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ABSTRACT: Here we present a linear order multiscale method for
the fast summation of long range forces in a system consisting of a large number
of charge and dipolar particles. For a N-body system, our algorithm requires
an order of work that is proportional to O(N), in comparison to order O(N2) of the
direct pairwise computation. Our method is demonstrated on two-dimensional
homogeneous point-charge and dipolar systems, and a combined heterogeneous
particle system, for the calculation of the induced electrostatic potential and
energy. The electrostatic interaction is decomposed into a local part and a smooth
part. The method thus, has several potential advantages over other O(N log N)
or O(N) techniques, especially for calculation with moving particles or implicit
charges locations. This approach is beneficial to large-scale problems such
as molecular statics, molecular dynamics, equilibrium statistics (Monte-Carlo
simulations), molecular docking, and in areas such as magnetism and
astrophysics. c© 2001 John Wiley & Sons, Inc. J Comput Chem 22: 717–731, 2001
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Introduction

W e present an approach for summing long-
range many-body interactions in linear time.

Examples where many-body computations are es-
sential, are in the research fields of particle and
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biomolecular simulations. There, the pairwise sum-
mation of interactions is required for the evaluation
of the electrostatic potential, force, and total energy.
In a system of N particles, all interactions should
be taken into account for evaluating Coulombic
or gravitational potentials, because these potentials
have a slow decay. The direct computation therefore
involves an order of O(N2) computer operations.
Systems where N is huge may even manifest the
question of feasibility of the N-body computation.
This computational drawback arises for example,
in molecular statics where the most stable con-
formation of the molecular structure is sought by
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calculating the lowest energy. In molecular dynam-
ics, the force, obtained from the gradient of the
potential function, is calculated for governing the
particle’s trajectory. In equilibrium statistics, Monte-
Carlo simulations are carried out for obtaining
configurations of the particles and their observed
average properties at equilibrium, with transition
probabilities depending on the total energy change
in the system. In biomolecular systems, such as in
molecular and protein docking,1, 2 one may require
to calculate the electrostatic potential of the interact-
ing molecules to facilitate the notion of electrostatic
docking. We thus propose our multiscale method for
reducing the complexity of this long-range many-
body computation to a linear complexity. That is, for
heterogeneous N-body particle system composed of
point-charges and dipolar particles, our computa-
tion is carried out in the order of O(N) computer
operations.

The general approach for our multiscale compu-
tations in the context of integral transforms, many-
body problems and dense-matrix multiplication has
been initially devised by Brandt.3 – 5 This is part of
the general multiscale paradigm in solving prob-
lems in the physical space, which yield various
types of fast algorithms in many areas of science and
engineering (see the recent survey6).

Previous methods to reduce the computational
cost of the N-body to O(N log N) are presented
in refs. 7 – 9, and 10. The fast multipole expansion
method (FMM) of ref. 11 achieves the complex-
ity of O(N), for the fast summation of Coulombic
fields in a system of point-charges. In ref. 12, the
cell multipole method, an adaptation of FMM, is
implemented for dipolar domains. Additional im-
plementations of fast algorithms for solving N-body
problems can be found in survey.10

We have designed and implemented our multi-
scale algorithm to account for heterogeneous sys-
tems, i.e., involving both dipolar particles as well
as point charges. Furthermore, our “mathematical
engines” and algorithm’s architecture are general
to allow the fast evaluation and summation of
physical functions other than potential-type ones.
The algorithm allows efficient multiscale particle
movements, which can facilitate the acceleration of
Monte-Carlo simulations and energy minimization
processes: see the Discussion section.

The Computational Problem

Our basic computational task is the fast cal-
culation of the electrostatic potential induced by

a system composed of point charges and dipo-
lar particles, arbitrarily positioned in space. The
point charges may represent atoms, whereas the
dipoles represent polar particles, for example, water
molecules. For the simplicity of the exposition, our
method is demonstrated for the two-dimensional
(2D) case. Assume u = (uX, uY) is a point in the
plane. V(u) denotes the potential at point-u, and is
computed as the sum of potentials induced by the
dipoles and point charges in the system. For a sys-
tem composed of n point charges and m dipoles, the
potential at point u is

V(u) =
n∑

i = 1

− log
(|u− xi|

)
qi

+
m∑

j = 1

µj · ∇j
(− log

(|u− yj|
))

, (1)

where xi is the position vector of point charge num-
bered i, xi = (xX

i , xY
i ); qi is the ith charge; |u − xi|

is the distance between point charge-i and point-u,
yj is the position vector of dipole numbered j,
yj = (yX

j , yY
j ); µj = (µX

j ,µY
j ) = µj(cosφj, sinφj) is its

moment vector, where µj = |µj| is its moment mag-
nitude and φj is its orientation; |u−yj| is the distance
between dipole-j and point-u (see Fig. 1).

Examples of computational tasks that stem from
the fast calculation of the potential and are moti-
vated by the many-body problems previously men-
tioned, are the computation of potential differences
and force (potential gradient) calculations. Here we
consider the computational task of computing E,
the total electrostatic energy of the heterogeneous

FIGURE 1. A schematic illustration of a point-charge
numbered i and a dipole number j located at positions xi
and yj, respectively. The distance between point charge-i
and point P positioned at u is |u− xi|; the distance
between dipole-j and point P is |u− yj|. qi is the charge
of point i. φj is the orientation of dipole-j and µj is its
moment magnitude, and µj is its moment vector.
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point-charge and dipolar system:

E = 1
2

(
n∑

k= 1

qkVk +
m∑

l= 1

µl · ∇Vl

)
, (2)

where Vk and ∇Vl are the potential at the location of
point-charge-k and the gradient of the potential at
the position of dipole-l, respectively, excluding their
self contribution. In our heterogeneous system, we,
therefore, have three types of interactions, charge–
charge, charge–dipole, and dipole–dipole giving,

E = 1
2

(
n∑

k= 1

qk

[
n∑

i= 1, i 6= k

(− log
(|xk − xi|

))
qi

+
m∑

j= 1

µj · ∇j
(− log

(|xk − yj|
))]

+
m∑

l= 1

µl ·
[

n∑
i= 1

∇l
(− log

(|yl − xi|
))

qi

+
m∑

j= 1, j 6= l

∇lµj · ∇j
(− log

(|yl − yj|
))])

. (3)

We achieve this task by an O(m + n) calculation in
comparison to the order of (m + n)2, which is re-
quired by the direct computation. The evaluation is
done to a certain degree of accuracy, ε, i.e., an error

of up to ε is allowed in each of the summed terms.
Taking this accuracy into account, our complexity is
actually an O((m+ n)(log 1

ε
)d) computation, where d

is the dimension of the space (here d = 2).

The Algorithm

OVERVIEW

General Description

The first stage of our algorithm is to reduce the
number of charges and dipoles to a manageable
small set of super-charges and super-dipoles, yielding
a fast potential calculation. On the plane at which
the particles are located, a rectangular grid is placed.
The grid is uniform, i.e., its mesh size h is constant in
each grid direction and its “density” is comparable
to the particle density. The super-charges (dipoles)
are created by aggregating the arbitrarily located
charges (dipoles) into collections positioned at
the gridpoints. This procedure can be carried
out recursively for increasingly coarser grids, as
depicted in Figure 2, stage (1). Each coarser grid is
obtained by omitting every other gridline from the
finer grid. Henceforth, this stage is referred to as
the fine-to-coarse stage. The recursion proceeds until

FIGURE 2. A multilevel scheme of the multigrid algorithm for the fast summation of long-range forces exemplified by
the computation of the potential induced by arbitrarily positioned point-charges and dipoles.
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the number of super-charges (dipoles) is so small
that the calculation of their potential costs little
compared with the whole algorithm. The potential
induced by the super-charges and super-dipoles is
computed directly at the gridpoints on the “poten-
tial grid” [Fig. 2, stage (2)]. The result of the coarse
level potential evaluation is propagated recursively
by interpolation via intermediate finer grids (the
coarse-to fine stage), adding local corrections at
each grid (as will be explained hereafter). This is
carried out until reaching the finest level, that is, the
locations at which the potential values are required.
This is displayed in Figure 2, stages (3) and (4).

Potential Kernels—Problem and Remedy

Assume first that each of the potential kernels
G(u, z) (like log |u− z| or its gradients) were smooth
throughout (i.e., having continuous first deriva-
tives) as a function of both the particle positions z,
and the location u at which the potential is to be
computed. The super-particles can then be defined
so that their potential field agree with that of the
original particles, except for a small aggregation er-
ror, its smallness depending only on the smoothness
of G(u, z), as a function of z. Likewise, the values of
the potential computed at the lattice points can be
interpolated to any other position, with small inter-
polation error, its smallness depending only on the
smoothness of G(u, z) as a function of u.

However, this is not quite the case here, be-
cause the potential kernels are not smooth through-
out. They have unbounded derivatives as u
tends to z. Hence, the error caused by aggrega-
tion/interpolation is unbounded. Nevertheless, the
smoothness of the kernels indefinitely increases
with |u − z|, that is, the kernel becomes smoother
as the distance between the two points grows;
such kernels are called asymptotically smooth. They
can be turned into sufficiently smooth kernels
Gsmooth(u, z, s) by “softening,” i.e., by being modi-
fied only in a local range |u − z| ≤ s, where s is
a suitably chosen “softening radius (distance)” (see
Fig. 3).

Assume a two-level system, i.e., the original
plane on which the particles are scattered and a sin-
gle grid level placed on it as depicted in Figure 2
(composed of Level 1 and Level 2). Defining a “po-
tential grid” with mesh size similar to that of the
aggregation grids, the potential values are first com-
puted at its gridpoints, using the softened kernel [see
Fig. 2, stage (2)], and then they are interpolated
to the desired particle, locations [Fig. 2, stage (3)].
However, corrections of the potential values are re-

FIGURE 3. A plot of the original kernel log |u− z| and
two of its softening kernels Gsmooth(u, z, s) and
Gsmooth(u, z, 2s) having the softening distance of s and
of 2s, respectively. For |u− z| > s and |u− z| > 2s the
softened kernels coincide with the original kernel
log |u− z|. For |u− z| < s and |u− z| < 2s, two
softening polynomials of degree-2 are defined
Gs(|u− z|) = log s+ A0 + A1(|u− z|/s)2 having the
softening distance of s, and
G2s(|u− z|) = log 2s+ A0 + A1(|u− z|)2/(2s)2 with the
softening distance of 2s. The softening polynomials
coefficients are A0 = −0.5 and A1 = 0.5.

quired because softened potential has been used
instead of the exact one. The correction of the kernel
at any point u is simply

∑
i[G(u, zi)−Gsmooth(u, zi, s)],

summed only over all particles i such that
|u − zi| ≤ s [Fig. 2, stage (4)]. The original kernel is,
therefore, said to be decomposed into a smooth part
Gsmooth(u, z, s) and local part [G(u, z)−Gsmooth(u, z, s)].
The smooth part of the potential is obtained by in-
terpolating from the grid level, while the local part
is then added as a correction.

Recursion Considerations

If we wish to decrease the aggregation and in-
terpolation errors, a smoother function should be
defined for the softeners by enlarging the soften-
ing distance s, or by using a higher interpolation
order (as will be explained in detail in the next
section), or both. The mesh size h can also be de-
creased, however, this will result in increasing the
number of gridpoints and thus enlarging the com-
putational work required. If h is increased, the in-
terpolation/anterpolation errors will rise. Thus, the
mesh size h is chosen such that it is comparable to
the particles density. If s is increased, however, to
be too large, there would be too many local correc-
tions to be done as the number of particles involved
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in this process grows. A remedy for this, which
keeps the particle density and the computational
cost intact, is to define an additional coarser grid
level by doubling the mesh size h, on which s is
enlarged, usually doubled (see Fig. 3). A softened
kernel Gsmooth(u, z, 2s) is thus obtained. Although
the local part at which the corrections should be
carried out is larger, the number of corrections re-
mains the same, because the corrections themselves
are carried out on a coarser level, involving the same
number of gridpoints. The entire algorithm for cal-
culating the potential of the system can thus be
recursively defined. As such, the particle aggrega-
tion can be carried out recursively for increasingly
coarser grids, as depicted in Figure 2, stage (1). At
each coarser grid a smoother kernel is defined by en-
larging the softening vicinity (usually it is doubled).
Thus, the many-times softened potential induced by
the super-charges and super-dipoles is computed
directly at the gridpoints [Fig. 2, stage (2)]. The
coarse level potential evaluation is propagated re-
cursively by interpolation to levels of intermediate
finer grids [Fig. 2, stage (3)]. The appropriate cor-
rections at each grid are then added. The kernel
correction at any gridpoint U of level k is done by
adding

∑
i[Gsmooth(U, Zi, 2ks)− Gsmooth(U, Zi, 2k+1s)],

summed only over all super-particles i such that
|U − Zi| ≤ 2k+1s [Fig. 2, stage (4), level k]. This is
carried out until reaching the finest level, that is,
interpolating and correcting the potential onto the
locations at which these values are required.

Note that the amount of work is decreased four-
fold on each of the coarsened grid levels. Because
the work decreases geometrically on increasingly
coarser (uniform) levels, the total cost of this al-
gorithm is comparable to the work being done at
the finest levels, which is O(m + n), assuming the
number of locations where the potential values are
needed is comparable to the number of particles.

Interpolation and aggregation are the underlying
processes of the algorithm, the latter being per-
formed by anterpolation, i.e., the adjoint of interpo-
lation. These processes are outlined next, followed
by a detailed description of the two main stages of
the method, the fine-to-coarse (anterpolation) and
the coarse-to-fine (interpolation) stages.

INTERPOLATION AND ANTERPOLATION

Interpolation is employed wherever a value of a
suitably smooth function V is to be approximated,
given a set of points where the values of the function
are known. In one dimension, the number of points
to interpolate from defined as the interpolation order

and denoted by p. A polynomial of degree p − 1
is constructed to approximate the function at the
required target points (the general form of a poly-
nomial is f (x) = ∑p−1

i= 0 aixi, ai are constants, ai 6= 0).
For higher dimensions, the interpolation is done one
direction at a time. Hence, in 2D, the number of of
points to interpolate from is p2. An example of linear
interpolation (p = 2) is depicted in Figure 4a where
at each gridpoint the value of the function is known,
for example, the potential V. Figure 4b shows how
the interpolation is done, that is, by using the two
interpolation points in each grid direction. First, on
the gridlines around the target point, two interme-
diate points are interpolated to by the appropriate
gridpoints at the X position of the target point on
the gridlines [steps (1) and (2) in Figure 4b]. Next,
the two intermediate points are used as the two in-
terpolation points for the target point, as depicted
by step (3). Note, that this technique is symmetrical
in any grid direction (X or Y). We employ central
interpolation, i.e., the interpolation order is even
(e.g., p = 2, p = 6) and the interpolation points
are chosen symmetrically around the target point.
The requirement that uniform grids should be used,
stems mainly for the purpose of having simple inter-

FIGURE 4. An illustration of 2D linear interpolation and
anterpolation processes of order 2 (p = 2). (a) Each
target point (white circles) is interpolated from four
gridpoints (black circles). If the target point is along a
gridline, it is interpolated from two gridpoints. (b) Efficient
interpolation is done by using the p interpolation points
in each grid direction, denoted as steps (1) to (3).
(c) Each arbitrary point (white circles) is aggregated to
four gridpoints (black circles) or less (depending on its
location). (d) Anterpolation of an arbitrary point is done
in each grid direction (steps (1) to (3)).
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polation formulas. Here, we use the Lagrange form
for the interpolation polynomial. In one dimension,
the interpolated value at a target point x, that is, the
polynomial value at the point, is denoted by P(x)
and computed by

P(x) =
p∑

k= 0

V(xk)lk(x),

(4)

lk(x) =
p∏

i= 0, i 6= k

(x− xi)
(xk − xi)

,

where p is the interpolation order; V is the interpo-
lated function; x0, . . . , xp are the points to interpolate
from (at which V is known, e.g., the potential at the
gridpoints), and lk’s are the Lagrange coefficients re-
ferred to as the weights of the interpolation (their
sum for the target point xk is 1). The approximation
itself has an O(hpV(p)) error, where h is the grid’s
mesh size and V(p) is the maximal p-order derivative
of V. At the grid boundaries, the p-order interpola-
tion is carried out by defining appropriate number
of “ghost cells,” i.e., external neighboring points to
the grid that create a frame around it. These enable
sound interpolation to all points required within the
grid boundaries.

Interpolation of a gradient of a function is also
required for target points x, for example, the inter-
polation of the gradient ∇V(x) of the potential V
[appearing in eq. (2)]. This is done by using the
derivative of the interpolation polynomial, denoted
by P′(x), and computed by

P′(x) =
p∑

k= 0

V(xk)l′k(x),

(5)

l′k(x) =
[ p∏

i= 0, i 6= k

(x− xi)
(xk − xi)

][ p∑
i= 0, i 6= k

1
(x− xi)

]
.

Note that for any given x, both P(x) and P′(x) can
be calculated in just O(p) operations. In 2D, the two
components of ∇V are (∂V/∂X, ∂V/∂Y). ∂V/∂X is
approximated by employing P′ for the interpolation
in the X direction and P for the subsequent Y direc-
tion interpolation. ∂V/∂Y is approximated by first
using P in the X direction interpolation, and then P′
in the interpolation of the Y direction.

Anterpolation is the procedure carried out for
aggregating the particles to super-particles. It is de-
fined as the adjoint of interpolation, having weights
of interpolation and an order that is also defined
by p. Every arbitrary target point distributes its
value, for example, its charge, to p × p gridpoints
surrounding it (p points in each grid direction).
In each direction, the anterpolation (aggregation)

is done according to the weights (coefficients) lk(x)
computed in eq. (4). This is shown in Figure 4c
and d. The anterpolation “justification” stems from
the following: assume we wish to directly compute
the potential at point u induced by particles ar-
bitrarily positioned at zi. We use the notation
G(u, zi) for the exact kernel, Gsmooth(u, zi) for the
softened kernel, and c(zi) for denoting the charge
at the particle’s location zi. The potential value
is V(u) = ∑

i G(u, zi)c(zi). Now, assume we wish
to obtain V(u) by interpolation using the smooth-
ness properties of Gsmooth both as a function of u
and zi. This means that Gsmooth can be interpo-
lated from gridpoints Zk with a bounded error,
that is, V(u) ≈ ∑

i
∑

k likGsmooth(u, Zk)c(zi), where
the liks are the weights of interpolation. By chang-
ing the order of summation we obtain that V(u) ≈∑

k Gsmooth(u, Zk)
∑

i likc(zi). We denote C(Zk) =∑
i lik(zi), that is, this is the interpolation required

for transferring particles to super-particles, i.e., an-
terpolating them to their positions on the grid. We
thus obtain V(u) ≈∑k Gsmooth(u, Zk)C(Zk).

In view of the symmetry in the smoothness of the
softened kernels both as a function of the particles
locations and the locations onto where the poten-
tial is to be evaluated, the aggregation and potential
grids have the same mesh sizes. Also, the interpola-
tion and anterpolation are of same order p. Note that
in 2D for any point x, both interpolation (either for
the function values or for its gradient) and anterpo-
lation can be performed in O(p2). In case the points
to anterpolate from, or interpolate to, themselves re-
side on a uniform grid (as at coarser levels of the
algorithm), the interpolation and anterpolation can
be executed in O(p) operations per point. Thus, the
number of operations required by the anterpolation
and interpolation processes on the finest level at
which the particles are scattered is O(mp2 + np2). At
each coarser level these processes cost O(Np), where
N is the number of gridpoints on that level. For the
interpolation to be done with an O(ε) error, p should
be in the order of O(log 1

ε
). Thus, the complexity of

the algorithm, as determined by the degree of accu-
racy is an O((m+ n)(log 1

ε
)2) computation.

FINE-TO-COARSE STAGE

At each level, we have three uniform grids: one
grid contains the aggregates of charges (the super-
charges); the other two grids are assigned to the
aggregates of the two components of the dipoles
(the super-dipoles). Recall that dipole-j moment
can be represented as a vector µj = (µX

j ,µY
j ) =

(µj cosφj,µj sin φj). The dipole moments in the

722 VOL. 22, NO. 7



MULTISCALE FAST SUMMATION OF PARTICLE INTERACTIONS

X-direction, µX
j , are aggregated on one grid, and the

dipole moments in the Y-direction, µY
j , on the other.

The X and Y-components of each super-dipole µD
are the summation of the X and Y-components of
the dipoles that were aggregated to the correspond-
ing coarse gridpoint. That is,

µD =
(

k∑
j= 1

ωjµj cosφj,
k∑

j = 1

ωjµj sin φj

)
= (µX

D,µY
D

)
,

(6)

where k is the number of contributing dipoles
and ωjs are the anterpolation weights. The super-

dipole’s magnitude is, |µD| =
√

(µX
D)2 + (µY

D)2 and
its orientation is 8D = arctan(µY

D/µX
D).

COARSE-TO-FINE STAGE

To recover the potential values from a coarse grid
to a fine grid (or to their final locations), interpo-
lation is required. As mentioned in the Overview
section, the potential kernels we use are asymptoti-
cally smooth, i.e., they are not suitably smooth for
direct interpolation throughout. Assume we wish
to interpolate the potential at point U, to obtain its
value as induced by the super-charge and dipolar
particles positioned at gridpoints Xi (i = 1, . . . , n)
and Yj ( j = 1, . . . , m), respectively. The interpolation
can still be done with an O(ε) error, with interpola-
tion order p = O(log 1

ε
), for distances |u−Xi| ≥ O(h),

|u − Yj| ≥ O(h), where h is the interpolation-grid
mesh size. For the distances |u − Xi| and |u − Yj|,
which are smaller than O(h), the interpolation error
is unbounded for the potential computed with the
exact kernel. Therefore, a softened kernel is used
instead to sustain the bounded interpolation er-
ror O(ε). Thus, corrections should be made to the
interpolated potential value at u, to account for the
erroneous contributions of the particles in this soft-
ened vicinity.

To keep the computational cost of the correc-
tions comparable to the cost of the anterpolation
and interpolation processes, which are in the or-
der (m+ n)p2, two requirements should be fulfilled:
(i) In the vicinity of the point u where the inter-
polated value should be corrected, the number of
particles participating in the correction should be on
the average O(p2). Once achieved, this is automati-
cally sustained by the algorithm, because we have
a sequence of levels with bounded coarsening ra-
tios, for example, 1:2. (ii) The correction should cost
O(1) operations for each of the particles in the above
vicinity.

We tackle this issue by using the softened kernels
as described above. A softened kernel is defined to
be equal to the original kernel except in a neighbor-
hood of radius s, s = O(h), around the singularity.
The softened kernel (softener) for log |x − y|, x =
(xX, xY), y = (yX, yY) is (adopted from ref. 13):

Gsmooth(x, y, s) =
{

Gs(|x− y|) if |x− y| ≤ s
log |x− y| otherwise,

(7)

Gs
(|x− y|) = log s+

p−1∑
j= 0

Aj

( |x− y|
s

)2j

,

where p is the interpolation order, Gs(|x − y|) is
a (p − 1)-degree polynomial of |x − y|2, and its
coefficients Ajs are independent of s. They are de-
termined by requiring Gsmooth to be continuous and
have continuous derivatives up to order p−1 (hence,
that A0 = −∑p−1

j = 1 Aj). Figure 3 depicts the soft-
ened kernel Gsmooth(x, y, s) for log |x − y|, and its
softening scale s. The softened kernel, Gsmooth(x, y, s)
is constructed such that it is everywhere suitably
smooth on scale-s (in both X and Y directions).
This means that Gsmooth can be approximated up to
an error smaller than ε by a p-order interpolation
from Gsmooths values on any uniform grid with mesh
size h (or smaller). That is, (γ h)p|G(p)

smooth(x, y, s)| ≤
O(ε) for some p = O(log 1

ε
), where γ depends on

the geometry of the interpolation (here, γ = 1
2

for central interpolation), and |G(p)
smooth(x, y, s)| is the

maximal p-order derivative of Gsmooth with respect
to any x or y component.

Next, we construct the softener for ∇x log |x − y|,
used in the calculation of the potential induced by
the dipolar particles. Our construction is based on
the observation that a softener for the derivative of
a function can be defined as the derivative of a soft-
ener for that function. Hence G′smooth(x, y, s), the soft-
ener for∇x log |x−y| is the gradient of Gsmooth(x, y, s),
i.e., G′smooth(x, y, s) = ∇xGsmooth(x, y, s). It is con-
structed as follows,
G′smooth(x, y, s)

=


(
∂Gs(|x− y|)

∂xX
,
∂Gs(|x− y|)

∂xY

)
if |x− y| ≤ s(

∂ log |x− y|
∂xX

,
∂ log |x− y|

∂xY

)
otherwise,

=


G′s(|x− y|)|x− y|−1

× (xX − yX, xY − yY
)

if |x− y| ≤ s

|x− y|−2
(
xX − yX, xY − yY

)
otherwise,

G′s(|x− y|) = 1
s

p−1∑
j= 1

Aj(2j)
( |x− y|

s

)2j−1

.

(8)
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Note that the softening distance s in G′smooth(x, y, s)
does not have to be the same s as in Gsmooth(x, y, s)
(in our current implementation it is).

Assume the number of levels we have in our al-
gorithm is two: the fine level where the particles
are arbitrarily located, and a single grid “above”
it (see Fig. 2 lower two levels). Having aggregated
the charges and the dipoles at the gridpoints, we
directly compute the potential at the gridpoints us-
ing the softened kernels (7) and (8) for the potential
of the aggregated charges and dipoles, respectively.
The potential values are then interpolated to the fine
level, for example, to an arbitrary point u. A cor-
rection is required to the interpolated value Ṽ(u),
to account for the difference between the exact po-
tential and the softened potential of each particle at
distance less then s from u. The corrected interpo-
lated value V(u) is therefore obtained by

V(u) = Ṽ(u)

+
∑

0<|u−xi|<s

−[log
(|u− xi|

)− Gs
(|u− xi|

)]
qi

+
∑

0<|u−yj |<s

−
[

1
|u− yj| − G′s

(|u− yj|
)]

× µj ·
(u− yj)
|u− yj| . (9)

Every charge is aggregated from its arbitrary loca-
tion onto the super-charges grid. These aggregates
participate in the potential computation. Subse-
quently, the potential value is interpolated back to
the required particle position. However, there is an
erroneous contribution of the particle’s aggregates
to the potential value at the particle’s location, be-
cause its own charge should not be included in the
computation. This self-contribution is, therefore, re-
moved from the potential value of every particle.
This is done by computing the potential induced by
charge-i on a p × p grid having the same mesh size
as the original grid, i.e., h. The self-potential value
is interpolated to the location of charge-i and then
subtracted from the system’s potential at that point.
That is, for xi = u [of eq. (9)], the interpolated value
of the potential induced by charge-i is subtracted
from V(u). We call this procedure self-correction.

A sequence of levels of increasingly coarser uni-
form grids as illustrated in Figure 2 is built for
recursively applying the algorithm. To construct
suitably smooth kernels at all coarsened grids so
that the number of corrections will be kept the same,
the softening distance s is doubled in accordance
with the doubling of the mesh size (see Fig. 3). Equa-
tion (7) is rewritten considering the level k we are in,

by multiplying s by 2k (k = 0, 1, . . .) to obtain,

Gk
smooth

(
x, y, 2ks

) = {G2ks(|x− y|) if |x− y| ≤ 2ks

log |x− y| otherwise,

= Gsmooth
(
x, y, 2ks

)
. (10)

Similarly, the kernel softener for ∇x log |x− y| at the
level number k, i.e.,

G′ksmooth

(
x, y, 2ks

)
=


G′

2ks
(|x− y|)|x− y|−1

× (xX − yX, xY − yY
)

if |x− y| ≤ 2ks

|x− y|−2
(
xX − yX, xY − yY

)
otherwise,

= G′smooth

(
x, y, 2ks

)
. (11)

The correction at level k is done by adding the
difference between the kernel softener of the cur-
rent level k and that of the coarser level above it
(level k+ 1) to the value Ṽk(u) interpolated from
that coarser level, computed for all points within ra-
dius 2k+1s:

Vk(u) = Ṽk(u)+
∑

0<|u−xi|<2k+1s

−[Gk
smooth

(
xi, u, 2ks

)
− G2k+1s

(|u− xi|
)]

qi

+
∑

0<|u−yj |<2k+1s

−[G′ksmooth

(
yj, u, 2ks

)
− G′2k+1s

(|u− yj|
)]
µj ·

(u− yj)
|u− yj| . (12)

For carrying out the computation of the total
energy of the system [eq. (2)], the gradient of the
potential should also be evaluated, for example, at
point u. This should be done only at the finest grid,
that is, from the finest grid to the required loca-
tion of u. We first compute ∇Ṽ(u) by evaluating the
derivative of the interpolation polynomial at point u
as explained above. Because the finest grid “holds”
the smooth part of the potential evaluation, respec-
tive corrections should be done here for obtaining
∇V(u). That is,

∇V(u) = ∇Ṽ(u)

+
∑

0<|u−xi|<s

−
(

1
|u− xi| − G′s

(|u− xi|
))

× qi
(u− yj)
|u− yj|

+
∑

0<|u−yj|<s

[
−
(

1
|u− yj| − G′s

(|u− yj|
))

×∇µj ·
(u− yj)
|u− yj|
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−
(
− 1
|u− yj|2 − G′′s

(|u− yj|
))

× µj ·
(u− yj)2

|u− yj|2
]

(13)

where G′′s (|x − y|) is defined as (for x = (xX, xY),
y = (yX, yY)):

G′′s =
(|x− y|) = 1

s2

p−1∑
j= 1

Aj(2j)(2j− 1)
( |x− y|

s

)2( j−1)

.

(14)
Similarly to the self-correction procedure of the
charges [as described below eq. (9)], for yj = u, the
interpolated value of the gradient of the potential
induced by dipole-j on a p × p grid, is subtracted
from ∇V(u) to exclude the self-contribution of the
dipole’s aggregates to the potential.

Note that the term 2ks in eqs. (10) and (11) can
be substituted by the more general expression 2ksk

where sk is a level-dependent value of the softening
distance. Similarly, different values for p can be used
on different levels. See the Results section where this
is exemplified and discussed. To date, we employ
similar sets of ps and ss for the two types of particles.
It may be of interest (which is application depen-
dent) to employ different sets of these parameters
for dipolar and charge particles.

Results

SYSTEM TYPES AND RUNNING TIMES

We have run our fast summation algorithm for
computing the potential, potential gradient, and the
total electrostatic energy of the system [eq. (3)]. The
three system types tested are composed of arbi-
trarily positioned point-charges, dipolar particles,
and their combination. Figure 5 depicts the typical
random scattering of the particles in the heteroge-
neous particle system. The charges of the points are
randomly chosen between −1 and 1. The dipoles
orientations are random between 0 and 360 degrees,
and their strength (moment magnitude) is of fixed
value 0.2. We have calculated the potential and en-
ergy for increasing number of particle systems (from
81 to 8,396,802 particles) to measure the effect of
the system size and type on the running times and
measured errors. We have conducted our fast com-
putation on a sequence of coarsened grids (the finest
having mesh size of h = a, where a is the aver-
age distance between the particles), such that the
coarsest grid for each of the particle systems is a
9 × 9 grid of super-particles. On this coarse grid

FIGURE 5. A system with typical distribution of
arbitrarily located 578 particles, half of which are dipoles
and half are point-charges.

the direct computation of the electrostatic potential
is done. Subsequently, the potential is recursively
interpolated (and corrected) to the finest grid, and
from there, to the required arbitrary positions of
the particles. We call this type of run a multilevel
run. The notation used throughout this section is
summarized in Table I, and more precisely defined

TABLE I.
Nomenclature.

Notation Meaning

n Number of point charges
m Number of dipoles

h Mesh size
a Average distance between particles
p Interpolation (anterpolation) order
s Softening distance (scale)
γ Constant equal to 0.5 for central interpolation
ε Degree of accuracy

l Number of multigrid levels
Td Running time of the direct (naive) computation

(seconds)
Tf Running time of the fast multiscale algorithm

(seconds)

Eerr Average energy calculation error per particle
interaction

Verr Average potential calculation error per charge
interaction

∇Verr Average potential gradient calculation error per
dipole interaction
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below. The results for the three types of systems
are exhibited in Tables II–IV, respectively. The pro-
gram has been executed on a SGI-R10000 machine
(194 MHZ processor) with 1024 Mbytes of mem-
ory. m dipoles and n point charges constitute the
system, where in the heterogeneous case, there are
equal number of dipoles and charges (m = n). In
all three systems, as the total number of the par-
ticles is increased by about four-fold, the running
times of the direct (naive) computation is enlarged
by about 16-fold (Td), which is in the order of
O(m2) for the dipolar system, O(n2) for the charge
system and O((m + n)2) for the heterogeneous sys-
tem. Whereas, our fast calculation time (Tf ) grows
only linearly with problem size, i.e., it in the or-
der of O(m), O(n), and O(m + n) with respect to
the three systems. The memory requirement of the
algorithm is also in the order of the number of
particles. This many-body computation is therefore
made feasible. For example, the computation of a
8,396,802 heterogeneous particle system is plausible
(Table IV), because we achieve this within 21.5 min,
where the direct approach would require almost a
year.

ERROR CLASSIFICATION AND ERROR
MEASUREMENTS

In general, three controllable types of errors af-
fect the accuracy of the calculations. The first two
are the anterpolation and interpolation errors that
are determined by p, s, and h. For the interpola-
tion/anterpolation to be done with bounded error,
s needs to be at least several mesh sizes. The inter-
polation error is thus dominated by the smoothness
properties of the softeners in the local region s of
where softening is defined. The third error type is
produced from the self-charge contribution of the
particles to the potential computation at their posi-
tions. The error is removed using the self-correction
procedure. The errors are a function of the number
of particles in the system, as will be shown hereby.

To evaluate the accuracy of our fast computation
in comparison with the direct computation, we de-
fine various error measures. The average error of the
potential calculation per charge interaction is com-
puted as Verr = 1

n(n+m)

∑n
i= 1 |Vfi − Vdi |, where Vfi

is the potential computed by our fast algorithm at
point charge-i, and Vdi is the potential computed di-
rectly at that point. Similarly, the average calculation

TABLE II.
Multilevel Performance Table for Point-Charge Systems of Varying Number of Charges.

Without Self-Correction With Self-Correction

n p s l Td
a Tf

a Eerr Verr Tf
a Eerr Verr

81 2 4 2 0.00b 0.01 2.18e−3 6.54e−3 0.01 9.29e−6 1.72e−3

289 2 4 3 0.03 0.01 5.72e−4 1.81e−3 0.02 1.81e−5 7.71e−4

1,089 2 4 4 0.39 0.03 1.58e−4 5.42e−4 0.06 9.97e−6 2.88e−4

4,225 2 4 5 5.79 0.12 4.28e−5 2.38e−4 0.23 4.84e−6 2.06e−4

16,641 2 4 6 90.14 0.47 1.14e−5 9.66e−5 0.96 1.81e−6 9.18e−5

66,049 2 4 7 2,056.82 2.36 3.16e−6 5.93e−5 4.40 7.16e−7 5.86e−5

263,169 2 4 8 33,086.24 14.82 7.96e−7 2.85e−5 20.64 1.83e−7 2.84e−5

1,050,625 2 4 9 529,380.00c 71.38 — — 103.05 — —
4,198,401 2 4 10 8,470,080.00c 327.24 — — 510.82 — —

81 4 6 2 0.00b 0.01 1.99e−3 5.74e−3 0.04 4.88e−6 1.35e−4

289 4 6 3 0.03 0.02 5.14e−4 1.53e−3 0.10 6.30e−6 1.01e−4

1,089 4 6 4 0.39 0.07 1.38e−4 4.16e−4 0.38 3.23e−6 5.47e−5

4,225 4 6 5 5.79 0.27 3.57e−5 1.09e−4 1.48 8.98e−7 2.20e−5

16,641 4 6 6 90.14 1.10 9.20e−5 2.96e−5 5.86 3.39e−7 1.14e−5

66,049 4 6 7 2,056.82 5.45 2.35e−6 9.93e−6 24.80 7.14e−8 7.27e−6

263,169 4 6 8 33,086.24 29.95 5.91e−7 3.15e−6 106.30 2.95e−8 2.62e−6

1,050,625 4 6 9 529,380.00c 151.19 — — 454.83 — —
4,198,401 4 6 10 8,470,080.00c 685.87 — — 1905.15 — —

a The running times are in seconds (resolution of 10 ms).
b Under 10 ms.
c Estimated time of the direct computation as an O(n2) computation.

726 VOL. 22, NO. 7



MULTISCALE FAST SUMMATION OF PARTICLE INTERACTIONS

TABLE III.
Multilevel Performance Table for Dipolar Systems of Varying Number of Dipoles.

Without Self-Correction With Self-Correction

m p s l Td
a Tf

a Eerr ∇Verr Tf
a Eerr ∇Verr

81 2 4 2 0.01 0.01 1.57e−5 1.69e−4 0.01 3.14e−7 1.42e−4

289 2 4 3 0.03 0.02 3.70e−6 5.41e−5 0.03 6.24e−7 4.94e−5

1,089 2 4 4 0.42 0.07 1.09e−6 1.49e−5 0.09 5.30e−8 1.33e−5

4,225 2 4 5 6.23 0.28 2.94e−7 3.88e−6 0.34 8.96e−10 3.47e−6

16,641 2 4 6 104.58 0.89 7.31e−8 9.88e−7 1.41 2.06e−9 8.94e−7

66,049 2 4 7 2,059.87 4.55 1.88e−8 2.51e−7 6.70 1.34e−10 2.27e−7

263,169 2 4 8 33,252.61 26.37 4.71e−9 6.31e−8 31.95 3.67e−11 5.69e−8

1,050,625 2 4 9 532,042.00b 125.12 — — 163.29 — —
4,198,401 2 4 10 8,512,672.00b 518.48 — — 664.99 — —

81 4 6 2 0.01 0.01 2.01e−5 1.28e−4 0.04 1.51e−7 1.71e−5

289 4 6 3 0.03 0.05 5.53e−6 3.60e−5 0.15 1.27e−7 6.82e−6

1,089 4 6 4 0.42 0.16 1.49e−6 9.61e−5 0.52 1.27e−8 1.87e−6

4,225 4 6 5 6.23 0.62 3.84e−7 2.49e−6 2.03 2.94e−9 4.84e−7

16,641 4 6 6 104.58 2.52 9.76e−8 6.30e−7 8.23 7.19e−10 1.26e−7

66,049 4 6 7 2,059.87 12.20 2.46e−8 1.59e−7 35.12 1.54e−10 3.20e−8

263,169 4 6 8 33,252.61 62.06 6.19e−9 3.99e−8 147.00 3.12e−12 8.01e−9

1,050,625 4 6 9 532,042.00b 289.08 — — 640.47 — —

a The running times are in seconds (resolution of 10 ms).
b Estimated time of the direct computation as an O(m2) computation.

error of the potential’s gradient per dipolar parti-
cle is defined as ∇Verr = 1

m(n+m)

∑m
j= 1 |∇Vfj − ∇Vdj |,

where ∇Vfj is the potential gradient computed by
the fast algorithm at dipole-j, and ∇Vdj is the direct
computation of the potential gradient at that dipole.
The energy calculation error per interaction Eerr =
|Ef − Ed|/(m+ n)2, where Ef is the fast computation
of the total energy and Ed is the direct computation.
In a pure charge system m = 0, whereas in a dipo-
lar system n = 0. The measurements per interaction
give an error estimate of each of the summed terms
in eq. (3).

ACCURACY OF THE POTENTIAL, ENERGY,
AND FORCES

The errors are measured for two types of runs.
The runs applying self-correction (the column spec-
ified as “with self-correction”), account for the ex-
clusion of the erroneous self-contribution of the
particles aggregates to the potential and energy cal-
culations. Whereas, the column named “without
self-correction” presents the results for the cases
where this type of error is not handled.

For each particle, as its number of interactions
grows linearly with the linear increase in the total

number of particles, the per-interaction errors de-
crease linearly by the same factor.

This is explained by the fact that far away par-
ticles have less influence than nearby local ones.
Therefore, when increasing the number of interac-
tions, the “constant” local-induced error (per parti-
cle) is averaged out. The local-induced errors intro-
duced by the smoothness properties of the kernel
softeners, and by the self-contribution, are yielded
for every particle in the system. As seen by the
results obtained for Eerr, self-correction may be im-
portant for systems where high accuracy in the en-
ergy calculation is desired. In all systems and cases
therein, Eerr obtained is smaller than the relevant
Verr and ∇Verr. The energy computation is based
on the summation of the potentials obtained and
the particles charges. The potential computation can
be above or below its direct computed value, and
hence, as a result the energy calculation error is
averaged out. The measured errors for dipolar sys-
tems compared with charged systems show that the
former errors are smaller than those of the latter.
This is because the dipolar potential gradient ker-
nel has a smaller long-range contribution than that
of the charge potential kernel. We can thus approx-
imate that the measured errors for the computation
of forces will be in the order of those for the dipolar
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systems, because the forces are the derivatives of the
potential kernels. In addition, for dipolar systems
and force calculations smaller values for ps and ss
can be employed in comparison to those needed to
obtain accurate potentials of a charge system.

We have tested the algorithm for studying
the effect the dipoles magnitude and orientation,
and charge characteristics, i.e., positive, negative
or combined. Confined systems of homogeneous
charges (positive or negative), or systems of re-
stricted dipole orientation, yield slightly larger er-
rors compared to the aforementioned unrestricted
systems (results not shown here). This is because
the errors are a function of the charges values (cou-
pled with the interpolation/anterpolation errors).
In a restricted positive (or negative) charge sys-
tem, the fast computed potential values are consis-
tently above (or below) the direct computed values.
Therefore, relative error measurements can also be
employed (e.g., Vrlt

err = 1
n

∑n
i= 1 |(Vfi − Vdi)/Vdi |), be-

cause the variation of the difference between the
fast and direct evaluation is small, yielding reliable
“normalized” error values. In orientation-restricted
dipolar systems the error estimates do not manifest
themselves as in positively or negatively charged
systems. A dipole, by definition is composed of a
positive and a negative charge, and as such, the
long-range dipoles charges tend to average out as
previously has been explained for positive and neg-
ative charged systems.

THE EFFECT OF p AND s

In Tables II–IV, we also show the effect of the
softening distance s and the interpolation order p
on the measured errors and running times. For all
three systems, all error measures improve when in-
creasing s or p separately, or both (this was also suc-
cessfully tested in the two-level system—not shown
here). However, this influences the computational
work invested as the complexity of the algorithm
is O((m + n)p2). Because we want to maintain this
complexity, the number of corrections carried out
for every particle should be on average p2. There-
fore, (s/a)2, the number of corrections, should be in
the order of p2. Taking into consideration p, s, and h,
the error obtained from interpolating the softened
potential kernel is of the order O((γ h)p(p!/sp)) ∼
O(((γ hp)/(es))p), where (p!/sp) is an approximation
of the p-order derivative of the kernel Gsmooth; p! ∼
(p/e)p by Sterling, where e is the base of the natural
logarithm. Thus, we should choose s = O(hp), that
is s/h and p should be kept in the same order.

Next, we will consider the amount of work per-
formed as a function of p, s, and h. The number of
operations performed per gridpoint on the grid of
size h for anterpolating it to grid 2h, interpolating to
it from grid 2h, and the corrections related to it is
2p+4(2s/h) (assuming the softening distance is also
doubled). The number of operations performed per
arbitrarily positioned particle point for anterpolat-
ing it to grid h, interpolating to it from grid h, and
its required corrections (not including self correc-
tion) is 2p2 + 4(s/a)2 (plus 2p2 if self-corrections are
properly introduced). In the cases presented here,
the execution times double when increasing p from
2 to 4 and s, from 4 to 6 (or multiplied by four times
when the self-correction is accounted for, which is
of order O(p4) per particle in this version of imple-
mentation). Nevertheless, the running times of the
varying sizes of the systems still increase linearly, as
a function of the system size.

THE EFFECT OF h

We have previously mentioned that the use
of kernel softeners and the anterpolation/inter-
polation processes yields a bounded O(hpG(p)

smooth)
approximation error for the potential, where G(p)

smooth
is the maximum p-order derivative of the kernel
softener Gsmooth. The gradient of the potential ap-
proximation (the ∇V computation) has a bounded
O(hp−1G(p−1)

smooth) error. This is seen by the results ob-
tained from runs of different values of h in a het-
erogeneous particle system (not shown here). For a
fixed s, as the mesh size h is reduced by two-fold,
Verr decreases by O(2p), whereas ∇Verr decreases
O(2p−1).

The anterpolation/interpolation errors rise as the
grids get coarser and coarser, because the mesh
size h is enlarged. Thus, to reduce the anterpola-
tion/interpolation errors, the interpolation-order p
and the softening distance s are chosen for every
grid level currently processed. That is, for coarser
levels, a higher interpolation order p and/or larger
softening distance s are the remedy for reducing
the interpolation errors obtained. The computa-
tional cost does not rise by much, as the larger
p and s are chosen to be exercised on coarser
grids.

THE EFFECT OF THE PARTICLES
DISTRIBUTION

In real-life particle systems, the positions of the
particles are not chosen randomly as has been done
here. In the natural systems, the particles are dis-
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tributed more uniformly and cannot come as near
to each other as may randomly occur in our test sys-
tems. We have obtained bounded and small compu-
tations errors in our unrestricted “worst-case” test
systems. Indeed, the natural relaxation on the parti-
cle location results in even better accuracy. This was
checked by running the algorithm on additional test
cases where the distance between the particles has
been restricted to pairs of points that are >a apart
from each other (e.g.,>2). The results obtained have
shown that the computation errors even decreased
by an order of magnitude in comparison to the un-
restricted cases. In these latter restricted cases, each
particle has less number of interactions with very
close neighbors within its softening region. Hence,
most of the computation is done with the exact
potential, as the particles interactions are usually be-
yond the singularity region of the kernel.

The system was also tested for its performance
on a line-like distribution of particles (e.g., a circle)
to emulate anisotropic particle distribution. Both the
running times and accuracy are comparable to the
the cases where the particles are arbitrarily distrib-
uted. As an example, for a charge system composed
of 263,169 particles distributed on a circle, a fine
grid of 1025× 1025 gridpoints and a multilevel run
have yielded Verr = 4.16e−5 and Eerr = 2.6e−7 (the
radius of the circle is 1025× h, i.e., around 85 parti-
cles on average reside in the h× h bin). The running
time obtained is 109.11 s compared with the direct
computation of 32,390 s (almost 9 h). When using
a 513 × 513 grid (the radius is 513 × h, i.e., around
165 particles on average reside in a bin), we have ob-
tained Verr = 4.72e−5, Eerr = 2.18e−7, and Tf = 194 s.
Both the number of particles and the number of
gridpoints on the finest grid level can be of the same
order for obtaining accurate results and fast running
times. For the particular handling of cases of vari-
able particle density an extension of the algorithm
can be found in ref. 5.

OPTIMIZATION ISSUES

Here we have described our algorithm and its
options, and have demonstrated its capabilities. Op-
timal values can be obtained for the algorithm’s
parameters, i.e., the softening distance s, the inter-
polation order p, the mesh size h , and the number
of grid levels. The computational work can be min-
imized subject to given constraints on the error
measurements. Or, for a given work requirement,
the errors can be minimized. Another possibility is
to minimize the work and errors given the exchange
rate of accuracy for work. All in all, the parame-

ters are determined according to the application in
which our method is employed. See ref. 13 for an
example of a parameter optimization and control
procedure.

Discussion

In this work we have demonstrated a multiscale
method for the fast summation of long-range inter-
actions, namely, the rapid evaluation of the potential
and energy induced in homogeneous and heteroge-
neous point-charge and dipolar systems. We have
achieved this using linear complexity. This means
that although we are summing O(N2) interactions,
the execution time grows only linearly with the
number N of particles.

Here, the method is applied to the fast sum-
mation of the Coulombic potential of charges and
dipoles in 2D. Our algorithm can be extended to
any asymptotically smooth kernels, not only for
potential-type kernels, and to any space dimension.
Nevertheless, because our multiscale approach is
generic, i.e., it is not restricted to this kind of func-
tions and can be straightforwardly modified to han-
dle other asymptotically smooth kernels (oscillatory
kernel handling appears in ref. 5). As an example,
we can consider the long-range dipolar system used
to describe magnetic phenomenon such as complex
ferrofluids and ultrathin magnetic films.14, 15 The
energy function of a system of magnetic dipoles
on a square lattice represents also long-range dipo-
lar interaction and is over all pairs of moments on
the lattice. The long-range dipole–dipole interaction
kernel can be softened using the compatible deriv-
atives of the softening polynomials, and the fast
summation can be carried out using our multiscale
structure and mechanisms, i.e., the fine-to-coarse
and coarse-to-fine procedures. An additional exam-
ple where our algorithm can be utilized is the grav-
itational N-body problem is astrophysics. There, N
mass points (of stars/galaxies) are moving under
their mutual gravitational forces according to New-
ton’s laws of motions.

Our method relies on decomposing the electro-
static potential into a smooth (or “softened”) part
and a local part, and describing the smooth part
as the potential of aggregated charges and dipoles
defined on a coarser grid. The long-range dipo-
lar kernel is softened using the derivatives of the
charge-kernel softening polynomials. The main ad-
vantage, and indeed a motivation for this method, is
that it provides the structure for describing collec-
tive particle motions on larger scales that facilitates
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the acceleration of Monte-Carlo (MC) simulations
and energy minimization processes. For example,
the direct fine-scale MC simulation of water and
other fluids tend to be extremely inefficient due to
the very slow change of various kind of clusters,
at various scales, for example, clusters of aligned
dipoles, whose size depend on the given temper-
ature. The general multiscale approach to accel-
erate MC simulations and inexpensively average
over many large-scale fluctuations (see refs. 6, 16,
17, and 18), is based on devising (Lagrangian or
Eulerian) dynamics of aggregated quantities at in-
creasingly larger scales. When electrostatic interac-
tions are involved, their smooth part can directly
be transferred to the larger scale dynamics by be-
ing described, as in the present work, through the
fields of aggregated charges and dipoles. The local
part, together with other local interaction, is sepa-
rately transferred to the coarse levels by a different
approach (iterative construction of local coarse-level
potential by comparing local MC simulations at
the coarse level with such simulations at the fine
level).
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