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ABSTRACT 
This paper describes an approach for locating annotations 
generated in one video and properly placing them in a 
second, modified version of the same video. We focus on 
modifications that standard Television (TV) broadcasts 
may experience, including content insertion and deletion 
(i.e., commercials), format conversions, and different 
start/end recording times. To overcome these 
modifications, we propose content-based video timelines. 
We identify the position of a frame in a long video stream 
with an accuracy of one frame based on its content, 
without using embedded time codes. To make this 
approach feasible, we use a compact representation of a 
video frame which we call a “fingerprint.” Fingerprints 
capture small temporal variations within shots, and 
therefore allow precise position recovery. Our 
fingerprints’ efficient storage size, extraction time, and 
comparison complexity suggest that our approach can be 
applied using off-the-shelf PCs and TV “set-top” boxes.  

1. INTRODUCTION 
Video annotation has been proposed and implemented in 
restricted domains such as E-learning, and mechanisms for 
generating and sharing such annotations have been 
proposed [1]. Few of these systems scale well given the 
characteristics of commercial Television (TV). This is 
because the “same” TV content may undergo subtle 
modifications throughout its lifetime, which can render 
frame numbers or embedded time codes unreliable as 
means for identifying positions along the content’s 
timeline. Such modifications may include insertion and 
deletion of short clips (i.e., different sets of commercials); 
format conversions (e.g., NTSC to PAL); changes in 
compression format and/or compression parameters; and 
time compression (i.e., selective dropping of frames).  
Applications such as providing DVD-like chapter indexes 
for regular TV programming demand a more robust means 
of identifying positions in TV content, and this report 

addresses that challenge. Given two versions of the 
“same” TV program (i.e., that a human viewer would 
identify as being essentially the same, even though they 
may differ somewhat in content, format, etc.), the goal is 
to properly place annotations generated for one version of 
the program in the second version, using only the pixel 
intensity values available in the video frames themselves. 
For this task we propose content-based timelines 
composed of a sequence of “fingerprints.” Each 
fingerprint is an iconic 0/1 bitmap which captures the 
spatial division of a single frame image into dark and 
bright regions. This representation is simple to construct, 
efficient to browse, and it provides robust and reliable 
positioning accuracy. 

1.1 Related Work 
We are not aware of any previous attempts to export and 
import annotations originated from TV. However, the 
basic challenge addressed in this paper — finding a short 
clip from one version of a video in a modified version of 
the same video — bears similarities to other applications, 
notably video indexing, watermarking, and video copy 
protection.   
The typical video indexing task attempts to summarize a 
video using a few key frames (e.g., [3,7,8,9]). Each key 
frame represents a visually coherent video segment (a 
“shot”). Thus the extracted features have to discriminate 
between different shots, yet be resistant to temporal 
variation within a shot. A common approach is to exploit 
statistics of light (e.g., color histograms). Such statistics 
ignore the spatial information in a video frame, and as we 
shall see, they are inappropriate for support of the fine-
grained discrimination required for accurate positioning 
among the frames within a shot. 
Another area where a high level of discrimination among 
similar images is required is in digital rights management. 
In contrast to widely-used “watermarking” — wherein 
identification information is embedded in the media — we 



are interested in “content-based watermarking.” Mihçak 
and Venkatesan describe such an approach for single 
images [5]. They extract a low-dimensional “signature” 
from an image they wish to protect, and then they embed 
identifying information into the extracted signature. We 
use a similar compact representation; however we do not 
embed the extra identifying information.  
Finally, a variety of work has focused on video copy 
detection [4]. Here, the challenge is to recognize whether a 
given video program is a copy of another. With the 
exception of Oostveen et al [6], who base their method on 
temporal frame differences, most approaches do not 
address the temporal aspect of video, and instead rely on a 
comparison of key-frames. Our method differs in technical 
approach, class of allowed modifications (we allow 
temporal modifications such as format conversions or time 
compression, while others implicitly assume 
synchronization), and the nature of accompanying 
applications we support. 

2. VIDEO FINGERPRINTS 
The basic building blocks of our representation are frame 
fingerprints. These are low-resolution 0/1 binary images 
describing dark and bright regions in the original frame. A 
block diagram of our fingerprint extraction algorithm is 
shown in Figure 1. Given a color video frame, we consider 
only intensity, and we rescale it to standard SIF 
dimensions (320x240 pixels). We then construct a 
Gaussian pyramid and produce a low-resolution 40x30 
pixel image. This image is thresholded using the median 
gray level in the frame. The resulting 0/1 bitmap has 
roughly the same number of 1’s and 0’s. The equilibrium 
of 1’s and 0’s provides maximal entropy with respect to 
other possible thresholds. This contributes to the 
discrimination of the resulting fingerprints.  
Iterations of “K-filtering” (a type of morphological 
filtering) are then applied to remove noise. Each pixel is 
set to 1 if more than k pixels are 1 in a 3x3 window around 
it (otherwise set to 0), and we update the value of k on 

each iteration such that the equilibrium of 1’s and 0’s is 
maintained: If the number of 1’s decreases, the value of k 
is decreased; if the number of 1’s grows, the value of k is 
increased. K-filtering stops when the number of pixels 
updated is small (in our implementation this threshold is 
5). Typically only a few iterations are needed. 
We define the distance between any two fingerprints (F1, 
F2) as their Hamming distance (the number of bits that 
differ).  
We also approximate the a priori reliability of a fingerprint 
using the percentage of pixels that are unlikely to change 
their value in a modified version of that frame. This is the 
percentage of pixels with gray levels that are not close to 
the median gray level: 
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where m is the median value, and n is the noise level (in 
our experiments we use n=2). Based on empirical 
observations we found that when reliability drops below 
90%, the probability of identifying the same fingerprint 
after modifications reduces substantially. Thus we only 
use frames with a priori reliability of over 90%. 

3. PROPERTIES OF VIDEO FINGERPRINTS 
Discrimination  
Figure 2 on the next page illustrates the typical distances 
between corresponding and non-corresponding 
fingerprints of frames taken from two versions of a video, 
where the versions differed by compression ratio, format, 
and some content. The distance between corresponding 
frames was 2.5%-5% (15-30 bits), while the average 
minimal distance of a frame that is not present in the video 
to all frames in the video was 45%. Thus our fingerprints 
discriminate fairly well. 
Size and Complexity 
The size of a single full-sized fingerprint is 150 bytes, 
compared to 512 bytes for a typical histogram. Fingerprint 
construction complexity is dominated by the complexity of 
constructing the Gaussian pyramid (85%) — which is 
similar in complexity to constructing a color histogram — 
however fingerprints are much more efficient for browsing 
than histograms, since they require only simple bit 
comparisons. On a Pentium III workstation running 
Microsoft Windows XP, fingerprints can be computed in 
real time (e.g. at video-rate), and the fingerprints 
corresponding to an hour’s worth of video 
(30x60x60=108,000 frames) can be linearly searched in 
under 1 second.  
Robustness 
Fingerprints are robust to global color modifications such 
as contrast and gamma correction because of the way 
median thresholding is employed in their construction. To 
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Figure 1: Fingerprint extraction algorithm 



test their robustness against local spectral modifications, 
we compared the distance between the fingerprints of 
frames from a high quality (uncompressed) movie, and 
matching frames from versions of the same movie that 
were compressed using different levels of Indeo 5.1 
compression. The average distance over 7000 fingerprints 
was under 6 bits (0.5%) for all compression levels we 
tested.  
Fingerprints are also robust against some spatial 
transformations. For instance, small unknown spatial 
transformations are corrected as a result of the 
subsampling in the construction of the Gaussian pyramid 
during fingerprint creation, and robustness against large 
known spatial transformations results from rescaling each 
frame to fixed (SIF) dimensions.  
Spatial Features vs statistical features 
We compared the discriminative characteristics of 
fingerprints to that of histograms for the particular 
requirements of robust, precise positioning. Figure 3 
displays the distance of the fingerprint of the ith frame 
from the fingerprint of the first frame in a home video of a 
mother rocking a baby (essentially a single, long shot), 
compared to the distance of corresponding histograms 
under various similarity measures. The shallow slopes of 
the histogram graphs indicate that color histograms are 
highly similar, regardless of the similarity measure used. 
In contrast, the distance between fingerprints grows 
rapidly, indicating more temporal discriminative strength. 
This indicates that the spatial features of fingerprints are 
more appropriate when high temporal precision is 
required.  

4. SEARCHING FINGERPRINTS 
In order to locate the frame in a video to which an 
annotation belongs, we must search through the 
corresponding fingerprints for the one that most closely 
matches the fingerprint stored with the annotation.  
A major challenge when searching for a single frame in a 
video is recognizing false detections. That is, we want to 
avoid reporting a positive match if the shot to which the 

frame belongs is missing from the video we are searching. 
The shot may be missing for a variety of reasons, for 
instance because the user started viewing/recording the 
video too late, or stopped too early; or there may be 
deletions, for instance of advertising content; or frames 
may have been dropped as the result of a conversion 
process. Figure 2 illustrates empirically that the distance 
between fingerprints of frames from two arbitrarily-chosen 
shots is almost always above 40%. During searches, 
therefore, we use the fingerprint of the single frame we are 
searching for to determine whether the shot to which it 
belongs is present in the video. 
Locating the frame in the video with an accuracy of one 
frame, however, requires a bit more work. This is because 
frames that appear in the same shot are often too similar to 
be individually distinguishable, and this is reflected in 
their fingerprints (see Figure 3). Thus, to accurately locate 
a single frame, we match a sequence of fingerprints (for 
instance, 25 consecutive fingerprints) centered on the 
frame we are interested in. We call this sequence a “query 
clip.” 
Finding query clips 
First, we sum the distances of all fingerprints in the query 
clip judged against possible locations in the video (and 
weighted by each fingerprint’s a priori reliability). Only 
locations where the frame might be present are considered, 
as determined by a fast initial search across the whole 
video. Locations in the video with small weighted sum 
(e.g., less than 15%) are denoted as candidate locations 
and further analyzed. There may be several candidate 
locations. 
To further refine the match, we use dynamic 
programming. The goal is to find a minimal global score 
that combines the distances between fingerprints with a 
penalty for missing frames. The penalty term reflects prior 
knowledge about the modifications that commercial TV 
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Figure 2: Feature bitmaps typical distance 

Distances between the fingerprints of one movie and the 
best-match fingerprints from a modified version of the 
movie. Blue data points represent frames that exist in the 
modified movie but not in the original version (which 
simulates inserted commercials). 
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Figure 3: Spatial vs statistical features 

Comparison of the evolution of distances between fingerprints 
with distances between histograms in a video. All distances 
are from the first frame in the video. The rapid growth of 
distances between fingerprints (top curve) with respect to the 
moderate growth for histogram shows that fingerprints are 
more suitable for discrimination within a shot.  



programs may undergo, including format conversions 
(e.g., PAL/NTSC, or 2:3 pull-down used in Telecine) and 
time compression (a method used in TV broadcasting to 
conserve time). Both are achieved by dropping frames in a 
fixed pattern, therefore our penalty term prefers jumps 
with fixed, regular gaps. The candidate location with 
lowest global score is selected as the matching segment. 
4.1 Efficient search. 
In a one-hour movie, there are about ~100,000 frames, 
99% of which are typically pruned using a single 
fingerprint. Comparing a single pair of fingerprints may 
require as many as 2x1200 operations, so search time is 
dominated by the computation of Hamming distances. To 
reduce this complexity, we apply two shortcuts:  
Data reduction 
We only compare the 128 highest-variance bits in each 
fingerprint. We compute a mask describing the variance of 
each bit across a set of fingerprints by summing bit values 
along the time axis. High bit variance corresponds to a 
sum which is close to half of the total number of frames. 
The 128 highest-variance bits in the mask are the ones we 
choose from each fingerprint to compare. This approach 
was motivated by work done in the audio domain using 
Principal Component Analysis (PCA) [2]. The problem 
with regular PCA is that it does not preserve the 0/1 bit-
representation. Our method of choosing pixels with high 
variance does not take into account the high order 
statistics that PCA does, but it does preserve the 0/1 
representation, it can be implemented very efficiently, and 
it is effective in practice. 
Skipping frames 
The second shortcut we employ is based on the 
observation that the distance between consecutive 
fingerprints in the timeline is small (See Figure 3). Using 
the triangle inequality, we know that if the distance 
between a query clip A and a location B in a movie is 
large, and the distance between location B and another 
location C is small, then the distance between A and C 
must be large. Thus we do not need to compare the query 
clip to location C.  
To exploit this idea, as part of our content-based timeline 
representation for a whole video we store a pointer from 
each frame to the next frame that has a Hamming distance 
of more than 10% from it. During searches, we can skip all 
frames in-between.  
These shortcuts help reduce the running time of searches 
by a factor of almost 40 (10 from data reduction, and 4 
from skipping frames). 

5. EVALUATION 
To illustrate the wide applicability of our approach, we 
tested it against four types of TV programs: a sports 
broadcast, a sitcom, a dramatic movie, and a concatenation 

of short clips. In each test, our algorithm attempted to 
locate query clips in a modified version of a program, 
where the query clips were taken from an unmodified 
version of the same program. Each query clip was 1 sec 
(25 frames), and there were a few hundred query clips in 
each test. The modifications between the two versions of 
each program included different compression algorithms, 
bits rates, time compression (regularly dropped frames), 
deleted shots, errors in the Telecine process, and analogue 
broadcasting noise (“scintillations”). Results are 
summarized in Table 1. Note that in all tests, query clips 
were located with 1-frame accuracy at least 85% of the 
time, and with 1-sec (25 frame) accuracy at least 98% of 
the time. No false negatives or false positives occurred. 
We implemented an email-based annotation sharing 
application to further explore the effectiveness of our 
approach. Using the application, a user can send an email 
message that contains an annotation plus 25 fingerprints 
identifying the location in a video where the annotation 
belongs. A recipient who opens the message sees the 
annotation automatically popup in the right position in the 
video in less than one second.    
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Movie 
Type 

Perfect 
Match 

Accuracy 
1 sec 

Error 1 sec 
or more 

False 
Detections 

Sports 96.0% 4.0% 0.0% 0 
Sitcom 96.5% 3.4% 0.1% 0 
Movie 97.8% 2.0% 0.2% 0 
Clips 85.0% 13.0% 2.0% 0 

Table 1 Summary of detection results


