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Abstract

This thesis studies the problem of spatio-temporal alignment of video sequences, i.e., establishing

correspondences in time and in space between two di�erent video sequences of the same dynamic

scene. It shows that temporal variations between image frames such as moving objects, changes

in scene illumination, or camera ego-motion, are powerful cues for alignment. Such temporal

variations cannot be exploited by standard image-to-image alignment techniques, as they are not

captured by a single image, but only by a sequence of images. We show that by folding these new

temporal cues and known spatial cues into a single alignment framework, situations which are

inherently ambiguous for traditional image-to-image alignment methods are often uniquely resolved

by sequence-to-sequence alignment. This gives rise to a wide range of new video applications.

These are discussed in this thesis.

The thesis investigates the cases where the sequences are recorded by uncalibrated video cameras

with �xed internal and relative external parameters. However, the notion of sequence-to-sequence

alignment/matching is more general, and is not restricted to those cases alone.
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1 Introduction

This is a \paper-thesis", i.e., a thesis organized as a collection of papers. This document can

be viewed as a road map of this paper-thesis. The attached papers, which form the core of this

thesis, are listed in Chapter 3 (pp. 12). This document presents the general concept of the thesis

and places the attached papers in the context within the overall thesis.

1.1 What is sequence-to-sequence alignment?

The problem of image-to-image alignment has been extensively studied over the past century.

In using the term \image-to-image alignment", we refer to the problem of densely estimating

point correspondences between two or more images. This thesis addresses a di�erent problem

{ the problem of \sequence-to-sequence alignment", which establishes correspondences both in

time and in space between multiple sequences (as opposed to multiple images). Namely, for each

pixel (x; y) in each frame (time) t in one video sequence, �nd its corresponding frame t0 and pixel

(x0; y0) in another sequence, such that: (x0; y0; t0) = (x + u; y + v; t + w), where (u; v; w) is the

spatio-temporal displacement.

The typical scenario is when two cameras capture the same dynamic scene. Spatial misalignment

results from the fact that the two cameras may be in di�erent positions, have di�erent orientations,

and may also have di�erent internal calibration parameters. These can be can be modeled by a

2D or 3D spatial transformations. Temporal misalignment results from the fact that the two

cameras may not have been activated simultaneously, and possibly do not have the same frame

rates (e.g., PAL and NTSC). This can be modeled by a 1D a�ne transformations in time.

There are two primary motivations for using sequence-to-sequence alignment: (1) It allows to

resolve spatial ambiguities and to handle situations where image-to-image alignment fails. (2)

Alignment and integration of information across multiple sequences both in space and in time

gives rise to new video applications that are not possible when only spatial image alignment is

used. These are shown in this thesis.

1.2 Exploiting Dynamic Cues (the motto of this thesis)

Image-to-image alignment methods (see Sec. 2.1 for several examples) are known to be accurate,

and e�cient. As implied by their name, image-to-image alignment methods are limited to the

information contained in the images, i.e., the appearance (spatial information) of the images.

This is not the case for video sequences. A video sequence is far more than a plain collection of

images. It contains more information than any individual frame does. In particular, it captures

information about the scene and camera dynamics. This additional information, denoted in this

thesis as dynamic cues, forms an alternative/additional powerful cue for spatial (and temporal)

alignment. These dynamic changes may result from either changes in the scene (e.g., moving
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objects, changes in illumination), or changes in the cameras (e.g., the camera ego-motion). Such

changes are not captured by any individual frame, but only by the entire sequence. It will be

shown that both cases can be used to align sequences both in time and in space. Each of the two

cases is discussed and illustrated in the sequel.

1.2.1 Exploiting Scene Dynamics

An example of the additional information in a video sequence is shown in Fig. 1. Alignment of

image 1.a to image 1.b. is not uniquely de�ned when only information in individual images is

used (see Fig. 1.c). However, a video sequence captures information about scene dynamics such

as the trajectory of the moving object shown in Figs. 1.d and 1.e, which in this case provides

enough information for unique alignment both in space and in time (see Fig. 1.f).

Scene dynamics is not limited to moving objects. It also includes non-rigid changes in the scene

(e.g., owing water), changes in illumination, and more. All these changes are not captured by

any of the individual frames, but are found between the frames. Scene dynamics is a property

that is inherent to the scene and is thus common to all sequences recording the same scene, even

when taken from di�erent video cameras. Consequently, it forms an additional or sometimes an

alternative powerful cue for alignment across sequences.

Information cues based on scene dynamics are studied in the �rst and second attached papers.

The �rst (\A Step Towards Sequence-to-Sequence Alignment") describes a method that exploits

such cues for alignment directly from space-time brightness variations in the sequences. An

alternative approach, where changes are tracked and the tracking results are aligned is illustrated

and discussed in the second attached paper (\Spatio-Temporal Alignment of Sequences").

While these two papers focus on recovery of 2D parametric transformations between the se-

quences, we have recently extended this idea to recovery of epipolar geometry between widely

separated cameras as well. See the last attached paper (\Feature-Based Sequence-to-Sequence

Matching").

All these papers ((1),(2),(6)) describe algorithms that exploit the scene dynamics. In addition

they also study the properties of the general concept of sequence-to-sequence alignment (beyond

the speci�c proposed algorithms).

1.2.2 Exploiting Joint Motion of Cameras

Attached paper (3), \Alignment of Non-Overlapping Sequences" (and its extended journal version

(4)) shows that \coherent appearance", which is the fundamental source of information in stan-

dard image alignment methods, can be replaced by \coherent temporal behavior" when matching

image sequences. It shows that when two cameras are attached closely to each other (so that

their centers of projection are very close), and move jointly in space, the induced frame-to-frame

transformations within each sequence have correlated behavior across the two sequences. These
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Figure 1: Spatial ambiguities in image-to-image alignment (a) and (b) show two correspond-
ing frames in time from two di�erent video sequences viewing the same moving ball. There are in�nitely
many valid image alignments between the two frames, some of them shown in (c). (d) and (e) display
the two sequences of the moving ball. There is only one valid alignment of the two trajectories of the ball.
This uniquely de�nes the alignment both in time and in space between the two video sequences (f).

papers show that this correlated behavior su�ces to align two video sequences both in time and

in space. Furthermore, the above observations are true even when the sequences have no spatial

overlap. Thus, we are able to align non-overlapping sequences. This gives rise to a variety of

applications discussed in Section 1.3.

1.3 Sequence-to-Sequence Applications

Attached paper (5) (\Increasing Space-Time Resolution in Video") describes an application of

sequence-to-sequence alignment. It shows how both the spatial resolution and the temporal reso-

lution of a video camera can be exceeded by combining information from multiple video sequences.

An increase in the temporal resolution is not possible when only image-to-image alignment is used.

The problem of image-based (i.e., spatial) super-resolution has been previously investigated by

many researchers (see Section 2.4.1). In image-based super-resolution, multiple low-resolution

images (imaged at sub-pixel shifts) are combined to obtain a single high-resolution image which

contains spatial features not visible in any of the input images. Such applications are naturally

also supported by sequence-to-sequence alignment. However, beyond that, sequence-to-sequence

alignment also provides temporal alignment at high sub-frame accuracy. This gives rise to super-

resolution in time. By \temporal super-resolution" we refer to the recovery of rapid dynamic

events that occur faster than regular frame-rate. Such dynamic events are not visible (or else

observed incorrectly) in any of the input sequences, even if these are played in \slow-motion".

Furthermore, attached paper (5) shows that we can combine spatial super-resolution with temporal

super-resolution in a single framework.

Another family of applications that should be addressed by sequence-to-sequence alignment

are applications that are particularly di�cult for standard image alignment techniques. These

include: (i) Alignment of sequences obtained at signi�cantly di�erent zooms (e.g., for surveillance

applications), (ii) Alignment of multi-sensor sequences for multi-sensor fusion, and (iii) Recovery

of large transformations and wide baseline matching.

Regular image alignment methods have di�culty in all the aforementioned cases, as features
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which are visible to one camera may not even be observable by the other. This is true for

di�erent resolutions, di�erent sensing modalities, and di�erent viewpoints. Sequence-to-sequence

alignment, however, is not as sensitive to these changes. The reason for this is that sequence-to-

sequence alignment exploits dynamic information. Dynamic information is less e�ected by these

(more invariant to) changes in imaging conditions across the two cameras. For example changes

in sensing modalities a�ect the appearance, but do not a�ect the trajectory of motion induced by

a moving object. This concept is illustrated in attached paper (6) (and (2)) for alignment that

is based on common scene dynamics, and in attached papers (3,4) for alignment that is based on

joint camera motion.

2 Related Work

2.1 Image-to-Image Alignment

The problem of image-to-image alignment has been studied extensively in the literature, and

many di�erent methods of alignment have been proposed. These approaches can be broadly

classi�ed into several categories: direct-based (or gradient-based), feature-based, region-based

and statistical methods. Within each class, the particular methods di�er in their �nal goal and in

the minimization techniques used. Direct (gradient-based) methods are very popular for regular

video applications in which the goal is generally to align frame i to frame i+1. Horn and Schunck

[34, 35, 36] and Lucas and Kanade [47] used this approach to compute optical ow. Bergen et. al.

[7] described a formulation that can represent many of the 80's and early 90's alignment methods.

Furthermore, using that formulation they derived many algorithms for a hierarchy of global motion

models. Hanna [28] introduces a shape model into the alignment scheme. Several independent

groups modeled the scene parallax (explicit representation of shape) using the \Plane+Parallax"

model [45, 53], while others incorporated multi-frame approaches [38, 41, 78]. What enables us to

classify all these methods as direct-based is that essentially all these approaches try to minimize

the di�erence of intensity values:

jjI(~x)� I 0(~x+ ~u)jj; (1)

where ~x are image points, jj � jj represents some norm1, and ~u represents the local displacement.

The nature of the interrelationship between these ~us di�ers from method to method. Although

these approaches are relatively old and well studied, new contributions continue to be made. See

[1, 3, 61, 11] to list just a few.

Typical feature-based image alignment methods �rst apply a local operator to detect interest

points in a pair of images (e.g., the Harris corner detector [30]). Once interest points are extracted

1This error measure was also substituted into monotonic function in order to incorporate robust statistics tools
(e.g., [8, 9])
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in the two images, robust estimation methods, such as RANSAC [21] and LMS [27], are used to

�nd corresponding points and to extract the spatial transformation between the two images. The

process is usually initialized by correlation-based matching (see for example [80, 77]).

In many cases feature-based approaches are presented in the context of recovery of the 3D

structure of the scene (i.e., they are usually associated with stereo and structure from motion

and not directly to the alignment problem. However, simple modi�cations (one might even claim

simpli�cations) of these methods can transform them into standard alignment methods. A rep-

resentative example of a feature-based alignment method is described by Hartley and Zisserman

[31] (Chapter 3), followed by evaluation and error analysis (Chapter 4). Similarly, Stewart [65]

illustrates that feature-based alignment is a special case of robust parameter estimation and illus-

trates its applicability to medical imaging [13, 14]. Thus, it could be argued that any algorithm for

computing a 3D structure (e.g., [20]) can be adjusted to compute 2D parametric transformations.

Region-based methods are most commonly applicable to wide-base line alignment. The problem

usually encountered by region-based methods is that both feature interest points and intensity

values are sensitive to large changes in viewing conditions. Statistics of a large region are more

likely to be characteristic properties that remain invariant under large changes of viewpoint.

By \region-based" methods we refer to methods where the the aligned image portions are data

dependent and are determined from the image content and not prede�ned (i.e., not blocks of

size n � n). Such methods match an image region/portion in one image to an image region

in the second image using region characteristic (e.g., color texture), then uses these multiple

region correspondences to recover the unknown alignment between the images. Pritchett and

Zisserman [50] and Scha�alitzky and Zisserman [56] combined small textured region matches,

locally aligned by a�ne transformations, into a more general model (e.g, homography). Basri

and Jacobs [5, 6] search for a transformation that maps pixels of a given region from one image

into the corresponding region in the other image. They showed that a small number of regions (3

for homography) su�ces to uniquely determine the transformation parameters. Tao et. al. [68]

exploit regions of consistent color, to match regions for stereo applications.

Similar to wide base-line problems, regular image-to-image alignment methods also encounter

di�culties when trying to align two images captured by two sensors having di�erent sensing

modalities. Again, interest points and intensity values will perform poorly. Although the appear-

ance in such cases may di�er signi�cantly, such images still share statistical properties. A popular

approach, primarily for medical imaging, is alignment by maximizing the mutual information.

This approach was �rst introduced by Viola and Wells [75], and has since been extended in sev-

eral ways (see for example [32, 33]). Other statistical tools have also been proposed. Irani and

Anandan [39] showed how to embed any local matching criteria into a global alignment frame-

work. In particular they used normalized correlation surfaces. Fitzgibbon [22] modeled non-rigid

scenes (such as ower �elds) as an autoregressive process, where an optimal alignment is assumed

to minimize the process noise component.
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To summarize, image-to-image alignment methods assume that there is su�cient \similarity"

between the two images, where the term \similarity" of images is used in the broadest sense

to include all of the aforementioned methods. Consequently, image-to-image alignment methods

implicitly share the basic assumption that there is su�cient overlap between the two images to

allow extraction of common image properties. It is shown in attached papers (3) and (4) that

this assumption is not required for some cases of sequences-to-sequence alignment (i.e., when the

cameras move jointly).

2.2 Alignment of Sequences

In contrast to image alignment, where both the core alignment problem and the related applica-

tions (e.g., super-resolution, mosaicking, fusion, change detection, etc.) have been widely studied,

only several studies have addressed the core problem of aligning sequences.

In their \Forest of Sensors" project [26], Grimson et al. suggested several applications of

multiple collaborating sensors. See project website [63] for project summary and results. As part

of that project Stein [64] and Lee et al. [46] developed a method for estimating a time shift and

a homography between two sequences. The method is based on alignment of centroids of moving

objects. However, there is a fundamental di�erence between [64, 46] and our approach. The

centroids in [64, 46] were treated as an unordered collection of feature points and not as trajectories.

Their features are based on temporal properties, but their alignment approach is based only on

spatial properties of these features. In contrast, we enforce correspondences between space-time

entities, in this case trajectories of moving objects. By doing so, we avoid the combinatorial

complexity of establishing point matches of all points in all frames, resolve ambiguities in point

correspondences, and allow for temporal correspondences at sub-frame accuracy. This is not

possible when the points are treated independently (i.e., as a \cloud of points"), as in [64, 46].

A special case of this concept was provided by Wexler and Chellappa [76] who used a single

moving object (a lamp in a dark room) captured by synchronized cameras to recover the cameras'

pose and orientations and to calibrate the cameras.

The usefulness of simultaneously employing image constraints from multiple time instances was

noted by several other researchers as well. Vadula et al. [73, 74], Zhang and Kambhamettu

[79], and Tao et al. [69], all proposed combineing temporal alignment constraints and spatial

alignment constraints into a single error function. The goal was usually to recover the scene

structure, and they all used multiple synchronized cameras2. In practice, they all used two

consecutive time instances and utilized the following observation: Assume that points x(t) and

y(t) viewed by two di�erent cameras are corresponding points at time instance t. If we can track

(match) each of them independently, then the new pair of points x(t+ 1) and y(t+ 1) are also in

correspondence. A di�erent application that relies on this observation is described by Sawhney

2Tao et al. eventually only used the spatial constraints.
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et al. [55]. Synchronized high-resolution and low-resolution cameras mounted on a stereo rig

were used to construct a high-resolution stereo pair. They also used constraints from multiple

consecutive time instances to recover accurate parallax at extremely high spatial resolution.

2.3 Action Recognition

The �eld of action recognition (including biological motion recognition, gesture recognition and

gesture analysis) is closely related to sequence-to-sequence alignment. By action recognition, we

refer here to studies that address the question of how to select the most relevant model stored in

a prede�ned library with a given input sequence. More speci�cally: action recognition schemes

often align the input sequence with all database sequences and choose the one that minimizes the

alignment residual error. The main issue that must be considered is the source of misalignment

between the video sequences. In sequence-to-sequence alignment (i.e., this thesis) we assume

that the sequences capture the same dynamic scene using di�erent (unsynchronized) cameras. In

action recognition the sequences are captured at di�erent times. In theory this problem should

also encounter di�erent viewpoints and di�erent cameras in use. However, in many cases for the

sake of simplicity, the database and input sequences are captured by the same camera. Also, in

sequence-to-sequence alignment we can assume that the time scales are related by a global model

(we used 1D a�ne transformation to compensate for di�erent frame rates and di�erent starting

times) whereas in action recognition we can only assume monotonicity in time when correlating

two actions.

Darrel and Pentland [18] have incorporated \dynamic time warping" taken from speech recog-

nition to temporally match sequences of gestures. The temporal correspondence is recovered using

dynamic programming, and the local score is based on correlation between images. The \invari-

ance" to viewing direction is achieved by including many representative viewing directions. A

view-invariant approach was introduced by Seitz and Dyer [58]. They used Tomasi and Kanade

[71, 72] factorization-based rank constraint as their \alignment" criteria. Based on the sum of

squares of singular values (except for the four largest ones), they temporally aligned di�erent

\cycles" (periodic motion with di�erent time periods) of a repeated motion. A similar approach

was proposed by Rao and Shah [51] (using a single centroid point and a rank-3 constraint) to

recognize hand movements in a view-invariant manner.

Giese and Poggio [23, 24, 25] generalized the idea of representing a 3D object by linear com-

binations of three prototypical instances into modeling \biological motion patterns" using linear

combinations of a few prototypical sequences. They reported that it is an \ill-posed" problem, as

incorrect temporal shift can compensate for inaccurate spatial correspondence. A similar observa-

tion may be found in the �rst and second attached papers for some cases of sequence-to-sequence

alignment.

Carlsson [17] represented consistency between sequences of walking people by a matrix of values.

Each entry (i; j) measures a rigidity constraint between few body locations in frame i in one
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(e) Spatio-Temporal Enhancement
from multiple sequences

(In time and in space)
" "

(b) Spatial Enhancement
from multiple images

(d) Temporal Enhancement
from multiple sequences

(\Classical" Super-Resolution) (Temporal Super-Resolution)
" "

(a) Spatial Enhancement
from a single image

(c) Temporal Interpolation
from a single sequence

(\Deblurring") (\Slow-Motion")

Figure 2: Hierarchy of enhancement problems.

sequence to the same body locations in frame j in the other sequence. Now a dominant diagonal

in this matrix represents correspondence between actions (walking people). Furthermore, tilted

diagonals represents consistency (similar walking style) under di�erent speed.

Mahmood et al. [66] proposed using the number of tracked feature points that obey the epipolar

constraint x(t)TFx(t), where F is the fundamental matrix, and t is the time index, as the alignment

criterion for recognizing action events. The construction of the fundamental matrix is based on

corresponding feature points over several time instances. A generalization of this idea to extended

space-time trajectories is provided in attached paper (6).

2.4 Integrating Visual Information

2.4.1 Super-Resolution

Fig. 2 displays a hierarchy of approach to image/sequence enhancement. A similar diagram can

be found in Borman and Stevenson's [10] comprehensive review of super-resolution techniques.

The hierarchy begins with single image enhancement Fig 2.(a). Block (b) in Fig 2 contains a

wide variety of approaches that combine information from multiple images. From pioneering

frequency-based approaches of Huang and Tsai [37], through back-projection approaches [42, 43,

44], Convex Sets (POCS) [49, 59, 62, 70] and Maximum A-Posteriori [16, 57] and many others

([2, 4, 15, 16, 19, 37, 43, 49, 60] to list but a few) all focus on spatial super-resolution. Elad [19]

showed that these two approaches ( (a) and (b) ) are indeed interlinked. He described a uni�ed

formulation of image enhancement and image super-resolution.

A di�erent segment of methods tries to increase the frame rate of video sequences (Fig 2.(c)).

Techniques for increasing the frame rate of a single sequence (slow-motion) usually perform time-

interpolation, either by direct interpolation of intensity values (sometimes known as \tweening")

or by tracking moving objects. Such applications can be found in commercial products, e.g.,
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RetimerTM by RealVis [52]. However, they do not perform temporal super-resolution (Fig 2.(d)).

By \temporal super-resolution" we mean recovery of rapid dynamic events that occur faster than

regular frame rate. Such dynamic events are not visible (or else observed incorrectly) in any of

the input sequences, even if these are played in \slow-motion".

In contrast to the vast body of research on integrating information from di�erent images to

produce higher quality output images, we did not �nd methods which combine multiple sequences

to address the equivalent task in time (Fig. 2.(d)) or both in time and in space (Fig. 2.(e)). On the

top of their two branches, Borman and Stevenson place \spatio-temporal resolution enhancement".

However, no concrete method has ever been presented. The space-time super-resolution method

presented in this thesis belongs to Fig. 2.(d)) and 2.(e)).

2.4.2 Sensor Fusion

The previous section illustrated that alignment can be used to exceed the limited resolution of a

single video camera. Another limited property of sensors is their e�ective wave length. Visible

light cameras capture light with wavelengths of between 0:3�m�0:8�m, while Infra-Red cameras

are sensitive to radiation of wave length between 3�m�5�m, (or else 8�m�12�m). Applications

that combine di�erent sensing modalities are usually denoted by \image fusion". Kolczynski

and Burt [12] proposed a method for image fusion. Their method assumes that the multi-sensor

images have been pre-aligned. A similar application for fusion of sequences having multiple sensing

modalities is described in attached papers (2)-(4).

2.4.3 Panoramic (wide-screen) Movies

Mosaics [40, 13, 15, 29, 54, 67, 83] is another widely used application that relies on accurate

image alignment. In this case, the limited �eld of view is the physical property that is being

extended. Attached papers 3 and 4 extend this application to dynamic scenes and provide means

for generation of wide-�eld of view movies.

2.5 Three Dimensional (Volumetric) Alignment

Another research domain that is related to sequence-to-sequence is volumetric alignment, typically

used in 3D imaging systems (e.g., medical imaging systems). In these cases the goal is to align

\voxels" having X; Y; Z coordinates, while aligning sequence elements have X; Y; T coordinates.

There is a fundamental di�erence between the two domains. In the case of sequence-to-sequence

alignment, the spatial and temporal dimensions are very di�erent in nature and may not be

intermixed. Applying regular 3D volumetric transformations (e.g., a 3D a�ne transformation) to

sequences may mix between time (t) and space (x; y), and is therefore not applicable. Sequence-

to-sequence transformations must be separable in time (t) and space (x; y). A few examples of

methods for 3D volumetric (x; y; z) alignment and integration are listed next:

12



Hermosillo and Faugeras [32, 33] aligned MRI images. Oz et al. [48] applied super-resolution

algorithms to MRI data. In this example the several di�usion-weighted imaging single-shots

shifted at sub-pixel accuracy are combined to construct a single 3D high-resolution MRI image.

Note, that in this example shifts along the three axes (X-Y shifts and the Z shifts) are due

to di�erent physical origins. Three-dimensional a�ne transformation were used by Zhou et al.

[81, 82] to estimate cloud (hurricane) motion and structure.

3 Summary

This thesis presents some approaches for establishing correspondences in time and in space between

two di�erent video sequences of the same dynamic scene, and its applications. It shows that

temporal variations between image frames such as moving objects, changes in scene illumination,

or the camera ego-motion, are powerful cues for alignment. We show that by folding these

new temporal cues together with commonly used spatial cues into a single alignment framework,

situations which are inherently ambiguous for traditional image-to-image alignment methods are

often uniquely resolved by sequence-to-sequence alignment. We further show that this gives rise to

new video applications that are not possible when only image-to-image is used (such as temporal

super-resolution or alignment of non-overlapping sequences).

This thesis focuses on a particular task - alignment of sequences. However, by illustrating the

contribution of temporal cues for solving the alignment problem, it argues in favor of exploiting

temporal cues when addressing other vision tasks as well
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Abstract

This paper presents an approach for establishing corre-
spondences in time and in space between two different video
sequences of the same dynamic scene, recorded by station-
ary uncalibrated video cameras. The method simultane-
ously estimates both spatial alignment as well as tempo-
ral synchronization (temporal alignment) between the two
sequences, using all available spatio-temporal information.
Temporal variations between image frames (such as mov-
ing objects or changes in scene illumination) are power-
ful cues for alignment, which cannot be exploited by stan-
dard image-to-image alignment techniques. We show that
by folding spatial and temporal cues into a single align-
ment framework, situations which are inherently ambiguous
for traditional image-to-image alignment methods, are often
uniquely resolved by sequence-to-sequence alignment.

We also present a “direct” method for sequence-to-
sequence alignment. The algorithm simultaneously esti-
mates spatial and temporal alignment parameters directly
from measurable sequence quantities, without requiring
prior estimation of point correspondences, frame correspon-
dences, or moving object detection. Results are shown on
real image sequences taken by multiple video cameras.

1 Introduction

The problem of image-to-image alignment has been ex-
tensively studied in the literature. By “image-to-image
alignment” we refer to the problem of densely estimating
point correspondences between two or more images (either
taken by a single moving camera, or by multiple cameras),
i.e., for each pixel (x; y) in one image, find its correspond-
ing pixel in the other image: (x0; y0) = (x+u; y+v), where
(u; v) is the spatial displacement. This paper addresses a
different problem – the problem of “sequence-to-sequence
alignment”, which establish correspondences both in time
and in space between multiple sequences (as opposed to
multiple images). Namely, for each pixel (x; y) in each
frame (time) t in one sequence, find its corresponding frame
t0 and pixel (x0; y0) in the other sequence: (x0; y0; t0) =

(x+u; y+v; t+w), where (u; v; w) is the spatio-temporal
displacement.

The need for sequence-to-sequence alignment exists in
many real-world scenarios, where multiple video cameras
record information about the same scene over a period of
time. Some examples are: News items commonly doc-
umented by several media crews; sports events covered
by at least a dozen cameras recording the same scene
from different view points; wide-area surveillance of the
same scene by multiple cameras from different observa-
tion points. Grimson-et-al [7] suggested a few applica-
tions of multiple collaborating sensors. Reid and Zisser-
man [5] combined information from two independent se-
quences taken at the 66th World Cup, to resolve the con-
troversy regarding the famous goal. They manually syn-
chronized the sequences, and then computed spatial align-
ment between selected corresponding images (i.e., image-
to-image alignment). This is an example where spatio-
temporal sequence-to-sequence alignment may provide en-
hanced alignment.

Image-to-image alignment methods are inherently re-
stricted to the information contained in individual images
– the spatial variations within an image (which corresponds
to scene appearance). However, a video sequence contains
much more information than any individual frame does.
Scene dynamics (such as moving object, changes in illumi-
nation, etc) is a property that is inherent to the scene, and
is thus common to all sequences taken from different video
cameras. It therefore forms an additional powerful cue for
alignment.

Stein [6] proposed an elegant approach to estimating
spatio-temporal correspondences between two sequences
based on alignment of trajectories of moving objects. Cen-
troids of moving objects were detected and tracked in each
sequence. Spatio-temporal alignment parameters were then
seeked, which would bring the trajectories in the two se-
quences into alignment. No static-background information
was used in this step1. This approach is hence referred to
in our paper as “trajectory-to-trajectory alignment”. Giese
and Poggio [3] also used trajectory-to-trajectory alignment

1In a later step [6] refines the spatial alignment using static background
information. However, the temporal alignment is already fixed at that point.



to classify human motion patterns. Both [6, 3] reported that
using temporal information (i.e., the trajectories) alone for
alignment across the sequences may not suffice, and can of-
ten lead to inherent ambiguities between temporal and spa-
tial alignment parameters.

This paper proposes an approach to sequence-to-
sequence alignment, which simultaneously uses all avail-
able spatial and temporal information within a sequence.
We show that when there is no temporal information present
in the sequence, our approach reduces to image-to-image
alignment. However, when such information exists, it takes
advantage of it. Similarly, we show that when no static
spatial information is present, our approach reduces to
trajectory-to-trajectory alignment. Here too, when such
information is available, it takes advantage of it. Thus our
approach to sequence-to-sequence alignment combines the
benefits of image-to-image alignment with the benefits of
trajectory-to-trajectory alignment, and is a generalization
of both approaches. We show that it resolves many of the
inherent ambiguities associated with each of these two
classes of methods.

We also present a specific algorithm for sequence-to-
sequence alignment, which is a generalization of the direct
image alignment method of [1]. It is currently assumed
that the sequences are taken by stationary video cameras,
with fixed (but unknown) internal and external parameters.
Our algorithm simultaneously estimates spatial and tempo-
ral alignment parameters without requiring prior estimation
of point correspondences, frame correspondences, moving
object detection, or detection of illumination variations.

The remainder of this paper is organized as follows: Sec-
tion 2 presents our direct method for the spatio-temporal
sequence-to-sequence alignment algorithm. Section 3 stud-
ies some inherent properties of sequence-to-sequence align-
ment, and compares it against image-to-image alignment
and trajectory-to-trajectory alignment. Section 4 provides
selected experimental results on real image sequences taken
by multiple unsynchronized and uncalibrated video cam-
eras. Section 5 concludes the paper.

2 The Sequence Alignment Algorithm

The scenario addressed in this paper is when the video
cameras are stationary, with fixed (but unknown) internal
and external parameters. The recorded scene can change dy-
namically, i.e., it can include multiple independently mov-
ing objects (there is no limitation on the number of moving
objects or their motions), it can include changes in illumina-
tion over time (i.e., within the sequence), and/or other tem-
poral changes. Temporal misalignment can result from the
fact that the two input sequences can be at different frame
rates (e.g., PAL and NTSC), or may have a time-shift (offset)
between them (e.g., if the cameras were not activated simul-
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Figure 1. The hierarchical spatio-temporal align-
ment framework A volumetric pyramid is constructed
for each input sequence, one for the reference sequence (on
the right side), and one for the second sequence (on the
left side). The spatio-temporal alignment estimator is ap-
plied iteratively at each level. It refines the approximation
based on the residual misalignment between the reference
volume and warped version of the second volume (drawn as
a skewed cube). The output of current level is propagated to
the next level to be used as an initial estimate.

taneously). The temporal shift may be at sub-frame units.
These factors give rise to a 1-D affine transformation in time.
Spatial misalignment results from the fact that the two cam-
eras are in different positions and have different internal cal-
ibration parameters. The spatial alignment can range from
2D parametric transformations to more general 3D transfor-
mations.

This section presents an algorithm for sequence to se-
quence alignment. The algorithm is a generalization of
the hierarchical direct image-to-image alignment method of
Bergen-et-al [1], and Irani-et-al [4]. While this specific al-
gorithm is a direct brightness-based method, the concept of
sequence-to-sequence alignment presented in this paper is
more general, and can similarly be used to extend feature-
based image-to-image alignment methods as well.

In [1, 4] the spatial alignment parameters were recovered
directly from image brightness variations, and the coarse-to-
fine estimation was done using a Gaussian image pyramid.
This is generalized here to recover the spatial and tempo-
ral alignment parameters directly from sequence brightness
variations, and the coarse-to-fine estimation is done within
a volumetric sequence pyramid. An image sequence is han-
dled as a volume of three dimensional data, and not as a set
of two-dimensional images. Pixels become spatio-temporal
“voxels” with three coordinates: (x; y; t), where x; y denote
spatial image coordinates, and t denotes time. The multi-
scale analysis is done both in space and in time.

Fig 1 illustrates the hierarchical spatio-temporal estima-



tion framework. The rest of this section is organized as fol-
lows: Section 2.1 describes the core step (the inner-loop)
within the iterate-refine algorithm. In particular, it gener-
alizes the image brightness constraint to handle sequences.
Section 2.2 presents a few sequence-to-sequence alignment
models which were implemented in the current algorithm.
Section 2.3 presents the volumetric sequence-pyramid. Sec-
tion 2.4 summarizes the algorithm.

2.1 The Sequence Brightness Error

Let S; S0 be two input image sequences, where S de-
notes the reference sequence, S 0 denotes the second se-
quence. Let (x; y; t) be a spatio-temporal “voxel” in the
reference sequence S. Let u,v be its spatial displace-
ments, and w be its temporal displacement. Denote by
~P = (~Pspatial; ~Ptemporal) the unknown alignment parame-
ter vector. While every “voxel” (x,y,t) has a different local
spatio-temporal displacement (u,v,w), they are all globally
constrained by the parametric model ~P . Therefore, every
“voxel” (x,y,t) provides one constraint on the global param-
eters. A global constraint on ~P is obtained by minimizing
the following SSD objective function:

ERR(~P ) =
X
x;y;t

(S0(x; y; t)�S(x�u; y�v; t�w))2; (1)

where: u = u(x; y; t; ~P ), v = v(x; y; t; ~P ), w =

w(x; y; t; ~P ). ~P is estimated using the Gauss-Newton min-
imization technique. This is done by linearizing the differ-
ence term (S 0 � S) in Eq. (1). This step results in a new
error term, which is quadratic in the unknown displacments
(u,v,w):

ERR(~P ) =
X
x;y;t

(e(x; y; t; ~P ))2; (2)

where,

e(x; y; t; ~P ) = S0(x; y; t)�S(x; y; t)+[u v w]rS(x; y; t);
(3)

and rS = [SxSySt] = [@S
@x

@S
@y

@S
@t

] denotes a spatio-
temporal gradient of the sequence S. Eq. (3) directly re-
lates the unknown displacements (u; v; w) to measurable
brightness variations within the sequence. To allow for large
spatio-temporal displacements (u; v; w), the minimization
of Eq. (1) is done within an iterative-warp coarse-to-fine
framework (see Sections 2.3 and 2.4).

Note that the objective function in Eq. (2) integrates all
available spatio-temporal information in the sequence. Each
spatio-temporal “voxel” (x,y,t) contributes as much infor-
mation as it reliably can to each unknown . For example, a
“voxel” which lies on a stationary vertical edge, (i.e., Sx 6=
0; Sy = St = 0), affects only the estimation of the param-
eters involved in the horizontal displacement u(x; y; t; ~P ).
Similarly, a “voxel” in a uniform region (Sx = Sy = 0)
which undergoes a temporal change (S t 6= 0), e.g., due

to variation in illumination, contributes only to the estima-
tion of the parameters affecting the temporal displacement
w(x; y; t; ~P ). A highly textured “voxel” on a moving object
(i.e., Sx 6= 0; Sy 6= 0; St 6= 0), contributes to the estimation
of all the parameters.

2.2 Spatio-Temporal Alignment Models

In our current implementation, ~P =
(~Pspatial; ~Ptemporal) was chosen to be a parametric trans-
formation. Let ~p = (x; y; 1)T denote the homogeneous
spatial coordinates of a spatio-temporal “voxel” (x; y; t).
Let H be the 3� 3 matrix of the spatial parametric trans-
formation between the two sequences. Denoting the rows
of H by [H1; H2; H3]

T , the spatial displacement can be
written as: u(x; y; t) = H1~p

H3~p
�x, and v(x; y; t) = H2~p

H3~p
� y.

Note that H is common to all frames, because the cam-
eras are stationary. When the two cameras have different
frame rates (such as with NTSC and PAL) and possibly a
time shift, a 1-D affine transformation suffices to model
the temporal misalignment between the two sequences:
w(t) = d1t + d2 (where d1 and d2 are real numbers). We
have currently implemented two different spatio-temporal
parametric alignment models:

Model 1: 2D spatial affine transformation & 1D temporal
affine transformation. The spatial 2D affine model is
obtained by setting the third row of H to be: H3 = [0; 0; 1].
Therefore, for 2D spatial affine and 1D temporal affine
transformations, the unknown parameters are: ~P =
[h11 h12 h13 h21 h22 h23 d1 d2], i.e., eight unknowns. The
individual voxel error of Eq. (3) becomes: e(x; y; t; ~P ) =
S0 � S + [(H1~p� x) (H2~p� y) (d1t+ d2)]rS; which is
linear in all unknown parameters.

Model 2: 2D spatial projective transformation & a tem-
poral offset. In this case, w(t) = d (d is a real
number, i.e., could be a sub-frame shift), and ~P =
[h11 h12 h13 h21 h22 h23 h31 h32 h33 d]. Each spatio-
temporal “voxel” (x,y,t) provides one constraint:

e(x; y; t; ~P ) = S0�S+
�
(
H1~p

H3~p
�x) (

H2~p

H3~p
�y) d

�
rS: (4)

The 2D projective transformation is not linear in the un-
known parameters, and hence requires some additional ma-
nipulation. To overcome this non-linearity, Eq. (4) is multi-
plied by the denominator (H3~p), and renormalized with its
current estimate from the last iteration, leading to a slightly
different error term:

enew(x; y; t; ~P ) = H3~p=Ĥ3~p � eold(x; y; t; ~P ); (5)

where Ĥ3 is the current estimate of H3 in the iterative pro-
cess, and eold is as defined in Eq. (4). Let Ĥ and d̂ be the cur-
rent estimates of H and d, respectively. Substituting H =



Ĥ + �H and d = d̂+ �d into Eq. (5), and neglecting high-
order terms, leads to a new error term, which is linear in all
unknown parameters (�H and �d). We found in our experi-
ments that in addition to second order terms (e.g, �H�d), the
first order term d̂�H3 is also negligible and can be ignored.

In the above implementations ~P was assumed to be a
parametric transformation. However, the presented frame-
work is more general, and is not restricted to parametric
transformations alone. (u; v; w) can be equally expressed in
terms of 3D parameters (the epipole, the homography, and
the shape). See [1] for a hierarchy of possible spatial align-
ment models.

2.3 Spatio-Temporal Volumetric Pyramid

The estimation step described in section 2.1 is embedded
in an iterative-warp coarse-to-fine estimation framework.
This is implemented within a spatio-temporal volumetric
pyramid. Multi-scale analysis provides three main benefits:
(i) Larger misalignments can be handled, (ii) the conver-
gence rate is faster, and (iii) it avoids getting trapped in lo-
cal minima. These three benefits are discussed in [1] for the
case of spatial (image) alignment. Here they are extended to
the temporal domain as well.

The Gaussian2 image pyramid [2] is generalized to a
Gaussian sequence (volumetric) pyramid. The highest res-
olution level is defined as the input sequence. Consecutive
lower resolution levels are obtained by low-pass filtering
(LPF) both in space and time, followed by sub-sampling by
a factor of 2 in all three dimensions x, y, and t. Thus, for
example, if one resolution level of the volumetric sequence
pyramid contains a sequence of 64 frames of size 256�256
pixels, then the next resolution level contains a sequence of
32 frames of size 128� 128, etc. A discussion of the trade-
offs between spatial and temporal low-pass-filtering may be
found in Appendix A.

2.4 Summary of the Algorithm

The iterative-warp coarse-to-fine estimation process is
schematically described in Fig 1, and is summarized below:
1. Construct two spatio-temporal volumetric pyramids,
one for each input sequence: (S0 := S); S1; S2::SL and
(S0

0 := S0); S0

1; S
0

2::S
0

L. Set ~P := ~P0 (usually the identity
transformation).
2. For every resolution level, l = L::0, do:

(a) Warp S 0

l using the current parameter estimate:

Ŝ0

l := warp(S0

l ;
~P ).

(b) Refine ~P according to the residual misalignment
between the reference Sl and the warped Ŝ0

l

(see Section 2.1).

2A Laplacian pyramid can equally be used.

(c) Repeat steps (a) and (b) until jj�P jj < �.
(3) Propagate ~P to the next pyramid level l � 1, and repeat
the steps (a),(b),(c) for Sl�1 and S 0

l�1.

The resulting ~P is the spatio-temporal transformation,
and the resulting alignment is at sub-pixel spatial accuracy,
and sub-frame temporal accuracy. Results of applying this
algorithm to real image sequences are shown in Section 4.

3 Properties of Sequence-to-Sequence Align-
ment

This section studies several inherent properties of
sequence-to-sequence alignment. In particular it is shown
that sequence-to-sequence alignment is a generalization of
image-to-image alignment and of trajectory-to-trajectory
alignment approaches. It is shown how ambiguities in
spatial alignment can often be resolved by adding temporal
cues, and vice versa, how temporal ambiguities (reported
in [6, 3]) can be resolved by adding spatial cues. These
issues are discussed in Sections 3.1 and 3.2. We further
show that temporal information is not restricted to mov-
ing objects. Different types of temporal events, such as
changes in scene illumination, can contribute useful cues
(Section 3.3). These properties are illustrated by examples
from the algorithm presented in Section 2. However, the
properties are general, and are not limited to that particular
algorithm.

3.1 Sequence-to-Sequence vs. Image-to-Image
Alignment

This section shows that sequence-to-sequence is a gener-
alization of image-to-image alignment. We first show that
when there are no temporal changes in the scene, sequence-
to-sequence alignment reduces to image-to-image align-
ment, with an improved signal-to-noise ratio. In particular it
is shown that in such cases, the presented algorithm in Sec-
tion 2 reduces to the image alignment algorithm of [1].

When there are no temporal changes in the scene, all tem-
poral derivatives within the sequence are zero: S t � 0.
Therefore, for any voxel (x; y; t), the error term of Eq. (3)
reduces to:

eseq(x; y; t; ~P )| {z }
seq-to-seq

) = S0 � S + [u; v]
� Sx
Sy

�
=

= I 0 � I + [u; v]
� Ix
Iy

�
= eimg(x; y; ~P )| {z }

img-to-img

:

where, I(x; y) = S(x; y; t) is the image frame at time t.
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Figure 2. Spatial ambiguities in image-to-image alignment (a) and (b) display two sequences of a moving ball. (c) and
(d) show two corresponding frames from the two sequences. There are infinitely many valid image-to-image alignments between the
two frames, some of them shown in (e), but only one of then aligns the two trajectories.
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Figure 3. Spatio-temporal ambiguity in
trajectory-to-trajectory alignment This figure
shows a small airplane crossing a scene viewed by two
cameras. The airplane trajectory does not suffice to
uniquely determine the alignment parameters. Arbitrary
time shifts can be compensated by appropriate spatial
translation along the airplane motion direction. Sequence-
to-sequence alignment, on the other hand, can uniquely
resolves this ambiguity, as it uses both the scene dynamics
(the plane at different locations), and the scene appearance
(the static ground). Note that spatial information alone
does not suffice in this case either.

Therefore, the SSD function of Eq. (2) reduces to:

ERRseq(~P ) =
P

x;y;t(e(x; y; t;
~P ))2 =

=
P

t

�P
x;y(e(x; y; t;

~P ))2
�
=
P

tERRimg(~P ):

namely, the image-to-image alignment objective function,
averaged over all frames.

We next show that when the scene does contain temporal
variations, sequence-to-sequence uses more information for
spatial alignment than image-to-image alignment has access
to. In particular, there are ambiguous scenarios for image-
to-image alignment, which sequence-to-sequencealignment
can uniquely resolve. Fig. 2 illustrates a case which is am-
biguous for image-to-image alignment. Consider a uniform
background scene with a moving ball (Fig. 2.a and Fig. 2.b).
At any given frame (e.g., Fig. 2.c and Fig. 2.d) all the spa-

tial gradients are concentrated in a very small image region
(the moving ball). In these cases, image-to-image align-
ment cannot uniquely determine the correct spatial transfor-
mation (see Fig. 2.e). Sequence-to-sequence alignment, on
the other hand, does not suffer from spatial ambiguities in
this case, as the spatial transformation must simultaneously
bring into alignment all correspondingframes across the two
sequences, i.e., the two trajectories (depicted in Fig. 2.a and
Fig. 2.b) must be in alignment.

3.2 Sequence-to-Sequence vs. Trajectory-to-
Trajectory Alignment

While “trajectory-to-trajectory” alignment can also han-
dle the alignment problem in Fig. 2, there are often cases
where analysis of trajectories of temporal information alone
does not suffice to uniquely determine the spatio-temporal
transformation between the two sequences. Such is the
case in Fig. 3. When only the moving object information
is considered (i.e., the trajectory of the airplane), then for
any temporal shift, there exists a consistent spatial trans-
formation between the two sequences, which will bring
the two trajectories in Figs. 3.c and 3.d into alignment.
Namely, in this scenario, trajectory-to-trajectory alignment
will find infinitely many valid spatio-temporal transforma-
tions. Stein [6] noted this spatio-temporal ambiguity, and re-
ported its occurrence in car-traffic scenes, where all the cars
move in the same direction with similar velocities. ([3] also
reported a similar problem in their formulation).

While trajectory-to-trajectory alignment will find in-
finitely many valid spatio-temporal transformations for the
scenario in Fig. 3, only one of those spatio-temporal trans-
formations will also be consistent with the static background
(i.e., the tree and the horizon). Sequence-to-sequence align-
ment will therefore uniquely resolve the ambiguity in this
case, as it forces both spatial and temporal information to
be brought simultaneously into alignment across the two se-
quences.

The direct method for sequence-to-sequence alignment
presented in Section 2 is only one possible algorithm for
solving this problem. The concept of sequence-to-sequence
alignment, however, is more general, and is not limited
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Figure 4. Scene with moving objects. Rows (a) and (b) display five representative frames (0,100,200,300,400) from the refer-
ence and second sequences, respectively. The spatial misalignment is easily observed near image boundaries, where different static
objects are visible in each sequence. The temporal misalignment is observed by comparing the position of the gate in frames 400. In
the second sequence it is already open, while still closed in the reference sequence. Row (c) displays superposition of the representa-
tive frames before spatio-temporal alignment. The superposition composes the red and blue bands from reference sequence with the
green band from the second sequence. Row (d) displays superposition of corresponding frames after spatio-temporal alignment. The
dark pink boundaries in (d) correspond to scene regions observed only by the reference camera. The dark green boundaries in (d) cor-
respond to scene regions observed only by the second camera. For full color sequences see www.wisdom.weizmann.ac.il/Seq2Seq

to that particular algorithm. One could, for example, ex-
tend the feature-based trajectory-to-trajectory alignment al-
gorithm of [6] into a feature-based sequence-to-sequence
alignment algorithm, by adding static feature correspon-
dences to the dynamic features.

While feature-based methods can theoretically account
for larger spatio-temporal misalignments, it is important to
note that the direct method suggested in Section 2 obtains
spatio-temporal alignment between the two sequences with-
out the need to explicitly separate and distinguish between
the two types of information – the spatial and the tempo-
ral. Moreover, it does not require any explicit detection and
tracking of moving objects, nor does it need to detect fea-
tures and explicitly establish their correspondences across
sequences. Finally, because temporal variations need not
be explicitly modeled in the direct method, it can exploit

other temporal variations in the scene, such as changes in
illumination. Such temporal variations are not captured by
trajectories of moving objects.

3.3 Illumination Changes as a Cue for Alignment

Temporal derivatives are not necessarily a result of in-
dependent object motion, but can also result from other
changes in the scene which occur over time, such as changes
in illumination. Dimming or brightening of the light source
are often sufficient to determine the temporal alignment.
Furthermore, even homogeneous image regions contribute
temporal constraints in this case. This is true although their
spatial derivatives are zero, since global changes in illumi-
nation produce prominent temporal derivatives.

For example, in the case of the algorithm presented in
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Figure 5. Scene with varying illumination.
Rows (a) and (b) display three representative frames
(200,250,300) from the reference and second sequences,
respectively. The temporal misalignment can be observed in
the upper left corner of frame 250, by small differences in il-
lumination. (c) displays superposition of the representative
frames before alignment (red and blue bands from reference
sequence and green band from the second sequence). (d)
displays superposition of corresponding frames after
spatio-temporal alignment. The accuracy of the temporal
alignment is evident from the hue in the upper left corner
of frame 250, which is pink before alignment (frame 250.c)
and white after temporal alignment (frame 250.d). The
dark pink boundaries in (d) correspond to scene regions
observed only by the reference camera. For full color
sequences see www.wisdom.weizmann.ac.il/Seq2Seq

Section 2, for a voxel in a uniform region (Sx = Sy = 0)
undergoing illumination variation (S t 6= 0), Eq. (3) pro-
vides the following constraint on the temporal alignment
parameters: e(x; y; t; ~P ) = (S0(x; y; t) � S(x; y; t)) +

w(x; y; t; ~P )St(x; y; t): Note that, in general, changes in il-
lumination need not be global. For example, an outdoor
scene on a partly cloudy day, or an indoor scene with spot-
lights, can be exposed to local changes in illumination. Such
local changes provide additional constraints on the spatial
alignment parameters. An example of applying our algo-
rithm to sequences with only changes in illumination is
shown in Fig. 5.

4 Experiments

In our experiments, two different interlaced CCD cam-
eras (mounted on tripods) were used for sequence acquisi-
tion. Typical sequence length is several hundreds of frames.
Fig. 4 shows a scene with a car driving in a parking lot.
When the car reaches the exit, the gate is raised. The two in-
put sequences Figs. 4.a and 4.b were taken from a distance
(from two different windows of a tall building). Fig. 4.c
displays superposition of representative frames, generated
by mixing the red and blue bands from the reference se-
quence with the green band from the second sequence. This
demonstrates the initial misalignment between the two se-
quences, both in time (the sequences were out of synchro-
nization; note the different timing of the gate being lifted
in the two sequences), as well as in space (note the mis-
alignment in static scene parts, such as in the other parked
cars or at the bushes). Fig. 4.d shows the superposition
of frames after applying spatio-temporal alignment. The
second sequence was spatio-temporally warped towards the
reference sequence according to the computed parameters.
The recovered temporal shift was 46.5 frames, and was ver-
ified against the ground truth, obtained by auxiliary equip-
ment. The recovered spatial affine transformation indicated
a translation on the order of a 1=5 of the image size, a small
rotation, a small scaling, and a small skew (due to differ-
ent aspect ratios of the two cameras). Note the good qual-
ity of alignment despite the overall difference in chroma and
brightness between the two input sequences.

Fig. 5 illustrates that temporal alignment is not limited
to motion information alone. A light source was brightened
and then dimmed down, resulting in observable illumination
variations in the scene. The cameras were imaging a pic-
ture on a wall from significantly different viewing angles,
inducing a significant perspective distortion. Fig. 5.a and
5.b show a few representative frames from two sequences
of several hundred frames each. The effects of illumina-
tion are particularly evident in the upper left corner of the
image. Fig. 5.c shows a superposition of the representative
frames from both sequences before spatio-temporal align-
ment. Fig. 5.d shows superposition of corresponding frames
after spatio-temporal alignment. The recovered temporal
offset (21.3 frames) was verified against the ground truth.
The accuracy of the temporal alignment is evident from the
hue in the upper left corner of frame 250, which is pink be-
fore alignment (frame 250.c) and white after temporal align-
ment (frame 250.d). The reader is encouraged to view full
color sequences at www.wisdom.weizmann.ac.il/Seq2Seq

5 Conclusion and Future Work

In this paper we have introduced a new approach to
sequence-to-sequence alignment, which simultaneously



uses all available spatial and temporal information within
the video sequences. We showed that our approach com-
bines the benefits of image-to-image alignment with the
benefits of trajectory-to-trajectory alignment, and is a
generalization of both approaches. Furthermore, it resolves
many of the inherent ambiguities associated with each of
these two classes of methods.

The current discussion and implementation were re-
stricted to stationary cameras, and hence used only two types
of information cues for alignment - the scene dynamics and
the scene appearance. We are currently extending our ap-
proach to handle moving cameras. This adds a third type of
information cue for alignment, which is inherent to the scene
and is common to the two sequences - the scene geometry.

While the approach is general, we have also presented
a specific algorithm for sequence-to-sequence alignment,
which recovers the spatio-temporal alignment parameters
directly from spatial and temporal brightness variations
within the sequence. However, the paradigm of sequence-
to-sequence alignment extends beyond this particular algo-
rithm and beyond direct methods. It can equally employ
feature-based matching across sequences, or other type of
match measures (e.g., mutual information).
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Appendix A: Spatio-Temporal Aliasing

This appendix discusses the tradeoff between temporal
aliasing and spatial resolution. The intensity values at a
given pixel (x0; y0) along time induces a 1-D temporal sig-
nal: s(x0;y0)(t) = S(x0; y0; t). Due to the object motion,
a fixed pixel samples a moving object at different locations,
denoted by the “trace of pixel (x0; y0)”. Thus temporal vari-
ations at pixel (x0; y0) are equal to the gray level variations
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Figure 6. Induced temporal frequencies. Three
frames 0,1,2 of a car moving up right with velocity v are
presented above. A fixed pixel (x0; y0) is marked on each
frame. (a) displays the trace of the pixel. (b) displays the
gray level values along this trace.

along the trace (See Fig. 6). Denote by �trace the spatial
step size along the trace. For an object moving at velocity
v: �trace = v�t, where �t is the time difference be-
tween two successive frames. To avoid temporal aliasing,
�trace must satisfy the Shannon-Whittaker sampling theo-
rem: �trace <= 1

2! ; where ! is the upper bound on the
spatial frequencies. Applying this rule to our case, yields
the following constraint: v�t = �trace <= 1

2! : This
equation characterizes the temporal sampling rate which is
required to avoid temporal aliasing. In practice, video se-
quences of scenes with fast moving objects often contain
temporal aliasing. We cannot control the frame rate ( 1

�t
)

nor object’s motion (v): We can, however, decrease the spa-
tial frequency upper bound! by reducing the spatial resolu-
tion of each frame (i.e., apply a spatial low-pass-filter). This
implies that for video sequences which inherently have high
temporal aliasing, it may be necessary to compromise in spa-
tial resolution of alignment in order to obtain correct tempo-
ral alignment. Therefore, the LPF (low pass filters) in our
spatio-temporal pyramid construction (Section 2.3) should
be adaptively selected in space and in time, in accordance
with the rate of temporal changes. This method, however,
is not applicable when the displacement of the moving ob-
ject is larger than its own size.
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Abstract

This paper studies the problem of sequence-to-sequence alignment, namely establishing corre-
spondences in time and in space between two di�erent video sequences of the same dynamic scene.
The sequences are recorded by uncalibrated video cameras, which are either stationary or jointly
moving, with �xed (but unknown) internal parameters and relative inter-camera external param-
eters. Temporal variations between image frames (such as moving objects or changes in scene
illumination) are powerful cues for alignment, which cannot be exploited by standard image-to-
image alignment techniques. We show that by folding spatial and temporal cues into a single
alignment framework, situations which are inherently ambiguous for traditional image-to-image
alignment methods, are often uniquely resolved by sequence-to-sequence alignment. Further-
more, the ability to align and integrate information across multiple video sequences both in time

and in space gives rise to new video applications that are not possible when only image-to-image
alignment is used.

1 Introduction
The problem of image-to-image alignment has been extensively studied in the literature ([3, 4,

19, 24, 20, 29, 33, 34] to list just a few). By \image-to-image alignment" we refer to the problem
of estimating dense point correspondences between two or more images, i.e., for each pixel (x; y)
in one image, �nd its corresponding pixel in the other image: (x0; y0) $ (x + u; y + v), where
(u; v) is the spatial displacement. This paper addresses a di�erent problem { the problem of
\sequence-to-sequence alignment", which establishes correspondences both in time and in space

between multiple sequences (as opposed to multiple images). Namely, for each pixel (x; y) at
frame (time) t in one sequence, �nd its corresponding time t0 and position (x0; y0) in the other
sequence: (x0; y0; t0) = (x + u; y + v; t + w), where (u; v; w) is the spatio-temporal displacement.
Note, that (u; v) (the spatial displacement) and w (the temporal displacement) are not necessarily
integer values, i.e., they may be sub-pixel or sub-frame values.
There are two main motivations for using sequence-to-sequence alignment:

�A preliminary version of this paper appeared in CVPR' 2000 [8].
yThis work was supported by the Moross Laboratory for Vision and Motor Control.
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1. It can resolve spatial ambiguities and handle situations where image-to-image alignment
fails.

2. The ability to align and integrate information across multiple sequences both in space and
in time gives rise to new video applications that are not possible when only image-to-image
alignment is used.

These are briey explained here and further elaborated in Sections 4 and 5. Image-to-image
alignment methods are inherently restricted to the information contained in individual images,
i.e., the spatial variations within image frames (which capture the scene appearance). But there
are cases when there is not enough common spatial information within the two images to allow
reliable image alignment. One such example is illustrated in Fig. 1. Alignment of image 1.a to
image 1.b. is not uniquely de�ned (see Fig. 1.c). However, a video sequence contains much more
information than any individual frame does. In particular, a video sequence captures information
about scene dynamics such as the trajectory of the moving object shown in Fig. 1.d and 1.e, which
in this case provides enough information for unique alignment both in space and in time (see
Fig. 1.f). Moreover, scene dynamics is not limited to moving objects. It also includes non-rigid
changes in the scene (e.g., owing water), changes in illumination, etc. All these changes are not
captured by any of the individual frames, but are found between the frames. The scene dynamics
is a property that is inherent to the scene, and is thus common to all sequences recording the
same scene, even when taken from di�erent video cameras. It therefore forms an additional or
alternative powerful cue for alignment across sequences.
We show in the paper (Section 4) that by folding spatial and temporal cues into a single align-

ment framework, situations that are inherently ambiguous for image-to-image alignment methods
are often uniquely resolved by sequence-to-sequence alignment. Furthermore, in situations where
there is very little common appearance (spatial) information across the two sequences, such as in
alignment of sequences of di�erent sensing modalities (e.g., Infra-Red and visible-light sensors),
coherence of the scene dynamics (i.e., temporal cues) becomes the major source of information
for alignment of the two sequences.
Sequence-to-sequence alignment enables integration of information across multiple video se-

quences. This can be used to generate new video sequences which exceed the spatial and temporal
physical bounds of a single sensor. In particular, it allows to exceed the limited spatial resolution
(via super-resolution, e.g., [17]), the limited depth of focus, the limited dynamic range, the limited
spectral response (e.g., via fusion of multiple sensing modalities [7]), and the limited �eld of view.
While spatial bounds of sensors can also be exceeded via image-to-image alignment, sequence-to-
sequence alignment further allows to exceed temporal bounds of sensors. For example, it allows to
exceed the limited temporal resolution (the limited frame rate) of recorded sequences. Temporal
super-resolution allows visual observation of dynamic events that occur faster than frame-rate,
and therefore cannot be seen in any of the input video sequences. Temporal super-resolution
requires temporal alignment of the sequences at sub-frame accuracy which cannot be obtained
by image-to-image alignment. This and other applications of sequence-to-sequence alignment
are discussed in Section 5.
We present in the paper two possible sequence-to-sequence alignment algorithms. One is a

direct gradient-based sequence-to-sequence alignment algorithm, and the other is a feature-based
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Figure 1: Spatial ambiguities in image-to-image alignment (a) and (b) show two corre-

sponding frames in time from two di�erent video sequences viewing the same moving ball. There are

in�nitely many valid image alignments between the two frames, some of them shown in (c). (d) and (e)

display the two sequences of the moving ball. There is only one valid alignment of the two trajectories of

the ball. This uniquely de�nes the alignment both in time and in space between the two video sequences

(f).

sequence-to-sequence alignment algorithm. Both algorithms receive as input two video sequences
and simultaneously estimate the spatial and temporal transformation between the two sequences.
The current implementations assume parametric transformations in space and in time. However,
the concept of sequence-to-sequence alignment is more general and is not limited to the particular
algorithms or implementations described in this paper. Possible extensions of these algorithms
to more complex models are also briey sketched.
The rest of the paper is organized as follows: In Section 2 we formulate the problem of

sequence-to-sequence alignment. In Section 3 we present two sequence-to-sequence alignment al-
gorithms (the feature-based and the direct-based). Section 4 discusses the properties of sequence-
to-sequence alignment, and Section 5 describes potential applications of sequence-to-sequence
alignment.

2 Problem Formulation
Let S and S 0 be two input image sequences, where S denotes the \reference" sequence, and

S 0 denotes the second sequence. Let ~x = (x; y; t) be a space-time point in the reference sequence
S, and let ~x0 = (x0; y0; t0) = (x + u; y + v; t + w) be the corresponding space-time point in
sequence S 0. The spatio-temporal displacement ~u = (u; v; w) need not be of integer values. u,v
(the spatial displacements) can be sub-pixel displacements, and w (the temporal displacement)
can be a sub-frame time shift. While every space-time point ~x has a di�erent local spatio-
temporal displacement ~u, we assume they are all globally constrained by a single parametric
model ~P = (~Pspatial; ~Ptemporal). The recorded scene can change dynamically, i.e., it can include
moving objects, non-rigid deformations of the scene, changes in illumination over time, and/or
other types of temporal changes. The cameras can be either stationary or jointly moving with
�xed (but unknown) internal and relative external parameters.

Temporal misalignment results when the two input sequences have a time-shift (o�set) between
them (e.g., if the cameras were not activated simultaneously), and/or when they have di�erent
frame rates (e.g., PAL and NTSC). Such temporal misalignments can be modeled by a 1-D a�ne
transformation in time, and may be at sub-frame time units.
The spatial misalignment between the two sequences results from the fact that the two cameras
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(a)Frame from S1 (b) Frame from S2 (c) Sequence S1 (d) Sequence S2

Figure 2: Point vs. trajectory correspondences. (a) and (b) display two frames out of two

sequences recording �ve small moving objects (marked by A,B,C,D,E). (c) and (d) display the trajectories

of these moving objects over time. When analyzing only single frames, it is di�cult to determine the

correct point correspondences across images. However, point trajectories have additional properties,

which simplify the correspondence problem across two sequences (both in space and in time).

have di�erent external and internal calibration parameters. In our current implementation Pspatial

was chosen to be a 2D projective transformation (homography). 2D projective transformations
approximate the inter-sequence spatial transformation when the distance between the camera
projection centers is negligible relative to the distance of the cameras from the scene, or if
the scene is roughly planar. Note that althogh the inter-sequence transformation is a simple 2D
parametric transformation, the intra-sequence changes (i.e., changes between consecutive frames)
can be very complex.
Let ~p = (x; y; 1)T denote the homogeneous coordinates of only the spatial component of a

space time point ~x = (x; y; t) in S. Let H be the 3� 3 homography matrix of the spatial

parametric transformation between the two sequences, H =

2
64 H1

H2

H3

3
75 =

2
64 h11 h12 h13
h21 h22 h23
h31 h32 h33

3
75. Then,

corresponding space-time point ~x0 = ~x+ ~u can be expressed by: x0 = H1~p

H3~p
, y0 = H2~p

H3~p
, where Hi is

the ith row of H, and for the temporal components by t0 = s � t +�t (1D a�ne transformation
in time). Note that H is common to all frames because the cameras are �xed relative to each
other over time (both internal parameters and inter-camera external parameters). Also, note
that in most cases s is known - it is the ratio between the frame rates of the two cameras (e.g.,
for PAL and NTSC sequences, it is s = 25=30 = 5=6). Therefore, the unknown parameters are:
~P = [h11 h12 h13 h21 h22 h23 h31 h32 h33 �t], i.e., 10 unknowns with 9 d.o.f. (the homography is
de�ned only up to scale)1.
While in the current implementations the inter-camera spatial transformations are 2D paramet-

ric transformations, the framework presented in this paper is more general, and is not restricted
to 2D transformations alone. Thus for example ~Pspatial may represent the entries of the funda-
mental matrix, or may be extended to other 3D models to include shape parameters, similar to
the hierarchy of spatial alignment models described in [3]. ~Ptemporal can also be a non-parametric
transformation in time (e.g., see [11, 12]).

1The modi�cation to other 2D parametric models, such as, translation, similarity or a�ne, is trivial (e.g., set
h31 = h32 = 0 for a 2D a�ne model).
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3 Sequence-to-Sequence Alignment Algorithms
This section proposes two possible algorithms for sequence-to-sequence alignment: A feature-

based algorithm (Section 3.1), and a direct gradient-based algorithm (Section 3.2).
3.1 Feature-Based Sequence Alignment

Typical feature-based image alignment methods (see [31] for a review) �rst apply a local
operator to detect interest points in a pair of images (e.g., the Harris corner detector [14]). Once
interest points are extracted in the two images, robust estimation methods, such as RANSAC [10],
LMS [13], etc, are used for �nding corresponding points and extracting the spatial transformation
between the two images. In some other cases [32] a correlation based matching is used to
initialize the approximation of matching features. In general the correlation may be based on any
properties of a feature point, but it is usually based on brightness values of small neighborhoods
of the feature point.
Feature-based image-to-image alignment can be generalized to feature-based sequence-to-

sequence alignment by extending the notion of features from feature points into feature tra-

jectories. A feature trajectory is the trajectory of a point (static or dynamic) representing its
location in each frame along the sequence. Spatio-temporal alignment between the two sequences
can then be recovered by establishing correspondences between trajectories. The advantage of
this approach is illustrated in Fig. 2, which shows two sequences recording several small moving
objects. Each feature point in the image-frame of Fig. 2.a (denoted by A-E) can in principle be
matched to any other feature point in the image-frame of Fig. 2.b. There is not su�cient informa-
tion in any individual frame to uniquely resolve the point correspondences. Point trajectories, on
the other hand, have additional shape properties which simplify the trajectory correspondence
problem across the two sequences (i.e., which trajectory corresponds to which trajectory), as
shown in Fig. 2.c and 2.d. Furthermore, a single pair of (non-trivial) corresponding trajectories
(i.e., a trajectory of an object which is not moving on a straight line and covers a large enough
image region) can uniquely de�ne: (i) the spatial transformation, (ii) the temporal transforma-
tion, (iii) can provide a convenient error measure for the quality of the extracted spatio-temporal
alignment.
We next outline the feature-based sequence-to-sequence alignment algorithm that we have

used in our experiments (which is a RANSAC-based algorithm). Each step of the algorithm is
then explained in more detail below:
(1) Construct feature trajectories (i.e., detect and track feature points for each sequence).
(2) For each trajectory estimate its basic properties (e.g., dynamic vs. static, or other properties
as explained below).
(3) Based on basic properties construct an initial correspondence table between trajectories.

(4) Estimate candidate parameter vectors ~P = (Pspatil; Ptemporal) by repeatedly choosing (at
random) a pair of possibly corresponding trajectories2. At each trial compute the parametric

spatio-temporal transformation ~P which best aligns the two trajectories.
(5) Assign a score for each candidate ~P to be the number of corresponding pairs of trajectories

whose distance after alignment by ~P is smaller than some threshold.
(6) Repeat steps (4) and (5) N times.

2If these are roughly along a straight line choose an additional pair.
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(7) Choose ~P which has the highest score.

(8) Re�ne ~P using all trajectory pairs that supported this candidate.

In our current implementation feature trajectories were computed either by using the KLT fea-
ture tracker [22, 30] or by tracking the center of mass of moving objects (Step 1). The trajectories
were then classi�ed as static or dynamic, to reduce the complexity of trajectory correspondences
(Step 2). In the presence of many trajectories, shape properties of the trajectories may also
be used (e.g., normalized length, average speed, curvature, 5-points projective invariance). Al-
though some of these are not projective invariants, they are useful for crude initial sorting (Step
3).
Two matching trajectories across the two sequences induce multiple point correspondences

across the camera views. These point correspondences are used for computing the spatial and
temporal transformation between the two sequences. In our current implementation ~Pspatial is
a homography. However the same framework may be used for recovering a fundamental matrix
in the presence of 3D parallax (e.g., when the two video sequences are recorded from di�erent
viewpoints). A similar approach embedded in an event detection framework was taken by [28].

To evaluate a candidate transformation parameter ~P = (h11; � � � ; h33;�t), where h11; � � � ; h33 are
the components of a homography H, we minimize the following error function3 (Step 4 and Step
8) :

~P = argmin
H;�t

X
Trajectories

(
X

t2Trajectory

jjp0(s � t +�t)�H(p(t))jj2) (1)

where, p(t) = [x(t); y(t); 1]T is the spatial position (i.e., pixel coordinates) of a feature point along
the trajectory at time t (in homogeneous coordinates), H is a homography, and p0(s � t + �t)
is the location of the corresponding feature point in the corresponding trajectory in the other
sequence at time: t0 = s � t+�t. Since t0 is not necessarily an integer value (allowing sub-frame
time shift), it is interpolated from the adjacent (integer time) point locations: t1 = bt0c and
t2 = dt0e. The minimization was performed by alternating the following two steps:
(i) Fix �t and approximate H using standard methods (e.g., the DLT algorithm described in
[15]).
(ii) Fix H and re�ne �t by �tting the best linear interpolation value. In other words we search
for � = t0 � t1 such that minimizes:

min
�

X
t

jj(p0(t1) � (1� �) + p0(t2) � (�))�Hp(t)jj : � 2 [0::1]: (2)

The iterations stop when the residual error does not change4. Only a few (less than 5) iterations
were required in all cases. As an initial guess for the spatial transform, we used the identity
homography, and performed an exhaustive search over integer time shifts within a given time
interval.

3In Step 4 the summation is over only one trajectory.
4When the spatial model is a�ne (i.e., h31 = h32 = 0 and h32 = 1 in the homography H), it is possible to

approximate the spatial and temporal parameters simultaneously (without iterations), since the spatial parameters
do not multiply the unknown time parameter.
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The above approach can similarly be used for estimating the fundamental matrix F between
two sequences taken from separate views (i.e., in the presence of 3D parallax). Eq. (1) would
then become:

~P = argmin
F;�t

X
Trajectories

(
X

t2Trajectory

jjp0(s � t+�t)T F p(t)jj2) (3)

We currently implemented and experimented only with the homography-based version of sequence-
to-sequence alignment.
Stein [26] and Lee et.al [21] described a method for estimating a time shift and a homography

between two sequences based on alignment of centroids of moving objects. Moving objects were
detected and tracked in each sequence and their centroids computed. However, there is a funda-
mental di�erence between [26, 21] and our approach. The centroids in [26, 21] were treated as
an unordered collection of feature points and not as trajectories. The spatio-temporal transfor-
mation between the two sequences was accordingly computed by examining all possible pairings
of corresponding centroids within a time interval. In contrast, we enforce correspondences be-
tween trajectories, thus avoiding the combinatorial complexity of establishing point matches of
all points in all frames, resolving ambiguities in point correspondences, and allowing for tem-
poral correspondences at sub-frame accuracy. This is not possible when the points are treated
independently (i.e., as a \cloud of points").
In our experiments we used two types of feature trajectories: (i) Feature points were auto-

matically selected and tracked using the KLT package [5], and (ii) Centroids of moving objects
were detected and tracked using blob tracking. In general, the suggested algorithm is not limited
to a particular choice of features. The advantages of tracking centroids of moving objects are
discussed in [21]. In particular they emphasize the stability and invariance of such \features"
to wide base line transformations. Our experiments con�rm their results. We further observed
the following advantage of using trajectories of moving objects centroids over trajectories of
intensity-based interest points. Multiple disparate interest points on a translating rigid object
(e.g., on a large moving object) may produce similar trajectories, because they undergo the same
3D motion. This results in possible ambiguities in trajectory correspondences. Taking centroids
of moving objects eliminates this problem, because each moving object is extracted as one part
(and not as several). Ambiguities in trajectory matching is handled by incorporating an outlier

rejection mechanism into Step 5 of the algorithm, i.e., iterative estimation of ~P using all trajec-
tories supporting the current candidate, and updating the score accordingly. On the other hand,
because each moving object contributes only one point per frame (the centroid), and because
there may be only a small number of moving objects, the sequence length required to uniquely
resolve the alignment may increase signi�cantly (to allow coverage of a large enough image region
by the moving objects). We therefore use both types of point trajectories. Robust methods other
than RANSAC (see [27] for a nice review) can also be incorporated into the sequence-to-sequence
alignment algorithm.
3.2 Direct-Based Sequence Alignment

The previous section focused on exploiting dynamic information that is mainly due to moving
objects and requires prior detection and tracking of such objects. However, scene dynamics is not
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Figure 3: Direct sequence-to-sequence alignment. A spatio-temporal pyramid is constructed

for each input sequence: one for the reference sequence (on the right side), and one for the second

sequence (on the left side). The spatio-temporal alignment estimator is applied iteratively at each level.

It re�nes the approximation based on the residual misalignment between the reference sequence and

warped version of the second sequence (warping in time and in space, marked by a skewed cube). The

output of the current level is propagated to the next level to be used as an initial estimate.

limited to moving objects. The scene may also contain more complex dynamic changes such as
non rigid deformations (e.g., owing water, ickering �re, etc.) or changes in illumination. Such
changes are not conveniently modeled by feature trajectories, yet are captured by spatio-temporal
brightness variations within each sequence. In this section we describe a direct intensity-based
sequence-to-sequence alignment algorithm which exploits such dynamic changes.
In direct image-to-image alignment (e.g., [3, 18, 29]) the spatial alignment parameters between

two images were recovered directly from image brightness variations. This is generalized here to
recover the spatial and temporal alignment parameters between the two sequences directly from
sequence brightness variations. The coarse-to-�ne estimation framework is also generalized here
to handle both time and space.
We recover the spatio-temporal displacement parameters ~P by minimizing the following SSD

error function:
ERR(~P ) =

X
~x=x;y;t

(S(~x)� S 0(~x+ ~u(~x; ~P )))2: (4)

The parameter vector ~P =
�
~Pspatial; ~Ptemporal

�
that minimizes the above error function is esti-

mated using the Gauss-Newton minimization technique. Similar to the way it was done in [29]
for image-to-image alignment, at each iteration we linearize the term in parentheses of Eq. (4)
as follows (see Appendix A):

ERR(~P ) =
X

~x=(x;y;t)

h
(S(~x)� S 0(~x))�rS 0T (~x)JP ~P

i2
: (5)

where rS 0T = [S 0

x` S
0

y S 0

t] denotes the spatio-temporal derivative of the sequence S', and JP
(the Jacobian matrix) denotes the matrix of partial derivatives with respect to the unknown
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components of ~P . For example, when Pspatial is a homography, and Ptemporal is a 1D a�ne
transformation in time, then:

JP =

2
64 x y 1 0 0 0 x2 �xy 0 0
0 0 0 x y 1 �xy y2 0 0
0 0 0 0 0 0 0 0 t 1

3
75 :

To recover ~P which minimizes Eq. (5), we di�erentiate ERR(~P ) with respect to the unknown

parameters of ~P and equate to zero. This leads to the following set of linear equations in ~P ,
which is solved to recover ~P :

X
~x=x;y;t

(JT
PrS

0rS 0TJP )~P =
X

~x=x;y;t

(S 0 � S)JT
PrS

0: (6)

For more details on the derivation of Eqs. (5) and (6) see Appendix A.
Because the estimation does not require detection or tracking of moving objects, nor extraction

of features, it can handle very complex dynamic scenes. Note that Eq. (6) integrates all available
spatio-temporal information within the sequence. Each space-time point ~x = (x; y; t) contributes
as much information as it reliably can. Any spatial or temporal variation in the scene, be it due
to non-rigid motion, changes in illumination, or just a strong spatial feature in the scene, is
captured by the space-time gradient rS 0, and therefore contributes to the estimation of the
spatio-temporal transformation ~P .
To allow for large spatio-temporal displacements ~u = (u; v; w) and to speed up the convergence

rate, the estimation process described above is embedded in an iterative-warp coarse-to-�ne
estimation framework. Fig. 3 illustrates the hierarchical spatio-temporal estimation framework.
The multi-scale analysis is done simultaneously in space and in time. The Gaussian image

pyramid [6] used in image-to-image alignment [3, 18, 29] is generalized here to a space time
Gaussian sequence pyramid5. The highest resolution level in the sequence pyramid is the input
sequence. Consecutive lower resolution levels are obtained by low-pass �ltering the sequence at
the current level both in space and in time, followed by sub-sampling by a factor of 2 in all three
dimensions x, y, and t. Thus, for example, if one resolution level of the volumetric sequence
pyramid contains a sequence of 64 frames of size 256� 256 pixels, then the next resolution level
contains a sequence of 32 frames of size 128� 128, etc. In our experiments we usually employed
�ve pyramid levels and about 5 iterations per level. The iterations were initialized by the identity
transformation (i.e., no initial guess was provided).
Unlike standard 3D volumetric alignment (e.g., in medical imagery) where (x,y,z) are treated

uniformly, in our case the spatial (x; y) and the temporal (t) components are of di�erent nature.
They must be treated separately, and cannot be intermixed. Furthermore, there are tradeo�s
between time and space. Some of these tradeo�s are discussed in Appendix B. Although our
current implementation is limited to 2D parametric spatial transformations, it can be extended
to other spatial models (including 3D models), similar to the hierarchy of models described in
[3] for direct image-to-image alignment.

5A Laplacian sequence pyramid can equally be used.
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frame0 frame100 frame200 frame300 frame400

(a)

(b)

(c)

(d)

Figure 4: Scene with moving objects. Rows (a) and (b) display �ve representative frames

(0,100,200,300,400) from the reference and second sequences, respectively. The spatial misalignment

is easily noticeable near image boundaries, where di�erent static objects are visible in each sequence

(e.g., the white car at the top-right portion of the frames in reference sequence (a)). The temporal

misalignment is noticeable by comparing the position of the gate in frames 400: In the second se-

quence it is already open, while still closed in the reference sequence. Row (c) displays superposition

of the representative frames before spatio-temporal alignment. The superposition composes the red and

blue bands from reference sequence with the green band from the second sequence. Row (d) displays

superposition of corresponding frames after spatio-temporal alignment. The dark pink boundaries in

(d) correspond to scene regions observed only by the reference camera. The dark green boundaries in

(d) correspond to scene regions observed only by the second camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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(a)

(b)

(c)

(d)

Figure 5: Scene with non rigid motion. Rows (a) and (b) display four representative

frames (0,100,200,300) from the reference and second sequences, respectively. Row (c) displays su-

perposition of the representative frames before spatio-temporal alignment. The spatial misalignment

between the sequences is primarily due to di�erences in cameras focal lengths (i.e., di�erences in

scale). The temporal misalignment is most evident in frames 300.a vs. 300.b, where the wind blows

the ag in opposite directions. Row (d) displays superposition of corresponding frames after spatio-

temporal alignment, using the direct-based algorithm of Section 3.2. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.

3.3 Examples

Before proceeding to studying properties, bene�ts and applications of sequence-to-sequence
alignment, we show some results of applying the two proposed algorithms on real world sequences.
Fig. 4 shows a scene with a car driving in a parking lot. The two input sequences Fig. 4.(a) and
Fig. 4.(b) were taken from two di�erent windows of a tall building. No synchronization between
the two sequences was used. Typical sequence length is several hundreds of frames. Fig. 4.(c)
displays superposition of representative frames, generated by mixing the red and blue bands from
the reference sequence with the green band from the second sequence. This demonstrates the
initial misalignment between the two sequences, both in time and in space. Note the temporal
misalignment of dynamic objects (e.g., di�erent timing of the gate being lifted), and spatial
misalignment of static scene parts (such as the parked car or the bushes). Fig. 4.(d) shows
the superposition after applying spatio-temporal sequence alignment. The second sequence was
spatio-temporally warped towards the reference sequence according to the computed parameters.
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frame80 frame114 frame166 frame185

(a)

(b)

Figure 6: Image-to-Image alignment vs. Sequence-to-Sequence alignment (a) Results of

applying image-to-image alignment to temporally corresponding frames. Spatial alignment is inaccurate

due to insu�cient spatial information in any of these individual frames. (b) Accurate alignment of the

same frames obtained by sequence-to-sequence alignment. The input sequences are displayed in Fig 5.

The recovered spatial transformation indicated that the initial spatial misalignment between the
two input sequences was on the order of a 1=5 of the image size, including a small rotation, a
small scaling, and a small skew (due to di�erent aspect ratios of the two cameras). The recovered
temporal shift between the two sequences was 46.63 frames. Comparable results were obtained
for this sequence when using both the direct sequence-to-sequence alignment (Section 3.2) and
the feature-based sequence-to-sequence alignment (Section 3.1).
The example in Fig. 4 is rich in spatial texture. Image-to-image alignment therefore also

provides high quality spatial alignment in this case (when applied to corresponding frames in
time across the two sequences). However, this is not the case for the next example. Fig. 5
shows two sequences (5.a and 5.b) of a ag blowing in the wind (non-rigid motion). The spatial
texture in each frame is concentrated in a small image region. Fig. 5.c shows a superposition of
representative frames from both sequences before spatio-temporal alignment, displaying initial
misalignment in time and space. Fig. 5.d shows superposition of corresponding frames after

spatio-temporal sequence alignment (using the direct algorithm of Section 3.2). The recovered
temporal shift was 31.43 frames. Empirical evaluation of the accuracy of our direct sequence-
to-sequence algorithm (which was found in our experiments to be up to 0.1 sub-pixel accuracy
and 0.1 sub-frame accuracy) can be found in Appendix C. More results of sequence-to-sequence
alignment will be shown in Sections 4 and 5 in the context of properties, bene�ts and applications
of sequence-to-sequence alignment.

4 Properties of Sequence-to-Sequence Alignment

4.1 Bene�ts of Sequence Alignment over Image Alignment

When there are no dynamic changes in the scene, then sequence-to-sequence alignment reduces
to image-to-image alignment (with improved signal-to-noise ratio; see Appendix D). However,
when the scene is dynamic, sequence alignment is superior to image alignment in multiple ways.
Beyond providing temporal alignment, it also provides the following bene�ts to spatial alignment:
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(a) Reference Sequence:
frame20 frame30 frame40 frame50 frame60

frame70 frame80 frame90 frame100 frame110

(b) Second Sequence:
frame20 frame30 frame40 frame50 frame60

frame70 frame80 frame90 frame100 frame110

(c) Before Alignment:
frame70 frame80 frame90 frame100 frame110

(d) After Alignment:
frame70 frame80 frame90 frame100 frame110

Figure 7: A scene which constantly changes its appearance. Rows (a) and (b) dis-

play 10 frames (20,...,110) from the reference and second sequences of �reworks, respectively. It is

di�cult to visually establish the connection between the two sequences. The event in frames 90-110

in the reference sequence (7.a), is the same as the event in (approximately) frames 20-40 in the sec-

ond sequence (7.b). Row (c) displays superposition of the representative frames before spatio-temporal

alignment. The �reworks apper green and pink due to the spatio-temporal misalignment between the

sequences. The spatial misalignment is mainly due to scale di�erences. Row (d) displays superposition

of corresponding frames after spatio-temporal alignment, using the direct-based algorithm of Section

3.2. Due to the scale di�erence (approximately 1 : 2) there is an overlap between the two sequences

only in the upper right region of every frame. Fireworks in the overlapping regions appear white, as

they should. Fireworks in the non-overlapping regions appear dark pink, as they were observed by only

one camera. The recovered temporal misalignment was 66.40 frames. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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(a)

(b)

(c)

(d)

Figure 8: Scene with varying illumination. Rows (a) and (b) display three representative

frames (200,250,300) from the reference and second sequences, respectively. The temporal misalign-

ment can be observed at frame 250, by small di�erences in illumination. (c) displays superposition of

the representative frames before alignment (red and blue bands from reference sequence and green band

from the second sequence). (d) displays superposition of corresponding frames after spatio-temporal

alignment, using the direct-based algorithm of Section 3.2. The accuracy of the temporal alignment is

evident from the hue in the upper left corner of frame 250, which is pink before alignment (frame

250.c) and white after spatio-temporal alignment (frame 250.d). The dark pink boundaries in (d)

correspond to scene regions observed only by the reference camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.

(i) Resolving Spatial Ambiguities. Inherent ambiguities in image-to-image alignment oc-
cur, for example, when there is insu�cient common appearance information across images. This
can occur when there is not enough spatial information in the scene, such as in the case of the
small ball against a uniform background in Fig. 1, or in the example shown in Fig. 6. Fig.
6 shows a comparison of image-to-image and sequence-to-sequence alignment for the input se-
quences of Fig. 5 (the ag blowing in the wind sequences). Image-to-image alignment performs
poorly in this case, even when applied to temporally corresponding frames, as there is not enough
spatial information in many of the individual frames. Since in this example the detected temporal
misalignment (using sequence-to-sequence alignment) was 31.43 � 31.5, we matched odd �elds
from one camera with even �elds from the second camera to provide the best possible temporal
correspondence for image-to-image alignment. Only 55% the of corresponding frames converged
to accurate spatial alignment. The other 45% su�ered from noticeable spatial misalignment. A
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Figure 9: Spatio-temporal ambiguities This �gure shows a small airplane crossing a scene

viewed by two cameras. The airplane trajectory does not su�ce to uniquely determine the alignment

parameters. Arbitrary time shifts can be compensated by appropriate spatial translation along the air-

plane motion direction. Sequence-to-sequence alignment, on the other hand, can uniquely resolve this

ambiguity, as it uses both the scene dynamics (the plane at di�erent locations) and the scene appearance

(the static ground). Note that spatial information alone does not su�ce either in this case.

few representative frames (out of the 45% misaligned pairs) are shown in Fig. 6.a. These pairs of
frames (as well as all the other pairs) were well aligned by sequence-to-sequence alignment (Fig.
6.b).
Insu�cient common appearance information across images can also occur when the two cam-

eras are at signi�cantly di�erent zooms (such as in Fig. 12) thus observing di�erent features at
di�erent scales. It can also occur when the two cameras have di�erent sensing modalities (such
as the Infra-Red and visible-light cameras in Fig 10), thus sensing di�erent features in the scene.
In all these cases, the lack of common appearance information makes the problem of image-to-
image alignment very di�cult. However, in sequence-to-sequence alignment the need for coherent
appearance information can be replaced by coherent temporal behavior, e.g., as captured by tra-
jectories of moving objects estimated within each sequence separately. An example of successfully
applying sequence-to-sequence alignment to such cases where image-to-image alignment is ex-
tremely di�cult are shown in Figs. 12 and 10 (using the feature-based sequence-to-sequence
alignment algorithm of Section 3.1). These are discussed in more detail in the \Applications"
section (Sections 5.2 and 5.3).

(ii) Improved Accuracy of Alignment. Even when there is su�cient spatial information
within the images and accurate temporal synchronization is known between the two sequences,
direct sequence-to-sequence alignment may still provide higher accuracy in the estimation of the
spatial transformation than image-to-image alignment. This is true even when all the spatial
constraints from all pairs of corresponding images across the two sequences are simultaneously
used to solve for the spatial transformation. This is because image-to-image alignment is re-
stricted to alignment of existing physical frames, whereas these may not have been recorded at
exactly the same time due to (possibly known) sub-frame temporal misalignment between the
two sequences. Sequence-to-sequence alignment, on the other hand is not restricted to physical
(\integer") image frames. Because sequence warping here is done not only in space but also in
time (see Fig. 3), it can thus spatially match information across the two sequences at sub-frame
temporal accuracy. This leads to higher sub-pixel accuracy in the spatial alignment. This is best
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illustrated by Fig. 7. The sequences show explosions of �reworks. The �reworks change their
appearance (size, shape, color and brightness) drastically throughout the sequence. These rapid
changes cause signi�cant di�erences between \corresponding" frames in time across the two se-
quences, due to the residual sub-frame temporal misalignment (in this case the extracted time
shift was 66.40 frames). Thus, many of these small bright dots cannot be accurately matched
across physical image frames. Direct sequence-to-sequence alignment (Section 3.2), on the other
hand matches elongated space-time traces of lights and not isolated spatial points of lights. The
sub-frame temporal accuracy provided be sequence-to-sequence alignment is thus essential for
recovering accurate sub-pixel spatial alignment.

(iii) Reduced Combinatorial Complexity. Another bene�t of feature-based sequence-
to-sequence alignment is that it signi�cantly reduces the combinatorial complexity of feature
matching, thus simplifying the correspondence problem for feature-based image alignment. There
are two reasons for this: (a) Correspondence of feature trajectories is less ambiguous than cor-
respondence of feature points due to the added \shape" properties of feature trajectories. This
is illustrated in Fig. 2 and discussed in Section 3.1. (b) The number of trials required by a
RANSAC-like algorithm is signi�cantly lower in sequence-to-sequence alignment. This is be-
cause the number of trials grows exponentially with the number of features to be matched. The
number of feature correspondences required to compute a candidate parameter vector (e.g., a
homography) in image-to-image alignment is four (4 feature points), while the number of re-
quired feature correspondences in sequence-to-sequence alignment is one (1 feature trajectory).
A trajectory contains many feature points which are sorted in time. Thus, matching one point
in one trajectory to another point in another trajectory automatically determines all other point
correspondences across the two trajectories. One might claim that generating the trajectories
involves additional computations. However, tracking is considered a much simpler problem than
establishing correspondences across separate views because of its very limited search range. These
additional computations are thus negligible. Note that when all feature points along a trajec-
tory are treated as an unordered cloud of points (as in [26, 21]), there is no reduction in the
complexity.

4.2 Space-Time Ambiguities

We showed how spatial ambiguities can often be uniquely resolved by sequence-to-sequence
alignment. However, adding the temporal dimension may sometimes introduce spatio-temporal
ambiguities. This occurs when di�erent temporal alignment can compensate for di�erent spatial
alignment, and is illustrated in Fig. 9. When only the trajectory of the moving object is con-
sidered (i.e., the trajectory of the airplane), then for any temporal shift there exists a di�erent
consistent spatial transformation between the two sequences which will bring the two trajectories
in Figs. 9.c and 9.d into alignment. Namely, in this scenario, using temporal changes alone pro-
vides in�nitely many valid spatio-temporal transformations. Stein [26] noted this spatio-temporal
ambiguity and reported its occurrence in car-tra�c scenes where all the cars move in the same
direction with similar velocities. Giese and Poggio [11, 12] (who modeled biological motion pat-
terns using linear combinations of prototypical sequences) also reported a similar problem. Such
ambiguities are resolved when there exists another object moving in a di�erent direction, at a
di�erent speed, or by combining also static information (i.e., \moving objects" with zero speed).
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While using information from the trajectory of the moving object alone provides in�nitely many
valid spatio-temporal transformations for the scenario in Fig. 9, only one of those spatio-temporal
transformations is consistent with the static background (i.e., the tree, the horizon) or any other
independent motion.

4.3 Feature-Based vs. Direct-Based Sequence Alignment

All the pros and cons of feature-based versus direct-based methods for image alignment (see
[31, 16] and debate) apply here as well. However, there are additional di�erences between these
two classes of methods that are unique to sequence alignment, because of the added temporal
dimension. These are briey discussed next.
The suggested approach to feature-based sequence alignment (Section 3.1) focuses on exploiting

dynamic changes which are due to moving objects or moving points. It further requires detection
and tracking of such objects. The direct approach to sequence alignment (Section 3.2), on the
other hand, requires no detection or tracking of moving objects. It captures dynamic changes
via the temporal derivatives without needing to explicitly model these changes by features. It
can therefore handle much more complex scene dynamics, such as varying illumination (Fig. 8),
non-rigid motions (Figs. 5 and 7). Moreover, a dimming or a brightening of a light source can
provide su�cient information to determine the temporal alignment between the two sequences.
Since global changes in illumination produce prominent temporal derivatives, even homogeneous
image regions contribute temporal constraints to the direct sequence-to-sequence alignment. This
is illustrated in Fig. 8. A light source was brightened and then dimmed, resulting in observable
illumination variations in the scene. The e�ects of illumination are particularly evident in the
upper left corner of the image. (Note the di�erence in illumination in frame 250 of the two
sequences: frame 250.a and frame 250.b). The recovered temporal o�set in this case was 21.32
frames. The correctness of the temporal alignment is evident from the hue in the upper left corner
of frame 250, which is pink before alignment (frame 250.c) and white after temporal alignment
(frame 250.d).
The limitation of the feature-based sequence alignment method in processing complex temporal

changes is a result of the way the features are currently selected and tracked in the algorithm
of Section 3.1. Although trajectories of features capture dynamic information, the features
themselves are still 2D features within images. However, the notion of \features" can be extended
from 2D features within images, to 3D space-time features within the space-time sequence volume.
This will allow to capture more complex dynamic changes other than moving objects. However,
appropriate volumetric spatio-temporal feature detectors must �rst be designed in order to obtain
such a goal. Such a task is beyond the scope of this paper.
While our feature-based approach to sequence-to-sequence alignment cannot handle complex

dynamic changes within the sequence, it can handle complex appearance changes across se-
quences, such as in sequences obtained by cameras of di�erent sensing modalities (see Fig. 10),
or cameras at signi�cantly di�erent zooms (e.g., 1 : 3 as in Fig. 12). In those cases the photo-
metric properties of the two input sequences are very di�erent. Yet, the trajectories of moving
objects over time are very similar, thus forming a powerful cue for alignment across the two
sequences in the feature-based alignment method. This is not the case for the direct-based
alignment algorithm, which minimizes the SSD (Sum of Square Di�erences) between the two
sequences, thus implicitly assuming similar photometric properties.
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5 New and Emerging Application
Sequence-to-sequence alignment gives rise to new video applications, that are otherwise very

di�cult or else impossible to obtain using existing image-to-image alignment tools. These are
discussed next.
5.1 Super-Resolution in Time and Space

In image-based (i.e., spatial) super-resolution [17], multiple low-resolution images (imaged at
sub-pixel shifts) are combined to obtain a single high-resolution image which contains spatial
features not visible in any of the input sequences. Such applications are naturally also supported
by sequence-to-sequence alignment. However, beyond that, sequence-to-sequence alignment also
provides temporal alignment at high sub-frame accuracy. This gives rise to totally new video
applications, such as super-resolution in time. By super-resolution in time we mean integrating
information from multiple video sequences (recorded at sub-frame time shift) into a single new
video sequence of higher frame-rate (i.e., higher temporal resolution). Such a sequence can display
dynamic events that occur faster than regular video frame-rate, and are therefore not visible (or
else observed incorrectly) in all the input video sequences. For example, when a wheel is turning
fast, beyond a certain speed it will appear to be rotating in the wrong direction in all the input
video sequences (the \wagon wheel e�ect"). This visual e�ect is due to temporal aliasing. Playing
the recorded video in \slow motion" will not make this e�ect go away. However, the reconstructed
high-resolution sequence will display the correct motion of the wheel. It is interesting to note
that temporal super-resolution cannot be obtained when the video cameras are synchronized
using dedicated hardware (e.g., genlock). In this case all the synchronized cameras will capture
the same time instance. Sequence-to-sequence alignment can therefore provide the basis for
exceeding the temporal and spatial resolution of existing video cameras. For more details see
[25].
5.2 Multi-Sensor Alignment

Images obtained by sensors of di�erent modalities, e.g., IR (Infra-Red) and visible light, can
vary signi�cantly in their appearance. Features visible in one image may barely be visible in the
other image, and vice versa. This poses a problem for image alignment methods. However, when
trajectories of moving objects are used as the features to match across the two sequences (see
Section 3.1), then the similar image appearance across the two sensors is no longer necessary.
The need for coherent appearance information is replaced with coherent dynamic behavior of
feature trajectories. Fig. 10 illustrates alignment of a PAL visible light sequence with an NTSC
Infra-Red sequence using the feature-based algorithm of Section 3.1 with trajectories of centroids
of moving objects (the two kites, waves, and several cars shown in Fig. 10.c). The di�erences in
appearance of the objects across the two sequences will not a�ect the processing, which is not the
case in feature-based image-to-image alignment. The results after spatio-temporal alignment are
displayed after fusing the two sequences (using Burt's fusion algorithm [7]). The fused sequence
clearly displays features from both sequences (representative frames shown in Fig. 10.d and 10.e).
5.3 Recovering Large Transformations and Wide Baseline Matching

Alignment of images taken at signi�cantly di�erent internal or external camera parameters
(e.g., a wide baseline between the cameras, signi�cant scale di�erences, large image rotations,
etc.) is di�cult. This is best understood by analyzing the number of trials that are required in
a RANSAC-like algorithm to ensure accurate alignment.
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Let m be the minimal number of correspondences required for computing a spatial transfor-
mation Pspatial. For example, for homography (which has 8 d.o.f) the number of required point
correspondences for image-to-image alignment is m = 4. Let e be the probability that a feature
matching across the two images is correct (i.e., the probability that it is a mismatch or an outlier
is (1� �)). A RANSAC-like alignment algorithm requires that at least in one of the trials (i.e.,
one random sample of m correspondences) will not contain any mismatches (outliers). Then N
- the number of trials that are required to ensure with probability p (usually p = 99%) that at
least one random sample of m features is free of mismatches, is given by the following formula
[23, 15]:

N �
log(1� p)

log(1� em)
: (7)

In regular feature-based image alignment, an initial bounded search for corresponding feature
points is performed, to guarantee that e is large enough (e.g., e > 0:5), thus limiting the number
of trials N to a reasonable number. However, when there is a large baseline between the cameras,
a large scale di�erence, or a large image rotation, then e � 1

#features
(the probability to choose

corresponding features at random). e may even be smaller if the two sets of features from
the two images are inconsistent. Thus for example, if there are 100 features in the image (all
appearing in both images), then according to Eq. (7) the number of necessary trials for computing
a homography (m = 4; e = 1

100
; p = 99%) is N > 46; 000; 000 = 4:6� 108.

On the other hand, when using feature-based sequence-to-sequence alignment (Section 3.1), a
single feature trajectory (e.g., a trajectory generated by a moving object which covers a large
enough image region) su�ces for computing Pspatial. This is because all point correspondences
can be extracted from a single trajectory matching across the two sequences. The RANSAC-
like feature-based sequence-to-sequence alignment algorithm therefore requires that at each trial
only one feature trajectory will be matched correctly (i.e., m = 1). Even if we ignore the
shape properties of feature trajectories and assume that all trajectories are equally likely (i.e.,
e = 1

#trajectories
), we still get reasonable number of trials even for large transformations and

baselines. For example, using Eq. (7) with e = 1
100

, m = 1, and p = 99%, we get that the
number of required trials is N � 459. In practice, the actual needed number of trails N is lower,
because the nature of the trajectories can still be used for reliable initial matching (i.e., their
shape properties or the fact that they result from static or dynamic points), thus increasing the
value of e.
An example of alignment of sequences obtained at signi�cantly di�erent zooms (1 : 3) using

the feature-based algorithm of Section 3.1 is shown in Fig. 12.

6 Conclusion and Future Work
In this paper we studied the problem of aligning two video sequences in time and in space

by utilizing spatio-temporal information contained in the space-time volumes. We showed that
there are several bene�ts to using sequence-to-sequence alignment. Since (i) it resolves many
of the inherent di�culties associated with image-to-image alignment, and (ii) it gives rise to
new video applications. We showed that in particular sequence-to-sequence alignment facilitates
super-resolution in time, multi-sensor alignment and wide-baseline matching. We presented two
speci�c algorithms: a direct-based sequence-to-sequence alignment algorithm, and a feature-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Multi-Sensor Alignment. (a) and (b) display representative frames from a PAL

visible light sequence and an NTSC Infra-Red sequence, respectively. The scene contains several moving

objects: 2 kites, 2 moving cars, and sea waves. The trajectories induced by tracking the moving objects

are displayed in (c) and (d). The two camera centers were close to each other, therefore the spatial

transformation was modeled by a homography. The output after spatio-temporal alignment via trajectory

matching (Section 3.1) is displayed in (e) and (f). The recovered temporal misalignment was 1.31 sec.

The results are displayed after fusing the two input sequences (using Burt's fusion algorithm [7]). We

can now observe spatial features from both sequences. In particular note the right kite which is more

clearly visible in the visible-light sequence (circled in green), and the left kite which is more clearly visible

in the IR sequence (circled in red).
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based sequence-to-sequence alignment algorithm. However, the notion of sequence-to-sequence
alignment goes beyond the proposed algorithms in Section 3, and extends to more complex
transformations in time and in space. Furthermore, sequence-to-sequence alignment can exploit
not only common dynamic behavior in the scene, but also common dynamic behavior of the
cameras. This gives rise to alignment of non-overlapping sequences [9].
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Appendix A: Derivation of the Direct Method Equations
We follow the formulation proposed in [29] for image alignment and derive the normal equations

from our error function of Eq.(4):

ERR(~P ) =
X

~x=(x;y;t)

(S(~x)� S 0(~x + ~u(~x; ~P )))2:

We linearize S 0(~x+ ~u) using a �rst order Taylor approximation of S 0 around P0 { the parameter
vector corresponding to the identity transformation (i.e., no displacement in time or in space):

S 0(~x+ ~u(~x; ~P )) = S 0(~x+ ~u(~x;P0)) +rS 0T (~x0)JP (~P � ~P0) + � (8)
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Figure 11: Induced temporal frequencies. Three frames 0,1,2 of a car moving up right with

velocity v are presented above. A �xed pixel (x0; y0) is marked on each frame. (a) displays the trace of

the pixel. (b) displays the gray level values along this trace.

where rS 0T = [S 0

x0S 0

y0S 0

t0 ] denotes the spatio-temporal derivative of the sequence S' at ~x0 =

~x + ~u(P̂), and P̂ is the estimate of ~P from the previous iteration. JP - the Jacobian matrix -
denotes the matrix of partial derivatives of the displacement vector ~u = (u; v; w) with respect

to the components of ~P . (Alternatively, we can linearize the term in Eq. (4) with respect to ~x,

instead of with respect to the parameters ~P , and then express the spatio-temporal displacement
~u in terms of the parameters ~P , similar to the way it was done for image-to-image alignment in
[18] (for this formulation and its derivations see [8]).
Using the fact that ~u() is zero at the identity transformation P0 we obtain:

ERR(~P ) =
X

~x=(x;y;t)

h
(S(~x)� S 0(~x))�rS 0T (~x)JP ~P

i2
: (9)

Solving the above least squares problem leads to the following set of linear equations in the
unknown ~P : X

~x

(JT
PrS

0rS 0TJP )~P =
X
~x

(S 0 � S)JT
PrS

0: (10)

For computing the Jacobian matrix for the case when Pspatial is a homography and Ptemporal

is a 1D a�ne transformation, at each iteration we used the instantaneous approximation of a
homography [3] and get:

JP =

2
64 x y 1 0 0 0 x2 �xy 0 0
0 0 0 x y 1 �xy y2 0 0
0 0 0 0 0 0 0 0 t 1

3
75 :

Using the formulation derived in Eq. (10), the derivatives of rS 0 must be recomputed at every
iteration as S 0 is warped. To speed the estimation process, we can replace rS 0 by rS with
some small modi�cations (which introduce an additional approximation). The same trick was
proposed for image-to-image alignment in [3], and is described in further detail in [1, 2].

Appendix B: Spatio-Temporal Aliasing
This appendix discusses the tradeo� between temporal aliasing and spatial resolution. The

intensity values at a given pixel (x0; y0) along time induce a 1-D temporal signal: s(x0;y0)(t) =
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S(x0; y0; t). Due to the object motion, a �xed pixel samples a moving object at di�erent locations,
denoted by the \trace of pixel (x0; y0)". Thus temporal variations at pixel (x0; y0) are equal to
the gray level variations along the trace (See Fig. 11). Denote by �trace the spatial step size
along the trace. For an object moving at velocity v: �trace = v�t, where �t is the time
di�erence between two successive frames (�t = 1

frame rate
). To avoid temporal aliasing, �trace

must satisfy the Shannon-Whittaker sampling theorem: �trace <= 1
2!
; where ! is the upper

bound on the spatial frequencies. Applying this rule to our case, yields the following constraint:
v�t = �trace <= 1

2!
: This equation characterizes the temporal sampling rate which is required

to avoid temporal aliasing. In practice, video sequences of scenes with fast moving objects often
contain temporal aliasing. We cannot control the frame rate ( 1

�t
) nor object's motion (v): We

can, however, decrease the spatial frequency upper bound ! by reducing the spatial resolution
of each frame (i.e., apply a spatial low-pass-�lter). This implies that for video sequences which
inherently have high temporal aliasing, it may be necessary to compromise in spatial resolution
of alignment in order to obtain correct temporal alignment. Therefore, the LPF (low pass �lters)
in our spatio-temporal pyramid construction (Sec. 3.2) should be adaptively selected in space
and in time, in accordance with the rate of temporal changes. This method, however, is not
applicable when the displacement of the moving object is larger than the object itself.

Appendix C: Empirical Evaluation
We quantitatively evaluated the accuracy of our direct sequence-to-sequence alignment algo-

rithm on sequences where ground truth information was available. In the �rst experiment we
warped a video sequence using known spatio-temporal parameters, to synthetically generate a
second sequence. We then applied our method to the warped and the original sequences and
compared the computed parameters with the known ones. This produced highly accurate results.
The temporal error was less than 0.01 of a frame time, and spatial error was less than 0.02 pixel.
To generate a less synthetic example with ground truth, we split a video sequence into two

sub-sequences { one containing the odd-�elds, and one containing the even-�elds. The two \�eld"
sequences are related by a known temporal shift of 0.5 a frame time and a known spatial shift
of a 0.5 pixel along the Y axis. Note, that in this case the data comes from the same camera,
but from completely di�erent sets of pixels (odd rows constitute one sequence and even rows
constitute the other sequence). We repeated the experiment several (10) times using di�erent
sequences and di�erent spatial models (a�ne, projective). In all cases the temporal error was
smaller than 0.02 of a frame time (i.e., the recovered time shift between the two sequences was
between 0.48 { 0.52). The error in the Y-shift was smaller than 0.03 pixel (i.e., the recovered
Y-shift was between 0.47 { 0.53 pixel), and the overall error in spatial misalignment was less
than 0.1 pixels.
To test a more realistic case of sequences obtained by two di�erent cameras we performed the

following experiment. Each of the two input sequences was split into two sub-sequences of odd
and even �elds, resulting in 4 sub-sequences: Odd1; Even1; Odd2; Even2. Because the ground
truth is not known between the two sequences, it is therefore not known between Odd1 $
Odd2, Odd1 $ Even2, Even1 $ Odd2, Even1 $ Even2 . However, what is known is how
transformations of pairs of these sequences are related to each other. That is, if the time shift
between Odd1 and Odd2 is �t, then the time shift between Even1 and Even2 should be also
�t, and the time shift between Odd1 and Even2 should be �t+0:5. Similarly, a simple relation
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also holds for pairwise spatial transformations. This experiment was performed several times on
several di�erent sequences, and in all cases the temporal error was bounded by 0.05 frame time
and the spatial error was bounded by 0.1 pixel.
Finally we veri�ed the accuracy of alignment using three (or more) real video sequences:

S1; S2; S3. For each pair of sequences Si and Sj, we computed the spatio-temporal misalignment
between the sequences, denoted here by �(Si ! Sj). The evaluation was based on the degree of
transitivity, i.e., �(S1 ! S3) should be equal to �(S1 ! S2) + �(S2 ! S3). Thus, we can use
the following evaluation measure:

Err = jj�(S1 ! S2) + �(S2 ! S3)��(S1 ! S3)jj:

This experiment was repeated several times, for several di�erent sequences. The temporal error
did not exceed 0:1 frame time, and was usually about 0.05 frame time. The spatial errors were
on the order of 0.1 pixel.

Appendix D: Sequence Alignment as a Generalization of Image Align-

ment
We �rst show that the direct sequence-to-sequence alignment algorithm of Section 3.2 is a

generalization of direct image-to-image alignment. When there are no temporal changes in the
scene, and no camera motion, then I(x; y) = S(x; y; t) where I is a single image in the sequence
(i.e., all frames are equivalent), and the temporal derivatives within the sequence are zero: St � 0.
Therefore, the error function described in Eq. (5), reduces to:

ERR(~P )| {z }
seq-to-seq

=
P

x;y;t S � S 0 +
h
S 0

x S
0

y 0
i " Jspatial 0

0 Jtemporal

# "
Pspatial

Ptemporal

#
=

=
P

t

�P
x;y I

0 � I + [Ix Iy]Jspatial ~Pspatial

�
=
P

t err(~Pspatial)| {z }
img-to-img

where Jspatial is the 2�n \spatial minor" and Jtemporal is the 1�m \temporal minor", respectively,
of the 3� (m + n) Jacobian matrix J (m,n are the number of temporal and spatial parameters

of ~P , respectively). This shows that in such cases the SSD function of Eq. (5) reduces to the
image-to-image alignment objective function of [29], averaged over all frames6.
The same holds for the feature-based sequence-to-sequence alignment algorithm (Section 3.1).

When there are no changes in the sequences, feature points remain at the same image positions
over time. Their trajectories thus become degenerate and reduce to points. Therefore, the
feature-based sequence-to-sequence alignment algorithm reduces to a feature-based image-to-
image algorithm with improved signal-to-noise ratio.
Namely, when there are no dynamic changes in the scene and no camera motion, sequence-

to-sequence alignment may provide only improved signal-to-noise ratio, but no new information.
However, when there are temporal changes over time, sequence-to-sequence alignment exploits
more information than image-to-image alignment can. This is discussed at length in Section 4.

6A similar derivation for the error functions of [3, 18] is found in [8].
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(a) Zoomed-out (b) Zoomed-in (c) Super-position

Figure 12: Alignment of sequences obtained at di�erent zooms. Columns (a) and (b)

display four representative frames from the reference sequence and second sequence, showing a ball

thrown from side to side. The sequence in column (a) was captured by a wide �eld-of-view camera,

while the sequence in column (b) was captured by a narrow �eld-of-view camera (the ratio in zooms

was approximately 1 : 3). The two sequences capture features at signi�cantly di�erent spatial resolu-

tion, which makes the problem of inter-camera image-to-image alignment very di�cult. The dynamic

information (the ball trajectory) on the other hand, forms a powerful cue for alignment both in time

and in space. Column (c) displays superposition of corresponding frames after spatio-temporal align-

ment, using the feature-based algorithm of Section 3.1. The dark pink boundaries in (c) correspond

to scene regions observed only by the reference (zoomed-out) camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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Alignment of Non-Overlapping Sequences

Yaron Caspi Michal Irani
Dept. of Computer Science and Applied Math

The Weizmann Institute of Science
76100 Rehovot, Israel

This paper shows how two image sequences that have no
spatial overlap between their fields of view can be aligned
both in time and in space. Such alignment is possible
when the two cameras are attached closely together and
are moved jointly in space. The common motion induces
“similar” changes over time within the two sequences. This
correlated temporal behavior, is used to recover the spatial
and temporal transformations between the two sequences.
The requirement of “coherent appearance” in standard im-
age alignment techniques, is therefore replaced by “coher-
ent temporal behavior”, which is often easier to satisfy.

This approach to alignment can be used not only for
aligning non-overlapping sequences, but also for handling
other cases that are inherently difficult for standard im-
age alignment techniques. We demonstrate applications of
this approach to three real-world problems: (i) alignment
of non-overlapping sequences for generating wide-screen
movies, (ii) alignment of images (sequences) obtained at
significantly different zooms, for surveillance applications,
and, (iii) multi-sensor image alignment for multi-sensor fu-
sion.

1 Introduction

The problem of image alignment (or registration) has been
extensively researched, and successful approaches have
been developed for solving this problem. Some of these ap-
proaches are based on matching extracted local image fea-
tures. Other approaches are based on directly matching im-
age intensities. A review of some of these methods can be
found in [16] and [10]. However, all these approaches share
one basic assumption: that there is sufficient overlap be-
tween the two images to allow extraction of common im-
age properties, namely, that there is sufficient “similarity”
between the two images (“Similarity” of images is used here
in the broadest sense. It could range from gray-level similar-
ity, to feature similarity, to similarity of frequencies, and all
the way to statistical similarity such as mutual information
[17]).

In this paper the following question is addressed: Can
two images be aligned when there is very little similarity be-

tween them, or even more extremely, when there is no spatial
overlap at all between the two images? When dealing with
individual images, the answer tends to be “No”. However,
this is not the case when dealing with image sequences. An
image sequence contains much more information than any
individual frame does. In particular, temporal changes (such
as dynamic changes in the scene, or the induced image mo-
tion) are encoded between video frames, but do not appear
in any individual frame. Such information can form a pow-
erful cue for alignment of two (or more) sequences. Caspi
and Irani [4] and Stein [15] have illustrated the applicabil-
ity of such an approach for aligning two sequences. How-
ever, they assumed that the same temporal changes in the
scene (e.g., moving objects) are visible to both video cam-
eras, leading to the requirement that there must be significant
overlap in the FOV’s (fields-of-view) of the two cameras.

In this paper we show that when two cameras are attached
closely to each other (so that their centers of projections
are very close), and move jointly in space, then the induced
frame-to-frame transformations within each sequence have
correlated behavior across the two sequences. This is true
even when the sequences have no spatial overlap. This cor-
related temporal behavior is used to recover both the spatial
and temporal transformations between the two sequences.

Unlike carefully calibrated stereo-rigs [14], our approach
does not require any prior internal or external camera cali-
bration, nor any sophisticated hardware. Our approach bears
resemblance to the approaches suggested by [5, 9, 18] for
auto-calibration of stereo-rigs. But unlike these methods,
we do not require that the two cameras observe and match
the same scene features, nor that their FOV’s will overlap.

The need for “coherent appearance”, which is a funda-
mental assumption in image alignment methods, is replaced
here with the requirement of “coherent temporal behavior”.
This requirement is often easier to satisfy (e.g., by moving
the two cameras jointly in space). Our approach is therefore
useful not only in the case of non-overlapping sequences,
but also in other cases which are inherently difficult for stan-
dard image alignment techniques.

This gives rise to a variety of real-world applications, in-
cluding: (i) Multi-sensor alignment for image fusion. This
requires accurate alignment of images (sequences) obtained
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Figure 1: Two video cameras are attached to each other, so that
they have the same center of projection, but non-overlapping fields-
of-view. The two cameras are moved jointly in space, producing
two separate video sequences
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by sensors of different sensing modalities (such as Infra-
Red and visible light). Such images differ significantly
in their appearance due to different sensor properties [17].
(ii) Alignment of images (sequences) obtained at different
zooms. The problem here is that different image features are
prominent at different image resolutions [6]. Alignment of
a wide-FOV sequence with a narrow-FOV sequence is use-
ful for detecting small zoomed-in objects in (or outside) a
zoomed-out view of the scene. This can be useful in surveil-
lance applications. (iii) Generation of wide-screen movies
from multiple non-overlapping narrow FOV movies (such
as in IMAX movies).

Our approach can handle such cases. Results are demon-
strated in the paper on complex real-world sequences, as
well as on manipulated sequences with ground truth.

2 Problem Formulation

We examine the case when two video cameras having (ap-
proximately) the same center of projection, but different 3D
orientation, move jointly in space (see Fig. 1). The fields of
view of the two cameras do not necessarily overlap. The in-
ternal parameters of the two cameras are different and un-
known, but fixed along the sequences. The external param-
eters relating the two cameras (i.e., the relative 3D orienta-
tion) are also unknown but fixed. Let ��������������� ��� �!� and�#"����$"� ���������%�&"' �!� be the two sequences of images recorded

by the two cameras1. When temporal synchronization (e.g.,
time stamps) is not available, then ��( and �$"( may not be cor-
responding frames in time. Our goal is to recover the trans-
formation that aligns the two sequences both in time and in
space. Note the term “alignment” here has a broader mean-
ing than the usual one, as the sequences may not overlap in
space, and may not be synchronized in time. Here we refer

1The subscript i is used represents the frame time index, and the super-
script prime is used to distinguish between the two sequences ) and ) � .

to alignment as displaying one sequence in the spatial coor-
dinate system of the other sequence, and at the correct time
shift, as if obtained by the other camera.

When the two cameras have the same center of pro-
jection, then a simple fixed homography * (a 2D projec-
tive transformation) describes the spatial transformation be-
tween temporally corresponding pairs of frames across the
two sequences. This is shown next.

Let + and +," denote the two 3x3 matrices capturing the
internal parameters of the two cameras. Let -.�0/ 1!�%23��4�576
and -8"9�:/ 1�";�<2=">��4�576 be 2D image points in the two cameras
which correspond to the same 3D point and the same time
( / 576 denotes the transpose). In the general case [8]:- "3?� + " / @A+CB � -EDGFIHJ 5 (1)

where @ is a 3x3 matrix capturing the relative orientation
of the two cameras, F is a scale factor, HJ is the 3D transla-
tion between the two cameras, and ?� denotes equality up to
scale factor. When the two cameras have the same center
of projection, then the translation between the two cameras
is zero: HJ �LK . (In practice, HJ will be negligible, but not 0.)
The relation of Eq. (1) therefore reduces to: - " ?� *M- where*N�.+,"7@A+ B � is a homography. As the internal parameters+ and +," and the relative orientation @ are fixed, the ho-
mography * is also fixed along the sequence. This homog-
raphy (which is unknown) relates every pair of temporally
corresponding frames across the two sequences.

If there were enough common features (e.g., - and -8" )
between temporally corresponding frames (e.g., ��( and �&"( ),
then it would be easy to recover the inter-camera homogra-
phy H, as each such pair of corresponding image points pro-
vides two linear constrains on H: -8" ?� *M- . This, in fact,
is how most image alignment techniques work [8]. How-
ever, this is not the case here. The two sequence do not
share common features, because there is no spatial overlap
between the two sequences. Instead, the homography H is
recovered from the induced frame-to-frame transformations
within each sequence.

Let O!�������� O9� and OP"� ������� OQ"' be the sequences of frame-
to-frame transformations within the video sequences � and�#" , respectively. O ( is the transformation relating frame � (
to ��(7�!� . These transformations can be either 2D paramet-
ric transformations (e.g., homographies or affine transfor-
mations) or 3D transformations/relations (e.g., fundamen-
tal matrices). We next show how we can recover the spatial
transformation H and the temporal shift R J

between the two
video sequences directly from the two sequences of trans-
formations O!�������� O9� and OP"� ������� OP"' . The problem formulated
above is illustrated in Fig 2.
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Figure 2: Problem formula-
tion. The two sequences are
spatially related by a fixed but un-
known inter-camera homography
H, and temporally related by a
fixed and unknown time shift SQT .
Given the frame-to-frame transfor-
mations U � �V������� U 
 and U �� ��������� U �W ,
we want to recover X and SQT .

3 Recovering Spatial Alignment Be-
tween Sequences

Let us first assume that the temporal synchronization is
known. Such information is often available (e.g., from time
stamps encoded in each of the two sequences). Section
4 shows how we can recover the temporal shift between
the two sequences when that information is not available.
Therefore, without loss of generality, it is assumed that � (
and �$"( are corresponding frames in time in sequences � and�#" , respectively. Two cases are examined: (i) The case when
the scene is planar or distant from the cameras. We refer to
these scenes as “2D scenes”. In this case the frame-to-frame
transformations OY( can be modeled by homographies (Sec.
3.1). (ii) The case of a non-planar scene. We refer to these
scenes as “3D scenes”. In this case the frame-to-frame rela-
tion can be modeled by a fundamental matrix (Sec. 3.2).

3.1 Planar or Distant (2D) Scenes

When the scene is planar or distant from the cameras, or
when the joint 3D translation of the two cameras is neg-
ligible relative to the distance of the scene, then the in-
duced image motions within each sequence (i.e., O!��������� O9�
and OQ"� ������� OP"� ) can be described by 2D parametric transfor-
mations [8]. OY( denotes the homography between frame ��(
and ��(��!� , represented by Z\[GZ non-singular matrices. We
next show that temporally corresponding transformations O (
and OP"( are also related by the fixed inter-camera homogra-
phy * .

Let ] be a 3D point in the planar (or the remote) scene.
Denote by -8( and -8"( its image coordinates in frames ��( and�&"( , respectively (the point ] need not to be visible in the
frames, i.e., ] need not be within the FOV of the cameras).
Let -8(7�!� and -�"(��^� be its image coordinates in frames ��(��^�
and �&"(��^� , respectively. Then, -�(��!� ?� O9(�-8( and -�"(��!� ?�OP"( -�"( . Because the coordinates of the video sequences S and
S’ are related by a fixed homography *_�`+,"7@A+ B � (see
Sec. 2), then: -8" ?� *M- and -8"(7�!� ?� *a- (7�!� . Therefore:*bO9(�-8( ?� *M-�(��!� ?� - "(7�!� ?� O "( - "( ?� O "( *M-�( (2)

Each -8( could theoretically have a different scalar associated
with the equality in Eq. (2). However, it is easy to show that
because the relation in Eq. (2) holds for all points - ( , there-
fore all these scalars are equal, and hence:*bO9( ?� O "( *b� (3)

Because * is invertible, we may write OP"( ?� *bO ( * B � , orO "( �dc ( *bO ( * B � (4)

where c ( is a (frame-dependent) scale factor. Eq. (4) is true
for all frames (i.e., for any pair of corresponding transfor-
mations O9( and OQ"( , eQ�f4 ��� g ). Eq. (4) shows that there is a
similarity relation2 between the two matrices O9( and OQ"( (up
to a scale factor). A similar observation was made by [18]
for the case of auto-calibration of a stereo-rig.

Denote by h�eji�k;lnm\�o/ pY����p8q �Vp�r�576 a Zs[t4 vector con-
taining the eigenvalues of a Z\[GZ matrix l (in decreasing
order). Then it is known ([7] pp. 898.) that: (i) If l and u
are similar matrices, then they have the same eigenvalues:h�e;i3k>l,m\�vh�eji�k;uwm , and, (ii) The eigenvalues of a scaled
matrix are scaled: h�eji3k;c�lnmn�xcyk>h�eji3k>lnm%m . Using these two
facts and Eq. (4) yields:h�eji�k>O "( mI�dc�(Yh�eji�k>O9(>m (5)

where c�( is the scale factor defined by Eq. (4). Eq. (5) im-
plies that h�eji�k>O ( m and h�eji3kzOP"( m are “parallel”. This gives rise
to a measure of similarity between two matrices O ( and OP"( :c�e;{|kzO9(<�<O "( m}� h�eji3kzO ( m~6�h�e;i3kzOQ"( m��� h�eji3kzO9(>m ���$��� h�eji�k>O "( m ��� � (6)

where
���3�����

is the vector norm. For real valued eigenval-
ues, Eq. (6) provides the cosine of the angle between the two
vectors h�eji3kzO9(;m and h�eji3kzOP"( m . This property will be used later
for obtaining the temporal synchronization (Section 4). This
measure is also used for outlier rejection of bad frame-to-
frame transformation pairs, O9( and OP"( . The remainder of
this section explains how the fixed inter-camera homogra-
phy H is recovered from the list of frame-to–frame transfor-
mations O!������ O9� and O "� �������%O "� , and discusses uniqueness of
the solution.

For each pair of temporally corresponding transforma-
tions O9( and OP"( in sequences � and �#" , we first compute
their eigenvalues h�e;i3kzO ( m and h�eji�k>OP"( m . The scale factor c (
which relates them is then estimated from Eq. (5) using
least squares minimization. (three equations one unknown).
Once c ( is estimated, Eq. (4) (or Eq. (3)) can be rewritten as:c ( *bO (Y� O "( *N��K (7)

2A matrix � is said to be “similar” to a matrix � if there exists an in-
vertible matrix � such that ���\�b�I��� � . See [7].
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Eq. (7) is linear in the unknown components of * . Re-
arranging the components of * in a �|[.4 column vectorH� ��/ * �V� * �<q * �<r * q�� * q%q * q%r * r�� * rVq * rVr 576 , Eq. (7) can

be rewritten as a set of linear equations in H� :� ( H� � HK (8)

where
� ( is a ��[�� matrix defined by O ( , O "( and c ( :� ( � �� c�(>O9( 6 � OQ"(��>� � � OP"(��z� � � OP"(���� �� OP"( �j� � c ( O�6 � OQ"( �>� � � OP"( �z� �� OP"(��~� � � OP"(��;� � c�(�O�6 � OQ"(��>� �

��
����

and � is the Z�[\Z identity matrix.
Eq. (8) implies that each pair of corresponding transfor-

mations O9( and O "( contributes � linear constrains in the un-

known homography * (i.e., H� ). It can be shown that if O9(
(and hence also O "( ) have Z different eigenvalues, then * can
be determined by a single such pair of transformations up to
three degrees of freedom. Therefore, at least two such pairs
of independent transformations are needed to uniquely de-
termine the homography * (up to a scale factor).

The constraints from all the transformations O!���������%OY�
and OP"� �������<OP"� can be combined into a single set of linear

equations in H� : l H� � HK (9)

where A is a ��g,[�� matrix: lt� ��� � �
...� �

�� �
. Eq. (9) is a ho-

mogeneous set of linear equations in H� , that can be solved in

a variety of ways [2]. In particular, H� may be recovered by
computing the eigenvector which corresponds to the small-
est eigenvalue of the matrix lP6jl .

3.2 3D Scenes

When the scene is neither planer nor distant, the relation be-
tween two consecutive frames of an uncalibrated camera is
described by the fundamental matrix [8]. In this case the in-
put to our algorithm is two sequences of fundamental ma-
trices between successive frames, denoted by ¡#��������� ¡�� and¡A"� ������� ¡A"� . Namely, if - (M¢ � ( and - (7�!�£¢ � (��!� are corre-
sponding image points, then: -�6(7�!� ¡ ( - ( �:K . Although the
relations within each sequence are characterized by funda-
mental matrices, the inter-camera transformation remains a
homography * . This is because the two cameras still share
the same center of projection (Sec. 2).

Each fundamental matrix ¡ ( can be decomposed into a
homography + epipole as follows [8]:¡�(^�¤/ h(�5�¥�O9(

(a) (b)

(c)
Figure 3: Alignment of non-overlapping sequences. (a)
and (b) are temporally corresponding frames from sequences ¦
and ¦ � . The correct time shift was automatically detected. (c)
shows one frame in the combined sequence after spatio-temporal
alignment. Note the accuracy of the spatial and temporal align-
ment of the running person. For full color sequences see attached
tar file.

where h�( is the epipole relating frames ��( and ��(��!� , the
matrix O ( is the induced homography from � ( to � (��^� via
any plane (real or virtual). / � 5�¥ is the cross product matrix
( / §y57¥ H¨ � H§a[ H¨ ).

The homographies, O � ���������<O � and OP"� ���������<OP"� , and the
epipoles h������������%h� and h�" � ���������%h"� , impose separate con-
straints on the inter-camera homography * . These con-
straints can be used separately or jointly to recover * .
(i) Homography-based constraints: The homographiesO!��������<O9� and OP"� �������<OP"� (extracted from the fundamental ma-
trices ¡ � �������V¡ � and ¡A"� �������V¡A"� , respectively), may corre-
spond to different 3D planes. In order to apply the algo-
rithm of Sec. 3.1 using these homographies, we need im-
pose plane-consistency across the two sequences (to guar-
antee that temporally corresponding homographies corre-
spond to the same plane in the 3D world). One possible
way for imposing plane-consistency across (and within) the
two sequences is by using the “Plane+Parallax” approach
[13, 11]. However, this approach requires that a real phys-
ical planar surface be visible in all video frames. Alter-
natively, the “threading” method of [1] can impose plane-
consistency within each sequence, even if no real physi-
cal plane is visible in any of the frames. Plane consistency
across the two sequences can be guaranteed e.g., if [1] is ini-
tiated at frames which are known to simultaneously view the
same real plane in both sequences. However, the two cam-
eras can see different portions of the plane (allowing for non-
overlapping FOVs), and need not see the plane at any of the
other frames. This approach is therefore less restrictive than
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(a) (b)

(c)

Figure 4: Alignment of non-overlapping sequences. (a)
and (b) are temporally corresponding frames from sequences ¦
and ¦ � . The correct time shift was automatically detected. (c)
shows one frame in the combined sequence. Corresponding video
frames were averaged after spatio-temporal alignment. The small
overlapping area was not used in the estimation process, but only
for verification (see text). Note the accuracy of the spatial and
temporal alignment of the soccer player in the overlapping region.
For the natural-looking wide-screen sequence see attached tar
file.

the Plane+Parallax approach.
(ii) Epipole-based constraints: The fundamental matrices¡ � ��� ¡ � and ¡A"� ��� ¡A"� also provide a list of epipoles h � ���������%h �
and h " � ���������%h "� . These epipoles are uniquely defined (there
is no issue of plane consistency here). Since the two cam-
eras have the same center of projection, then for any framee : h�"( ?� *sh ( , or more specifically:k;h "( m	¥E� / � � � q � r�5�h(/ ��©��8ª�� � 5�h ( k>h "( m~«A� / �8¬������® 5�h(/ �3©���ª�� � 5�h ( (10)

Multiplying by the dominator and rearranging terms yields
two new linear constrains on * for every pair of correspond-
ing epipoles h ( and h "( :¯ h ( 6 HK 6 k>h"( m ¥ h ( 6HK�6°h(�6±k>h"( m « h(�6a² q �=� H� ��K (11)

where HK�6Q�³/ K��VK��%K�5 . Every pair of temporally correspond-
ing epipoles, h�( and h"( , thus imposes two linear constraints
on * . These ´�g constraints ( e��µ4 �������<g ) can be added to
the set of linear equations in Eq. (9) which are imposed by
the homographies. Alternatively, the epipole-related con-
straints can be used alone to solve for * , thus avoiding
the need to enforce plane-consistency on the homographies.
Theoretically, four pairs of corresponding epipoles h( and h"(
are sufficient.

4 Recovering Temporal Synchroniza-
tion Between Sequences

So far we have assumed that the temporal synchronization
between the two sequences is known and given. Namely,
that frame ��( in sequence S corresponds to frame �&"( in se-
quence S’, and therefore the transformation OY( corresponds
to transformation OP"( . Such information is often available
from time stamps. However, when such synchronization
is not available, we can recover it. Given two unsynchro-
nized sequences of transformations O � ������� O � and O "� ������� O "' ,
we wish to recover the unknown temporal shift R J

be-
tween them. Let O9( and O9(7�9¶ 6 be temporally corresponding
transformations (namely, they occurred at the same time in-
stance). Then from Eq. (5) we know that they should satisfyh�e;i3kzO9(>m�·¸h�eji3kzOP"(���¶ 6 m (i.e., the Z¹[b4 vectors of eigenvalues
should be parallel). In other words, the similarity measurec�e;{|kzO 6�º �<OQ"6�»º ��¶ 6 m of Eq. (6) should equal 4 (corresponding

to ¼�½�cyk>K$m , i.e., an angle of K&¾ between the two vectors). All
pairs of corresponding transformations O ( and OP"(��9¶ 6 must
simultaneously satisfy this constraint for the correct time
shift R J

. Therefore, we recover the unknown temporal time
shift R J

by maximizing the following objective function:��� � k;R J m}�t¿ ( c�ej{�k>O ( �<O (7�9¶ 6 m q (12)

The maximization is currently performed by an exhaustive
search over a finite range of valid time shifts R J

. To ad-
dress larger temporal shifts, we apply a hierarchical search.
Coarser temporal levels are constructed by composing trans-
formations to obtain fewer transformation between more
distant frames.

The objective function of Eq. (12) can be generalized to
handle sequences of different frame rates, such as sequences
obtained by NTSC cameras (30 frame/sec) vs. PAL cameras
(25 frames/sec). The ratio between frames corresponding to
equal time steps in the two sequences is ´yÀGÁ}Z KG�³À£Á}Â .
Therefore, the objective function that should be maximized
for an NTSC-PAL pair of sequences is:��� � kjR J m}� ¿ ( c�ej{�k>OÄÃ;Å º�Æ �zÇÃ º �<O "&È Å º�Æ �zÇ Æ É8ÊÈ º�Æ É8Ê m q (13)

Where OÌË( is the transformation from frame ��( to frame � Ë .
In our experiments, all sequences were obtained by PAL
video cameras. Therefore only the case of equal frame-
rate (Eq. (12)) was experimentally verified. We found this
method to be very robust. It successfully recovered the tem-
poral shift up to field (sub-frame) accuracy. Sub-field accu-
racy may be further recovered by interpolating the values of��� � k;R J m obtained at discrete time shifts.
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Wide view Zoomed View Aligned Views

(a) (b) (c)

Figure 5: Finding zoomed region. (a) and
(b) are (automatically detected) temporally cor-
responding frames from the wide-FOV and the
narrow-FOV sequences, respectively. (c) shows
the result of spatio-temporal alignment of the two
sequences, displayed by color averaging.

Wide view Zoomed View Aligned Views

(a) (b) (c)

(d) (e) (f)

Figure 6: Finding zoomed region. (a) and (d) are frames from the wide-FOV sequence. (b) and (e) are temporally corresponding
frames from the narrow-FOV sequence. The correct time shift was automatically detected. (c) and (f) show super-position of the two se-
quences after spatio-temporal alignment, displayed by color averaging. For full color sequences see attached tar file.

5 Applications

This section illustrates the applicability of our method to
solving some real-world problems, which are particularly
difficult for standard image alignment techniques. These
include: (i) Alignment of non-overlapping sequences for
generation of wide-screen movies from multiple narrow-
screen movies (such as in IMAX films), (ii) Alignment of
sequences obtained at significantly different zooms (e.g.,
for surveillance applications), and (iii) Alignment of multi-
sensor sequences for multi-sensor fusion. We show results
of applying the method to complex real-world sequences.
In addition, in order to empirically quantify the accuracy of
our method, we also applied it to pairs of sequences gener-
ated from a real sequence by warping it with known (ground
truth) homographies. All sequences which we experimented
with were captured by “of the shelf” consumer CCD cam-
eras. The cameras were attached to each other, to mini-
mize the distance between their centers of projections. The
joint camera motion was performed manually (i.e., A person

would manually hold and rotate the two attached cameras).
No temporal synchronization tool was used.

The frame-to-frame input transformations within each
sequence (homographies O � ����� O � and OP"� ����� OP"� ) were ex-
tracted using the method described in [12]. The input se-
quences were usually several seconds long to guaranty sig-
nificant enough motion. The temporal time shift was recov-
ered using the algorithm described in Sec. 4 up to field ac-
curacy (This was verified against instantaneous events that
were observed by both cameras).

Inaccurate frame-to-frame transformations O ( are pruned
out by using two outlier detection mechanisms:
(i) The transformation between successive frames within
each sequence are computed in both direction. We measure
the distance of the composed matrix O9(�OQÍ9Î~Ï�Î	ÐVÑ	Î( from the
identity matrix in the image space, in terms of the maximal
residual misalignment of pixels.@,hÒ�e~Ó$Ô�e~Ò�e J 23k>O9(7mI�.Õ�Ö�×Ø�ÙyÚ º ��� Û O9(�O Í9Î~Ï�Î~Ð�Ñ	Î( � �=Ü�- ��� (14)
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Visible IR Output

(a) (b) (c)

Figure 7: Multi-sensor Alignment. (a) and (b) show an example of (automatically detected) temporally corresponding frames from
the visible-light and IR sequences, respectively. The inside of the building is visible only in the visible-light sequence, while the IR sequence
captures the details outdoors (e.g., the dark trees, the sign, the bush). (c) shows the results of fusing the two sequences after spatio-temporal
alignment. The fused sequence preserves the details from both sequences. Note the high accuracy of alignment (both in time and in space)
of the walking lady. For more details see text. For full color sequences see attached tar file.

(ii) The similarity criterion of Eq. (6) can also be used to ver-
ify the degree of “similarity” between O ( and OP"( . An unre-
liable pair of transformations can thus be pruned out. How-
ever,the first outlier criteria proved to be more powerful.

Finally, the best thirty or so transformations were used in
the estimation of the inter-camera homography * (using the
algorithm described in Sec. 3.1).

5.1 Alignment of Non-Overlapping Sequences

Fig 3 shows an example of alignment of non-overlapping se-
quences. The left camera is zoomed-in and rotated relative
to the right camera. The correct spatio-temporal alignment
can be seen in Fig. 3.c. Note the accurate alignment of the
running person both in time and in space.

Our approach to sequence alignment can be used to gen-
erate wide-screen movies from two (or more) narrow field-
of-view movies (such as in IMAX movies). Such an exam-
ple is shown in Fig. 4. To verify the accuracy of alignment
(both in time and in space), we allowed for a very small over-
lap between the two sequences. However, this image region
was not used in the estimation process, to imitate the case of
truly non-overlapping sequences. The overlapping region
was used only for display and verification purposes. Fig. 4.c
shows the result of combining the two sequences (by averag-
ing corresponding frames) after spatio-temporal alignment.
Note the accurate spatial as well as temporal alignment of
the soccer players in the averaged overlapping region. To
see the generated natural-looking wide-screen movie, see at-
tached tar file.

In order to empirically verify the accuracy of our method,
the real video sequence of Fig. 8 was split in the middle, pro-
ducing two non-overlapping sub-sequences of half-a-frame
width each. The true (ground truth) homography in this case

corresponds to a horizontal shift by the width of a frame ( ZyÀ ´
pixels). The frame-to-frame transformation ( O � ����� O � andOP"� ����� OP"� ) were estimated separately within each sequence us-
ing [12]. The temporal shift ( R J �ÝK ) was recovered cor-
rectly from these transformations, and the “inter-camera”
homography * was recovered up to a misalignment error
of less than 0.7 pixel over the entire image. See table 1 for
summary of results.

5.2 Alignment of Sequences Obtained at Dif-
ferent Zooms

Often in surveillance applications two cameras are used, one
with a wide FOV (field-of-view) for observing large scene
regions, and the other camera with a narrow FOV (zoomed-
in) for detecting small objects. Matching two such images
obtained at significantly different zooms is a difficult prob-
lem for standard image alignment methods, since the two
images display different features which are prominent at
the different resolutions. Our sequence alignment approach
may be used for such scenarios. Fig. 5 shows such an ex-
ample. The zoom in this case was approximately 4AÁ Z . The
result (Fig. 5.c) is displayed in the form of averaging tempo-
rally corresponding frames after alignment according to the
computed homography and the computed time shift.

The same approach was further applied to a pair of se-
quences where the very large zoom ( Þ 4vÁàß ) and the
dense clutter in the scene make the task difficult even for
the human eye. This example is shown in Fig. 6. The
output is displayed by averaging temporally corresponding
frames from the two sequences after spatio-temporal se-
quence alignment. Note the small red flowers in the zoomed
view (Fig. 6.b). These cannot be seen in the correspond-
ing low resolution wide-view frame (Fig. 6.a). Only when
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(a) (c) (d)

Figure 8: The manipulated sequence. (a,b,c) are three
frames (0,150,300) out of the original 300 frames. This sequence
was used in all the quantitative experiments.

a well-defined object (e.g., the tree stem) enters both FOV’s
(Figs. 6.d and 6.e), can we verify the high accuracy of the
alignment.

To empirically verify the accuracy of our method in the
presence of large zooms and large rotations, we ran the
algorithm on following three manipulated sequences with
known (ground truth) manipulations: We warped the se-
quence of Fig. 8 once by a zoom factor of ´ , once by a zoom
factor of ß , and once rotated it by 4�áyKyâ . The results are
shown in table 1.

In each of these cases, the recovered homography was
composed with the inverse of the ground-truth homogra-
phy: * B �6�Ð%ã�Î * Ð�Î	ä â Ï â Ð�Î	å . Ideally, the composed homography
should be the identity matrix. The errors reported in table 1
are the maximal residual misalignment induced by the com-
posed homography over the entire image.

5.3 Multi-Sensor Alignment

Images obtained by sensors of different modalities, e.g., IR
(Infra-Red) and visible light, can vary significantly in their
appearance. Features appearing in one image may not ap-
pear in the other, and visa versa. This poses a problem
for image alignment methods. Our sequence alignment ap-
proach, however, does not require coherent appearance be-
tween the two sequences, and can therefore be applied to
solve the problem. Fig. 7 shows an example of two such se-
quences, one captured by a near IR camera, while the other
by a regular video (visible-light) camera. The scene was
shot in twilight. In the sequence obtained by the regular
video camera (Fig.7.(a)), the outdoor scene is barely visi-
ble, while the inside of the building is clearly visible. The
IR camera, on the other hand, captures the outdoor scene
in great detail, while the indoor part (illuminated by “cold”
neon light) was invisible to the IR camera (Fig. 7.(b)). The
result of the spatio-temporal alignment is illustrated by fus-
ing temporally corresponding frames. The IR camera pro-
vides only intensity information, and was therefore fused
only with the intensity (Y) component of the visible-light
camera, using the image-fusion method of [3] The chrome
components (I and Q) of the visible-light camera supply the
color information.

For full color sequences of the results presented in this
section, see attached tar file.

Applied Recovered Max Residual
Transformation Transformation Misalignment
Zoom factor = 2 Zoom factor = 1.9992 0.4 pixels
Zoom factor = 4 Zoom factor = 4.0048 0.4 pixels
Rotation by æ�ç�è�é Rotation by æ�ç�è � è�è�é 0.01 pixels

Horizontal shift
of 352 pixels

Horizontal shift
of 351.6 pixels

0.7 pixels

Table 1: Quantitative results. This table summarizes the
quantitative results with respect to ground truth. A real video se-
quence (Fig. 8) was warped (“manipulated”) by a known homog-
raphy, to generate a second sequence. The left column describes
the type of transformation applied to the sequence, the center col-
umn describes the recovered transformation, and the right column
describes the residual error between the ground-truth homogra-
phy and the recovered homography (measured in maximal residual
misalignment in the image space). See text for further details.

6 Conclusion

This paper presents an approach for aligning two sequences
(both in time and in space), even when there is no com-
mon spatial information between the sequences. This was
made possible by replacing the need for “coherent appear-
ance” (which is a fundamental requirement in standard im-
ages alignment techniques), with the requirement of “co-
herent temporal behavior”, which is often easier to satisfy.
We demonstrated applications of this approach to real-world
problems, which are inherently difficult for regular image
alignment techniques.
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Abstract

This paper shows how two image sequences that have no spatial overlap between their fields of view can be aligned
both in time and in space. Such alignment is possible when the two cameras are attached closely together and
are moved jointly in space. The common motion induces “similar” changes over time within the two sequences.
This correlated temporal behavior, is used to recover the spatial and temporal transformations between the two
sequences. The requirement of “consistent appearance” in standard image alignment techniques is therefore re-
placed by “consistent temporal behavior”, which is often easier to satisfy.

This approach to alignment can be used not only for aligning non-overlapping sequences, but also for handling
other cases that are inherently difficult for standard image alignment techniques. We demonstrate applications of
this approach to three real-world problems: (i) alignment of non-overlapping sequences for generating wide-screen
movies, (ii) alignment of images (sequences) obtained at significantly different zooms, for surveillance applications,
and, (iii) multi-sensor image alignment for multi-sensor fusion.

Keywords: Spatio-temporal alignment, Temporal synchronization, Multi-sensor alignment, Alignment for
wide-screen movies, Alignment across different zooms.
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1 Introduction

The problem of image alignment (or registration) has been extensively researched, and successful approaches have
been developed for solving this problem. Some of these approaches are based on matching extracted local image
features, other approaches are based on directly matching image intensities. A review of some of these methods
can be found in [24] and [16]. However, all these approaches share one basic assumption: that there is sufficient
overlap between the two images to allow extraction of common image properties, namely, that there is sufficient
“similarity” between the two images (“Similarity” of images is used here in the broadest sense. It could range from
gray-level similarity, to feature similarity, to similarity of frequencies, and all the way to statistical similarity such
as mutual information [26]).

In this paper the following question is addressed: Can two images be aligned when there is very little similarity
between them, or even more extremely, when there is no spatial overlap at all between the two images? When
dealing with individual images, the answer tends to be “No”. However, this is not the case when dealing with image
sequences. An image sequence contains much more information than any individual frame does. In particular,
temporal changes (such as dynamic changes in the scene, or the induced image motion) are encoded between video
frames, but do not appear in any individual frame. Such information can form a powerful cue for alignment of
two (or more) sequences. Caspi and Irani [5] and Stein [23] have illustrated an applicability of such an approach
for aligning two sequences based on common dynamic scene information. However, they assumed that the same
temporal changes in the scene (e.g., moving objects) are visible to both video cameras, leading to the requirement
that there must be significant overlap in the FOVs (fields-of-view) of the two cameras.

In this paper we show that when two cameras are attached closely to each other (so that their centers of projections
are very close), and move jointly in space, then the induced frame-to-frame transformations within each sequence
have correlated behavior across the two sequences. This is true even when the sequences have no spatial overlap.
This correlated temporal behavior is used to recover both the spatial and temporal transformations between the two
sequences.

Unlike carefully calibrated stereo-rigs [22], our approach does not require any prior internal or external camera
calibration, nor any sophisticated hardware. Our approach bears resemblance to the approaches suggested by [7,
14, 27] for auto-calibration of stereo-rigs. But unlike these methods, we do not require that the two cameras observe
and match the same scene features, nor that their FOVs will overlap.

The need for “consistent appearance”, which is a fundamental assumption in image alignment or calibration
methods, is replaced here with the requirement of “consistent temporal behavior”. Consistent temporal behavior
is often easier to satisfy (e.g., by moving the two cameras jointly in space). A similar idea was used for “hand-eye
calibration” in robotics research (e.g., [25, 15]).

Our approach is useful not only in the case of non-overlapping sequences, but also in other cases where there
is very little common appearance information between images, and are therefore inherently difficult for standard
image alignment techniques. This gives rise to a variety of real-world applications, including: (i) Multi-sensor
alignment for image fusion. This requires accurate alignment of images (sequences) obtained by sensors of different
sensing modalities (such as Infra-Red and visible light). Such images differ significantly in their appearance due
to different sensor properties [26]. (ii) Alignment of images (sequences) obtained at different zooms. The problem
here is that different image features are prominent at different image resolutions [8]. Alignment of a wide-FOV
sequence with a narrow-FOV sequence is useful for detecting small zoomed-in objects in (or outside) a zoomed-
out view of the scene. This can be useful in surveillance applications. (iii) Generation of wide-screen movies from
multiple non-overlapping narrow FOV movies (such as in IMAX movies).

Our approach can handle such cases. Results are demonstrated in the paper on complex real-world sequences,
as well as on manipulated sequences with ground truth.
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Figure 1: Two video cameras are attached to each other, so that they have the same center of projection, but non-
overlapping fields-of-view. The two cameras are moved jointly in space, producing two separate video sequences I 1; :::; In+1
and I 0

1; :::; I
0

n+1.

2 Problem Formulation

We examine the case when two video cameras having (approximately) the same center of projection but different
3D orientation, move jointly in space (see Fig. 1). The fields of view of the two cameras do not necessarily over-
lap. The internal parameters of the two cameras are different and unknown, but fixed along the sequences. The
external parameters relating the two cameras (i.e., the relative 3D orientation) are also unknown but fixed. Let
S = I1; :::In+1 and S0 = I 01; :::; I

0

m+1 be the two sequences of images recorded by the two cameras1. When tem-
poral synchronization (e.g., time stamps) is not available, then Ii and I 0i may not be corresponding frames in time.
Our goal is to recover the transformation that aligns the two sequences both in time and in space. Note the term
“alignment” here has a broader meaning than the usual one, as the sequences may not overlap in space, and may not
be synchronized in time. Here we refer to alignment as displaying one sequence in the spatial coordinate system
of the other sequence, and at the correct time shift, as if obtained by the other camera.

When the two cameras have the same center of projection (and differ only in their 3D orientation and their in-
ternal calibration parameters), then a simple fixed homography H (a 2D projective transformation) describes the
spatial transformation between temporally corresponding pairs of frames across the two sequences [12].

If there were enough common features (e.g., p and p0) between temporally corresponding frames (e.g., Ii and I 0i),
then it would be easy to recover the inter-camera homography H , as each such pair of corresponding image points
would provide linear constrains on H: p0 �= Hp. This, in fact, is how most image alignment techniques work [12].
However, this is not the case here. The two sequence do not share common features, because there is no spatial
overlap between the two sequences. Instead, the homography H is recovered from the induced frame-to-frame
transformations within each sequence.

Let T1; :::Tn and T 01; :::T
0

m be the sequences of frame-to-frame transformations within the video sequences S
and S0, respectively. Ti is the transformation relating frame Ii to Ii+1. These transformations can be either 2D
parametric transformations (e.g., homographies or affine transformations) or 3D transformations/relations (e.g.,
fundamental matrices). We next show how we can recover the spatial transformation H and the temporal shift �t

between the two video sequences directly from the two sequences of transformations T1; :::Tn and T 01; :::T
0

m. The
problem formulated above is illustrated in Fig. 2.

3 Recovering Spatial Alignment Between Sequences

Let us first assume that the temporal synchronization is known. Such information is often available (e.g., from time
stamps encoded in each of the two sequences). Sec. 4 shows how we can recover the temporal shift between the

1The subscript i is used to represent the frame time index, and the superscript prime is used to distinguish between the two sequences S
and S0.
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Figure 2: Problem formulation. The two sequences are spatially related by a fixed but unknown inter-camera homog-
raphy H, and temporally related by a fixed and unknown time shift �t. Given the frame-to-frame transformations T 1; :::; Tn

and T 0

1; :::; T
0

m
, we want to recover H and �t.

two sequences when that information is not available. Therefore, without loss of generality, it is assumed that Ii
and I 0i are corresponding frames in time in sequences S and S0, respectively. Two cases are examined: (i) The
case when the scene is planar or distant from the cameras. We refer to these scenes as “2D scenes”. In this case the
frame-to-frame transformations Ti can be modeled by homographies (Sec. 3.1). (ii) The case of a non-planar scene.
We refer to these scenes as “3D scenes”. In this case the frame-to-frame relations can be modeled by fundamental
matrices (Sec. 3.2).

3.1 Planar or Distant (2D) Scenes

When the scene is planar or distant from the cameras, or when the joint 3D translations of the two cameras are neg-
ligible relative to the distance of the scene, then the induced image motions within each sequence (i.e., T1; :::Tn
and T 01; :::T

0

n) can be described by 2D parametric transformations [12]. Ti thus denotes the homography between
frame Ii and Ii+1, represented by 3�3 non-singular matrices. We next show that temporally corresponding trans-
formations Ti and T 0i are related by the same fixed inter-camera homography H (which relates frames Ii and I 0i).

Let P be a 3D point in the planar (or the remote) scene. Denote by pi and p0i its image coordinates in frames
Ii and I 0i, respectively (the point P need not be visible in the two frames, i.e., P need not be within the FOV of
the cameras). Let pi+1 and p0i+1 be its image coordinates in frames Ii+1 and I 0i+1, respectively. Then, pi+1 �=
Tipi and p0i+1

�= T 0

ip
0

i. Because the coordinates of the video sequences S and S0 are related by a fixed homography
H , then: p0 �= Hp and p0i+1

�= Hpi+1. Therefore:

HTipi �= Hpi+1 �= p0i+1
�= T 0

ip
0

i
�= T 0

iHpi (1)

Each pi could theoretically have a different scalar associated with the equality in Eq. (1). However, it is easy to
show that because the relation in Eq. (1) holds for all points pi, therefore all these scalars are equal, and hence:

HTi �= T 0

iH: (2)

Because H is non-singular we may write T0i �= HTiH
�1, or

T 0

i = siHTiH
�1 (3)

where si is a (frame-dependent) scale factor. Eq. (3) is true for all frames, i.e., for any pair of corresponding trans-
formations Ti and T 0i (i = 1::n) there exists a scalar si such that T 0i = siHTiH

�1. It shows that there is a similarity
relation2 (or a “conjugacy relation”) between the two matrices Ti and T 0i (up to a scale factor). A similar observa-
tion was made for case of hand-eye calibration (e.g., [25, 15]), and for auto-calibration of a stereo-rig (e.g. [27]).

2A matrix A is said to be “similar” to a matrix B if there exists an invertible matrix M such that A = MBM�1 (see [9]). The term
“conjugate matrices” is also often used.
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Denote by eig(A) = [�1; �2; �3]
t a 3� 1 vector containing the eigenvalues of a 3� 3 matrix A (in decreasing

order). Then it is known ([9] pp. 898.) that: (i) If A and B are similar (conjugate) matrices, then they have
the same eigenvalues: eig(A) = eig(B), and, (ii) The eigenvalues of a scaled matrix are scaled: eig(sA) =
s(eig(A)). Using these two facts and Eq. (3) we obtain:

eig(T 0

i ) = si eig(Ti) (4)

where si is the scale factor defined by Eq. (3). Eq. (4) implies that the two vectors eig(Ti) and eig(T 0i ) are “parallel”.
This gives rise to a measure of similarity between two matrices Ti and T 0i :

sim(Ti; T
0

i ) =
eig(Ti)

t eig(T 0

i )

jjeig(Ti)jj jjeig(T 0

i )jj
; (5)

where jj�jj is the vector norm. For real valued eigenvalues, Eq. (5) provides the cosine of the angle between the two
vectors eig(Ti) and eig(T 0i ). This property will be used later for obtaining the temporal synchronization between
the two sequences (Sec. 4). This measure is also used for outlier rejection of bad frame-to-frame transformation
pairs, Ti and T 0i (Appendix A). The remainder of this section explains how the fixed inter-camera homography H
is recovered from the list of frame-to-frame transformations T1; ::Tn and T 01; ::; T

0

n.
For each pair of temporally corresponding transformations Ti and T 0i in sequences S and S0, we first compute

their eigenvalues eig(Ti) and eig(T 0i ). The scale factor si which relates them is then estimated from Eq. (4) us-
ing least squares minimization (three equations, one unknown)3. Once si is estimated, Eq. (3) (or Eq. (2)) can be
rewritten as:

siHTi � T 0

iH = 0 (6)

Eq. (6) is linear in the unknown components of H . Rearranging the components of H in a 9 � 1 column vector
~h = [H11H12H13H21H22H23H31H32H33]

t, Eq. (6) can be rewritten as a set of linear equations in~h:

Mi
~h = ~0 (7)

where Mi is a 9� 9 matrix defined by Ti, T 0

i and si:

Mi =

2
64 siTi

t � T 0

i11
I �T 0

i12
I �T 0

i13
I

�T 0

i21
I siT

t � T 0

i22
I �T 0

i23
I

�T 0

i31
I �T 0

i32
I siT

t � T 0

i33
I

3
75
9�9

where I is the 3�3 identity matrix. Eq. (7) implies that each pair of corresponding transformations Ti and T 0i con-
tributes 9 linear constrains in the unknown homography H (i.e.,~h), out of which at most 6 constraints are linearly
independent (see Sec. 6). Therefore, in theory, at least two such pairs of independent transformations are needed
to uniquely determine the homography H (up to a scale factor). In practice, we use all available constraints from
all pairs of transformations to compute H . The constraints from all the transformations T1; ::; Tn and T 01; ::; T

0

n can
be combined into a single set of linear equations in~h:

A~h = ~0 (8)

where A is a 9n � 9 matrix: A =

2
64

M1

...
Mn

3
75. Eq. (8) is a homogeneous set of linear equations in~h, that can be

solved in a variety of ways [3]. In particular,~h may be recovered up to scale by computing the eigenvector which
corresponds to the smallest eigenvalue of the matrix AtA.

3Alternatively, the input homographies can be normalized to have determinant equal to 1, to avoid the need to compute si.
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(a) (b)

(c)

Figure 3: Alignment of non-overlapping sequences. (a) and (b) are temporally corresponding frames from sequences
S and S 0. The correct time shift was automatically detected. (c) shows one frame in the combined sequence after spatio-
temporal alignment. Note the accuracy of the spatial and temporal alignment of the running person. For full sequences see
www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

3.2 3D Scenes

When the scene is neither planar nor distant, the relation between two consecutive frames of an uncalibrated camera
is described by the fundamental matrix [12]. In this case the input to our algorithm is two sequences of fundamental
matrices between successive frames, denoted by F1; :::Fn and F 0

1; :::F
0

n. Namely, if pi 2 Ii and pi+1 2 Ii+1 are
corresponding image points, then: pti+1Fipi = 0. Although the relations within each sequence are characterized by
fundamental matrices, the inter-camera transformation remains a homography H . This is because the two cameras
still share the same center of projection (Sec. 2).

Each fundamental matrix Fi can be decomposed into a homography + epipole [12] as follows:

Fi = [ei]�Ti

where ei is the epipole relating frames Ii and Ii+1, the matrix Ti is the induced homography from Ii to Ii+1 via any
plane (real or virtual). [�]� is the cross product matrix ([v]� ~w = ~v � ~w).

The homographies, T1; :::; Tn and T 01; :::; T
0

n, and the epipoles e1; :::; en and e01; :::; e
0

n, impose separate con-
straints on the inter-camera homography H . These constraints can be used separately or jointly to recover H .
(i) Homography-based constraints: The homographies T1; ::; Tn and T 01; ::; T

0

n (extracted from the fundamental
matrices F1; ::; Fn and F 0

1; ::; F
0

n, respectively), may correspond to different 3D planes. In order to apply the al-
gorithm of Sec. 3.1 using these homographies, we need to impose plane-consistency across the two sequences (to
guarantee that temporally corresponding homographies correspond to the same plane in the 3D world). One pos-
sible way for imposing plane-consistency across (and within) the two sequences is by using the “Plane+Parallax”
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(a) (b)

(c)

Figure 4: Wide-screen movies generation (a) and (b) are temporally corresponding frames from sequences S and S 0.
The correct time shift was automatically detected. (c) shows one frame in the combined sequence. Corresponding video frames
were averaged after spatio-temporal alignment. The small overlapping area was not used in the estimation process, but only
for verification (see text). Note the accuracy of the spatial and temporal alignment of the soccer player in the overlapping
region. For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

approach [19, 17, 21, 20]. However, this approach requires that a real physical planar surface be visible in all video
frames. Alternatively, the “threading” method of [1] or other methods for computing consistent set of camera ma-
trices (e.g., [2]), can impose plane-consistency within each sequence, even if no real physical plane is visible in
any of the frames. Plane consistency across the two sequences can be obtained, e.g., if [1] is initiated at frames
which are known to simultaneously view the same real plane in both sequences. This can be done even if the two
cameras see different portions of the plane (allowing for non-overlapping FOVs), and do not see that plane at any
of the other frames. This approach is therefore less restrictive than the Plane+Parallax approach.
(ii) Epipole-based constraints: The fundamental matricesF1::Fn andF 0

1::F
0

n also provide a list of epipoles e1; :::; en
and e01; :::; e

0

n. These epipoles are uniquely defined (there is no issue of plane consistency here).
Since the two cameras have the same center of projection, then for any frame i: e0i

�= Hei, or more specifically:

(e0i)x =
[h1h2h3] ei
[h7h8h9] ei

(e0i)y =
[h4h5h6] ei
[h7h8h9] ei

(9)

Multiplying by the dominator and rearranging terms yields two new linear constrains on H for every pair of cor-
responding epipoles ei and e0i: "

ei
t ~0t (e0i)xei

t

~0t ei
t (e0i)yei

t

#
2�9

~h = 0 (10)

9



where~0t = [0; 0; 0]. Every pair of temporally corresponding epipoles, ei and e0i, thus imposes two linear constraints
on H . These 2n constraints (i = 1; ::; n) can be added to the set of linear equations in Eq. (8) which are imposed
by the homographies. Alternatively, the epipole-related constraints can be used alone to solve for H , thus avoiding
the need to enforce plane-consistency on the homographies. Theoretically, four pairs of corresponding epipoles ei
and e0i in general position (no 3 on the same line) are sufficient.

4 Recovering Temporal Synchronization Between Sequences

So far we have assumed that the temporal synchronization between the two sequences is known and given. Namely,
that frame Ii in sequence S corresponds to frame I0i in sequence S0, and therefore the transformation Ti corresponds
to transformation T 0i . Such information is often available from time stamps. However, when such synchronization
is not available, we can recover it. Given two unsynchronized sequences of transformations T1; :::Tn and T 01; :::T

0

m,
we wish to recover the unknown temporal shift �t between them. Let Ti and T 0i+�t be temporally corresponding
transformations (namely, they occurred at the same time instance). Then from Eq. (4) we know that they should
satisfy eig(Ti) k eig(T 0

i+�t) (i.e., the 3�1 vectors of eigenvalues should be parallel). In other words, the similarity
measure sim(Tti ; T

0

t0
i
+�t

) of Eq. (5) should equal 1 (corresponding to cos(0), i.e., an angle of 0� between the two

vectors). All pairs of corresponding transformations Ti and T 0i+�t must simultaneously satisfy this constraint for
the correct time shift �t. Therefore, we recover the unknown temporal time shift �t by maximizing the following
objective function:

SIM(�t) =
X
i

sim(Ti; Ti+�t)
2 (11)

The maximization is currently performed by an exhaustive search over a finite range of valid time shifts �t. To ad-
dress larger temporal shifts, we apply a hierarchical search. Coarser temporal levels are constructed by composing
transformations to obtain fewer transformation between more distant frames.

The objective function of Eq. (11) can be generalized to handle sequences of different frame rates, such as se-
quences obtained by NTSC cameras (30 frame/sec) vs. PAL cameras (25 frames/sec). The ratio between frames
corresponding to equal time steps in the two sequences is 25 : 30 = 5 : 6. Therefore, the objective function that
should be maximized for an NTSC-PAL pair of sequences is:

SIM(�t) =
X
i

sim(T
5(i+1)

5i
; T 0

6(i+1)+�t

6i+�t
)2 (12)

Where T j
i is the transformation from frame Ii to frame Ij . In our experiments, all sequences were obtained by PAL

video cameras. Therefore only the case of equal frame-rate (Eq. (11)) was experimentally verified. We found this
method to be very robust. It successfully recovered the temporal shift up to field (half-frame) accuracy. Sub-field
accuracy may be further recovered by interpolating the values of SIM(�t) obtained at discrete time shifts.

5 Applications

This section illustrates the applicability of our method to solving some real-world problems, which are particularly
difficult for standard image alignment techniques. These include: (i) Alignment of non-overlapping sequences for
generation of wide-screen movies from multiple narrow-screen movies (such as in IMAX films), (ii) Alignment
of sequences obtained at significantly different zooms (e.g., for surveillance applications), and (iii) Alignment of
multi-sensor sequences for multi-sensor fusion. We show results of applying the method to complex real-world
sequences. All sequences which we experimented with, were captured by “off-the-shelf” consumer CCD cameras.
The cameras were attached to each other to minimize the distance between their centers of projections. The joint
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Wide view Zoomed View Aligned Views

(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)

Figure 5: Finding zoomed region. This figure displays three different examples (one at each row), each one with different
zoom factor. The left column (1.a, 2.a, 3.a) display one frame from each of the three wide-FOV sequences. The temporally
corresponding frames from the corresponding narrow-FOV sequences are displayed in the center column (1.b, 2.b, 3.b). The
correct time shift was automatically detected for each pair of narrow/wide FOV sequences. Each image on the right col-
umn shows super-position of corresponding frames of the two sequences after spatio-temporal alignment, displayed by color
averaging (1.c, 2.c, 3.c). For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

camera motion was performed manually (i.e., a person would manually hold and rotate the two attached cameras).
No temporal synchronization tool was used.

The frame-to-frame input transformations within each sequence (homographies T1; :::; Tn and T 01; :::; T
0

n) were
extracted using the method described in [18]. Inaccurate frame-to-frame transformations Ti are pruned out by using
two outlier detection mechanisms (see Appendix A). The input sequences were usually several seconds long to
guaranty significant enough motion. The temporal time shift was recovered using the algorithm described in Sec. 4
up to field accuracy. Finally, the best thirty or so transformations were used in the estimation of the inter-camera
homography H (using the algorithm described in Sec. 3.1).

5.1 Alignment of Non-Overlapping Sequences

Fig. 3 shows an example of alignment of non-overlapping sequences. The left camera is zoomed-in and rotated
relative to the right camera. The correct spatio-temporal alignment can be seen in Fig. 3.c. Note the accurate align-
ment of the running person both in time and in space.

Our approach to sequence alignment can be used to generate wide-screen movies from two (or more) narrow
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Visible IR Output

(a) (b) (c)

Figure 6: Multi-sensor Alignment. (a) and (b) are temporally corresponding frames from the visible-light and near-IR
sequences, respectively (the temporal alignment was automatically detected). The inside of the building is visible only in the
visible-light sequence, while the IR sequence captures the details outdoors (e.g., the dark trees, the sign, the bush). (c) shows
the results of fusing the two sequences after spatio-temporal alignment. The fused sequence preserves the details from both
sequences. Note the high accuracy of alignment (both in time and in space) of the walking lady. For more details see text.
For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

field-of-view movies (such as in IMAX movies). Such an example is shown in Fig. 4. To verify the accuracy of
alignment (both in time and in space), we allowed for a very small overlap between the two sequences. However,
this image region was not used in the estimation process, to imitate the case of truly non-overlapping sequences.
The overlapping region was used only for display and verification purposes. Fig. 4.c shows the result of combining
the two sequences (by averaging corresponding frames) after spatio-temporal alignment. Note the accurate spatial
as well as temporal alignment of the soccer player in the averaged overlapping region.

5.2 Alignment of Sequences Obtained at Different Zooms

Often in surveillance applications two cameras are used, one with a wide FOV (field-of-view) for observing large
scene regions, and the other camera with a narrow FOV (zoomed-in) for detecting small objects. Matching two such
images obtained at significantly different zooms is a difficult problem for standard image alignment methods, since
the two images display different features which are prominent at the different resolutions. Our sequence alignment
approach may be used for such scenarios. Fig. 5 shows three such examples. The results of the spatio-temporal
alignment (right column of Fig. 5) are displayed in the form of averaging temporally corresponding frames after
alignment according to the computed homography and the computed time shift. In the first example (top row of
Fig. 5) the zoom difference between the two cameras was approximately 1:3. In the second example (second row)
it was �1:4, and in the third example (bottom row) it was �1:8. Note the small red flowers in the zoomed view
(Fig. 5.2.b), that can barely be seen in the corresponding low resolution wide-view frame (Fig. 5.2.a). The same
holds for the Pagoda in Fig. 5.3.b

5.3 Multi-Sensor Alignment

Images obtained by sensors of different modalities, e.g., IR (Infra-Red) and visible light, can vary significantly in
their appearance. Features appearing in one image may not appear in the other, and vice versa. This poses a problem
for image alignment methods. Our sequence alignment approach, however, does not require consistent appearance
between the two sequences, and can therefore be applied to solve the problem. Fig. 6 shows an example of two such
sequences, one captured by a near IR camera, while the other by a regular video (visible-light) camera. The scene
was shot in twilight. In the sequence obtained by the regular video camera (Fig.6.(a)), the outdoor scene is barely
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(a) (b) (c)

Figure 7: The sequence used for empirical evaluation. (a,b,c) are three frames (0,150,300) out of the original 300
frames. This sequence was used as the base sequence for the quantitative experiments summarized in Table 1.

visible, while the inside of the building is clearly visible. The IR camera, on the other hand, captures the outdoor
scene in great detail, while the indoor part (illuminated by “cold” neon light) was invisible to the IR camera (Fig.
6.(b)). The result of the spatio-temporal alignment is illustrated by fusing temporally corresponding frames. The IR
camera provides only intensity information, and was therefore fused only with the intensity (Y) component of the
visible-light camera (using the image-fusion method of [4]). The chrome components (I and Q) of the visible-light
camera supply the color information.

The reader is encouraged to view color sequences at www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

6 Analysis

In this section we evaluated the effectiveness and stability of the presented approach empirically (Sec. 6.1), theo-
retically (Sec. 6.2) and numerically (Sec. 6.3).

6.1 Empirical Evaluation

In order to empirically verify the accuracy of our method, we took a real video sequence (see Fig. 7) and generated
from it pairs of sequences with known (ground truth) spatial transformation H and temporal shift �t. We then
applied our algorithm and compared the recovered H and �t with the ground truth.

For the case of non overlapping sequences, the real sequence of Fig. 7 was split in the middle, producing two
non-overlapping sub-sequences of half-a-frame width each. The true (ground truth) homography H therefore corre-
sponds to a horizontal shift by the width of a halved frame (352 pixels), and �t in this case is 0. The “inter-camera”
homography H was recovered up to a misalignment error of less than 0.7 pixel over the entire image. The temporal
shift (�t = 0) was recovered accurately from the frame-to-frame transformations.

To empirically verify the accuracy of our method in the presence of large zooms and large rotations, we ran the
algorithm on following three manipulated sequences with known (ground truth) manipulations: We warped the
sequence of Fig. 7 (once by a zoom factor of 2, once by a zoom factor of 4, and once rotated it by 180o) to generate
the second sequence.

The results are summarized in Table 1. The reported residual misalignment was measured as follows: The re-
covered homography was composed with the inverse of the ground-truth homography: H�1trueHrecovored. Ideally,
the composed homography should be the identity matrix. The errors reported in Table 1 are the maximal residual
misalignment induced by the composed homography over the entire image. In all the cases the correct �t was
recovered (not shown in the table).

6.2 Uniqueness of Solution

This section studies how many pairs of corresponding transformations Ti and T 0i are required in order to uniquely
resolve the inter-camera homography H . To do so we examine the number of constraints imposed on H by a single
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Applied Recovered Max Residual
Transformation Transformation Misalignment

Horizontal shift
of 352 pixels

Horizontal shift
of 351.6 pixels

0.7 pixels

Zoom factor = 2 Zoom factor = 1.9992 0.4 pixels
Zoom factor = 4 Zoom factor = 4.0048 0.4 pixels
Rotation by 180o Rotation by 180:00o 0.01 pixels

Table 1: Quantitative results. This table summarizes the quantitative results with respect to ground truth. Each row corre-
sponds to one experiment. In each experiment a real video sequence (Fig. 7) was warped (“manipulated”) by a known homog-
raphy, to generate a second sequence. The left column describes the type of spatial transformation applied to the sequence, the
center column describes the recovered transformation, and the right column describes the residual error between the ground-
truth homography and the recovered homography (measured in maximal residual misalignment in the image space). In all 4
cases the correct temporal shift was recovered accurately. See text for further details.

pair of transformations via the similarity equation Eq. (3). Since we can extract the scale factor si directly from Ti
and T 0i (see Sec. 3.1) we can omit the scale factor si and study the following question: How many constraints does
an equation of the form G = HBH�1 impose on H? (e.g., B = Ti and G = T 0i )

4.
The following notations are used: Denote by �1; �2 �3 the eigenvalues of the matrix B in decreasing order

(j�1j � j�2j � j�3j). Denote by ~ub1 ; ~ub2 ; ~ub3 the corresponding eigenvectors with unit norm (jj~ub1 jj = jj~ub2 jj =
jj~ub3 jj = 1). Denote by rj the algebraic multiplicity5 of the eigenvalue �j , and denote by Vj = f~v 2 Rn : B~v =
�j~vg the corresponding eigen subspace.

Basic Constraints:
Similar (conjugate) matrices (e.g., B and G) have the same eigenvalues but different eigenvectors. Their eigenvec-
tors are related by H . If ub is an eigenvector of B with corresponding eigenvalue �, then Hub is an eigenvector
of G with the same eigenvalue �: G(Hub) = �(Hub). The same holds for eigen subspaces. If V is an eigen
subspace of B corresponding to an eigenvalue �, then H(V ) is an eigen subspace of Gwith the same eigenvalue �.
We investigate the number of constraints imposed on H by B and G according to the dimensionality of their eigen
subspaces. Let V be the eigen subspace corresponding to an eigenvector ub of B. We investigate three possible
cases, one for each possible dimensionality of V , i.e., dim(V ) = 1; 2; 3.
Case I: dim(V ) = 1. This case mostly occurs when all three eigenvalues are distinct, but can also occur if some
eigenvalues have algebraic multiplicity two or even three. In all these cases, V is spanned by the single eigenvector
ub. Similarly H(V ) is spanned by the eigenvector ug of G. Therefore:

Hub = �ug (13)

with an unknown scale factor �. Eq. (13) provides 3 linear equations in H and one new unknown �, thus in total
it provides two new linearly independent constraints on H .
Case II: dim(V ) = 2. This occurs in one of the following two cases: (a) when there exists an eigenvalue with
algebraic multiplicity two, or (b) when there is only one eigenvalue with algebraic multiplicity three, but the eigen
subspace spanned by all eigenvectors has dimensionality of two6. When dim(V ) = 2 then two eigenvectors span
V (w.l.o.g.,ub1 and ub2). Then every linear combination of ub1 and ub2 is also an eigenvector ofB with the same

4A general analysis of matrix equations of the form GH = HB may be found in [10].
5If �1 6= �2 6= �3 then the algebraic multiplicity of all eigenvalues is 1 (rj = 1). If �1 = �2 6= �3 then the algebraic multiplicity of

�1 and �2 is 2, and the algebraic multiplicity of �3 is 1 (r1 = r2 = 2 and r3 = 1). If �1 = �2 = �3 then the algebraic multiplicity of
�1,�2;and �2 is 3 (r1 = r2 = r3 = 3).

6Eigenvalues with algebraic multiplicity 2 and 3 are not rare. For example a homography defined by pure shift (�x;�y) has the form:
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eigenvalue. Similarly, every linear combination of ug1 and ug2 is an eigenvector of G with the same eigenvalue.
Therefore:

Hubj = �jug1
+ �jug2 (14)

where �j and �j are unknown scalars (j = 1; 2). Hence, each of the two eigenvectors ub1 and ub2 provides 3
linear equations and 2 new unknowns. Therefore, in total, together they provide 2 new linear constraints on H .
Case III: dim(V ) = 3. In this case any vector is an eigenvector (all with the same eigenvalue �). This is the case
when B �= G �= �I are the identity transformation up to scale, i.e., no camera motion. In this case (as expected)
B and G provide no additional constraints on H .

Counting Constrains:
So far we counted the number of constraints imposed on H by a single eigen subspace. In order to count the total
number of linear constraints that B and G impose on H , we analyze every possible combination of eigen subspaces
according to the algebraic multiplicity of their eigenvalues:

1. �i 6= �j 6= �k. This implies Vi 6= Vj 6= Vk and dim(Vi) = dim(Vj) = dim(Vk) = 1.

2. �i = �j 6= �k (Vi = Vj 6= Vk). There are two such cases:
(a) dim(Vi = Vj) = 2, and dim(Vk) = 1.
(b) dim(Vi = Vj) = 1, and dim(Vk) = 1.

3. �i = �j = �k. In this case there is only a single eigen subspace V = Vi = Vj = Vk. Its dimensionality may
be 1,2, or 3.

The following table summarizes the number of linearly independent constraints for each of the above cases:

Eigenvalue Eigen # of linearly
Case Algebraic Subspace independent

Multiplicity Dimensionality constraints
(1) �i 6= �j 6= �k jVij = jVjj = jVkj = 1 6
(2.a) �i = �j 6= �k jVi = Vjj = 2; jVkj = 1 4
(2.b) �i = �j 6= �k jVi = Vjj = 1; jVkj = 1 4
(3.a) �i = �j = �k jVi = Vj = Vkj = 1 2
(3.b) �i = �j = �k jVi = Vj = Vkj = 2 2
(3.c) �i = �j = �k jVi = Vj = Vkj = 3 0

To summarize: When B (and G) have either two or three distinct eigenvalues (which is typical of general frame-
to-frame transformations), then two independent pairs of transformations suffice to uniquely determine H . This is
because each pair of transformations imposes 4 to 6 linearly independent constraints, and in theory 8 independent
linear constraints suffice to uniquely resolve H (up to arbitrary scale factor).

6.3 Numerical Stability

The final step in our algorithm is to solve a homogeneous set of linear equations (Eq. (8)). Care has to be taken
when solving this system. For example, inaccuracies in the estimated frame-to-frame transformations decrease the

H =

"
1 0 �x
0 1 �y
0 0 1

#
. This matrix has a single eigenvalue �1 = �2 = �3 = 1 with algebraic multiplicity three. The corresponding

eigen subspace has dimensionality 2. It is spanned by two linearly independent eigenvectors [1; 0; 0]t and [0; 1; 0]t.
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accuracy of the final output. The previous section showed that two independent pairs of transformations may suf-
fice to uniquely determine H . In practice, however, to increase numerical stability, we use all available constraints
from all pairs of reliable transformations after subsampling of the sequences, outlier rejection and normalization.
These are explained next:

Temporal Subsampling: When the frame-to-frame transformations are too small, we often temporally subsam-
ple the sequences to obtain more significant transformations between successive frames. In our experiments where
video clips were a couple of hundred frames long, we usually used 30 reliable transformations between distant (non-
successive) frames. Such temporal subsampling should be done after recovering the temporal synchronization, to
assure that it is done in a temporally synchronized manner across the two sequences.

Outlier Rejection: Inaccurate frame-to-frame transformations Ti are pruned out by using two outlier detection
mechanisms:
(i) The transformation between successive frames within each sequence are computed in both directions. Let Ti be
the transformation from Ii to Ii+1, and TReverse

i the transformation from Ii+1 to Ii. Then we measure the deviation
of the composed matrix TiTReverse

i from the identity matrix in terms of the maximal induced residual misalignment
of pixels, i.e.,

Reliability(Ti) = max
p2Ii

jjTiT
Reverse
i p� pjj (15)

(ii) The similarity criterion of Eq. (5) can also be used to verify the degree of “similarity” between a pair of trans-
formations Ti and T 0i . After �t has been estimated and before H is estimated, an unreliable pair of transformations
can be detected and pruned out by measuring the deviation of Sim(Ti; T

0

i ) from 1. However, the first outlier cri-
terion (that of Eq. (15)) proved to be more powerful.

Matrix Normalization: Using the heuristic provided in [11] (originly derived for Gaussian elimination) we nor-
malize (scale) components of the input matrices Ti and T 0i in a way that the rows of the matrix A of Eq. (8) will
have approximately the same norm. This is an equivalent step to the scaling proposed by Hartley [13] for recover-
ing fundamental matrices. This step indeed improve the results.

Preferred Camera Motions: When acquiring the sequences of input transformations, we usually have control
over the camera motion. In general, any type of camera motion provides a frame-to-frame transformation which
induces constraints on the inter-camera homography H . However, some transformations provide more stable sets
of equations than others. In particular, we would like to generate sequences of transformations which provide more
reliable components in each column of the matrix A in Eq. (8). For example, image-plane rotations (i.e., rotations
about the optical axis of one of the cameras) usually provide reliable entries in all columns of Mi (a block of A),
thus impose stable constraints on H . To conclude, the camera rig can (and should) be moved freely, however, it is
recommended that a few of the camera movements include non-negligible image-plane rotations.

7 Conclusion

This paper presents an approach for aligning two sequences (both in time and in space), even when there is no
common spatial information between the sequences. This was made possible by replacing the need for “consistent
appearance” (which is a fundamental requirement in standard images alignment techniques), with the requirement
of “consistent temporal behavior”, which is often easier to satisfy. We demonstrated applications of this approach
to real-world problems, which are inherently difficult for regular image alignment techniques.
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Abstract. We propose a method for constructing a video sequence of
high space-time resolution by combining information from multiple low-
resolution video sequences of the same dynamic scene. Super-resolution
is performed simultaneously in time and in space. By \temporal super-
resolution" we mean recovering rapid dynamic events that occur faster
than regular frame-rate. Such dynamic events are not visible (or else
observed incorrectly) in any of the input sequences, even if these are
played in \slow-motion".
The spatial and temporal dimensions are very di�erent in nature, yet are
inter-related. This leads to interesting visual tradeo�s in time and space,
and to new video applications. These include: (i) treatment of spatial
artifacts (e.g., motion-blur) by increasing the temporal resolution, and
(ii) combination of input sequences of di�erent space-time resolutions
(e.g., NTSC, PAL, and even high quality still images) to generate a high
quality video sequence.

Keywords: Super-resolution (in time and space), Visual motion.

1 Introduction

A video camera has limited spatial and temporal resolution. The spatial reso-
lution is determined by the spatial density of the detectors in the camera and
by their induced blur. These factors limit the minimal size of spatial features or
objects that can be visually detected in an image. The temporal resolution is de-
termined by the frame-rate and by the exposure-time of the camera. These limit
the maximal speed of dynamic events that can be observed in a video sequence.

Methods have been proposed for increasing the spatial resolution of images by
combining information from multiple low-resolution images obtained at sub-pixel
displacements (e.g. [1, 2, 5, 6, 8{12]. See [3] for a comprehensive review). These,
however, usually assume static scenes and do not address the limited temporal
resolution observed in dynamic scenes. In this paper we extend the notion of
super-resolution to the space-time domain. We propose a uni�ed framework for
increasing the resolution both in time and in space by combining information
from multiple video sequences of dynamic scenes obtained at (sub-pixel) spatial
and (sub-frame) temporal misalignments. As will be shown, this enables new
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(a) (b)

Fig. 1. Motion blur. Distorted shape due to motion blur of very fast moving objects
(the tennis ball and the racket) in a real tennis video. The perceived distortion of the
ball is marked by a white arrow. Note, the \V"-like shape of the ball in (a), and the
elongated shape of the ball in (b). The racket has almost \disappeared".

visual capabilities of dynamic events, gives rise to visual tradeo�s between time
and space, and leads to new video applications. These are substantial in the
presence of very fast dynamic events.

Rapid dynamic events that occur faster than the frame-rate of video cameras
are not visible (or else captured incorrectly) in the recorded video sequences.
This problem is often evident in sports videos (e.g., tennis, baseball, hockey),
where it is impossible to see the full motion or the behavior of the fast moving
ball/puck. There are two typical visual e�ects in video sequences which are
caused by very fast motion. One e�ect (motion blur) is caused by the exposure-
time of the camera, and the other e�ect (motion aliasing) is due to the temporal
sub-sampling introduced by the frame-rate of the camera:

(i) Motion Blur: The camera integrates the light coming from the scene during
the exposure time in order to generate each frame. As a result, fast moving
objects produce a noted blur along their trajectory, often resulting in distorted
or unrecognizable object shapes. The faster the object moves, the stronger this
e�ect is, especially if the trajectory of the moving object is not linear. This
e�ect is notable in the distorted shapes of the tennis ball shown in Fig. 1. Note
also that the tennis racket also \disappears" in Fig. 1.b. Methods for treating
motion blur in the context of image-based super-resolution were proposed in [2,
11]. These methods however, require prior segmentation of moving objects and
the estimation of their motions. Such motion analysis may be impossible in the
presence of severe shape distortions of the type shown in Fig. 1. We will show
that by increasing the temporal resolution using information from multiple video
sequences, spatial artifacts such as motion blur can be handled without the need
to separate static and dynamic scene components or estimate their motions.

(ii) Motion-Based (Temporal) Aliasing: A more severe problem in video se-
quences of fast dynamic events is false visual illusions caused by aliasing in time.
Motion aliasing occurs when the trajectory generated by a fast moving object is
characterized by frequencies which are higher than the frame-rate of the camera
(i.e., the temporal sampling rate). When that happens, the high temporal fre-
quencies are \folded" into the low temporal frequencies. The observable result
is a distorted or even false trajectory of the moving object. This e�ect is illus-
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(a) (b) (c)

Fig. 2. Motion aliasing. (a) shows a ball moving in a sinusoidal trajectory. (b) dis-
plays an image sequence of the ball captured at low frame-rate. The perceived motion is
along a straight line. This false perception is referred to in the paper as \motion alias-
ing". (c) Illustrates that even using an ideal temporal interpolation will not produces
the correct motion. The �lled-in frames are indicated by dashed blue line.

trated in Fig. 2, where a ball moves fast in sinusoidal trajectory of high frequency
(Fig. 2.a). Because the frame-rate is much lower (below Nyquist frequency of the
trajectory), the observed trajectory of the ball is a straight line (Fig. 2.b). Play-
ing that video sequence in \slow-motion" will not correct this false visual e�ect
(Fig. 2.c). Another example of motion-based aliasing is the well-known visual
illusion called the \wagon wheel e�ect": When a wheel is spinning very fast,
beyond a certain speed it will appear to be rotating in the \wrong" direction.

Neither the motion-based aliasing nor the motion blur can be treated by
playing such video sequences in \slow-motion", even when sophisticated tempo-
ral interpolations are used to increase the frame-rate. This is because the infor-
mation contained in a single video sequence is insuÆcient to recover the missing
information of very fast dynamic events (due to excessive blur and subsam-
pling). Multiple video sequences, on the other hand, provide additional samples
of the dynamic space-time scene. While none of the individual sequences provides
enough visual information, combining the information from all the sequences al-
lows to generate a video sequence of high space-time resolution (Sec. 2), which
displays the correct dynamic events. Thus, for example, a reconstructed high-
resolution sequence will display the correct motion of the wagon wheel despite
it appearing incorrectly in all of the input sequences (Sec. 3).

The spatial and temporal dimensions are very di�erent in nature, yet are
inter-related. This introduces visual tradeo�s between space and times, which are
unique to spatio-temporal super-resolution, and are not applicable in traditional
spatial (i.e., image-based) super-resolution. For example, output sequences of
di�erent space-time resolutions can be generated for the same input sequences.
A large increase in the temporal resolution usually comes at the expense of a
large increase in the spatial resolution, and vice versa.

Furthermore, input sequences of di�erent space-time resolutions can be mean-
ingfully combined in our framework. In traditional image-based super-resolution
there is no incentive to combine input images of di�erent spatial resolutions,
since a high-resolution image will subsume the information contained in a low-
resolution image. This, however, is not the case here. Di�erent types of cameras of
di�erent space-time resolutions may provide complementary information. Thus,
for example, we can combine information obtained by high-quality still cameras
(which have very high spatial-resolution, but extremely low \temporal resolu-
tion"), with information obtained by standard video cameras (which have low
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spatial-resolution but higher temporal resolution), to obtain an improved video
sequence of high spatial and high temporal resolution. These issues and other
space-time visual tradeo�s are discussed in Sec. 4.

2 Space-Time Super-Resolution

Let S be a dynamic space-time scene. Let fSl
igni=1 be n video sequences of that

dynamic scene recorded by n di�erent video cameras. The recorded sequences
have limited spatial and temporal resolution. Their limited resolutions are due to
the space-time imaging process, which can be thought of as a process of blurring
followed by sampling in time and in space.

The blurring e�ect results of the fact that the color at each pixel in each frame
(referred to as a \space-time point" and marked by the small pink or blue box in
Fig. 3.a) is an integral (a weighted average) of the colors in a space-time region
in the dynamic scene S (marked by the large pink or blue boxes respectively in
Fig. 3.a). The temporal extent of this region is determined by the exposure-time
of the video camera, and the spatial extent of this region is determined by the
spatial point-spread-function (PSF) of the camera (determined by the properties
of the lens and the detectors [4]).

The sampling process also has a spatial and a temporal component. The
spatial sampling results from the fact that the camera has a discrete and �nite
number of detectors (the output of each is a single pixel value), and the temporal
sampling results from the fact that the camera has a �nite frame-rate resulting
in discrete frames (typically 25 frames=sec in PAL cameras and 30 frames=sec
in NTSC cameras).

The above space-time imaging process inhibits high spatial and high temporal
frequencies of the dynamic scene, resulting in video sequences of low space-time
resolutions. Our objective is to use the information from all these sequences to

construct a new sequence Sh of high space-time resolution. Such a sequence will
have smaller blurring e�ects and �ner sampling in space and in time, and will
thus capture higher space-time frequencies of the dynamic scene S. In particular,
it will capture �ne spatial features in the scene and rapid dynamic events which
cannot be captured by the low-resolution sequences.

The recoverable high-resolution information in Sh is limited by its spatial
and temporal sampling rate (or discretization) of the space-time volume. These
rates can be di�erent in space and in time. Thus, for example, we can recover a

sequence Sh of very high spatial resolution but low temporal resolution (e.g., see
Fig. 3.b), a sequence of very high temporal resolution but low spatial resolution
(e.g., see Fig. 3.c), or a bit of both. These tradeo�s in space-time resolutions and
their visual e�ects will be discussed in more detail later in Sec. 4.2.

We next model the geometrical relations (Sec. 2.1) and photometric relations

(Sec. 2.2) between the unknown high-resolution sequence Sh and the input low-

resolution sequences fSl
igni=1.
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2.1 The Space-time Coordinate Transformations

In general a space-time dynamic scene is captured by a 4D representation (x; y; z; t).
For simplicity, in this paper we deal with dynamic scenes which can be modeled
by a 3D space-time volume (x; y; t) (see in Fig. 3.a). This assumption is valid if
one of the following conditions holds: (i) the scene is planar and the dynamic
events occur within this plane, or (ii) the scene is a general dynamic 3D scene,
but the distances between the recording video cameras are small relative to their
distance from the scene. (When the camera centers are very close to each other,
there is no relative 3D parallax.) Under those conditions the dynamic scene can
be modeled by a 3D space-time representation.

W.l.o.g., let Sl
1 be a \reference" sequence whose axes are aligned with those

of the continuous space-time volume S (the unknown dynamic scene we wish to

reconstruct). Sh is a discretization of S with a higher sampling rate than that of

Sl
1. Thus, we can model the transformation T1 from the space-time coordinate

system of Sl
1 to the space-time coordinate system of Sh by a scaling transfor-

mation (the scaling can be di�erent in time and in space). Let Ti!1 denote the

space-time coordinate transformation from the reference sequence Sl
1 to the i-th

low resolution sequence Sl
i (see below). Then the space-time coordinate transfor-

mation of each low-resolution sequence Sl
i is related to that of the high-resolution

sequence Sh by Ti = T1 � Ti!1.
The space-time coordinate transformation between two input sequences (Ti!1)

results from the di�erent setting of the di�erent cameras. A temporal misalign-
ment between two sequences occurs when there is a time-shift (o�set) between
them (e.g., if the cameras were not activated simultaneously), or when they dif-
fer in their frame rates (e.g., PAL and NTSC). Such temporal misalignments
can be modeled by a 1-D aÆne transformation in time, and is typically at sub-
frame time units. The spatial misalignment between the two sequences results
from the fact that the two cameras have di�erent external and internal calibra-
tion parameters. In our current implementation, as mentioned above, because
the camera centers are assumed to be very close or else the scene is planar, the
spatial transformation can thus be modeled by an inter-camera homography. We
computed these space-time coordinate transformations, using the method of [7],
which provides high sub-pixel and high sub-frame accuracy.

Note that while the space-time coordinate transformations between the se-
quences (fTigni=1) are very simple (a spatial homography and a temporal aÆne
transformation), the motions occurring over time within the dynamic scene can
be very complex. Our space-time super-resolution algorithm does not require
knowledge of these motions, only the knowledge of fTigni=1. It can thus handle
very complex dynamic scenes.

2.2 The Space-Time Imaging Model

As mentioned earlier, the space-time imaging process induces spatial and tem-
poral blurring in the low-resolution sequences. The temporal blur in the low-
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resolution sequence Sl
i is caused by the exposer-time �i of the i-th camera. The

spatial blur in Sl
i is due to the spatial point-spread-function (PSF) of the i-th

camera, which can be approximated by a 2D spatial Gaussian with std �i. (A
method to estimate the PSF of a camera can be found in [10].)

Let Bi = B(�i;�i;pli)
denote the combined space-time blur operator of the i-th

camera corresponding to the low resolution space-time point pli = (xli; y
l
i; t

l
i). Let

ph = (xh; yh; th) be the corresponding high resolution space-time point ph =

Ti(p
l
i) (ph is not necessarily an integer grid point of Sh, but is contained in

the continuous space-time volume S). Then the relation between the unknown

space-time values S(ph), and the known low resolution space-time measurements

Sl
i(p

l
i), can be expressed by:

Sl
i

�
pli
�
=

�
S �Bh

i

�
(ph) =

R
x

R
y

R
t

p = (x; y; t) 2 Support(Bh
i
)

S(p) Bh
i (p� ph)dp (1)

where Bh
i = Ti(B(�i;�i;pli)

) is a point-dependent space-time blur kernel repre-

sented in the high resolution coordinate system. Its support is illustrated by the
large pink or blue boxes in Fig. 3.a. To obtain a linear equation in the terms of

the discrete unknown values of Sh we used a discrete approximation of Eq. (1).
In our implementation we used a non-isotropic approximation in the temporal
dimension, and an isotropic approximation in the spatial dimension (see [6] for
a discussion of the di�erent discretization techniques in the context of image-
based super-resolution ). Eq. (1) thus provides a linear equation that relates the

unknown values in the high resolution sequence Sh to the known low resolution

measurements Sl
i(p

l
i).

When video cameras of di�erent photometric responses are used to produce
the input sequences, then a preprocessing step that histogram-equalizes all the
low resolution sequences is necessary. This step is required to guarantee consis-
tency of the relation in Eq. (1) with respect to all low resolution sequences.

2.3 The Reconstruction Step

Eq. (1) provides a single equation in the high resolution unknowns for each low
resolution space-time measurement. This leads to the following huge system of

linear equations in the unknown high resolution elements of Sh:

A
�!
h =

�!
l (2)

where
�!
h is a vector containing all the unknown high resolution color values (in

YIQ) of Sh,
�!
l is a vector containing all the space-time measurements from all

the low resolution sequences, and the matrixA contains the relative contributions
of each high resolution space-time point to each low resolution space-time point,
as de�ned by Eq. (1).

When the number of low resolution space-time measurements in
�!
l is greater

than or equal to the number of space-time points in the high-resolution sequence
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Fig. 3. The space-time imaging process. (a) illustrates the space-time continuous
scene and two of the low resolution sequences. The large pink and blue boxes are the
support regions of the space-time blur corresponding to the low resolution space-time
measurements marked by the small pink and blue boxes. (b,c) show two di�erent possible
discretizations of the space-time volume resulting in two di�erent high resolution output
sequences. (b) has a low frame-rate and high spatial resolution, (c) has a high frame-rate
but low spatial resolution.

Sh (i.e., in
�!
h ), then there are more equations than unknowns, and Eq. (2) can

be solved using LSQ methods. This, however, implies that a large increase in

the spatial resolution (which requires very �ne spatial sampling in Sh) will come
at the expense of a signi�cant increase in the temporal resolution (which also

requires �ne temporal sampling in Sh), and vice versa. This is because for a given

set of input low-resolution sequences, the size of
�!
l is �xed, thus dictating the

number of unknowns in Sh. It can, however, be distributed di�erently between
space and time, resulting in di�erent space-time resolutions (see 4.2).

Directional space-time regularization: When there is an insuÆcient num-
ber of cameras relative to the required improvement in resolution (either in the
entire space-time volume, or only in portions of it), then the above set of equa-
tions (2) becomes ill-posed. To constrain the solution and provide additional
numerical stability, a space-time regularization term can be added to impose

smoothness on the solution Sh in space-time regions which have insuÆcient
information. We introduce a directional (or steerable [12]) space-time regulariza-
tion term which applies smoothness only in directions where the derivatives are

low, and does not smooth across space-time \edges". In other words, we seek
�!
h

which minimize the following error term:

min
�jjA�!h ��!

l jj2 + jjWxLx
�!
h jj2 + jjWyLy

�!
h jj2 + jjWtLt

�!
h jj2� (3)
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Where Lj (j = x; y; t) is matrix capturing the second derivative operator in the
direction j, and Wj is a diagonal weight matrix which captures the degree of
desired regularization at each space-time point in the direction j. The weights
in Wj prevent smoothing across space-time \edges". These weights are deter-
mined by the location, orientation and magnitude of space-time edges, and are
approximated using space-time derivatives in the low resolution sequences.
Solving the equation: The optimization problem of Eq. (3) has very large
dimensionality. For example, even for a simple case of four low resolution input
sequences, each one-second long (25 frames) and of size 128 � 128 pixels, we

get: 1282 � 25� 4 � 1:6� 106 equations from the low resolution measurements
alone (without regularization). Assuming a similar number of high resolution
unknowns poses a severe computational problem. However, matrix A is sparse
and local (i.e., all the non zero entries are located in a few diagonals), the system
of equations can be solved using \block relaxation" [13].

3 Examples

Empirical Evaluation: To examine the capabilities of temporal super-resolution
in the presence of strong motion aliasing and strong motion blur, we �rst sim-
ulated a sports-like scene with a very fast moving object. We recorded a single
video sequence of a basketball bouncing on the ground. To simulate high speed of
the ball relative to frame-rate and relative to the exposure-time (similar to those
shown in Fig. 1), we temporally blurred the sequence using a large (9-frame) blur
kernel, followed by a large subsampling in time by factor of 30. This process re-
sults in a low temporal-resolution sequences of a very fast dynamic event having

an \exposure-time" of about 1
3 of its frame-time. We generated 18 such low res-

olution sequences by starting the temporal sub-sampling at arbitrary starting
frames. Thus, the input low-resolution sequences are related by non-uniform
sub-frame temporal o�sets. Because the original sequence contained 210 frames,
each generated low-resolution sequence contains only 7 frames. Three of the 18
sequences are presented in Fig 4.a-c. To visually display the event captured in
each of these sequences, we super-imposed all 7 frames in each sequence. Each
ball in the super-imposed image represents the location of the ball at a di�erent
frame. None of the 18 low resolution sequences captures the correct trajectory
of the ball. Due to the severe motion aliasing, the perceived ball trajectory is
roughly a smooth curve, while the true trajectory was more like a cycloid (the
ball jumped 5 times on the oor). Furthermore, the shape of the ball is com-
pletely distorted in all input image frames, due to the strong motion blur.

We applied the super-resolution algorithm of Sec. 2 on these 18 low-resolution
input sequences, and constructed a high-resolution sequence whose frame-rate is
30 times higher than that of the input sequences. (In this case we requested an
increase only in the temporal sampling rate). The reconstructed high-resolution
sequence is shown in Fig. 4.d. This is a super-imposed display of some of the
reconstructed frames (every 8'th frame). The true trajectory of the bouncing
ball has been recovered. Furthermore, Figs. 4(e)-(f) show that this process has
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Temporal super-resolution. We simulated 18 low-resolution video record-
ings of a rapidly bouncing ball inducing strong motion blur and motion aliasing (see
text). (a)-(c) Display the dynamic event captured by three representative low-resolution
sequences. These displays were produced by super-position of all 7 frames in each low-
resolution sequences. All 18 input sequences contain severe motion aliasing (evident
from the falsely perceived curved trajectory of the ball) and strong motion blur (evident
from the distorted shapes of the ball). (d) The reconstructed dynamic event as captured
by the generated high-resolution sequence. The true trajectory of the ball is recovered,
as well as its correct shape. (e) A close-up image of the distorted ball in one of the low
resolution frames. (f) A close-up image of the ball at the exact corresponding frame in
time in the high-resolution output sequence.

removed almost all e�ects of motion blur and the true shape of moving ball has
been automatically recovered, although no single low resolution frame contains
the true shape of the ball. Note that no estimation of the ball motion was needed
to obtain these results. This e�ect is explained in more details in Sec. 4.1.

The above results obtained by temporal super-resolution cannot be obtained
by playing any low-resolution sequence in \slow-motion" due to the strong mo-
tion aliasing. Such results cannot be obtained either by interleaving frames from
the 18 input sequences, due to the non-uniform time shifts between the sequences
and due to the severe motion-blur observed in the individual image frames.

A Real Example - The \wagon-wheel e�ect": We used four independent
PAL video cameras to record a scene of a fan rotating clock-wise very fast. The
fan rotated faster and faster, until at some stage it exceeded the maximal ve-
locity that can be captured by video frame-rate. As expected, at that moment
all four input sequences display the classical \wagon wheel e�ect" where the fan
appears to be falsely rotating backwards (counter clock-wise). We computed the
spatial and temporal misalignments between the sequences at sub-pixel and sub-
frame accuracy using [7] (the recovered temporal misalignments are displayed
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(a) (b)

(c) (d)

(e)

Fig. 5. Temporal super-resolution (the \wagon wheel e�ect"). (a)-(d) display
3 successive frames from four PAL video recordings of a fan rotating clock-wise. Because
the fan is rotating very fast (almost 90o between successive frames), the motion aliasing
generates a false perception of the fan rotating slowly in the opposite direction (counter
clock-wise) in all four input sequences. The temporal misalignments between the input
sequences were computed at sub-frame temporal accuracy, and are indicated by their
time bars. The spatial misalignments between the sequences (e.g., due to di�erences
in zoom and orientation) were modeled by a homography, and computed at sub-pixel
accuracy. (e) shows the reconstructed video sequence in which the temporal resolution

was increased by a factor of 3. The new frame rate (75 frames
sec

) is also indicated by a
time bars. The correct clock-wise motion of the fan is recovered. Please view attached
video clips to perceive the strong dynamic e�ects.

in Fig. 5.a-d using a time-bar). We used the super-resolution method of Sec. 2
to increase the temporal resolution by a factor of 3 while maintaining the same
spatial resolution. The resulting high-resolution sequence displays the true for-
ward (clock-wise) motion of the fan. Example of a few successive frames from
each low resolution input sequence are shown in Fig.5.a-d for the portion where
the fan appears to be rotating counter clock-wise. A few successive frames from
the reconstructed high temporal-resolution sequence corresponding to the same
time are shown in Fig.5.e, showing the correctly recovered (clock-wise) motion.
It is diÆcult to perceive these strong dynamic e�ects via a static �gure (Fig. 5).
We therefore urge the reviewers to view the attached video clips where these ef-
fects are very vivid . Furthermore, playing the input sequences in \slow-motion"
(using any type of temporal interpolation) will not reduce the perceived false
motion e�ects. This is also shown in the attached video clips.
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4 Space-Time Visual Tradeo�s

The spatial and temporal dimensions are very di�erent in nature, yet are inter-
related. This introduces visual tradeo�s between space and time, which are
unique to spatio-temporal super-resolution, and are not applicable to traditional
spatial (i.e., image-based) super-resolution.

4.1 Temporal Treatment of Spatial Artifacts

When an object moves fast relative to the exposure time of the camera, it induces
observable motion-blur (e.g., see Fig. 1). The perceived distortion is spatial,
however the cause is temporal. We next show that by increasing the temporal
resolution we can handle the spatial artifacts caused by motion blur.

Motion blur is caused by the extended temporal blur due to the exposure-
time. To decrease e�ects of motion blur we need to decrease the temporal blur,
i.e., recover high temporal frequencies. This requires increasing the frame-rate
beyond that of the low resolution input sequences. In fact, to decrease the e�ect
of motion blur, the output temporal sampling rate must be increased so that the
distance between the new high resolution temporal samples is smaller than the
original exposure time of the low resolution input sequences.

This indeed was the case in the experiment of Fig. 4. Since the simulated
exposure time in the low resolution sequences was 1=3 of frame-time, an increase
in temporal sampling rate by a factor > 3 e�ectively reduces the motion blur.
The larger the increase the more e�ective the motion deblurring would be. This
increase is limited, of course, by the number of input cameras.

A method for treating motion blur in the context of image-based super-
resolution was proposed by [2, 11]. However, these methods require a prior seg-
mentation of moving objects and the estimation of their motions. These methods
will have diÆculties handling complex motions or motion aliasing. The distorted
shape of the object due to strong blur (e.g., Fig. 1) will pose severe problems in
motion estimation. Furthermore, in the presence of motion aliasing, the direction
of the estimated motion will not align with the direction of the induced blur.
For example, the motion blur in Fig. 4.a-c. is along the true trajectory and not
along the perceived one. In contrast, our approach does not require separation
of static and dynamic scene components, nor their motion estimation, thus can
handle very complex scene dynamics. However, we require multiple cameras.

Temporal frequencies in video sequences have very di�erent characteristics
than spatial frequencies, due to the di�erent characteristics of the temporal and
the spatial blur. The typical support of the spatial blur (PSF) is of a few pixels
(�>1 pixel), whereas the exposure time is usually smaller than a single frame-
time (� < frame-time). Therefore, if we do not increase the output temporal
sampling-rate enough, we will not improve the temporal resolution. In fact, if we

increase the temporal sampling-rate a little but not beyond 1
exposure time

of the

low resolution sequences, we may even introduce additional motion blur. This
dictates the number of input cameras needed for an e�ective decrease in the
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motion-blur. An example of a case where an insuÆcient increase in the temporal
sampling-rate introduced additional motion-blur is shown in Fig. 6.c3.

4.2 Producing Di�erent Space-Time Outputs

In standard spatial super-resolution the increase in sampling rate is equal in
all spatial dimensions. This is necessary in order to maintain the aspect ratio
of image pixels, and to prevent distorted-looking images. However, this is not
the case in space-time super-resolution. As explained in Sec. 2, the increase in
sampling rate in the spatial and temporal dimensions need not be the same.
Moreover, increasing the sampling rate in the spatial dimension comes at the
expense of increase in the temporal frame rate, and vice-versa. This is because
the number of unknowns in the high-resolution space-time volume depends on
the space-time sampling rate, whereas the number of equations provided by the
low resolution measurements remains �xed.

For example, assume that 8 video cameras are used to record a dynamic

scene. One can increase the spatial sampling rate alone by a factor of
p
8 in x

and y, or increase the temporal frame-rate alone by a factor of 8, or do a bit of
both: increase the sampling rate by a factor of 2 in all three dimensions. Such
an example is shown in Fig. 6. Fig. 6.a1 displays one of 8 low resolution input
sequences. (Here we used only 4 video cameras, but split them into 8 sequences
of even and odd �elds). Figs. 6.a2 and 6.a3 display two possible outputs. In Fig.
6.a2 the increase is by a factor of 8 in the temporal axis with no increase in the
spatial axes, and in Fig. 6.a3 the increase is by a factor of 2 in all axes x,y,t. Rows
(b) and (c) illustrate the corresponding visual tradeo�s. The \�1�1�8" option
(column 2) decreases the motion blur of the moving object (the toothpaste in
(c.2)), while the \�2�2�2" option (column 3) improves the spatial resolution
of the static background (b.3), but increases the motion blur of the moving
object (c.3). The latter is because the increase in frame rate was only by factor

2 and did not exceed 1
exposure time

of the video camera (see Sec. 4.1). In order to

create a signi�cant improvement in all dimensions, more than 4 video cameras
are needed.

4.3 Combining Di�erent Space-Time Inputs

So far we assumed that all input sequences were of similar spatial and temporal
resolutions. The space-time super-resolution algorithm of Sec. 2 is not restricted
to this case, and can handle input sequences of varying space-time resolutions.
Such a case is meaningless in image-based super-resolution, because a high res-
olution input image would always contain the information of a low resolution
image. In space-time super-resolution however, this is not the case. One camera
may have high spatial but low temporal resolution, and the other vice-versa.
Thus, for example, it is meaningful to combine information from NTSC and
PAL video cameras. NTSC has higher temporal resolution than PAL (30f=sec
vs. 25f=sec), but lower spatial resolution (640�480 pixels vs. 768�576 pixels). An
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extreme case of this idea is to combine information from still and video cameras.
Such an example is shown in Fig. 7. Two high quality still images (Fig. 7.a) of
high spatial resolutions (1152�864 pixels) but extremely low \temporal resolu-
tion" (the time gap between the two still images was 1.4 sec), were combined
with an interlaced (PAL) video sequence (Fig. 7.b) using the algorithm of Sec 2.
The video sequence has 3 times lower spatial resolution (we used �elds of size
384�288 pixels), but a high temporal resolution (50f=sec). The goal is to con-
struct a new sequence of high spatial and high temporal resolutions (1152�864
pixels at 50 images=sec). The output sequence shown in Fig. 7.c contains the
high spatial resolution from the still images (the sharp text) and the high tem-
poral resolution from the video sequence (the rotation of the toy dog and the
brightening and dimming of illumination).

In the example of Fig. 7 we used only one input sequence and two still images,
thus did not exceed the temporal resolution of the video or the spatial resolution
of the stills. However, when multiple video cameras and multiple still images are
used, the number of input measurements will exceed the number of output high
resolution unknowns. In such cases the output sequence will exceed the spatial
resolution of the still images and temporal resolution of the video sequences.

In Fig. 7 the number of unknowns was signi�cantly larger than the number of
low resolution measurements (the input video and the two still images). Yet, the
reconstructed output was of high quality. The reason for this is the following:
In video sequences the data is signi�cantly more redundant than in images,
due to the additional time axis. This redundancy provides more exibility in
applying physically meaningful directional regularization. In regions that have
high spatial resolution but small (or no) motion (such as in the sharp text in
Fig. 7), strong temporal regularization can be applied without decreasing the
space-time resolution. Similarly, in regions with dynamic changes but low spatial
resolution (such as in the rotating toy in Fig. 7), strong spatial regularization
can be employed without degradation in space-time resolution. More generally,
because a video sequence has much more data redundancy than an image has,
the use of directional space-time regularization in video-based super-resolution
is physically more meaningful and gives rise to recovery of higher space-time
resolution than that obtainable by image-based super-resolution with image-
based regularization.
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Fig. 6. Tradeo�s between spatial and temporal resolution. This �gure compares
the visual tradeo�s resulting from applying space-time super-resolution with di�erent
discretization of the space-time volume. (a.1) displays one of eight low-resolution input
sequences of a toothpaste in motion against a static background. (b.1) shows a close-up
image of a static portion of the scene (the writing on the poster), and (c.1) shows a
dynamic portion of the scene (the toothpaste). Column 2 (a.2, b.2, c.2) displays the
resulting spatial and temporal e�ects of applying super-resolution by a factor of 8 in
time only. Motion blur of the toothpaste is decreased. Column 3 (a.3, b.3, c.3) displays
the resulting spatial and temporal e�ects of applying super-resolution by a factor of 2
in all three dimensions x; y; t. The spatial resolution of the static portions is increased
(see \British" and the yellow line above it in b.3), but the motion blur is also increased
(c.3). See text for an explanation of these visual tradeo�s.
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Fig. 7. Combining still and video. A dynamic scene of a rotating toy-dog and vary-
ing illumination was captured by: (a) A still camera with spatial resolution of 1152�864
pixels, and (b) A video camera with 384�288 pixels at 50 f/sec. The video sequence was
1:4sec long (70 frames), and the still images were taken 1:4sec apart (together with the
�rst and last frames). The algorithm of Sec. 2 is used to generate the high resolution
sequence (c). The output sequence has the spatial dimensions of the still images and
the frame-rate of the video (1152� 864�50). It captures the temporal changes correctly
(the rotating toy and the varying illumination), as well the high spatial resolution of
the still images (the sharp text, see close-ups). Due to lack of space we show only a
portion of the images, but the proportions between video and still are maintained.
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Image-to-image matching methods (e.g., [Faugeras et al. 2001;
Hartley and Zisserman 2000; Xu and Zhang 1996; Bergen et al.
1992; Szeliski and Shum 1997; Zhang et al. 1995; Zoghlami et al.
1997]) are inherently restricted to the information contained in
individual images, i.e., the spatial variations within image frames
(which capture the scene appearance). But there are cases when
there is not enough common spatial information within the two im-
ages to allow reliable image matching. One such example is illus-
trated in Fig. 1. The input images 1.a and 1.b contain a single
object, but we want to match (or align) the entire frame. Align-
ment of image 1.a to image 1.b is not uniquely defined (see Fig.
1.c). However, a video sequence contains much more information
than any individual frame does. In particular, a video sequence
captures information about scene dynamics such as the trajectory
of the moving object shown in Fig. 1.d and 1.e, which in this case
provides enough information for unique alignment both in space
and in time (see Fig. 1.f). The scene dynamics, exemplified here
by trajectories of moving objects, is a property that is inherent to
the scene, and is thus common to all sequences recording the same
scene, even when taken from different video cameras. It therefore
forms an additional or alternative powerful cue for matching video
sequences.

The benefits of exploiting scene dynamics for matching se-
quences was noted before. Caspi and Irani [Caspi and Irani 2000]
described a direct (intensity-based) sequence-to-sequence align-
ment method. Their method is based on finding the space-time
transformation which minimizes the intensity differences (SSD) be-
tween the two sequences, and was applied to cases where the spatial
relation between the sequences could be modeled by a 2D para-
metric transformation (a homography). It was shown to be useful
for addressing rigid as well as complex non-rigid changes in the
scene (e.g., flowing water), and changes in illumination. However,
that method does not apply when the two sequences have differ-
ent appearance properties, such as with sensors of different sensing
modalities, nor when the spatial transformation between the two
sequences is very large, such as in wide base-line matching, or in
large differences in zoom.

This paper illustrates a feature-based approach for space-time
matching of video sequences. The “features” in our method are
space-time trajectories constructed from moving objects. This ap-
proach can recover the 3D epipolar geometry between sequences
recorded by widely separated video cameras, and can handle sig-
nificant differences in appearance between the two sequences.

The advantage of this approach over using regular feature-based
image-to-image matching is illustrated in Fig. 2. This figure shows
two sequences recording several small moving objects. Each fea-
ture point in the image-frame of Fig. 2.a (denoted by A-E) can in
principle be matched to any other feature point in the image-frame

�This work was partially supported by the European Commission
(VIBES Project IST-2000-26001).

of Fig. 2.b. There is no sufficient information in any individual
frame to uniquely resolve the point correspondences. Point trajec-
tories, on the other hand, have additional shape properties which
simplify the trajectory correspondence problem (i.e., which trajec-
tory corresponds to which trajectory) across the two sequences, as
shown in Fig. 2.c and 2.d.

Stein [Stein 1998] and Lee et.al. [Lee et al. 2000] described
a method for estimating a time shift and a homography between
two sequences based on alignment of centroids of moving objects.
However, in [Stein 1998; Lee et al. 2000] the centroids were treated
as an unordered collection of feature points and not as trajecto-
ries. In contrast, we enforce correspondences between trajecto-
ries, thus avoiding the combinatorial complexity of establishing
point matches of all points in all frames, resolving ambiguities in
point correspondences, and allowing for temporal correspondences
at sub-frame accuracy. This is not possible when the points are
treated independently (i.e., as a “cloud of points”).

Our algorithm for recovering correspondences between trajecto-
ries across the two sequences is briefly described next. However,
the ideas presented in this paper are not limited to this particular
implementation.

Implementation:
Our current implementation is an extension of standard feature-
based image matching methods (see examples of RANSAC/LMS-
based methods in [Hartley and Zisserman 2000; Xu and Zhang
1996]). The first (and crucial) difference is that we use trajecto-
ries instead of points as our features. Since one trajectory consists
of many points, therefore a single trajectory match induces multiple
point matches (consequently, reducing the complexity of matching
and increasing robustness in presence of errors – see ”Benefits of
the Approach”).

A matching pair of 2D trajectory-features should correspond to
projections of the same 3D trajectory of some 3D point. This 3D
point need not be visible in the images (it can be real or virtual).
For example, in our experiments we tracked moving objects (us-
ing background subtraction method) and extracted specific points
on their blobs (e.g., the object centroid, or the highest point on the
object silhouette, etc). The accuracy of approximating (real or vir-
tual) 3D points from such 2D points on silhouettes is discussed in
[Lee et al. 2000] and [Wong and Cipolla 2001].

The second difference (from standard feature based image
matching implementations) is that we also deal with the temporal
dimension to recover temporal matching as well. Schematically, the
algorithm operates as follows: it searches in the space of possible
trajectory correspondences (by a robust method, such as RANSAC
or LMS). Each candidate trajectory correspondence is used for esti-
mating spatial (homography H or fundamental matrix F) and tem-
poral (∆t) parameters by iterating the following two steps:
(i) Fix ∆t and approximate H (or F) using standard methods.
(ii) Fix H (or F) and refine ∆t by fitting the best linear interpolation
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Figure 1: Spatial ambiguities in image-to-image alignment (a) and (b) show two temporally corresponding frames from two different
video sequences viewing the same moving ball. There are infinitely many valid image alignments between the two frames, some of them
shown in (c). (d) and (e) display the two sequences of the moving ball. There is only one valid alignment of the two trajectories of the ball.
This uniquely defines the alignment both in time and in space between the two video sequences (f).
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Figure 2: Point correspondences vs. trajectory correspondences. (a) and (b) display two frames out of two sequences recording five small
moving objects (marked by A,B,C,D,E). (c) and (d) display the trajectories of these moving objects over time. When analyzing only single
frames, it is difficult to determine the correct point correspondences across images. However, point trajectories have additional properties,
which simplify the correspondence problem across two sequences (both in space and in time).

value (we allow for sub-frame time shifts).
We then choose the spatial (H or F) and temporal (∆t) candidate
parameters which minimize the overall error. For more details see
the long paper.

Benefits of the Approach:
(i) Trajectory matching requires only a single correct “feature” (i.e.,
trajectory) correspondence, as opposed to 8 feature (point) corre-
spondences as in regular image-to-image matching (for estimat-
ing the fundamental matrix). This provides a significant benefit
in RANSAC-like matching algorithms when the probability to se-
lect at random a sample of eight correct point correspondences is
low. Such cases occur in wide-baseline scenarios where the range
of valid disparities is very large. A complete analysis of the com-
plexity reduction due to the smaller number of required “feature”
(trajectory) matches may be found in the longer version of this pa-
per.
(ii) Since trajectory-features can be constructed from “virtual 3D
points” our method can address cases where the cameras never im-
age the same scene points (e.g., when the cameras are on opposite
sides of the scene, such as in Fig. 5).
(iii) Often corresponding feature points do not have similar appear-
ance properties across cameras such as in the case of multi-sensor
modalities (e.g., Fig 3), or in significantly different zooms (Fig.
4). Yet, their trajectories share common geometric/shape properties
that facilitate the matching (e.g., see Fig. 2) even when the appear-
ance properties are different .
(iv) Unsynchronized video sequences can be temporally matched
(synchronized) at sub-frame accuracy. Such sub-frame synchro-
nization gives rise to new video applications including super-
resolution in time [Shechtman et al. 2002].
(v) Sub-frame temporal alignment also provides higher accuracy
in the spatial matching. Image-to-image matching is restricted to
matching of existing physical image frames. However, when “cor-
responding” frames in time across the two sequences have not been
recorded at exactly the same time (due to a sub-frame temporal
misalignment between the two sequences), this leads to inaccura-

cies in the spatial matching (fundamental matrix or homography).
Sequence-to-sequence matching, on the other hand, is not restricted
to physical (“integer”) image frames.

Examples:
(i) Multi-sensor alignment: Fig. 3 shows results of aligning se-
quences obtained by two cameras of different sensing modalities.
Fig. 3.(a) and 3.(b) display representative frames from a PAL visi-
ble light sequence and an NTSC Infra-Red sequence, respectively.
The scene contains several moving objects: 2 kites, 2 moving cars,
and sea waves. The trajectories induced by tracking the moving ob-
jects are displayed in 3.(c). The two camera centers were close to
each other, therefore the spatial transformation was modeled by a
homography. The output after spatio-temporal alignment via tra-
jectory matching is displayed in 3.(d). The recovered temporal
misalignment was 1.31 sec. The results are displayed after fusing
the two input sequences (using Burt’s fusion algorithm [Burt and
Kolczynski 1993]). We can now clearly observe spatial features
from both sequences. In particular note the right kite which is more
clearly visible in the visible-light sequence, and the left kite which
is more clearly visible in the IR sequence (both marked by circles).
(ii) Matching across significant zoom differences: Fig. 4 shows an
example of aligning sequences obtained at significantly different
zooms. Fig. 4.(a) and 4.(b) display two representative frames from
the reference sequence and second sequence, showing a ball thrown
from side to side. The sequence in column 4.(a) was captured by a
wide field-of-view camera, while the sequence in column 4.(b) was
captured by a narrow field-of-view camera. The cameras where
located next to each other (the spatial transformation was modeled
by a homography) and the ratio in zooms was approximately
1 : 3. The two sequences capture features at significantly different
spatial resolutions, which makes the problem of inter-camera
image-to-image alignment very difficult. The dynamic information
(the trajectory of the ball’s center of gravity), on the other hand,
forms a powerful cue for alignment both in time and in space.
Column 4.(c) displays superposition of corresponding frames
after spatio-temporal alignment. The dark pink boundaries in



(a) Visible light (b) Infra-red (c) Trajectories of (d) Fused image
moving objects after alignment

Figure 3: Multi-Sensor Alignment (see text).

4.(c) correspond to scene regions observed only by the reference
(zoomed-out) camera.
(iii) Wide base-line matching: Fig. 5 shows an example of
recovering the fundamental matrix using two cameras situated
on opposite sides of the scene (i.e., the cameras are facing each
other). Figs 5.(a) and 5.(b) display two representative frames from
two sequences.Each camera is visible by the other camera and
is circled and marked by a white arrow. Space-time trajectories
induced by moving objects (ball and players) are displayed in
5.(c)-(d) in different colors for the different objects. The feature
points that correspond to the current frame are marked in yellow.
The recovered epipolar geometry is displayed in 5.(e) and 5.(f).
Points and their epipolar lines are displayed in each image for
verification. Note, that the only static objects that are visible in
both views are the basket ring and the board. Accuracy of the
recovered spatial alignment can be appreciated by the closeness of
each point to the epipolar line of its corresponding point, as well
as by comparing the intersection of epipolar lines with the ground
truth epipole marked by a cross (which is the other camera). In
this example the relative blob size of the moving objects was used
to provide initial correspondence between the trajectories across
the two sequences. Two trajectories (instead of one) were used on
each RANSAC iteration, as most trajectories are planar. An initial
temporal alignment with accuracy within one second (25 frames)
was manually provided, and the final recovered temporal shift was
3.69 frames.

Summary:
We have shown that similar to [Caspi and Irani 2000] (where direct
intensity-based image alignment was extended to sequence align-
ment), feature-based image matching can also be extended into
trajectory-based sequence matching. This allows to address sce-
narios that are very difficult to solve otherwise.

For a more detailed version and example sequences see
www.wisdom.weizmann.ac.il/~vision/traj2traj.html
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(a) Zoomed-out (b) Zoomed-in (c) Super-position

Figure 4: Alignment of sequences obtained at different zooms (see text).
For color sequences see www.wisdom.weizmann.ac.il/�vision/traj2traj.html

(a) (b)

Representative frames
from input sequences:
(a) taken by camera 1,
(b) taken by camera 2.

(c) (d)

Extracted trajectories.

(e) (f)

Recovered epipolar
geometry.

Figure 5: Wide Base-Line Matching (see text).
For color sequences see www.wisdom.weizmann.ac.il/�vision/traj2traj.html
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