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Abstract

We describe a novel application of a stochastic name-passing calculus for the study of biomolecular systems. We specify
the structure and dynamics of biochemical networks in a variant of the stochasticπ-calculus, yielding a model which is
mathematically well-defined and biologically faithful. We adapt the operational semantics of the calculus to account for both
the time and probability of biochemical reactions, and present a computer implementation of the calculus for biochemical
simulations. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Biomolecular processes, carried out by large com-
plex networks of interacting proteins, are responsible
for most of the information processing within the liv-
ing cell. Previous attempts at modeling such processes
have used continuous mass-action differential equa-
tions, discrete Monte Carlo simulations, or Petri nets
(e.g., [9]). While each of these approaches captures
some of the information regarding pathways and their
components, none fully integrates dynamics, molecu-
lar, and biochemical detail. As an alternative we have
proposed [15] to represent molecular systems as mo-
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bile communicating systems in theπ -calculus [12],1

yielding a model of the molecular realm which is both
highly detailed and visible. For this purpose we have
implemented a qualitative simulation system based on
the π -calculus in Flat Concurrent Prolog [17]. Im-
portantly, unlike previous implementations of the cal-
culus [13], our system, BioPSI, supports full syn-
chronized2 communications and full choice (includ-
ing mixed choice between input and output actions).

The π -calculus’s non-determinism is well-suited
for qualitatively modeling biomolecular systems. How-
ever, for more accurate quantitative modeling, we
propose using the stochasticπ -calculus. Stochastic
process algebras were introduced by [8,10,3,4] to
compositionally model quantitative aspects of distrib-

1 We assume familiarity with theπ -calculus.
2 Molecular interaction is invariably a synchronous event.
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uted systems, and have been mostly used for perfor-
mance evaluation. Their application to biomolecular
processes is novel.

The paper is structured as follows. In Section 2 we
describe biomolecular processes and their qualitative
representation in theπ -calculus, and briefly review
quantitative information. In Section 3 we present a sto-
chastic variant of theπ -calculus suitable for biochem-
ical dynamics. In Section 4 we describe the extension
of our implementation to the stochastic calculus.

2. Biomolecular processes in the π -calculus

Biomolecular processes are carried out by networks
of interacting protein molecules, each composed of
several distinct independent structural parts, called
domains. Pair-wise interaction between domains de-
pends on structural and chemical complementarity of
particular portions, calledmolecular determinants or
motifs. 3 Interaction between proteins causes biochem-
ical modification of motifs (e.g., covalent changes).
These modifications affect the potential of the modi-
fied protein to interact with other proteins. Since pro-
tein interactions directly affect cell function, these
modifications are the main mechanism underlying
many cellular functions, making theπ -calculus par-
ticularly suited for their modeling as mobile commu-
nicating systems.

We view molecules and domains as processes, rep-
resent complementary motifs by global channel names
and co-names, and identify complexes and cellular
compartments by newly declared private channels. We
model chemical interaction and subsequent modifica-
tion as communication and channel transmission. The
operational semantics of the calculus thereby defines
the dynamic behaviour of the modeled system.

To accurately describe the quantitative behavior of
biochemical networks, this qualitative view must be
extended. The actual rate of a reaction between two
proteins is determined according to abasal rate 4

and the concentrations or quantities5 of the reactants

3 There is currently no standard definition of a motif. The term
encompasses a variety of factors, including electrostatics, hydrogen
bonding and three dimensional structure.

4 The basal rate of a reaction is an empirically-determined
constant, which depends on the specific reaction, the temperature,
etc.

5 Under certain assumptions [7], molecule concentration and
quantity can be interchanged.

[11]. We distinguish between two types of reactions
that are common in biomolecular networks. In the
usual reaction, two different reactant molecules,P

and Q, are involved, and the reaction rate is given
by Brate × |P | × |Q|, whereBrate is the reaction’s
basal rate, and|P | and|Q| are the concentrations ofP

andQ in the chemical solution. In another prevalent
kind of reaction, homodimerization, two identical
proteins,Q, bind together. The interacting processes
are represented in this case as mixed choice constructs
offering both an input and an output communication
on the same channel. The rate in this case is1

2 ×
Brate×|Q|×(|Q|−1). In the next section, we present
the biochemical stochasticπ -calculus, which provides
a formal semantics for these reaction rates.

3. The biochemical stochastic π -calculus

The original semantics of the stochasticπ -calculus
[14] required some modification in order to accurately
describe chemical reactions. In this section we de-
scribe the reduction semantics of the biochemical vari-
ant that we have developed.

The prefixπ.P of the π -calculus [12] is replaced
in the stochastic variant by(π, r).P where r is the
single parameter of an exponential distribution that
characterizes the stochastic behaviour of the activity
corresponding to the prefixπ . Thus,r corresponds to
the basal rate of a biochemical reaction.6 Otherwise,
the original π -calculus syntax [12] remains intact.
The structural congruence≡ [12] is extended with
A(ỹ) ≡ P {ỹ/x̃} (if A(x̃) ::= P is the unique defining
equation of constantA). Similarly to [12] we assume
all processes in head normal form. In particular, a
processP is in head normal form if either it is the
null process or

P ≡
∑

i

(πi, ri ).Pi and

∀i �= j . sbj(πi) �= sbj(πj ).
7

6 In the original stochasticπ -calculus [14] the rate is associated
with the prefix. However, in a chemical reaction both reactants share
a single basal rate. This is resolved by associating the basal rate with
the channel name. For clarity purposes, we continue to specify the
rater in the prefixes throughout the paper, implicitly assuming that
two prefixes have the same rate when using the same channel name.

7 sbj(π) denotes the subject ofπ , i.e., its output or input link.



C. Priami et al. / Information Processing Letters 80 (2001) 25–31 27

Table 1
Reduction semantics of the biochemical stochasticπ -calculus(

· · · + (x〈z〉, r).Q
)∣∣∣((x(y), r).P + · · ·

) x,rb ·1·1−−−−−→ Q|P {z/y}, x /∈H,

(
· · · + (x〈z〉, r).Q + (x(y), r).P

)∣∣
(
(x〈z〉, r).Q + (x(y), r).P + · · ·

) x,1/2·rb ·2·(2−1)−−−−−−−−−→ Q|P {z/y}, x ∈H,

P
x,rb ·r0·r1−−−−−→ P ′

P |Q x,rb ·r ′
0·r ′

1−−−−−→ P ′|Q
,




r ′
0 = r0 + Inx(Q),

r ′
1 = r1 + Outx(Q),

P
x,rb ·r0·r1−−−−−→ P ′

(ν x)P
x,rb ·r0·r1−−−−−→ (ν x)P ′

Q ≡ P,P
x,rb ·r0·r1−−−−−→ P ′,P ′ ≡ Q′

Q
x,rb ·r0·r1−−−−−→ Q′

Note, that this condition is justified since we assume
at most one occurrence of a given motif in a domain.

As for semantics, the dynamic evolution of systems
is driven by arace condition, yielding a probabilis-
tic model of computation. All the activities that are
enabled in a state compete and the fastest one suc-
ceeds. The continuity of exponential distributions en-
sures that the probability that two activities end simul-
taneously is zero.

Since reaction rates depend on the number of in-
teracting processes, we define two auxiliary functions,
In,Out : 2P ×N → N that inductively count the num-
ber of receive and send operations on a channelx en-
abled in a process:

Inx(0) = 0,

Inx

(∑
i∈I

(πi, ri ).Pi

)

= ∣∣{(πi, ri) | i ∈ I ∧ sbj(πi) = x
}∣∣,

Inx(P1|P2) = Inx(P1) + Inx(P2),

Inx

(
(ν z)P

) =
{

Inx(P ) if z �= x,

0 otherwise.

Outx is similarly defined, by replacing any occurrence
of In with Out and the conditionsbj(πi) = x with
sbj(πi) = x.

Table 1 shows the reduction semantics of the bio-
chemical stochasticπ -calculus. We distinguish the
two types of chemical reactions according to the chan-

nel name. A subset of all the names,H ⊆N , is used to
identify channels used in homodimerization reactions.
A usual reaction is implemented by the three parame-
tersrb, r0 andr1, whererb represents the basal rate,
andr0 andr1 denote the quantities of interacting mole-
cules, and are computed compositionally viaInx and
Outx while deducing transitions. The first axiom in Ta-
ble 1 corresponds to usual reactions, with two differ-
ent molecules. The second one corresponds to homo-
dimerization reactions.

We illustrate our model with the following bio-
molecular system, regulating gene expression by pos-
itive feedback. The systemSys specified in Table 2
(and illustrated in Fig. 1) includes two genes (Gene_A
and Gene_TF), their transcribed mRNAs (RNA_A
and RNA_TF), the corresponding translated proteins
(Protein_A and Protein_TF) and the degradation of
both RNA and protein molecules.8 The events are
mediated by interaction with cellular machineries for
DNA transcription (Transcr), RNA translation (Transl)
and RNA and protein degradation (RNA_Deg and
Protein_Deg). Each of these interactions involves dif-
ferent molecular motifs (channels basal, utr, degm,
and degp) and occurs at a different rate. In addition,
Protein_A activates Protein_TF in a two-step mecha-
nism. First, A binds TF, through A’s Binding_Site do-
main (bind channel), to form a complex by extrusion

8 A polyadic version of the calculus is used and the trailing0 is
omitted as usual.
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Table 2
Specification of a biomolecular system

Sys= Gene_A|Gene_TF|Transcr|Transl|RNA_Deg|Protein_Deg

Gene_A= (basal(),4).(Gene_A|RNA_A) + (pA(),40).(Gene_A|RNA_A)

RNA_A = (utr(),1).(RNA_A|Protein_A) + (degm(),1)

Protein_A= (νbb1,bb2,bb3)(Binding_Site|Kinase)

Binding_Site= (bind〈bb1,bb2,bb3〉,0.1).Bound_Site+ (degp(),0.1).(bb3,∞)

Bound_Site= (bb1,10).Binding_Site+ (degp(),0.1).(bb3,∞).(bb3,∞)

Kinase= (bb2〈ptail〉,10).Kinase+ (bb3(),∞)

Gene_TF= (basal(),4).(Gene_TF|RNA_TF) + (pA(),40).(Gene_TF|RNA_TF)

RNA_TF= (utr(),1).(RNA_TF|Protein_TF) + (degm(),1)

Protein_TF= (bind(c_bb1,c_bb2,c_bb3),0.1).Bound_TF+ (degp(),0.1)

Bound_TF= (c_bb1(),10).Protein_TF+ (c_bb3(),∞)+
(c_bb2(tail),10).((c_bb1(),10).Active_TF(tail) + (c_bb3(),∞))

Active_TF(tail) = (tail,100).Active_TF(tail) + (degp(),0.1)

Transcr= (basal,4).Transcr+ (ptail(),100).(pA,40).Transcr

Transl= (utr,1).Transl

RNA_Deg= (degm,1).RNA_Deg

Protein_Deg= (degp,0.1).Protein_Deg

Fig. 1. A simple biomolecular process: Transcriptional regulation by positive feedback.
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Sys
basal,4·2·1

S0
utr,1·1·1

S1
basal,4·2·1

S2
utr,1·2·1

S3

bind,0.1·1·1

S7 S6
ptail,100·1·1

S5
bb1,10·1·1

S4
bb2,10·1·1

S0 = Gene_A|RNA_A|Gene_TF|S S1 = SA|Gene_TF|S
S2 = SA|Gene_TF|RNA_TF|S S3 = SA|STF|S
S4 = Gene_A|RNA_A|((νbbi)(Bound_Site|Kinase))|Gene_TF|RNA_TF|

Bound_TF{bbi/c_bbi}|S
S5 = (νbbi)

(
Gene_A|RNA_A|Bound_Site|Kinase|Gene_TF|RNA_TF|
((bb1(),10).Active_TF(ptail) + (bb3(),∞))

)
|S

S6 = (νbbi)(SA|Gene_TF|RNA_TF|Active_TF(ptail))|S
S7 = (νbbi)(SA|Gene_TF|RNA_TF|Active_TF(ptail))|

(pA,40).Transcr|Transl|RNA_Deg|Protein_Deg

Fig. 2. A computation ofSys.

of A’s private backbone channels (bbi) to TF. Sec-
ond, A’s Kinase domain modifies the bound TF pro-
tein, by sending theglobal channel ptail (on the pri-
vate bb2). All interactions between the parts of the
complex are mediated on the private backbone chan-
nels: unbinding is mediated on bb1, while degradation,
initiated on degP in protein A, is propagated through-
out the complex on bb3. Following modification and
unbinding, TF can rapidly bind the transcription ma-
chinery using its newly acquiredptail channel, caus-
ing faster promotion of transcription, closing a posi-
tive feedback loop. A computation leading to this sit-
uation is shown in Fig. 2.9 Note, that in this exam-
ple, only few of the interactions we show are mobile.
However, in a typical biological specification many
such mobile communications take place (see examples
in [15,1]).

4. Implementation

We implemented the biochemical stochasticπ -
calculus as part of the BioPSI application, based
on the FCP platform Logix [17,16]. We devised

9 Where we letSA = Gene_A|RNA_A|Protein_A,
STF = Gene_TF|RNA_TF|Protein_TF and
S = Transcr|Transl|RNA_Deg|Protein_Deg.

an appropriate insulated surface syntax, and built a
compiler to FCP. Two unique features of FCP made
it suitable for our purposes. First, the ability to pass
logical variables in messages is used to implement
name passing. Second, FCP’s support of guarded
atomic unification allows synchronized interaction
between input and output guards.

In BioPSI, each channel is an object (a persistent
procedure) and is associated with a basal rate. BioPSI
processes send requests to the channel, via an FCP
vector. There are four kinds of requests: send, receive,
send & receive (for homodimerization), and withdraw.
Requests to a channel which has an infinite rate are
satisfied as soon as possible. Requests to a channel
which has a finite rate (> 0) are queued.

Each time that a new event is required the cen-
tral BioPSI monitor and all channel objects with a fi-
nite, non-zero rate, jointly determine a communication
event. Each channel object determines a weighted rate,
according to its basal rate and the numbers of send
and receive offers. Based on an existing algorithm (de-
tailed in [7]), the monitor selects randomly among the
weighted rates, and stochastically selects according
to the sum of weighted rates an appropriate reaction
time interval to advance a “clock” counter. The cho-
sen channel completes one transmission (send/receive
pair), relaying the sent message to the receiver.
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The completion of the send and receive requests
is synchronized by the channel. In addition, other
messages offered on this and other channels by the
same two processes whose requests were completed,
are withdrawn (mutually exclusive choice). The with-
drawals are not synchronized, but they do precede con-
tinuation of their respective processes.

Each BioPSI process is transformed to an FCP pro-
cedure, and its channel set (global channels, argu-
ments, newly declared channels and channels, bound
by input, to be instantiated only following communi-
cation) is identified, thus allowing full use of chan-
nels as in the original calculus. Note, that the BioPSI
process retains a segment of a short circuit, which is
extended when the channel is passed to more than one
process (including itself, recursively) and closed when
the channel reference is no longer required. When all
segments of the short circuit have been closed, the
channel object terminates.

Several tracing and debugging tools are available
for following a simulation [1]. These include a full
ordered and timed trace of all events, which is post-
processed to produce a quantitative time-evolution for
each kind of process. For example, the behavior of
the simple biochemical system described in Table 2
is presented in Fig. 3. Higher levels of Protein A in the

Fig. 3. BioPSI simulation output for a simple biochemical system:
Time evolution (s) of the absolute number of protein A molecules in
the absence (top) and presence (bottom) of the TF activator gene.

presence of positive feedback due to the TF activator
gene are clearly observed.

The use of Gillespie’s well-established [7] algo-
rithm for the implementation of the race condition
ensures the biochemical faithfulness of BioPSI sto-
chastic simulations. The implementation was tested
with several simple and realistic biomolecular models
(including the circadian, RTK-MAPK, and wnt path-
ways) yielding results which are in agreement both
with published simulation and analysis data (e.g., for
the circadian clock [2]) and with experimental obser-
vations (e.g., for the RTK-MAPK pathway).

5. Conclusions

We described a biochemical variant of the stochastic
π -calculus that is suitable to specify biomolecular
processes. We have modified the original stochasticπ -
calculus to account for the rates of chemical reactions.
We believe that the complexity and importance of
biomolecular processes justify the introduction of
such a variant. Even a simplified biomolecular system
(Figs. 1 and 2) is relatively complex, and requires
automated tools for quantitative analysis. We present
such a tool, BioPSI, for stochastic discrete simulation
of biochemical systems, implemented in FCP. While
discrete-event simulators have been implemented in
the past (e.g., [6,5]), BioPSI is the first to support
mobility, a key feature for simulating biochemical
systems. The BioPSI application is being used to study
a variety of biomolecular systems [1].

In addition to simulation studies, formal methods
could also bring benefits to medicine and biology by
providing rigorous means for exploring and compar-
ing biomolecular processes. Similar, but not identical
biomolecular processes operate under different phys-
iological, pathological, and evolutionary conditions.
Revealing such similarities and differences is key to
understanding the function of these processes in phys-
iology and disease.
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