be a function such that each of its
output bits can be written as sum of monomials of degree d. Then, we can perfectly encode f by a
function f̂ such that:

• f̂ ∈ Locald+1.

• The rank of every original variable xi in f̂ is equal to the rank of xi in f .

• The new variables introduced by f̂ appear only in monomials of degree 1; hence their rank is
1.

By combining Lemma 7.3.4 with Theorem 7.3.3 we get:

Corollary 7.3.5 Let f : Fn
2 → Fl

2 be a function. Fix some additive representation for f in which
each output bit is written as a sum of monomials of degree (at most) d and the rank of each variable
is at most ρ. Then, f can be perfectly encoded by a function f̂ of input locality max(ρ, 3) and output
locality d + 1. Moreover, the resulting encoding is uniform whenever the additive representation is
polynomial-time computable.

Proof: First, by Lemma 7.3.4, we can perfectly encode f by a function f ′ ∈ Locald+1 without
increasing the rank of the input variables of f . Next, we apply Theorem 7.3.3 and perfectly
encode f ′ by a function f̂ ∈ Locald+1

max(ρ,3). By the composition property of randomized encodings

(Lemma 3.2.3), the resulting function f̂ perfectly encodes f . Finally, the proofs of Theorem 7.3.3
and Lemma 7.3.4 both allow to efficiently transform an additive representation of the function f
into an encoding f̂ in Locald+1

max(ρ,3). Hence, the uniformity of f is inherited by f̂ .

We remark that Theorem 7.3.3 as well as Lemma 7.3.4 generalize to any finite field F. Hence,
so does Corollary 7.3.5.

7.4 Primitives with Constant Input Locality and Output Locality

7.4.1 Main Assumption: Intractability of Decoding Random Linear Code

Our positive results are based on the intractability of decoding a random linear code. In the
following we introduce and formalize this assumption.

An (m,n, δ) binary linear code is a n-dimensional linear subspace of Fm
2 in which the Hamming

distance between each two distinct vectors (codewords) is at least δm. We refer to the ratio n/m
as the rate of the code and to δ as its (relative) distance. Such a code can be defined by an
m× n generator matrix whose columns span the space of codewords. It follows from the Gilbert–
Varshamov bound that whenever n/m < 1− H2(δ)− ε, almost all m× n generator matrices form
(m,n, δ)-linear codes. Formally,

Fact 7.4.1 ([Var57]) Let 0 < δ < 1/2 and ε > 0. Let n/m ≤ 1 − H2(δ) − ε. Then, a randomly
chosen m× n generator matrix generates an (m,n, δ) code with probability 1− 2−(ε/2)m.

A proof of the above version of the Gilbert–Varshamov bound can be found in [Sud02, Lecture 5].
For code length parameter m = m(n), and noise parameter µ = µ(n), we will consider the following
“decoding game”. Pick a random m × n matrix C representing a linear code, and a random

117

information word x. Encode x with C and transmit the resulting codeword y = Cx over a binary
symmetric channel in which every bit is flipped with probability µ. Output the noisy codeword ỹ
along with the code’s description C. The adversary’s task is to find the information word x. We
say that the above game is intractable if every polynomial-time adversary wins in the above game
with no more than negligible probability in n.

Definition 7.4.2 Let m(n) ≤ poly(n) be a code length parameter, and 0 < µ(n) < 1/2 be a noise
parameter. The problem CODE(m, µ) is defined as follows:

• Input: (C,Cx + e), where C is an m(n)× n random binary generator matrix, x ← Un, and
e ∈ {0, 1}m is a random error vector in which each entry is chosen to be 1 with probability µ
(independently of other entries), and arithmetic is over F2.

• Output: x.

We say that CODE(m,µ) is intractable if every (non-uniform) polynomial-time adversary A solves
the problem with probability negligible in n.

We note that CODE(m,µ) becomes harder when m is decreased and µ is increased, as we can
always add noise or ignore the suffix of the noisy codeword. Formally,

Proposition 7.4.3 Let m′(n) ≤ m(n) and 0 < µ(n) ≤ µ′(n) < 1/2 for every n. Then, if
CODE(m,µ) is intractable, so is CODE(m′, µ′).

Proof: Fix n and let m′ = m′(n), m = m(n), µ = µ(n) and µ′ = µ′(n). We reduce the problem
CODE(m,µ) to CODE(m′, µ′) as follows. Given an input (C, y) for CODE(m,µ) (i.e., C is an
m×n binary matrix and y is an m-bit vector), we construct the pair (C ′, y′) by letting C ′ denote the
m′×n binary matrix that contains the first m′ rows of C, and y′ ∈ {0, 1}m′

be the vector resulting
by taking the first m′ entries of y and adding (over F2) a random vector r ∈ {0, 1}m′

in which each
entry is chosen to be 1 (independently of other entries) with probability (µ′ − µ)/(1− 2µ).

Suppose that (C, y) is drawn from the input distribution of CODE(m,µ), that is, C is random
matrix and y = Cx + e where x ← Un, and e ∈ {0, 1}m is a random error vector of noise rate µ.
Then, the pair (C ′, y′) can be written as (C ′, C ′x + e′) where e′ = e + r is a random noise vector of
rate

µ · (1− µ′ − µ

1− 2µ
) + (1− µ)

µ′ − µ

1− 2µ
= µ +

(1− 2µ)(µ′ − µ)
1− 2µ

= µ′.

Hence, given an algorithm A that solves CODE(m′, µ′), we can find the information word x by
running A on (C ′, y′).

Typically, we let m(n) = O(n) and µ be a constant such that n/m(n) < 1 − H2(µ + ε) where
ε > 0 is a constant. Hence, by Fact 7.4.1, the random code C is, with overwhelming probability, an
(m,n, µ+ε) code. Note that, except with negligible probability, the noise vector flips less than µ+ε
of the bits of y. In this case, the fact that the noise is random (rather than adversarial) guarantees,
by Shannon’s coding theorem (for random linear codes), that x will be unique with overwhelming
probability. That is, roughly speaking, we assume that it is intractable to correct µn random errors
in a random linear code of relative distance µ + ε > µ. The plausibility of such an assumption
is supported by the fact that a successful adversary would imply a major breakthrough in coding

118

theory. Similar assumptions were put forward in [GKL93, BFKL94, Gol01a]. We mention that the
best known algorithm for CODE(m, µ), due to [BKW03, Lyu05], runs in time 2O(n/ log log n) and
requires m to be super-linear, i.e., m = n1+α. When m = O(n) (and µ is constant), the problem is
only known to be solved in exponential time.

We now show that distinguishing the distribution (C, Cx+ e) from the uniform distribution re-
duces to decoding x. A similar lemma was proved by Blum et al. [BFKL94, Theorem 13]. However,
their version does not preserve the length of the codewords. Namely, they show that the hardness
of decoding random linear code with codewords of length m(n) implies the pseudorandomness of
the distribution (C,Cx + e) in which the length of the codewords is polynomially smaller than
m(n).

Lemma 7.4.4 Let m(n) be a code length parameter, and µ(n) be a noise parameter. If CODE(m,µ)
is intractable then the distribution (C, Cx+e) is pseudorandom, where C ← Um(n)×n, x ← Un, and
e ∈ {0, 1}m(n) is a random error vector of noise rate µ.

Proof: Assume that CODE(m,µ) is intractable. Then, by the Goldreich-Levin hardcore bit
theorem [GL89], given (C, Cx + e) and a random n-bit vector r, an efficient adversary cannot
compute 〈r, x〉 with probability greater than 1

2 + neg(n). Assume, towards a contradiction, that
there exists an efficient distinguisher A = {An} and a polynomial p(·) such that

Pr[An(C, Cx + e) = 0]− Pr[An(Um(n)×n, Um) = 0] > 1/p(n),

for infinitely many n’s. We will use An to construct an efficient adversary A′n that breaks the
security of the Goldreich-Levin hardcore bit. Given (C, y = Cx + e) and a random n-bit vector r,
the adversary A′n chooses a random m-bit vector s and computes a new m(n) × n binary matrix
C ′ def= C−s ·rT , where rT denotes the transpose of r. Now A′n applies the distinguisher An to (C ′, y)
and outputs his answer. Before we analyze the success probability of A′n we need two observations:
(1) the matrix C ′ is a random m(n)× n binary matrix; and (2) y = Cx + e = C ′x + s · rT · x + e =
C ′x+ s · 〈r, x〉+ e. Hence, when 〈r, x〉 = 0 it holds that (C ′, y) = (C ′, C ′x+ e), and when 〈r, x〉 = 1
we have (C ′, y) = (C ′, C ′x + e + s) ≡ (C ′, Um), where Um is independent of C ′. Therefore we have

Pr[A′n(C, Cx + e, r) = 〈x, r〉] = Pr[A′n(C, Cx + e, r) = 0|〈x, r〉 = 0] · Pr[〈x, r〉 = 0]
+Pr[A′n(C, Cx + e, r) = 1|〈x, r〉 = 1] · Pr[〈x, r〉 = 1]

=
1
2
· (Pr[An(C ′, C ′x + e) = 0] + 1− Pr[An(C ′, Um) = 0])

≥ 1
2

+
1

2p(n)
,

where the last inequality holds for infinitely many n’s. Thus, we derive a contradiction to the
security of the GL-hardcore bit.

7.4.2 Pseudorandom Generator in Local33

A pseudorandom generator (PRG) is an efficiently computable function G which expands its input
and its output distribution G(Un) is pseudorandom. An efficiently computable collection of func-
tions {Gz}z∈{0,1}∗ is a PRG collection if for every z, the function Gz expands its input and the

119

pair (z, Gz(x)) is pseudorandom for random x and z. (See Section 7.2 for formal definitions.) We
show that pseudorandom generators (and therefore also one-way functions and one-time symmetric
encryption schemes) can be realized by LocalO(1)

O(1) functions. Specifically, we get a PRG in Local33.
Recall that, by the tractability of 2-SAT, it is impossible to construct a PRG (and even OWF) in
Local2 [CM01, Gol00]. In Section 7.5.4 we also prove that there is no PRG in Local2. Hence, our
PRG has optimal input locality as well as optimal output locality.

We rely on the following assumption.

Intractability Assumption 7.4.5 The problem CODE(6n, 1/4) is intractable.

Note that the code considered here is of rate n/m = 1/6 which is strictly smaller than 1−H2(1/4).
Therefore, except with negligible probability, its relative distance is larger than 1/4. Hence, the
above assumption roughly says that it is intractable to correct n/4 random errors in a random
linear code of relative distance 1/4 + ε, for some constant ε > 0.

Let m(n) = 6n. Let C ← Um(n)×n, x ← Un and e ∈ {0, 1}m be a random error vector of rate
1/4, that is, each of the entries of e is 1 with probability 1/4 (independently of the other entries). By
Lemma 7.4.4, the distribution (C, Cx+ e) is pseudorandom under the above assumption. Since the
noise rate is 1/4, it is natural to sample the noise distribution e by using 2m random bits r1, . . . , r2m

and letting the i-th bit of e be the product of two fresh random bits, i.e., ei = r2i−1 ·r2i. We can now
define the mapping f(C, x, r) = (C,Cx+e(r)) where e(r) = (r2i−1 ·r2i)m

i=1. The output distribution
of f is pseudorandom, however, f is not a PRG since it does not expand its input. In Chapter 6,
we showed how to bypass this problem by applying a randomness extractor (see Definition 7.2.2).
Namely, the following function was shown to be a PRG: G(C, x, r, s) = (C,Cx + e(r), Ext(r, s)).
Although the setting of parameters in Chapter 6 is different than ours, a similar solution works
here as well. We rely on the leftover hashing lemma (Lemma 7.2.3) and base our extractor on a
family of pairwise independent hash functions (which is realized by the mapping x 7→ Ax+ b where
A is a random matrix and b is a random vector).3

Construction 7.4.6 Let m = 6n and let t = d7.1 · ne. Define the function

G(x,C, r,A, b) def= (C, Cx + e(r), Ar + b, A, b),

where x ∈ {0, 1}n, C ∈ {0, 1}m×n, r ∈ {0, 1}2m, A ∈ {0, 1}t×2m, and b ∈ {0, 1}t.

Theorem 7.4.7 Under Assumption 7.4.5, the function G defined in Construction 7.4.6 is a PRG.

Before proving Theorem 7.4.7, we need the following claim (which is similar to Lemma 6.5.6).

Claim 7.4.8 Let [r|e(r)] denote the distribution of r given the outcome of e(r). Then,

Pr
r←U2m

[H∞([r|e(r)]) ≥ 1.17m] ≥ 1− exp(−Ω(m)).

3We remark that in Chapter 6 one had to rely on a specially made extractor in order to maintain the large stretch
of the PRG. In particular, the leftover hashing lemma could not be used there.

120

Proof: We view e(r) as a sequence of m independent Bernoulli trials, each with a probability 0.25
of success. Recall that r is composed of m pairs of bits, and that the i-th bit of e(r) is 1 if and only
if r2i−1 and r2i are both equal to 1. Hence, whenever e(r)i = 0, the pair (r2i−1, r2i) is uniformly
distributed over the set {00, 01, 10}. Consider the case in which at most 0.26m components of
e(r) are ones. By a Chernoff bound, the probability of this event is at least 1 − exp(−Ω(m)).
In this case, r is uniformly distributed over a set of size at least 30.74m. Hence, conditioning on
the event that at most 0.26m components of e(r) are ones, the min-entropy of [r|e(r)] is at least
0.74m log(3) > 1.17m.

We can now prove Theorem 7.4.7.
Proof of Theorem 7.4.7: Let m = 6n and t = 7.01n. First we show that G expands its input.
Indeed, the difference between the output length and the input length is: m + t − (n + 2m) =
0.01n > 0.

Let x ← Un, C ← Um·n, r ← U2m, A ← Ut·2m and b ← Ut. We prove that the distribution
G(x,C, r,A, b) is pseudorandom. By Lemma 7.2.3, Fact 2.2.4 and Claim 7.4.8, we have that

SD((e(r), Ar + b, A, b), (e(r), Ut+2tm+m)) ≤ 2−(1.17m−t)/2 + exp(−Ω(m))
= 2−0.005n + exp(−Ω(n)) ≤ exp(−Ω(n)).

Hence, by Fact 2.2.3 and Assumption 7.4.5, we have

(C, Cx + e(r), Ar + b, A, b)
s≡ (C, Cx + e(r), Ut+2tm+m)

c≡ Umn+m+t+2tm+m,

which completes the proof.

From now on, we fix the parameters m, t according to Construction 7.4.6. We can redefine the
above construction as a collection of PRGs by letting C, A, b be the keys of the collection. Namely,

GC,A,b(x, r) = (Cx + e(r), Ar + b).

We can now prove the main theorem of this section.

Theorem 7.4.9 Under Assumption 7.4.5, there exists a collection of pseudorandom generators
{Gz}z∈{0,1}p(n) in Local33. Namely, for every z ∈ {0, 1}p(n), it holds that Gz ∈ Local33.

Proof: Fix C, A, b and write each output bit of GC,A,b(x, r) as a sum of monomials. Note that
in this case, each variable xi appears only in degree 1 monomials, and each variable ri appears
only in the monomial r2i−1r2i and also in degree 1 monomials. Hence, the rank of each variable is
at most 2. Moreover, the (algebraic) degree of each output bit of GC,A,b is at most 2. Therefore,
by Corollary 7.3.5, we can perfectly encode the function GC,A,b by a function ĜC,A,b in Local33. In
Chapter 4 we showed that a uniform perfect encoding of a PRG is also a PRG (see Lemma 4.5.4).
Thus, we get a collection of PRGs in Local33.

Remark 7.4.10 (Symmetric Encryption in Local33) We can rely on Theorem 7.4.9 to obtain
a one-time semantically-secure symmetric encryption scheme (E, D) whose encryption algorithm
is in Local33. First, we instantiate Construction 5.2.4 with the PRG of Theorem 7.4.9. This gives
an encryption algorithm Ek with degree 2 and rank 2. Now we can apply Corollary 7.3.5 and
perfectly encode the function Ek by a function Êk in Local33. Since randomized encoding preserves

121

semabtic security (Lemma 4.7.2), the resulting function defines an encryption algorithm of a one-
time semantically-secure symmetric encryption scheme. (This scheme allows to encrypt an arbitrary
polynomially long message with a short key.) A similar approach can be also used to give multiple
message security, at the price of requiring the encryption and decryption algorithms to maintain a
synchronized state. The results of Section 7.4.4 give a direct construction of public-key encryption
(hence also symmetric encryption) with constant input locality under the stronger assumption that
the McEliece cryptosystem is one-way secure.

7.4.3 Commitment in Local43

We will consider a non-interactive commitment scheme in the common reference string (CRS)
model. In such a scheme, the sender and the receiver share a common public random key k (that
can be selected once and be used in many invocations of the scheme). To commit to a bit b,
the sender computes the commitment function Comk(b, r) that outputs a commitment c using the
randomness r, and sends the output to the receiver. To open the commitment, the sender sends
the randomness r and the committed bit b to the receiver who checks whether the opening is valid
by computing the function Reck(c, b, r). The scheme should be both (computationally) hiding
and (statistically) binding. Hiding requires that c = Comk(b, r) keep b computationally secret.
Binding means that, except with negligible probability over the choice of the random public key, it
is impossible for the sender to open its commitment in two different ways. A formal definition is
given in Section 7.2.

We construct a commitment scheme in Local43, i.e., a commitment of input locality 3 and
output locality 4. Let c be a constant that satisfies c > 1

1−H2(1/4) . Let m = m(n) = dcne. Then,
by Fact 7.4.1, a random m× n generator matrix generates, except with negligible probability (i.e.,
2−Ω(m) = 2−Ω(n)), a code whose relative distance is 1/4 + ε, for some constant ε > 0. The public
key of our scheme will be a random m(n) × n generator matrix C. To commit to a bit b, we first
choose a random information word x ∈ {0, 1}n and hide it by computing Cx+ e, where e ∈ {0, 1}m

is a noise vector of rate 1/8, and then take the exclusive-or of b with a hardcore bit β(x) of the
above function. That is, we send the receiver the value (Cx + e, b + β(x)). In particular, we can
use the Goldreich-Levin [GL89] hardcore bit and get

ComC(b, (x, r, s)) = (Cx + e(r), s, b + 〈x, s〉),

where r is a random 3m-bit string, e(r) = (r1r2r3, r4r5r6, . . . , r3m−2r3m−1r3m), s is a random n-bit
string and 〈·, ·〉 denotes inner product (over F2). Assuming that CODE(m, 1/8) is intractable,
this commitment hides the committed bit b. (This is so because 〈x, s〉 is unpredictable given
(C,Cx + e, s), cf. [Gol01a, Construction 4.4.2].) Suppose that the relative distance of C is indeed
1/4 + ε. Then, if e contains no more than 1/8 + ε/2 ones, x is uniquely determined by Cx + e.
Of course, the sender might try to cheat and open the commitment ambiguously by claiming that
the weight of the error vector is larger than 1/8 + ε/2. Hence, we let the receiver verify that the
Hamming weight of the noise vector e given to him by the sender in the opening phase is indeed
smaller than 1/8+ε/2. This way, the receiver will always catch a cheating sender (assuming that C
is indeed a good code). Note that an honest sender will be rejected only if its randomly chosen noise
vector is heavier than 1/8 + ε/2, which, by a Chernoff bound, happens with negligible probability
(i.e., exp(−Ω(m)) = exp(−Ω(n))) as the noise rate is 1/8. Hence, the pair (Com,Rec) defined
above is indeed a commitment scheme. When C is fixed, the rank and algebraic degree of the

122

function ComC are 2 and 3 (with respect to the natural representation as a sum of monomials).
Hence, by Corollary 7.3.5, we can encode ComC by a function ˆComC ∈ Local43. By the results of
Section 4.8.2, this encoding is also a commitment scheme. Summarizing, we have:

Theorem 7.4.11 Let c be a constant that satisfies c > 1
1−H2(1/4) , and m = m(n) = dcne. If

CODE(m, 1/8) is intractable, then there exists a commitment scheme (Com,Rec) in Local43; i.e.,
for every public key C, we have ComC ∈ Local43.

We remark that we can eliminate the use of the CRS by letting C be a generator matrix of
some fixed error correcting error whose relative distance is large (i.e., 1/4 or any other constant)
in which decoding is intractable. For example, one might use the dual of a BCH code.

7.4.4 Semantically Secure Public-Key Encryption in Local
O(1)
3

We construct a semantically-secure public-key encryption scheme (PKE) whose encryption algo-
rithm is in LocalO(1)

O(1) (see Definition 4.7.1). Our scheme is based on the McEliece cryptosys-
tem [McE78]. We begin by reviewing the general scheme proposed by McEliece.

• System parameters: Let m(n) : N → N, where m(n) > n, and µ(n) : N → (0, 1). For
every n ∈ N, let Cn be a set of generating matrices of (m(n), n, 2(µ(n) + ε)) codes that have
a (universal) efficient decoding algorithm D that, given a generating matrix from Cn, can
correct up to (µ(n) + ε) ·m(n) errors, where ε > 0 is some constant.4 We also assume that
there exists an efficient sampling algorithm that samples a generator matrix of a random code
from Cn.

• Key Generation: Given a security parameter 1n, use the sampling algorithm to choose a
random code from Cn and let C be its generating matrix. Let m = m(n) and µ = µ(n).
Choose a random n × n non-singular matrix S over F2, and a random m ×m permutation
matrix P . Let C ′ = P · C · S be the public key and P, S,DC be the private key where DC is
the efficient decoding algorithm of C.

• Encryption: To encrypt x ∈ {0, 1}n compute c = C ′x + e where e ∈ {0, 1}m is an error
vector of noise rate µ.

• Decryption: To decrypt a ciphertext c, compute P−1y = P−1(C ′x + e) = CSx + P−1e =
CSx + e′ where e′ is a vector whose weight equals to the weight of e (since P−1 is also a
permutation matrix). Now, use the decoding algorithm D to recover the information word
Sx (i.e., D(C, CSx + P−1e) = Sx). Finally, to get x multiply Sx on the left by S−1.

By Chernoff bound, the weight of the error vector e is, except with negligible probability, smaller
than (µ+ε)·m and so the decryption algorithm almost never errs. As for the security of the scheme,
it is not hard to see that the scheme is not semantically secure. (For example, it is easy to verify
that a ciphertext c is an encryption of a given plaintext x by checking whether the weight of c−Cx
is approximately µn.)

4In fact, we may allow ε to decrease with n. In such case, we might get a non-negligible decryption error. This
can be fixed (without increasing the rank or the degree of the encryption function) by repeating the encryption with
independent fresh randomness. Details omitted.

123

However, the scheme is conjectured to be a one-way cryptosystem; namely, it is widely believed
that, for proper choice of parameters, any efficient adversary fails with probability 1 − neg(n) to
recover x from (c = C ′x + e, C ′) where x is a random n-bit string. (In other words, the McEliece
cryptosystem is considered to be a collection of trapdoor one-way functions which is almost 1-1
with respect to its first argument; i.e., x.)

Suppose that the scheme is indeed one-way with respect to the parameters m(n), µ(n) and Cn.
Then, we can convert it into a semantically secure public-key encryption scheme by extracting a
hardcore predicate and xoring it with a 1-bit plaintext b (this transformation is similar to the one
used for commitments in the previous section). That is, we encrypt the bit b by the ciphertext
(C ′x+e, s, 〈s, x〉+b) where x, s are random n-bit strings, and e is a noise vector of rate µ. (Again, we
use the Goldreich-Levin hardcore predicate [GL89].) To decrypt the message, we first compute x, by
invoking the McEliece decryption algorithm, and then compute 〈s, x〉 and xor it with the last entry
of the ciphertext. We refer to this scheme as the modified McEliece public-key encryption scheme.
If the McEliece cryptosystem is indeed one-way, then 〈s, x〉 is pseudorandom given (C ′, C ′x + e, s),
and thus the modified McEliece public-key is semantically secure. Formally,

Lemma 7.4.12 If the McEliece cryptosystem is one-way with respect to the parameters m(n), µ(n)
and Cn, then the modified McEliece PKE is semantically secure with respect to the same parameters.

The proof of this lemma is essentially the same as the proof of [Gol04, Prop. 5.3.14].
Let µ(n) = 2−t(n). Then, we can sample the noise vector e by using the function e(r) =(∏t
j=1 rt·(i−1)+j

)m(n)

i=1
where r is a t(n) ·m(n) bit string. In this case, we can write the encryption

function of the modified McEliece as EC′(b, x, r, s) = (C ′x + e(r), s, 〈x, s〉+ b).
The rank of each variable of this function is at most 2, and its algebraic degree is at most t(n).

Hence, by Corollary 7.3.5, we can encode it by a function Ê ∈ Localt(n)+1
3 , i.e., the output locality

of Ê is t(n) + 1 and its input locality is 3. In Lemma 4.7.2 we showed that randomized encoding
preserves the security of PKE. Namely, if (G,E,D) is a semantically secure PKE then (G, Ê, D̂) is
also an encryption scheme where Ê is an encoding of E, D̂(c) = D(B(c)) and B is the decoder of
the encoding. Hence we have,

Theorem 7.4.13 If the McEliece cryptosystem is one-way with respect to the parameters m(n),
µ(n) = 2−t(n) and Cn, then there exists a semantically secure PKE whose encryption algorithm is
in Localt(n)

3 .

The scheme we construct encrypts a single bit, however we can use concatenation to derive a PKE
for messages of arbitrary (polynomial) length without increasing the input and output locality.
Theorem 7.4.13 gives a PKE with constant output locality whenever the noise rate µ is constant.
Unfortunately, the binary classical Goppa Codes, which are commonly used with the McEliece
scheme [McE78], are known to have an efficient decoding only for subconstant noise rate. Hence, we
cannot use them for the purpose of achieving constant output locality and constant input locality
simultaneously. Instead, we suggest using algebraic-geometric (AG) codes which generalize the
classical Goppa Codes and enjoy an efficient decoding algorithm for constant noise rate. It seems
that the use of such codes does not decrease the security of the McEliece cryptosystem [JM96].

124

7.5 Negative Results for Cryptographic Primitives

In this section we show that cryptographic tasks which require some form of “non-malleability”
cannot be performed by functions with low input locality. This includes MACs, signatures and
non-malleable encryption schemes (e.g., CCA2 secure encryptions). We prove our results in the
private-key setting (i.e., for MAC and symmetric encryption). This makes them stronger as any
construction that gains security in the public-key setting is also secure in the private-key setting.
We will also prove that there is no PRG in Local2 and therefore the results of Section 7.4.2 are
optimal.

7.5.1 Basic Observations

Let f : {0, 1}n → {0, 1}s(n) be a function and let s = s(n). For i ∈ [n] and x ∈ {0, 1}n, we let
Qi(x) ⊆ [s] be the set of indices in which f(x) and f(x⊕i) differ. (Recall that x⊕i denote the string
x with the i-th bit flipped.) We let Qn

i
def=

⋃
x∈{0,1}n Qi(x), equivalently, Qn

i is the set of output bits
which are affected by the i-th input bit. From now on, we omit the superscript n whenever the
input length is clear from the context. We show that, given an oracle access to f , we can efficiently
approximate the set Qi for every i.

Lemma 7.5.1 There exists a probabilistic algorithm A that, given an oracle access to f : {0, 1}n →
{0, 1}s, an index i ∈ [n] and an accuracy parameter ε, outputs a set Q ⊆ Qi such that Prx[Qi(x) *
Q] ≤ ε, where the probability is taken over the coin tosses of A and the choice of x (which is inde-
pendent of A). Moreover, when f : {0, 1}n → {0, 1}s(n) is an infinite function the time complexity
of A is polynomial in n, s(n) and ε−1(n). In particular, if s(n) = poly(n), then for every constant
c, one can reduce the error to n−c in time poly(n).

Proof: Let t = ln(2s/ε) and α = ε/(2s). The algorithm A constructs the set Q iteratively,
starting from an empty set. In each iteration, A chooses uniformly and independently at random a
string x ∈ {0, 1}n and adds to Q the indices for which f(x) and f(x⊕i) differ. After t/α iterations
A halts and outputs Q. Clearly, Q ⊆ Qi. Let pj

def= Prx[j ∈ Qi(x)]. We say that j is common if
pj > α. Then, if j is common we have

Pr[j /∈ Q] ≤ (1− pj)t/α ≤ (1− α)t/α ≤ exp(−t) = ε/(2s).

Since |Qi| ≤ s, there are at most s common j’s and thus, by a union bound, the probability that A
misses a common j is at most ε/2. On the other hand, for a random x, the probability that Qi(x)
contains an uncommon index is at most s · α = ε/2. Hence, we have Prx[Qi(x) * Q] ≤ ε, which
completes the proof.

Our negative results are based on the following simple observation.

Lemma 7.5.2 Let f : {0, 1}n → {0, 1}s(n) be a function in Locall(n). Then, there exist a proba-
bilistic polynomial-time algorithm A such that for every x ∈ {0, 1}n and i ∈ [n], the output of A on
(y = f(x), i, Qn

i , 1n) equals, with probability at least 2−l(n), to the string y′ = f(x⊕i). In particular,
when l(n) = O(log(n)), the success probability of A is 1/poly(n).

125

Proof: Fix n and let s = s(n) and Qi = Qn
i . By definition, y and y′ may differ only in the

indices of Qi. Hence, we may randomly choose y′ from a set of size 2|Qi| ≤ 2l(n), and the lemma
follows.

Note that the above lemma generalizes to the case in which, instead of getting the set Qn
i , the

algorithm A gets a set Q′
i that satisfies Qi(x) ⊆ Q′

i ⊆ Qn
i .

By combining the above lemmas we get the following corollary:

Corollary 7.5.3 Let f : {0, 1}n → {0, 1}s(n) be a function in Locall(n), where s(n) = poly(n).
Then, there exist a probabilistic polynomial-time algorithm A that, given an oracle access to f ,
converts, with probability (1− 1/n) · 2−l(n), an image y = f(x) of a randomly chosen string x ← Un

into an image y′ = f(x⊕1). Namely,

Pr
x

[Af (f(x), 1n) = f(x⊕1)] ≥ (1− 1/n) · 2−l(n),

where the probability is taken over the choice of x and the coin tosses of A. In particular, when
l(n) = O(log(n)) the algorithm A succeeds with probability 1/poly(n),

Proof: First, we use algorithm A1 of Lemma 7.5.1 to learn, with accuracy ε = 1/n, an approx-
imation Q′

1 of the set Qn
1 . Then, we invoke the algorithm A2 of Lemma 7.5.2 on (f(x), 1, Q′

1, 1
n)

where f(x) is the challenge given to us. By the above lemmas, we get,

Pr
x

[Af (f(x), 1n) = f(x⊕1)] ≥ Pr
x

[Q1(x) ⊆ Q′
1] ·Pr

x
[A2(f(x), 1, Q′

1, 1
n) = f(x⊕1)] ≥ (1− 1/n) · 2−l(n),

and the corollary follows.

Clearly, one can choose to flip any input bit and not just the first one. Also, we can increase
the success probability to (1− n−c) · 2−l(n) for any constant c.

We now prove the impossibility results.

7.5.2 MACs and Signatures

Let (S, V) be a MAC scheme, where the randomized signing function S(k, α, r) computes a signature
β on the document α using the (random and secret) key k and randomness r, and the verification
algorithm V (k, α, β) verifies that β is a valid signature on α using the key k. The scheme is secure
(unforgeable) if it is infeasible to forge a signature in a chosen message attack. Namely, any efficient
adversary that gets an oracle access to the signing process S(k, ·) fails to produce a valid signature
β on a document α (with respect to the corresponding key k) for which it has not requested a
signature from the oracle.5 The scheme is one-time secure if the adversary is allowed to query the
signing oracle only once.

Suppose that the signature function S(k, α, r) has logarithmic input locality (i.e., S(k, α, r) ∈
LocalO(log(|k|))). Then, we can use Corollary 7.5.3 to break the scheme with a single oracle call. First,
ask the signing oracle S(k, ·) to sign on a randomly chosen document α. Then, use the algorithm of
Corollary 7.5.3 to transform, with probability 1/poly(n), the valid pair (α, β) we received from the
signing oracle into a valid pair (α⊕1, β

′). (Note that when applying Corollary 7.5.3 we let S(·, ·, ·)
play the role of f .)

5When querying the signing oracle, the adversary chooses only the message and is not allowed to choose the
randomness which the oracle uses to produce the signature.

126

Now, suppose that for each fixed key k the signature function Sk(α, r) = S(k, α, r) has input
locality `(n). In this case we cannot use Corollary 7.5.3 directly. The problem is that we cannot
apply Lemma 7.5.1 to learn the set Qi (i.e., the set of output bits which are affected by the i-th
input bit of f = Sk(·, ·)) since we do not have a full oracle access to Sk. (In particular, we do
not see or control the randomness used in each invocation of Sk.) However, we can guess the set
Qi and then apply Lemma 7.5.2. This attack succeeds with probability (1/

(s(n)
`(n)

)
) · 2−`(n) where

s(n) is the length of the signature (and so is polynomial in n). When `(n) = c is constant, the
success probability is 1/Θ(s(n)c) = 1/poly(n) and therefore, in this case, we break the scheme.6

To summarize:

Theorem 7.5.4 Let (S, V) be a MAC scheme. If S(k, α, r) ∈ LocalO(log(|k|)) or Sk(α, r) ∈ LocalO(1)

for every k, then the scheme is not one-time secure.

Remarks on Theorem 7.5.4.

1. Theorem 7.5.4 is true even if some bit of α has low input locality. This observation also holds
in the case of non-malleable encryption scheme.

2. If we have an access to the verification oracle (for example, in the public-key setting), we can
break the scheme in a stronger sense. Specifically, we can forge a signature to any target
document given a single signature to, say, 0n. To see this note that, given a signature β of the
document α, we can deterministically find a signature β′ of the document α⊕i by checking
all the polynomially many candidates. Hence, we can apply this procedure O(n) times and
gradually transform a given signature of some arbitrary document into a signature of any
target document.

3. A weaker version of Theorem 7.5.4 still holds even when the input locality of the signing
algorithm is logarithmic with respect to any fixed key (i.e., when Sk(α, r) ∈ LocalO(log(|k|)) for
every k). In particular, we can break such MAC schemes assuming that we are allowed to ask
for several signatures that were produced with some fixed (possibly unknown) randomness.
In such a case, we use Lemma 7.5.1 to (approximately) learn the output bits affected by, say,
the first input bit, and then apply Lemma 7.5.2 to break the scheme. This attack rules out
the existence of a deterministic MAC scheme for which Sk(α) ∈ LocalO(log(|k|)) for every k.

7.5.3 Non-Malleable Encryption

Let (E, D) be a private-key encryption scheme, where the encryption function E(k, m, r) computes
a ciphertext c encrypting the message m using the (random and secret) key k and randomness r,
and the decryption algorithm D(k, c, r) decrypts the ciphertext c that was encrypted under the key
k. Roughly speaking, non-malleability of an encryption scheme guarantees that it is infeasible to
modify a ciphertext c into a ciphertext c′ of a message related to the decryption of c.

Theorem 7.5.5 Let (E,D) be a private-key encryption scheme. If E(k, m, r) ∈ LocalO(log(|k|)) or
Ek(m, r) ∈ LocalO(1) for every k, then the scheme is malleable with respect to an adversary that has
no access to neither the encryption oracle nor the decryption oracle. If (G,E,D) is a public-key
encryption scheme and Ek(m, r) ∈ LocalO(log(|k|)) for every k, then the scheme is malleable.

6When the locality `(n) of Sk is logarithmic (for every fixed key k), this approach yields an attack that succeeds
with probability 1/nΘ(log(n)).

127

Proof: The proof is similar to the proof of case of Theorem 7.5.4. Let n be the length of the
key k, p = p(n),m = m(n), and s = s(n) be the lengths of the message x, randomness r, and
ciphertext length c respectively; i.e., E : {0, 1}n×{0, 1}p×{0, 1}m → {0, 1}s. Our attacks will use
the message space M = {0, 1}p and the relation R for which (x, x′) ∈ R if and only if x and x′

differ only in their first bit.
Suppose that the encryption function E(k, x, r) has logarithmic input locality (i.e., E(k, x, r) ∈

LocalO(log(|k|))). Then, by Corollary 7.5.3, we can break the scheme by transforming, with noticeable
probability, the challenge ciphertext c into a ciphertext c′ such that the corresponding plaintexts
differ only in their first bit. Clearly, the probability for this relation to hold with respect to c̃ which
is a ciphertext of a random plaintext is negligible. Hence, we break the scheme.

Now, suppose that for each fixed key k the encryption function Ek(x, r) = E(k, x, r) has input
locality `(n). In this case we guess the set Q1 and then apply Lemma 7.5.2. This attack succeeds
with probability (1/

(s(n)
`(n)

)
) · 2−`(n). When `(n) is constant, the success probability is 1/poly(n) and

therefore, in this case, the scheme is broken.
We move on to the case in which the input locality of Ek is logarithmic. The previous attack

succeeds in this case with probability 1/nΘ(log(n)). However, we can improve this to 1/poly(n) if
we have a stronger access to the encryption oracle. In particular, we should be able to get several
ciphertexts that were produced with some fixed (possibly unknown) randomness. In such a case,
we use Lemma 7.5.1 to (approximately) learn the output bits affected by, say, the first input bit,
and then apply Lemma 7.5.2 to break the scheme. The public-key setting is a special case in which
this attack is feasible as we get a full access to the randomness of the encryption oracle.

7.5.4 The Impossibility of Implementing a PRG in Local2

We prove that there is no PRG in Local2 and thus the PRG constructed in Section 7.4.2 has optimal
input locality as well as optimal output locality.

Lemma 7.5.6 Let G : {0, 1}n → {0, 1}s(n) be a polynomial-time computable function in Local2
where s(n) > n. Then, there exists a polynomial-size circuit family {An} that given z ∈ Im(G)
reads some subset S ⊂ [s(n)] of z’s bits and outputs zk for some k /∈ S.

Proof: Fix n and let s = s(n). Define HG = ((Out = [s], In = [n]), E) to be the bipartite graph
whose edges correspond to the input-output dependencies in G; that is, (i, j) is an edge if and only
if the i-th output bit of G depends on the j-th input bit. Since G is in Local2 the average output
degree is at most 2n/s which is smaller than 2 (as s > n). The circuit An implements the following
procedure:

1. Initialize S to be an empty set.

2. If there exists an output k ∈ Out which is not connected to any input, then halt and predict
zk according to zS (and G).

3. Otherwise, there exists an output j ∈ Out which depends on a single input bit i ∈ In (since
the average out degree is smaller than 2). Add i to S and remove i and j from the graph.

4. goto 2

128

The procedure stops after at most n steps since there are only n < s inputs. The correctness follows
from the fact that the output bit k depends only on the input bits indexed by S.

We can now conclude that there is no PRG in Local2.

Corollary 7.5.7 There is no PRG in Local2.

Proof: Assume, towards a contradiction, that G : {0, 1}n → {0, 1}s(n) is a PRG in Local2.
Fix n and let s = s(n). Let An be the adversary defined in Lemma 7.5.6. Then, we define an
adversary Bn that given z ∈ {0, 1}s invokes An and checks whether An predicts zk correctly. By
Lemma 7.5.6, when z ∈ Im(G) the adversary Bn always outputs 1. However, when z is a random
string the probability that Bn outputs 1 is at most 1/2. Indeed, if Bn(z) = 1 for some z ∈ {0, 1}s

then Bn(z⊕k) = 0, where k is the bit that An predicts when reading z (and z⊕i denote the string
z with the i-th bit flipped). Hence, An errs on at least half of the strings in {0, 1}s, and so it
distinguishes G(Un) from Us with advantage 1/2.

The above corollary can be extended to rule out the existence of a collection of PRGs with input
locality 2. Note that when G is chosen from a collection, the graph HG might not be available to the
adversary constructed in Lemma 7.5.6. However, a closer look at this lemma, shows that, in fact, the
adversary does not need an explicit description of HG; rather, it suffices to find an approximation
of HG (in the sense of Lemma 7.5.1). As shown in Lemma 7.5.1, such an approximation can be
found efficiently (with, say, 1/n error probability) given an (oracle) access to G. This modification
also shows that such a PRG can be broken by a uniform adversary.

7.6 Negative Results for Randomized Encodings

In the following, we prove some negative results regarding randomized encoding with low input
locality. In Section 7.6.1, we provide a necessary condition for a function to have such an encoding.
We use this condition to prove that some simple (NC0) functions cannot be encoded by functions
having sub-linear input locality (regardless of the complexity of the encoding). This is contrasted
with the case of constant output locality, where it is known that every function f can be encoded
by a function f̂ whose output locality is 4 and whose complexity is polynomial in the size of the
branching program that computes f (see Section 4.2). In Section 7.6.2 we show that, although
linear functions do admit efficient constant-input encoding, they do not admit an efficient universal
constant-input encoding. That is, one should use different decoders and simulators for each linear
function. This is contrasted with previous constructions of randomized encoding with constant
output locality (cf. Section 4.2) which gives a (non-efficient) universal encoding for the class of all
functions f : {0, 1}n → {0, 1}l as well as an efficient universal encoding for classes such as all linear
functions or all size-s BPs (where s is polynomial in n).

7.6.1 A Necessary Condition for Encoding with Low Input Locality

Let f : {0, 1}n → {0, 1}l be a function. Define an undirected graph Gi over Im(f) such that there is
an edge between the strings y and y′ if there exists x ∈ {0, 1}n such that f(x) = y and f(x⊕i) = y′.
Let f̂ : {0, 1}n × {0, 1}m → {0, 1}s be a (perfectly correct and private) randomized encoding of
f with decoder B and simulator S. Let Qi ⊆ {1, . . . , s} be the set of output bits in f̂ which are

129

affected by the input variable xi. Namely, j ∈ Qi iff ∃x ∈ {0, 1}n, r ∈ {0, 1}m such that the strings
f̂(x, r) and f̂(x⊕i, r) differ on the j-th bit.

We need the following claims.

Claim 7.6.1 Let y, y′ ∈ Im(f) be adjacent vertices in Gi. Then, for every ŷ ∈ support(S(y)) there
exists ŷ′ ∈ support(S(y′)) which differs from ŷ only in indices which are in Qi.

Proof: Let x ∈ {0, 1}n be an input string for which f(x) = y and f(x⊕i) = y′. Fix some
ŷ ∈ support(S(y)). Then, by perfect privacy, there exists some r ∈ {0, 1}m for which ŷ = f̂(x, r).
Let ŷ′ = f̂(x⊕i, r). By the definition of Qi, the strings ŷ and ŷ′ differ only in indices which are in
Qi. Also, since f̂ is perfectly private ŷ′ ∈ support(S(y′)), and the claim follows.

Claim 7.6.2 Let y ∈ Im(f) and let ŷ ∈ Im(f̂). Then, y = B(ŷ) if and only if ŷ ∈ support(S(y)).

Proof: Let x ∈ f−1(y). By perfect correctness, y = B(ŷ) iff ŷ ∈ support(f̂(x, Um)). By perfect
privacy, support(f̂(x,Um)) = support(S(f(x))) = support(S(y)), and the claim follows.

We can now prove the following lemma.

Lemma 7.6.3 The size of each connected component of Gi is at most 2|Qi|.

Proof: Let Q = Qi and G = Gi. Fix u ∈ Im(f) and let û ∈ {0, 1}s be some arbitrary element
of support(S(u)). Let Z

def= {z ∈ {0, 1}s | zi = ûi,∀i ∈ [s] \Q}. That is, z ∈ Z if it differs from û
only in indices which are in Q. To prove the claim, we define an onto mapping from Z (whose
cardinality is 2|Q|) to the members of the connected component of u. The mapping is defined by
applying the decoder B of f̂ , namely z → B(z). (Assume, wlog, that if the decoder is invoked on
a string z which is not in Im(f̂) then it outputs ⊥.) Let v ∈ Im(f) be a member of the connected
component of u. We prove that there exists z ∈ Z such that v = B(z).

The proof is by induction on the distance (in edges) of v from u in the graph G. In the base
case when the distance is 0, we let z = û and, by perfect correctness, get that B(û) = u. For the
induction step, suppose that the distance is t + 1. Then, let w be the last vertex in a shortest path
from u to v. By the induction hypothesis, there exists a string ŵ ∈ Z for which w = B(ŵ). Hence,
by Claim 7.6.2, ŵ ∈ support(S(w)). Since u and w are neighbors, we can apply Claim 7.6.1 and
conclude that there exists v̂ ∈ support(S(v)) which differs from ŵ only in indices which are in Q.
Since ŵ ∈ Z it follows that v̂ is also in Z. Finally, by Claim 7.6.2, we have that B(v̂) = v which
completes the proof.

Corollary 7.6.4 A function f : {0, 1}n → {0, 1}l can be perfectly encoded by a function f̂ :
{0, 1}n×{0, 1}m → {0, 1}s in Localt only if for every 1 ≤ i ≤ n the size of the connected components
of Gi is at most 2t.

The above corollary shows that even some very simple functions do not admit an encoding with
constant input locality. Consider, for example, the function

f(x1, . . . , xn) = x1 · (x2, . . . , xn) = (x1 · x2, x1 · x3, . . . , x1 · xn).

For every y ∈ Im(f) = {0, 1}n−1 it holds that f(1, y) = y and f(0, y) = 0n−1. Hence, every vertex
in G1 is a neighbor of 0n−1 and the size of the connected component of G1 is 2n−1. Thus, the input
locality of x1 in any perfect encoding of this function is n− 1. (Note that this matches the results
of Section 7.3 since rank(x1) = n− 1.)

130

7.6.2 Impossibility of Universal Encoding for Linear Functions

For a class C of functions that map n-bits into l-bits, we say that C has a universal encoding in
the class Ĉ if there exists a universal simulator S and a universal decoder B such that, for every
function fz ∈ C, there is an encoding f̂z ∈ Ĉ which is private and correct with respect to the
simulator S and the decoder B.

We show that, although linear functions do admit encodings with constant input locality, they
do not admit such a universal encoding. Recall that the set of affine functions L (mapping n bits to
l bits) is a family of pairwise independent hash functions and thus can be used (unconditionally) as a
one-time secure MAC. Suppose that this class of functions H had a universal encoding with constant
input locality. Then, by the results of Section 4.8.1, we would have a one-time secure MACs (S, V)
whose signing algorithm has constant input locality for every fixed key; i.e., Sk(α, r) ∈ LocalO(1) for
every fixed key k. However, the results of Section 7.5.2 rule out the existence of such a scheme. We
now give a more direct proof to the impossibility of obtaining a universal encoding with constant
input locality for linear functions. The proof is similar to the proofs in Section 7.6.1.

Let C be a class of functions that map n bits into l bits. For each input bit 1 ≤ i ≤ n, we
define a graph Gi over ∪f∈CIm(f) such that there is an edge between the strings y and y′ if there
exists x ∈ {0, 1}n and f ∈ C such that f(x) = y and f(x⊕i) = y′. Namely, Gi = ∪f∈CGi(f), where
Gi(f) is the graph defined in Section 7.6.1. Suppose that C has universal encoding in Localt with
decoder B and simulator S. That is, for every fz ∈ C there exists a perfect randomized encoding
f̂ : {0, 1}n ×{0, 1}m → {0, 1}s in Localt whose correctness and privacy hold with respect to B and
S.

Lemma 7.6.5 The degree of every vertex in Gi is bounded by
(
s
t

) · 2t.

Proof: Let y be a vertex of Gi and fix some ŷ ∈ S(y). Let y′ be a neighbor of y with respect
to f ∈ C. Let Q = Qi ⊆ {1, . . . , s} be the set of output bits in f̂ which are affected by the
input variable xi. Then, by Lemma 7.6.3, there exists a set ZQ ⊆ {0, 1}s of size 2t such that
y′ ∈ Im(B(ZQ)). Hence, we have an onto mapping from Q× ZQ to the neighbors of y. Thus, the
number of neighbors is at most

(
s
t

) · 2t.

Lemma 7.6.6 Let C be the class of linear functions L : {0, 1}n → {0, 1}l where l ≤ n. Then, for
every 1 ≤ i ≤ n the graph Gi is a complete graph over {0, 1}l.

Proof: Consider, for example, the graph G = G1 and fix some y, y′ ∈ {0, 1}l. Then, for
σ = (0, 1, . . . , 1) and σ⊕1 = (1, 1, . . . , 1), there exists a linear function L : {0, 1}n → {0, 1}l for
which y = L(σ) and y′ = L(σ⊕1). To see this, write L as a matrix M ∈ {0, 1}l×n such that
L(x) = Mx. Let M = (M1,M

′), that is M1 denotes the leftmost column of M , and M ′ denotes
the matrix M without M1. Now, we can first solve the linear system M · σ = y which is equivalent
to M ′ ·σ = y and then solve the linear system M ·σ⊕1 = y′ which is now equivalent to M1 = y′−y.

Let l ≤ n. By combining the above claims we conclude that the output complexity s of any
universal encoding in Localt for linear functions L : {0, 1}n → {0, 1}l must satisfy

(
s
t

) · 2t ≥ 2l. In
particular, when t is constant, the output complexity of the encoding must be exponential in l.

131

7.7 Conclusions and Open Questions

We showed that, under standard intractability assumptions, cryptographic primitives such as
OWFs, PRGs and public-key encryption can be computed by functions of constant input local-
ity. On the other hand, primitives that require some form of “non-malleability”, such as MACs,
signatures and non-malleable encryption schemes, cannot be computed by such functions. An in-
teresting open question is whether collision-resistent hash functions can be realized by functions
of constant input locality. It is not hard to see that such functions are extremely vulnerable to
near-collision attacks (since if x, x′ are “close” in Hamming distance, then so are their images h(x)
and h(x′)). However, it is not clear whether this weakness allows to find actual collisions.

132

Chapter 8

One-Way Functions with Optimal
Output Locality

Summary: In Chapter 4 it was shown that, under relatively mild assumptions, there exist
one-way functions (OWFs) in NC0

4. This result is not far from optimal as as there is no OWF in
NC0

2. The gap is partially closed in Chapter 7 by showing that the existence of a OWF (and even
a PRG) in NC0

3 is implied by the intractability of decoding a random linear code. In this chapter
we provide further evidence for the existence of OWF in NC0

3. We construct such a OWF based on
the existence of a OWF that enjoys a certain strong “robustness” property. Specifically, we require
that the adversary cannot invert f even if it is given, in addition to the output y = f(x), all bits
of x influencing a randomly chosen subset of the bits of y. We also show how to construct such a
function assuming that a random function of locality O(log n) is one-way. (A similar assumption
was previously made by Goldreich [Gol00].) The transformation from “robust” OWF to OWF in
NC0

3 is obtained by constructing a new variant of randomized encoding.

8.1 Introduction

The results presented so far leave a small gap between the strong positive evidence for cryptography
in NC0

4 and the known impossibility of even OWF in NC0
2.

1 In this chapter we attempt to close
this gap for the case of OWF, providing positive evidence for the existence of OWF in NC0

3.
A natural approach for closing the gap would be to reduce the degree of our general construction

of randomized encodings from 3 to 2. (Indeed, Construction 4.2.4 transforms a degree-2 encoding
into one in NC0

3.) However, the results of [IK00] provide some evidence against the prospects
of this general approach, ruling out the existence of degree-2 perfectly private encodings for most
nontrivial functions (see Section 3.3.3). Thus, we may take the following two alternative approaches:
(1) seek direct constructions of degree-2 OWF based on specific intractability assumptions; and (2)
employ a relaxed variant of randomized encodings which enables a degree-2 representation of general
functions.

In Chapter 7, we used approach (1) to construct a OWF (and even a PRG) with optimal
locality based on the presumed intractability of decoding a random linear code. In this chapter we

1There is a similar gap in terms of algebraic degree: we have positive results for degree-3 cryptography, whereas
degree-1 cryptography is clearly impossible.

133

demonstrate the usefulness of approach (2) by employing degree-2 randomized encodings with a
weak (but nontrivial) privacy property that we call semi-privacy. This encoding allows to construct
a OWF with optimal locality based on a OWF that enjoys a certain strong “robustness” property.
We also show how to construct such a robust OWF assuming that a random function of logarithmic
locality is one-way (a similar assumption was suggested in [Gol00]). We stress that our approach
does not yield a general result in the spirit of the results of Chapter 4. Thus, we happen to pay for
optimal degree and locality with the loss of generality.

8.1.1 Semi-Private Randomized Encoding and Robust OWF

Let f̂ be a randomized encoding of f . Recall that, according to the privacy property, the output
distribution of f̂(x, r) (induced by a uniform choice of r) should hide all the information about
x except for the value f(x). Semi-privacy relaxes this requirement by insisting that the input x
remain hidden by f̂(x, r) only in the case that f(x) takes some specific value, say 0. (If f(x) is
different from this value, f̂(x, r) fully reveal x.) As it turns out, this relaxed privacy requirement
is sufficiently liberal to allow a degree-2 encoding of general boolean functions.

Given any OWF f , one could attempt to apply a semi-private encoding as described above to
every output bit of f , obtaining a degree-2 function f̂ . However, f̂ will typically not be one-way:
every output bit of f that evaluates to 1 might reveal the entire input. This motivates the following
notion of a robust OWF. Loosely speaking, a OWF f is said to be robust if it remains (slightly)
hard to invert even if a random subset of its output bits are “exposed”, in the sense that all input
bits leading to these outputs are revealed. More specifically, consider the following inversion game.
First, we choose a random input x ∈ {0, 1}n, compute f(x) and send it to the adversary. Then, for
each output bit of f we toss a coin yi. If yi = 1, we allow the adversary to see the bits of x that
influence the i-th output bit. That is, we send (xK(i), i, yi) to the adversary, where K(i) ⊆ [n] is
the set of inputs that affects the i-th output bit. If yi = 0, we reveal nothing regarding x and send
(i, yi) to the adversary. The adversary wins the game if he finds a preimage x′ which is consistent
with the game, i.e., f(x′) = f(x), and x′K(i) = xK(i) whenever yi = 1. The function is robust
one-way if, for some polynomial p(·), any efficient adversary fails to find a consistent preimage with
probability 1/p(n). (A formal definition is given in Section 8.2.)

Intuitively, the purpose of the robustness requirement is to guarantee that the information
leaked by the semi-private encoding leaves enough uncertainty about the input to make inversion
difficult. Indeed, we show that when semi-private randomized encoding (SPRE) is applied to a
(slightly modified) robust OWF the resulting function is weakly one-way. Hence, a construction of
degree-2 SPRE can be used to convert a robust OWF to OWF with degree 2. However, we fail
to achieve such a construction. Instead, we get a weak variant of SPRE. Fortunately, it turns out
that this variant still gives a degree-2 distributionally one-way function, which can be transformed
into standard OWF with degree 2.

8.1.2 Constructing Robust OWF

We construct a robust OWF under the assumption that a random function of logarithmic locality
is one-way. More specifically, we rely on the following intractability assumption. Chose a random
function f : {0, 1}n → {0, 1}n of logarithmic locality by choosing a random predicate Pi for each
output bit, and a random input-output bipartite graph G = ((Out = [n], In = [n]), E) whose average
output degree is d = O(log n). (That is, fi(x) = Pi(xE(i)) where E(i) is the set of inputs that touch

134

the i-th output of G). Then, we assume that, for some polynomial p(·), any efficient adversary
that gets the description of f fails to invert it (on a randomly chosen input) with probability at
least 1/p(n). Namely, we assume that the above procedure defines a collection of weakly OWFs.
(See [Gol01a, Definition 2.4.3].) A similar assumption was proposed by Goldreich in [Gol00], where
it is shown that if the graph G satisfies some expansion property, then the function resists a natural
class of inverting attacks. Since a random graph has good expansion with high probability, our
variant resists the same class of attacks.

We show that, under the above assumption, a randomly chosen function h : {0, 1}n·exp(d) → 2n
with (average) locality d/n is robust one-way. Intuitively, h is an extension of f to a bigger graph
such that, with non-negligible probability, the random exposure of h, is similar to f ; thus, it is
slightly hard to invert and h is robust one-way.

8.2 Preliminaries

In this section we give some definitions and prove a useful lemma.

8.2.1 Semi-Private Randomized Encoding

The following definition relaxes the notion of randomized encoding.

Definition 8.2.1 (Semi-private randomized encoding (SPRE)) Let f : {0, 1}n → {0, 1} be
a boolean function. We say that a function f̂ : {0, 1}n × {0, 1}m(n) → {0, 1}s(n) is a semi-private
randomized encoding (SPRE) of f if the following conditions hold:

• Perfect-correctness. There exists a (possibly inefficient) decoder B, such that for every
x ∈ {0, 1}n it holds that B(1n, f̂(x,Um(n))) = f(x).

• One-sided privacy. There exists a probabilistic polynomial time simulator S0, such that for
every x ∈ f−1(0) ∩ {0, 1}n, it holds that S0(1n) ≡ f̂(x,Um(n)).

• One-sided exposure. There exists a (possibly inefficient) exposure algorithm E1, such that
for every x ∈ f−1(1) ∩ {0, 1}n and every r ∈ {0, 1}m(n), it holds that E1(1n, f̂(x, r)) = x.

In Section 8.3 we will show how to construct a (relaxed version) of SPRE of degree 2 for
non-trivial class of functions.

8.2.2 One-Way Functions

We review several variants of one-way functions (OWFs).

Definition 8.2.2 (One-way function) Let f : {0, 1}∗ → {0, 1}∗ be a function. Then,

• Hard to invert. The function f is hard to invert if for every (non-uniform) polynomial-time
algorithm, A, the probability Pr[A(1n, f(Un)) ∈ f−1(f(Un))] is negligible in n.

• Slightly hard to invert. The function f is slightly hard to invert if there exists a polynomial
p(·), such that for every (non-uniform) polynomial-time algorithm, A, and all sufficiently large
n’s Pr[A(1n, f(Un)) /∈ f−1(f(Un))] > 1

p(n) .

135

• Distributionally hard to invert. The function f is distributionally hard to invert if there
exists a positive polynomial p(·) such that for every (non-uniform) polynomial-time algorithm,
A, and all sufficiently large n’s, SD((A(1n, f(Un)), f(Un)), (Un, f(Un))) > 1

p(n) .

If f can be computed in polynomial-time and it is also hard to invert (resp. slightly hard to invert,
distributionally hard to invert) then it is called one-way (resp. weakly one-way, distributionally
one-way).

Note that the first variant defined above is the standard notion of OWF. The following lemma
shows how to transform a degree 2 distributionally one-way function into a (standard) OWF with
degree 2.

Lemma 8.2.3 A degree-2 distributional OWF implies a degree-2 OWF in NC0
3.

Proof: First observe that a degree-2 weak OWF can be transformed into a degree-2 (standard)
OWF (cf. [Yao82],[Gol01a, Theorem 2.3.2]). Combined with Construction 4.2.4), we get that the
existence of a degree-2 weak OWF implies the existence of a degree-2 OWF in NC0

3. Hence it is
enough to show how to transform a degree-2 distributional OWF into a degree-2 weak OWF.

Let f be a degree-2 distributional OWF. Consider the function F (x, i, h) = (f(x), hi(x), i, h),
where x ∈ {0, 1}n, i ∈ {1, . . . , n}, h : {0, 1}n → {0, 1}n is a pairwise independent hash function, and
hi denotes the i-bit-long prefix of h(x). This function was defined by Impagliazzo and Luby [IL89],
who showed that in this case F is weakly one-way (see also [Gol01a, p. 96]). Note that h(x) can
be computed as a degree-2 function of x and (the representation of) h by using the hash family
hM,v(x) = xM + v, where M is an n × n matrix and v is a vector of length n. However, hi(x) is
not of degree 2 when considered as a function of h, x and i, since “chopping” the last n− i bits of
h(x) raises the degree of the function when i is not fixed. We get around this problem by applying
n copies of F on independent inputs, where each copy uses a different i. Namely, we define the
function F ′((x(i), h(i))n

i=1)
def= (F (x(i), i, h(i)))n

i=1. Since each of the i’s is now fixed, the resulting
function F ′ can be computed by degree-2 polynomials over F2. Moreover, it is not hard to verify
that F ′ is weakly one-way if F is weakly one-way. We briefly sketch the argument. Given an
efficient inverting algorithm A for F ′, one can invert y = F (x, i, h) = (f(x), hi(x), i, h) as follows.
For every j 6= i, uniformly and independently choose x(j), h(j), set zj = F (x(j), j, h(j)) and zi = y,
then invoke A on (zj)n

j=1 and output the i-th block of the answer. This inversion algorithm for F
has the same success probability as A on a polynomially related input.

We proceed with the definition of robust one-way function.

Definition 8.2.4 (Robust one-way function) Let f : {0, 1}n → {0, 1}l(n) be a polynomial-time
computable function. Let fi be the boolean function computing the i-th bit of f . Let K(i) def=
{1 ≤ j ≤ n|fi depends on xj}. Define the function fexp(x, b) def= (fi(x), bi, bi ∧ xK(i))

l(n)
i=1 , where x ∈

{0, 1}n, b ∈ {0, 1}l(n), the string xK(i) is the restriction of x to the indices in K(i), and bi ∧ xK(i)

denotes an AND between the bit bi and every bit of the string xK(i). We refer to the function fexp

as the random exposure of f(x). Then, f is called a robust OWF if its random exposure fexp is a
weak OWF.

136

8.3 From Robust OWF to OWF in NC0
3

8.3.1 A Warmup

We now argue that a degree-2 implementation of SPRE would suffice to transform a robust OWF
f into a degree-2 (weak) OWF h. This transformation is done in two steps. First, we generate a
function g by masking the output bits of f with distinct random bits yi; the bits yi are also included
in the output of g. Thus, each of the output bits of g is 1 with probability 1

2 . Moreover, inverting
the random exposure of f is as difficult as inverting g given an exposure of all of its outputs that
evaluate to 1. Finally, we construct a function h that outputs an SPRE of each output bit of g along
with the masks yi.2 Intuitively, each output bit of g is exposed by the SPRE only if it evaluates to
1, and therefore an adversary inverting h can be used to invert the random exposure of f . We will
now formalize this intuition.

Lemma 8.3.1 (Encoding Robust OWF via SPRE) Let f : {0, 1}n → {0, 1}l(n) be a robust
one-way function. Let {ĝi((x, yi), ri)}l(n)

i=1 be a uniform SPRE of the collection {gi(x, yi)
def= fi(x)⊕

yi}l(n)
i=1 where fi computes the i-th output bit of f and yi ∈ {0, 1}. Define the function

h(x, y, (r1, . . . , rl(n)))
def= (ĝi((xK(i), yi), ri), yi)

l(n)
i=1 ,

where x ∈ {0, 1}n, y ∈ {0, 1}l(n), and ri is the randomness needed by ĝi. Then, the function h is
weakly one-way.

Proof: Denote by fexp the random exposure of f . Since the input lengths of f, fexp, ĝ are are all
polynomials in n we can express our claims in terms of n. Let p(n) be the polynomial guaranteed
by the assumption that fexp is weakly one-way. Namely, every (non-uniform) polynomial-time
algorithm fails to invert fexp on the uniform distribution with probability at least 1

p(n) . Assume,
towards a contradiction, that h is not weakly one-way. It follows that there exists an efficient
algorithm Â that inverts h on infinitely many n’s with probability greater than 1 − 1

p(n) . We
construct an efficient algorithm A that inverts fexp with similar success, in contradiction to the
robustness of f .

For 1 ≤ i ≤ l(n) let ai, bi ∈ {0, 1} and ci ∈ {0, 1}ni , where ni denotes the number of bits that
affect fi. Then, on the input (ai, bi, ci)

l(n)
i=1 (supposedly in the range of fexp(x, b); that is, ai = fi(x)

and ci = bi ∧ xK(i), for some x) the algorithm A does the following:

1. For each 1 ≤ i ≤ l(n),

(a) if bi = 0 (that is the i-th output bit of f was not exposed) set yi = ai, invoke S0(1n, 1i)
the perfect one-sided simulator of ĝi, and record the result in zi.

(b) if bi = 1 (that is, ci is supposed to be the exposure of the i-th output bit of f) set
yi = ai⊕1, compute ĝi((ci, yi), ri), where ri is chosen from the uniform distribution, and
record the result in zi.

2. Invoke Â on (zi, yi)
l(n)
i=1 and output (x′, b), where (x′, y′, r′1, . . . , r

′
l(n)) is the output of Â.

2Were the mask bits not given in the output, an adversary could have easily inverted h by computing f on an
input x and selecting corresponding masks.

137

We now argue that A inverts fexp whenever Â inverts h.

Claim 8.3.2 Suppose that (ai, bi, ci)
l(n)
i=1 is in the range of fexp, and (x′, y′, r′1, . . . , r

′
l(n)) ∈

h−1((zi, yi)
l(n)
i=1), where (zi, yi)

l(n)
i=1 are generated by A as described above. Then (x′, b) ∈

fexp
−1((ai, bi, ci)

l(n)
i=1).

Proof: Since (ai, bi, ci)
l(n)
i=1 is in the range of fexp, it suffices to prove that for each 1 ≤ i ≤ l(n) if

bi = 0 then fi(x′K(i)) = ai and if bi = 1 then x′K(i) = ci. Let (x′, y′, r′1, . . . , r
′
l(n)) ∈ h−1((zi, yi)

l(n)
i=1);

thus, for every i, it holds that ĝi((x′K(i), y
′
i), r

′
i) = zi and y′i = yi.

If bi = 0 then, by the definition of A, it holds that ĝi((x′K(i), ai), r′i) ∈ S0(1n, 1i) (since y′i = yi =
ai and zi ∈ S0(1n, 1i)). By the perfect privacy and the perfect correctness, gi(x′K(i), ai) = 0. As
gi(α, β) = fi(α)⊕ β, we get fi(x′K(i)) = ai.

If bi = 1 then ĝi((x′K(i), ai ⊕ 1), r′i) = ĝi((ci, ai ⊕ 1), ri) since y′i = yi = ai ⊕ 1. By the perfect
correctness and the definition of gi, it holds that, gi(x′K(i), ai⊕1) = gi(ci, ai⊕1) = fi(ci)⊕ai⊕1 = 1,
where the last equality follows from fi(ci) = ai. However, since ĝi exposes xK(i) for every x such
that gi(x) = 1, it follows that x′K(i) = ci, which completes the proof. 2

We now claim that Â is invoked on the appropriate probability distribution. Formally,

Claim 8.3.3 Suppose that A is invoked on fexp(x, b), where x, b are uniformly distributed. Then,
(zi, yi)

l(n)
i=1 ≡ h(x′, y′, r1, . . . , rl(n)) where x′, y′, r1, . . . , rl(n) are uniformly distributed.

Proof: Let i ∈ {1, . . . , l(n)}. If bi = 0 then gi(xK(i), yi) = fi(xK(i))⊕yi = fi(xK(i))⊕fi(xK(i)) = 0
since yi = fi(xK(i)). Thus, by the perfect privacy, it holds that zi ≡ S(1n, 1i) ≡ ĝi((xK(i), yi), ri),
where ri is uniformly distributed. If bi = 1 then zi ≡ ĝi((xK(i), yi), ri), where ri is uniformly dis-

tributed. Together, we get that, (zi, yi)
l(n)
i=1 ≡ h(x, y, r1, . . . , rl(n)) where x, r1, . . . , rl(n) are uniformly

distributed. Note that yi = fi(xK(i)) ⊕ bi; thus, since bi is uniformly distributed, so is yi, and the
claim follows. 2

Combining the previous two claims together we get that A inverts fexp with probability greater
than 1− 1

p(n) in contradiction to our hypothesis.

8.3.2 The Actual Construction

We turn to the question of constructing degree-2 SPRE for general functions. We do not know how
to construct a degree-2 SPRE in the strict sense of Definition 8.2.1. However, we can construct a
statistical variant of such an encoding that suffices for our purposes. Since we will only need to
encode functions that depend on d = O(log n) inputs, it will be convenient to construct such an
encoding based on the DNF representation of the function.

Construction 8.3.4 (Relaxed SPRE for canonic DNF) Let g : {0, 1}d → {0, 1} be a boolean
function. Let

∨k
i=1 Ti be its unique canonic DNF representation. That is, for each α such that

g(α) = 1 there exists a corresponding term Ti which evaluates to 1 iff x = α. We encode such
Ti by the degree-2 function T̂i(x, r) = 〈x − α, r〉, where 〈·, ·〉 denotes inner product over F2. Let t

138

be some integer (later used as a security parameter). Then, the degree-2 function ĝ is defined by
concatenating t copies of T̂i (each copy with independent random variables ri,j) for each of the k
terms. Namely,

ĝ(x, (ri,j)1≤i≤k,1≤j≤t)
def= ((T̂1(x, r1,j))t

j=1, . . . , (T̂k(x, rk,j))t
j=1),

where ri,j ∈ {0, 1}d.

Claim 8.3.5 Let g : {0, 1}d → {0, 1} be a boolean function whose canonic DNF contains k terms.
Construct ĝ from g as in the previous construction. Then, there exists an SPRE ĝ′ of g such that
Pr[ĝ′(x, r) 6= ĝ(x, r)] ≤ k · 2−t, where t denotes the security parameter of ĝ and the probability is
taken over x ← Ud, r ← Ud·t·k. Moreover, the running time of the one-sided simulator of ĝ′ is
poly(tk).

Proof: Let
∨k

i=1 Ti be the canonic DNF representation of g. We view the variables ri,j of T̂ as
the random input of the encoding. Observe that if Ti(x) = 1 then T̂i(x, r) = 0 for every r. On the
other hand, if Ti(x) = 0 then T̂i(x,Ud) is distributed uniformly over F2 (since T̂i is an inner product
of a random vector with a non-zero vector). Therefore, if g(x) = 0, then the output of all the copies
of each T̂i are distributed uniformly and independently over F2 (since we used independent random
variables). If g(x) = 1 then there exist a single term Ti that equals to one and the other terms
equal to zero (since this is a canonic DNF); thus all the copies of T̂i equal to zero while the other
T̂j ’s are distributed uniformly and independently over F2.

We define the function ĝ′ by slightly modifying ĝ in the following way: ĝ′(x, r) equals to ĝ(x, r)
if for every term Ti that is not satisfied by x, there exist at least one copy of T̂i that equals to 1;
Otherwise, for each i such that Ti(x) = 0 and (T̂i(x, ri,j))t

j=1 = 0t, we replace all the copies of T̂i by
1. Since each copy of T̂i is distributed uniformly when Ti(x) = 0, it holds that Prr←Ud·t·k [ĝ′(x, r) 6=
ĝ(x, r)] ≤ k · 2−t for every x ∈ {0, 1}d; hence, Prx←Ud,r←Ud·t·k [ĝ′(x, r) 6= ĝ(x, r)] ≤ k · 2−t.

We now define a simulator, decoder and exposing algorithms, and show that ĝ′ is a semi-private
randomized encoding of g. The simulator S0 independently chooses k strings y1, . . . , yk each from
the distribution Ut; for each yi that equals to the all-zero string, S0 replaces it with the all-one string
and outputs y1, . . . , yk. Hence, S0 runs in time poly(tk). Clearly, for every x ∈ g−1(0)∩{0, 1}d the
simulator S0 perfectly simulates the distribution of ĝ′(x,Ud·t·k).

On input y = y1, . . . , yk, where yi ∈ {0, 1}t, the decoder B outputs 1 if there exists an i such
that yi = 0t; otherwise, it outputs 0. Let y = ĝ′(x, r); by the definition of ĝ′, we have yi = 0t if and
only if Ti(x) = 1. Thus, the decoder never errs.

Finally, the exposing algorithm E1, given y = y1, . . . , yk, finds the first i such that yi = 0t and
outputs the unique assignment x′ that satisfies the term Ti; otherwise, E1 outputs some arbitrary
value, say the zero string. For x ∈ g−1(1) ∩ {0, 1}d, there exists exactly one (canonic) term such
that Ti(x) = 1 (again, since we use a canonic DNF). By the definition of ĝ′, only the string yi that
corresponds to this term is the all-zero string, and thus the exposing algorithm never errs (when x
satisfies g).

Lemma 8.3.6 (Robust OWF to distributional OWF via relaxed SPRE) Let f : {0, 1}n →
{0, 1}l(n) be a robust OWF. Let fi be the function that computes the i-th bit of f . Suppose that

139

the locality of f is O(log n), furthermore assume that the truth table of each fi can be computed in
polynomial time. Define the degree-2 function

h(x, y, (r1, . . . , rl(n)))
def= (ĝi((xK(i), yi), ri), yi)

l(n)
i=1 ,

where ĝ is the DNF-based encoding of gi(x, yi)
def= fi(x) ⊕ yi defined in Construction 8.3.4 and the

security parameter satisfies ω(log n) < t(n) < poly(n). Then, the function h is distributionally
one-way.

Proof: Let ĝ′i be the (non-relaxed) SPRE which is statistically close to ĝi (promised by
Claim 8.3.5). Define h′ similarly to h where ĝi is replaced with ĝ′i. Then, by Lemma 8.3.1, h′

is slightly hard to invert (as in the definition of weak OWF). Note that the number of terms in the
canonic DNF of each gi is bounded by poly(n) since the locality of f is O(log n). Hence we can
write,

Pr[h(x, y, r) 6= h′(x, y, r)] ≤
l(n)∑

i=1

Pr[ĝi((xK(i), yi), ri) 6= ĝ′i((xK(i), yi), ri)]

≤ l(n) · poly(n) · 2−t(n) ≤ ε(n),

where ε(n) is negligible in n and x, y, r = r1, . . . , rl(n) are uniformly distributed. The first inequality
follows from the union bound, the second inequality follows from Claim 8.3.5 and third inequality
follows from ω(log n) < t(n).

Observe that h is efficiently computable since the truth tables of the gi’s are computable in
polynomial time and since t(n) < poly(n). Hence, we can apply Lemma 4.4.4 to h, h′ and deduce
that h is distributionally one-way.

Combining Lemma 8.2.3 and Lemma 8.3.6 we derive the following theorem.

Theorem 8.3.7 Let f : {0, 1}n → {0, 1}l(n) be a robust OWF whose locality is O(log n) and the
truth table of each of its output bits can be computed in polynomial time. Then, there exist a
degree-2 OWF in NC0

3.

8.4 A Candidate Robust One-Way Function

Denote by Gl,m
p the distribution over bipartite undirected graphs ((U, V), E) having l vertices on

one side and m vertices on the other side, U = {1, . . . , l} , V = {1, . . . ,m}, in which each of the lm
potential edges between U and V exists with probability p. The vertices of U, V are also referred
to as input vertices and output vertices respectively.

Let d(n) = O(log n) be an average degree parameter. For our assumption we use a graph
G = ((U, V), E) that is selected from Gn,n

d/n; namely a bipartite graph with n vertices in each side
where each of its potential n2 edges exists with probability d/n (and hence the expected degree of
every vertex is d). We use E(i) ⊆ U to denote the set of vertices in U that are connected to the
vertex i ∈ V . Let Q = (Q1, . . . , Qn) where Qi : {0, 1}2d → {0, 1} is a random predicate whose truth
table is defined by 22d random bits, and let x ∈ {0, 1}n. Define the function

fG,Q(x) def= (Q1(xE(1)), . . . , Qn(xE(n))).

140

That is, given an n-bit string x the function fG,Q outputs, for each i ∈ {1, . . . , n}, the value
Qi(xE(i)). Since the size of E(i) does not necessarily match the domain size of Qi, we use a prefix
of xE(i) if |E(i)| > 2d, or pad it with a suffix of zeros if |E(i)| < 2d. We assume that the collection
of functions fG,Q is weakly one-way.3 Loosely speaking, this means that when the graph G (that
defines the input-output dependencies) and the predicates Qi (that define the exact relation between
the i-th output bit and the corresponding input bits) are picked from the appropriate probability
distribution, then inverting the resulting function is hard. Formally,

Intractability Assumption 8.4.1 (Random graph) There exist (an efficiently computable)
function d(n) = O(log n) and a polynomial p(·), such that for every (non-uniform) polynomial-
time algorithm, A, and all sufficiently large n’s

Pr[A(1n, G, Q, fG,Q(x)) /∈ f−1
G (fG,Q(x))] >

1
p(n)

,

where x and Q are uniformly distributed and G is selected from Gn,n
d/n.

The function fG,Q used in Assumption 8.4.1 is a variant of a candidate OWF proposed by
Goldreich [Gol00] (the main difference being that [Gol00] uses the same predicate for all output
bits). It is shown in [Gol00] that if the graph G satisfies some expansion property, then the function
resists a natural class of inverting attacks. Since a random graph has good expansion with high
probability, our variant resists the same class of attacks.

Based on Assumption 8.4.1, we present a collection of robust OWFs h that meets the require-
ments of Theorem 8.3.7. (A collection of functions is robust one-way, if its random exposure is a
weakly one-way collection.) Intuitively, h is an extension of fG,Q to a bigger graph such that, with
non-negligible probability, the function hexp, which is the random exposure of h, is similar to fG,Q;
thus, hexp is slightly hard to invert and h is robust one-way.

Lemma 8.4.2 Let d = O(log n) be the function guaranteed by Assumption 8.4.1. Define the col-
lection of functions

hH,P (x) def= (P1(xE(1)), . . . , P2n(xE(2n))),

where x is an n · exp(d)-bit string, P is a vector of 2n predicates Pi : {0, 1}2d → {0, 1}, and
H = ((U, V), E) is a bipartite graph selected from G

n·exp(d),2n
d/n . (Here exp(·) denotes the natural

exponential function.) If Assumption 8.4.1 holds, then hH,P is a robust one-way collection.

Proof: Let nf (n), nh(n) be the input lengths of fG,Q, hH,P respectively. (Note that d = O(log n)
and therefore nf (n), nh(n) are polynomials in n.) Let p(n) be the polynomial guaranteed by the
assumption that fG,Q is weakly one-way. Namely, every non-uniform polynomial-time algorithm
fails to invert fG,Q on Unf (n) with probability at least 1

p(n) . Assume, towards a contradiction, that
the random exposure of hH,P is not weakly one-way. It follows that, for every polynomial q(n),
there exists an efficient algorithm Â that for infinitely many n’s inverts the random exposure of
hH,P with success probability 1 − 1

q(n) . We show that for q(n) > p(n)n1.5 · exp(d) = poly(n), we

3For our purpose, a collection of OWFs is a collection of functions parameterized with a public key that is selected
according to a predefined (efficiently-constructible) distribution and is given to the adversary along with the challenge.
More specifically, we refer here to a public-coins collection. (See Appendix A). For a general definition, see [Gol01a,
Definition 2.4.3].

141

can use algorithm Â to construct an efficient algorithm A that inverts fG,Q on infinitely many n’s
with success probability greater than 1 − 1

p(n) , in contradiction to Assumption 8.4.1. Algorithm
A gets as an input the string (G = ((U, V), E), Q, y1, . . . , yn) (supposedly yi = Qi(xE(i)) for some
x ∈ {0, 1}n) and proceeds as follows:

1. Let S = {n + 1, . . . , n · exp(d)} and T = {n + 1, . . . , 2n}. Select uniformly and independently
each of the possible edges between S and V ∪ T with probability d/n. Denote the set of
selected edges by D. Let H denote the bipartite graph ((U ∪ S, V ∪ T), E ∪D).

2. Uniformly choose an n-bit string z, and n predicates Pn+1, . . . , P2n where Pi : {0, 1}2d →
{0, 1}. For each i ∈ V , if |E(i)| < 2d then for every |E(i)|-bit string a, swap the value of Qi

on (a ◦ zD(i)) with the value of Qi on (a ◦ 02d−|E(i)|), where ◦ is the concatenation operator.
Denote this new predicate by Pi : {0, 1}2d → {0, 1} (if |E(i)| ≥ 2d then Pi is equal to Qi).

3. Invoke the algorithm Â on ((yi, 0, 0|E(i)|)n
i=1, (Pj(zD(j)), 1, zD(j))2n

j=n+1 with (H, P) as the key
of h. Output x′, where x′ is the n-bit-long prefix of Â’s answer (x′, z′).

That is, algorithm A augments the given graph G into a bigger graph H, whose exposed outputs
are the vertices in T , and their exposed inputs are the vertices of S, namely the value of z.

Claim 8.4.3 If Â succeeds in inverting its input, then A also succeeds in inverting its input.

Proof: Suppose that Â succeeds in inverting its input, then yi = Pi(x′E(i), z
′
D(i)) and z′D(i) =

zD(i). If 2d ≤ |E(i)| then yi = Pi(x′E(i), z
′
D(i)) = Pi(x′E(i)) = Qi(x′E(i)), since U = {1, . . . , n}. On

the other hand, if |E(i)| < 2d then, by the definition of Pi, it holds that yi = Pi(x′E(i), z
′
D(i)) =

Pi(x′E(i), zD(i)) = Qi(x′E(i), 0
2d−|E(i)|) = Qi(x′E(i)). Therefore, x′ itself is a pre-image of yi under Qi

and G. 2

Let (G = ((U, V), E), Q, (Qi(xE(i)))n
i=1) be the input given to A, where x ← Un, G ← G

n·exp(d),2n
d/n ,

and Q ← U2n22d . Recall that Â is guaranteed to succeed with high probability when it is invoked
on a uniformly distributed input; i.e., when the predicates and the inputs are chosen uniformly,
each of the potential 2n · n · exp(d) edges of H exist with probability d/n and each of the outputs
of the graph is exposed with probability 1

2 . Observe that the predicates Pi are indeed distributed
uniformly (since they were constructed by permuting the rows of the randomly chosen truth tables
of the Qi’s), and so are the input strings x, z. Nevertheless, it seems that the graph we give Â and
its exposure are not distributed as they should be. In particular, the unexposed vertices of G ∪H
are exactly the first n output vertices. To fix this, we add another step to algorithm A, in which A
applies two randomly chosen permutations, one on the input vertices of H and one on its output
vertices. We denote this new graph by H ′. The input permutation should be also applied to the
truth tables of the predicates and to the strings x, z; similarly, A permutes the predicates order
according to the output permutation (the resulting predicates are still distributed uniformly). This
way, Claim 8.4.3 still holds.

Denote by F the “correct” input distribution of Â; that is, F is a graph selected from G
n·exp(d),2n
d/n

where each of its output vertices is exposed with probability 1
2 . Observe that each of the potential

edges of H ′ exists independently with probability d/n, except the edges between the exposed
outputs T ′, and the unexposed inputs U ′, that do not exist. Then, the distribution of the exposed
graph H ′ = ((U ′ ∪ S′, V ′ ∪ T ′), E′ ∪ D′) is equivalent to that of F conditioned on the event that

142

there are exactly n unexposed outputs in F and exactly n inputs that are not connected to the
exposed outputs; namely, that there are n unexposed outputs and n unexposed inputs. Denote this
event by GOODn. Clearly,

Pr[GOODn] = Pr[n outputs were not exposed]
· Pr[n inputs were not exposed|n outputs were not exposed].

Since each of the 2n output vertices is exposed with probability 1
2 , we get

Pr[n outputs were not exposed] =
(

2n

n

)
· 2−2n = Ω(

1√
n

).

Recall that an input vertex is not exposed if it is not connected to an exposed output vertex. If
exactly n output vertices were not exposed, then exactly n output vertices were exposed. Given
this event, the probability that an input vertex is not exposed is exactly (1 − d/n)n since each
edge exists with probability d/n. Then, Pr[n inputs were not exposed|n outputs were exposed] =
b(n; n · exp(d), (1− d/n)n), where b(k;m, p) is the binomial distribution; that is, the probability to
have exactly k successes out of a sequence of m independent Bernoulli trails, each with a probability
p of success. Note that b(bmpc ;m, p) > 1

m+1 , since
∑m

k=0 b(k; m; p) = 1 and since the binomial
distribution viewed as a function of k is maximized when k equals to the expectation, that is when
k = bpmc. Therefore, for sufficiently large n’s it holds that

Pr[n inputs were not exposed|n outputs were exposed] ≥ 1
n · exp(d)

,

since lim(1 − d/n)n = exp(−d) as n → ∞. Combining together we get that, Pr[GOODn] >
1/(n1.5 · exp(d)). Also we have, Pr[A succeeds] ≥ Pr[Â succeeds|GOODn], where A and Â are
invoked on fG,Q(Unf (n)), and on a random exposure of hH,P (Unh(n)) respectively. Thus we have,

1− 1
q(n)

< Pr[Â succeeds] = Pr[Â succeeds|GOODn] Pr[GOODn]

+Pr[Â succeeds|GOODn](1− Pr[GOODn])
≤ Pr[Â succeeds|GOODn] Pr[GOODn] + 1− Pr[GOODn],

which implies,

Pr[Â succeeds|GOODn] >

(
Pr[GOODn]− 1

q(n)

)
1

Pr[GOODn]

= 1− 1
q(n) Pr[GOODn]

> 1− n1.5 · exp(d)
q(n)

.

Since q(n) > p(n)n1.5 · exp(d), we get that A succeeds with probability greater than 1− 1
p(n) , and

the lemma follows.

Since d = O(log n), the locality of hH,P is O(log n) also the truth tables Pi are given explicitly
in the description of hH,P . Thus, we can apply Theorem 8.3.7 and construct a collection of degree-2
OWFs in NC0

3 based on Assumption 8.4.1.

Theorem 8.4.4 Under Assumption 8.4.1, there exists a collection of degree-2 OWF in NC0
3.

143

Appendix A

On Collections of Cryptographic
Primitives

In most cases, we view a cryptographic primitive (e.g., a OWF or a PRG) as a single function
f : {0, 1}∗ → {0, 1}∗. However, it is often useful to consider more general variants of such primitives,
defined by a collection of functions {fz}z∈Z , where Z ⊆ {0, 1}∗ and each fz is defined over a finite
domain Dz. The full specification of such a collection usually consists of a probabilistic polynomial
time key-generation algorithm that chooses an index z of a function (given a security parameter
1n), a domain sampler algorithm that samples a random element from Dz given z, and a function
evaluation algorithm that computes fz(x) given z and x ∈ Dz. The primitive should be secure with
respect to the distribution defined by the key-generation and the domain sampler. (See a formal
definition for the case of OWF in [Gol01a, Definition 2.4.3].)

Collections of primitives arise naturally in the context of parallel cryptography, as they allow to
shift “non-parallelizable” operations such as prime number selection and modular exponentiations
to the key-generation stage (cf. [NR04]). They also fit naturally into the setting of P-uniform
circuits, since the key-generation algorithm can be embedded in the algorithm generating the
circuit. Thus, it will be convenient to assume that z is a description of a circuit computing fz.
When referring to a collection of functions from a given complexity class (e.g., NC1,NC0

4, or PREN ,
cf. Definition 3.1.9) we assume that the key generation algorithm outputs a description of a circuit
from this class. In fact, one can view collections in our context as a natural relaxation of uniformity,
allowing the circuit generator to be randomized. (The above discussion also applies to other P-
uniform representation models we use, such as branching programs.)

Our usage of collections differs from the standard one in that we insist on Dz being the set of all
strings of a given length (i.e., the set of all possible inputs for the circuit z) and restrict the domain
sampler to be a trivial one which outputs a uniformly random string of the appropriate length.
This convention guarantees that the primitive can indeed be invoked with the specified parallel
complexity, and does not implicitly rely on a (possibly less parallel) domain sampler.1 In most
cases, it is possible to modify standard collections of primitives to conform to the above convention.
We illustrate this by outlining a construction of an NC1 collection of one-way permutations based
on the intractability of discrete logarithm. The key-generator, on input 1n, samples a random prime
p such that 2n−1 ≤ p < 2n along with a generator g of Z∗p , and lets z be a description of an NC1

1Note that unlike the key-generation algorithm, which can be applied “once and for all”, the domain sampler
should be invoked for each application of the primitive.

144

circuit computing the function fp,g defined as follows. On an n-bit input x (viewed as an integer
such that 0 ≤ x < 2n) define fp,g(x) = gx mod p if 1 ≤ x < p and fp,g(x) = x otherwise. It is easy
to verify that fp,g indeed defines a permutation on {0, 1}n. Moreover, it can be computed by an NC1

circuit by incorporating p, g, g2, g4, . . . , g2n
into the circuit. Finally, assuming the intractability of

discrete logarithm, the above collection is weakly one way. It can be augmented into a collection
of (strongly) one-way permutations by using the standard reduction of strong OWF to weak OWF
(i.e., using f ′p,g(x1, . . . , xn) = (fp,g(x1), . . . , fp,g(xn))).

When defining the cryptographic security of a collection of primitives, it is assumed that the
adversary (e.g., inverter or distinguisher) is given the key z, in addition to its input in the single-
function variant of the primitive. Here one should make a distinction between “private-coin col-
lections”, where this is all of the information available to the adversary, and “public-coin collec-
tions” in which the adversary is additionally given the internal coin-tosses of the key-generator.
(A similar distinction has been recently made in the specific context of collision-resistant hash-
functions [HR04]; also, see the discussion of “enhanced TDP” in [Gol04, App. C.1].) The above
example for a OWP collection is of the public-coin type. Any public-coin collection is also a
private-coin collection, but the converse may not be true.

Summarizing, we consider cryptographic primitives in three different settings:

1. (Single function setting.) The circuit family {Cn}n∈N that computes the primitive is con-
structed by a deterministic polynomial time circuit generator that, given an input 1n, outputs
the circuit Cn. This is the default setting for most cryptographic primitives.

2. (Public-coin collection.) The circuit generator is a probabilistic polynomial time algorithm
that, on input 1n, samples a circuit from a collection of circuits. The adversary gets as an
input the circuit produced by the generator, along with the randomness used to generate it.
The experiments defining the success probability of the adversary incorporate the randomness
used by the generator, in addition to the other random variables. As in the single function
setting, this generation step can be thought of as being done “once and for all”, e.g., in a pre-
processing stage. Public-coin collections are typically useful for primitives based on discrete
logarithm assumptions, where a large prime group should be set up along with its generator
and precomputed exponents of the generator.

3. (Private-coin collection.) Same as (2) except that the adversary does not know the random-
ness that was used by the circuit generator. This relaxation is typically useful for factoring-
based constructions, where the adversary should not learn the trapdoor information associated
with the public modulus (see [Kha93, NR04]).

We note that our general transformations apply to all of the above settings. In particular, given
an NC1 primitive in any of these settings, we obtain a corresponding NC0 primitive in the same
setting.

145

Bibliography

[AAR98] M. Agrawal, E. Allender, , and S. Rudich. Reductions in circuit complexity: An
isomorphism theorem and a gap theorem. J. Comput. Syst. Sci., 57(2):127–143,
1998.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. of Algorithms, 7(4):567–
583, 1986.

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proc. 29th STOC, pages 284–293, 1997.

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On one-way
functions with optimal locality. Unpublished manuscript available at
http://www.cs.technion.ac.il/∼abenny, 2005.

[AIK06a] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. Computional Complexity,
15(2):115–162, 2006. Preliminary version in Proc. 20th CCC, 2005.

[AIK06b] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0.
SIAM J. Comput., 36(4):845–888, 2006. Preliminary version in Proc. 45th FOCS,
2004.

[AIK06c] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom gen-
erators with linear stretch in NC0. In Proc. 10th Random., 2006. Full version to
appear in Computational Complexity.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with con-
stant input locality. 2007. To appear in Crypto 2007.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th STOC,
pages 99–108, 1996. Full version in Electronic Colloquium on Computational
Complexity (ECCC).

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In
Proc. 44th FOCS, pages 298–307, 2003.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and hardness of approximation problems. J. of the ACM, 45(3):501–555, 1998.
Preliminary version in Proc. 33rd FOCS, 1992.

146

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random
Struct. Algorithms, 5(2):271–285, 1994.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new char-
acterization of NP. J. of the ACM, 45(1):70–122, 1998. Preliminary version in
Proc. 33rd FOCS, 1992.

[Bar86] D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In Proc. 18th STOC, pages 1–5, 1986.

[BFKL94] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Advances in Cryptology:
Proc. of CRYPTO ’93, volume 773 of LNCS, pages 278–291, 1994.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption
scheme which hides all partial information. In Advances in Cryptology: Proc. of
CRYPTO ’84, volume 196 of LNCS, pages 289–302, 1985.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. Journal of the ACM, 50(4):506–
519, 2003. Preliminary version in Proc. 32nd STOC, 2000.

[Blu83] M. Blum. Coin flipping by telephone: a protocol for solving impossible problems.
SIGACT News, 15(1):23–27, 1983.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13:850–864, 1984. Preliminary version
in FOCS 82.

[BM92] Mihir Bellare and Silvio Micali. How to sign given any trapdoor permutation.
J. ACM, 39(1):214–233, 1992. Preliminary version in Proc. 20th STOC, 1988.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. of 22nd STOC, pages 503–513, 1990.

[BNS89] L. Babai, N. Nisan, and Mario Szegedy. Multiparty protocols and logspace-hard
pseudorandom sequences. In Proc. 21st STOC, pages 1–11, 1989.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of 20th STOC,
pages 1–10, 1988.

[BSSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-
efficient low-degree tests and short pcps via epsilon-biased sets. In Proc. 35th
STOC, pages 612–621, 2003.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of
entropy. In Proc. 7th Conference on Randomization and Computation, (RAN-
DOM), 2003.

147

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-
knowledge based on any trapdoor permutation. J. of Cryptology, 9(3):149–166,
1996. Preliminary version in Proc. CRYPTO ’92.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols.
J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proc. 42nd FOCS, pages 136–145, 2001.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proc. of 20th STOC, pages 11–19, 1988.

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-
party computation over rings. In Proc. EUROCRYPT ’03, pages 596–613, 2003.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. on Computing, 17(2):230–261,
1988.

[CKN03] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen ciphertext security of
encryption schemes. In Advances in Cryptology: Proc. of CRYPTO ’03, volume
2729 of LNCS, pages 565–582, 2003.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc.
26th MFCS, 2001.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing, pages
151–158, New York, NY, USA, 1971. ACM Press.

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Random-
ness conductors and constant-degree lossless expanders. In Proc. 34th STOC,
pages 659–668, 2002.

[Dam88] I.B. Damg̊ard. Collision free hash functions and public key signature schemes.
In Proc. Eurocrypt’87, pages 203–216, 1988.

[DPP94] I.B. Damg̊ard, T.P. Pedersen, and B. Pfitzmann. On the existence of statisti-
cally hiding bit commitment schemes and fail-stop signatures. In Advances in
Cryptology: Proc. of CRYPTO ’93, volume 773 of LNCS, pages 250–265, 1994.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial
information. In Proc. 37th STOC, pages 654–663, 2005.

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific American, 228(5),
1973.

[Fei93] J. Feigenbaum. Locally random reductions in interactive complexity theory. In
Advances in Computational Complexity Theory, volume 13 of DIMACS Series
on Discrete Mathematics and Theoretical Computer Science, pages pp. 73–98,
1993.

148

[Fei02] U. Feige. Relations between average case complexity and approximation com-
plexity. In Proc. of 34th STOC, pages 534–543, 2002.

[FLS00] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowl-
edge proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 2000.
Preliminary version in Proc. 31st FOCS, 1990.

[Gam85] T. E. Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in cryptology: Proc. of CRYPTO ’84, volume
196 of LNCS, pages 10–18, 1985. or IEEE Transactions on Information Theory,
v. IT-31, n. 4, 1985.

[GGH96] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Electronic Colloquium on Computational Complexity, 96(042), 1996.

[GGM85] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications
of random functions. In Advances in Cryptology: Proc. of CRYPTO ’84, volume
196 of LNCS, pages 276–288, 1985.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. of the ACM., 33:792–807, 1986.

[GK96] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. of Cryptology, 9(2):167–189, 1996.

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseu-
dorandom generators. SIAM J. Comput., 22(6):1163–1175, 1993. Preliminary
version in Proc. 29th FOCS, 1988.

[GKY89] A. V. Goldberg, M. Kharitonov, and M. Yung. Lower bounds for pseudorandom
number generators. In Proc. 30th FOCS, pages 242–247, 1989.

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proc. 21st STOC, pages 25–32, 1989.

[GM84a] Oded Goldreich and Silvio Micali. Increasing the expansion of pseudorandom
generators. Also appears in [Gol01a, Sec. 3.3.2], 1984.

[GM84b] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270–299,
1984. Preliminary version in Proc. STOC ’82.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281–308, 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM J. Comput., 18(1):186–208, 1989. Preliminary version
in STOC 1985.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
(extended abstract). In Proc. of 19th STOC, pages 218–229, 1987.

149

[Gol90] O. Goldreich. A note on computational indistinguishability. Inf. Process. Lett.,
34(6):277–281, 1990.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness, volume 17 of Algorithms and Combinatorics. Springer-Verlag, 1998.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 7(090), 2000.

[Gol01a] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

[Gol01b] Oded Goldreich. Randomized methods in computation - lecture notes, 2001.
http://www.wisdom.weizmann.ac.il/∼oded/rnd.html.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, 2004.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random
properties: A quality-size trade-off for hashing. Random Struct. Algorithms,
11(4):315–343, 1997.

[H̊as87] Johan H̊astad. One-way permutations in NC0. Information Processing Letters,
26:153–155, 1987.

[HHR06] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the ran-
domized iterate. In CRYPTO, pages 22–40, 2006.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–
1396, 1999.

[HM96] S. Halevi and S. Micali. Practicle and provably-commitment schemes from
collision-free hashing. In Advances in Cryptology: Proc. of CRYPTO ’96, volume
1109 of LNCS, pages 201–215, 1996.

[HR04] Chun Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In Advances in Cryptology: Proc. of
CRYPTO ’04, volume 3152 of LNCS, pages 92–105, 2004.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new represen-
tation with applications to round-efficient secure computation. In Proc. 41st
FOCS, pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Proc. 29th ICALP, pages 244–256, 2002.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity
based cryptography. In Proc. of the 30th FOCS, pages 230–235, 1989.

150

[Imm88] N. Immerman. Nondeterministic space is closed under complement. SIAM Jour-
nal on Computing, 17:935–938, 1988. Preliminary version in Proc. 3rd CSCT,
1988.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably
as secure as subset sum. Journal of Cryptology, 9:199–216, 1996.

[JM96] Heeralal Janwa and Oscar Moreno. Mceliece public key cryptosystems using
algebraic-geometric codes. Des. Codes Cryptography, 8(3):293–307, 1996.

[KD79] John B. Kam and George I. Davida. Structured design of substitution-
permutation encryption networks. IEEE Transactions on Computers,
28(10):747–753, 1979.

[Kha93] Michael Kharitonov. Cryptographic hardness of distribution-specific learning.
In Proc. 25th STOC, pages 372–381, 1993.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th STOC,
pages 20–31, 1988.

[KL01] Matthias Krause and Stefan Lucks. On the minimal hardware complexity of
pseudorandom function generators (extended abstract). In Proc. 18th STACS,
volume 2010 of LNCS, pages 419–430, 2001.

[KY00] Jonathan Katz and Moti Yung. Complete characterization of security notions
for probabilistic private-key encryption. In STOC, pages 245–254, 2000.

[Lev73] Leonid A. Levin. Universal sequential search problems. PINFTRANS: Problems
of Information Transmission (translated from Problemy Peredachi Informatsii
(Russian)), 9, 1973.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. J. ACM, 40(3):607–620, 1993. Preliminary
version in Proc. 30th FOCS, 1989.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party
computation. Electronic Colloquium on Computational Complexity, 11(063),
2004.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In Proc. 9th Random, 2005.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical Report DSN PR 42-44, Jet Prop. Lab., 1978.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased generators in
NC0. In Proc. 44th FOCS, pages 136–145, 2003.

[Nao91] M. Naor. Bit commitment using pseudorandomness. J. of Cryptology, 4:151–158,
1991.

151

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. Preliminary version in
Proc. 22th STOC, 1990.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proc. 1st ACM Conference on Electronic Commerce, pages 129–139,
1999.

[NR99] M. Naor and O. Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. J. of Computer and Systems Sciences,
58(2):336–375, 1999.

[NR04] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004. Preliminary version in Proc.
38th FOCS, 1997.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proc. of the 21st STOC, pages 33–43, 1989.

[Ped91] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology: Proc. of CRYPTO ’91, volume 576 of LNCS,
pages 129–149, 1991.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. of Computer and Systems Sciences, 43:425–440, 1991. Pre-
liminary version in Proc. 20th STOC, 1988.

[Rab79] M.O. Rabin. Digitalized signatures and public key functions as intractable as
factoring. Technical Report 212, LCS, MIT, 1979.

[Reg03] Oded Regev. New lattice based cryptographic constructions. In Proc. 35th
STOC, pages 407–416, 2003.

[Rog91] Phillip Rogaway. The Round Complexity of Secure Protocols. PhD thesis, MIT,
June 1991.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proc. of the 22nd STOC, pages 387–394, 1990.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. of the ACM, 21(2):120–
126, 1978.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Tight bounds for depth-two
superconcentrators. SIAM J. Discrete Math., 13(1):2–24, 2000. Preliminary
version in Proc. 38th FOCS, 1997.

152

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility be-
tween cryptographic primitives. In TCC ’04, volume 2951 of LNCS, pages 1–20,
2004.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28-4:656–715, 1949.

[Shp06] Amir Shpilka. Constructions of low-degree and error-correcting e-biased gen-
erators. In Proc. 21st Conference on Computational Complexity (CCC), pages
33–45, 2006.

[Sud02] Madhu Sudan. Algorithmic introduction to coding theory - lecture notes, 2002.
http://theory.csail.mit.edu/∼madhu/FT01/.

[SV03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
J. ACM, 50(2):196–249, 2003. Preliminary version in FOCS 1997.

[TSUZ01] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less con-
densers, unbalanced expanders, and extractors. In Proc. 33rd STOC, pages
143–152, 2001.

[TX03] S. R. Tate and K. Xu. On garbled circuits and constant round secure function
evaluation. CoPS Lab Technical Report 2003-02, University of North Texas,
2003.

[Var57] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Doklady Akademii Nauk SSSR, 117:739–741, 1957.

[Vio05] Emanuele Viola. On constructing parallel pseudorandom generators from one-
way functions. In Proc. 20th Conference on Computational Complexity (CCC),
pages 183– 197, 2005.

[Wig94] A. Wigderson. NL/poly ⊆ ⊕L/poly. In Proc. 9th Structure in Complexity Theory
Conference, pages 59–62, 1994.

[WT86] A. F. Webster and Stafford E. Tavares. On the design of s-boxes. In CRYPTO
’85: Advances in Cryptology, pages 523–534, London, UK, 1986. Springer-Verlag.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS,
pages 80–91, 1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages
162–167, 1986.

[YY94] Xiangdong Yu and Moti Yung. Space lower-bounds for pseudorandom-
generators. In Proc. 9th Structure in Complexity Theory Conference, pages
186–197, 1994.

153

