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This paper shows how two image sequences that have no
spatial overlap between their fields of view can be aligned
both in time and in space. Such alignment is possible
when the two cameras are attached closely together and
are moved jointly in space. The common motion induces
“similar” changes over time within the two sequences. This
correlated temporal behavior, is used to recover the spatial
and temporal transformations between the two sequences.
The requirement of “coherent appearance” in standard im-
age alignment techniques is therefore replaced by “coherent
temporal behavior”, which is often easier to satisfy.

This approach to alignment can be used not only for
aligning non-overlapping sequences, but also for handling
other cases that are inherently difficult for standard im-
age alignment techniques. We demonstrate applications of
this approach to three real-world problems: (i) alignment
of non-overlapping sequences for generating wide-screen
movies, (ii) alignment of images (sequences) obtained at
significantly different zooms, for surveillance applications,
and, (iii) multi-sensor image alignment for multi-sensor fu-
sion.

1 Introduction

The problem of image alignment (or registration) has
been extensively researched, and successful approaches
have been developed for solving this problem. Some of
these approaches are based on matching extracted local im-
age features. Other approaches are based on directly match-
ing image intensities. A review of some of these meth-
ods can be found in [19] and [13]. However, all these ap-
proaches share one basic assumption: that there is sufficient
overlap between the two images to allow extraction of com-
mon image properties, namely, that there is sufficient “sim-
ilarity” between the two images (“Similarity” of images is
used here in the broadest sense. It could range from gray-
level similarity, to feature similarity, to similarity of fre-
quencies, and all the way to statistical similarity such as mu-
tual information [21]).

In this paper the following question is addressed: Can
two images be aligned when there is very little similarity be-
tween them, or even more extremely, when there is no spatial

overlap at all between the two images? When dealing with
individual images, the answer tends to be “No”. However,
this is not the case when dealing with image sequences. An
image sequence contains much more information than any
individual frame does. In particular, temporal changes (such
as dynamic changes in the scene, or the induced image mo-
tion) are encoded between video frames, but do not appear
in any individual frame. Such information can form a pow-
erful cue for alignment of two (or more) sequences. Caspi
and Irani [6] and Stein [18] have illustrated an applicabil-
ity of such an approach for aligning two sequences based
on common dynamic scene information. However, they as-
sumed that the same temporal changes in the scene (e.g.,
moving objects) are visible to both video cameras, leading
to the requirement that there must be significant overlap in
the FOV’s (fields-of-view) of the two cameras.

In this paper we show that when two cameras are attached
closely to each other (so that their centers of projections
are very close), and move jointly in space, then the induced
frame-to-frame transformations within each sequence have
correlated behavior across the two sequences. This is true
even when the sequences have no spatial overlap. This cor-
related temporal behavior is used to recover both the spatial
and temporal transformations between the two sequences.

Unlike carefully calibrated stereo-rigs [17], our approach
does not require any prior internal or external camera cali-
bration, nor any sophisticated hardware. Our approach bears
resemblance to the approaches suggested by [7, 11, 22] for
auto-calibration of stereo-rigs. But unlike these methods,
we do not require that the two cameras observe and match
the same scene features, nor that their FOV’s will overlap.

The need for “coherent appearance”, which is a funda-
mental assumption in image alignment methods, is replaced
here with the requirement of “coherent temporal behavior”.
A similar approach was used for “hand eye calibration” in
robotics research e.g., [20, 12]. Coherent temporal behavior
is often easier to satisfy (e.g., by moving the two cameras
jointly in space). Our approach is therefore useful not only
in the case of non-overlapping sequences, but also in other
cases which are inherently difficult for standard image align-
ment techniques.

This gives rise to a variety of real-world applications, in-
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Figure 1: Two video cameras are attached to each other, so that
they have the same center of projection, but non-overlapping fields-
of-view. The two cameras are moved jointly in space, producing
two separate video sequences I1; :::; In+1 and I01; :::; I

0

n+1.

cluding: (i) Multi-sensor alignment for image fusion. This
requires accurate alignment of images (sequences) obtained
by sensors of different sensing modalities (such as Infra-
Red and visible light). Such images differ significantly
in their appearance due to different sensor properties [21].
(ii) Alignment of images (sequences) obtained at different
zooms. The problem here is that different image features are
prominent at different image resolutions [8]. Alignment of
a wide-FOV sequence with a narrow-FOV sequence is use-
ful for detecting small zoomed-in objects in (or outside) a
zoomed-out view of the scene. This can be useful in surveil-
lance applications. (iii) Generation of wide-screen movies
from multiple non-overlapping narrow FOV movies (such
as in IMAX movies).

Our approach can handle such cases. Results are demon-
strated in the paper on complex real-world sequences, as
well as on manipulated sequences with ground truth.

2 Problem Formulation

We examine the case when two video cameras having
(approximately) the same center of projection but different
3D orientation, move jointly in space (see Fig. 1). The fields
of view of the two cameras do not necessarily overlap. The
internal parameters of the two cameras are different and un-
known, but fixed along the sequences. The external param-
eters relating the two cameras (i.e., the relative 3D orienta-
tion) are also unknown but fixed. Let S = I1; :::In+1 and
S0 = I 01; :::; I

0

m+1 be the two sequences of images recorded
by the two cameras1. When temporal synchronization (e.g.,
time stamps) is not available, then Ii and I 0i may not be cor-
responding frames in time. Our goal is to recover the trans-
formation that aligns the two sequences both in time and in
space. Note the term “alignment” here has a broader mean-
ing than the usual one, as the sequences may not overlap in
space, and may not be synchronized in time. Here we refer

1The subscript i is used represents the frame time index, and the super-
script prime is used to distinguish between the two sequences S and S0.
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Figure 2: Problem formula-
tion. The two sequences are
spatially related by a fixed but un-
known inter-camera homography
H, and temporally related by a
fixed and unknown time shift �t.
Given the frame-to-frame transfor-
mations T1; :::; Tn and T 0

1; :::; T
0

m
,

we want to recover H and �t.

to alignment as displaying one sequence in the spatial coor-
dinate system of the other sequence, and at the correct time
shift, as if obtained by the other camera.

When the two cameras have the same center of projection
(and differ only in their 3D orientation and their internal cal-
ibration parameters), then a simple fixed homography H (a
2D projective transformation) describes the spatial transfor-
mation between temporally corresponding pairs of frames
across the two sequences [10].

If there were enough common features (e.g., p and p 0)
between temporally corresponding frames (e.g., I i and I 0i),
then it would be easy to recover the inter-camera homog-
raphy H , as each such pair of corresponding image points
provides two linear constrains on H : p 0 �= Hp. This, in
fact, is how most image alignment techniques work [10].
However, this is not the case here. The two sequence do not
share common features, because there is no spatial overlap
between the two sequences. Instead, the homography H is
recovered from the induced frame-to-frame transformations
within each sequence.

Let T1; :::Tn and T 0

1; :::T
0

m be the sequences of frame-
to-frame transformations within the video sequences S and
S0, respectively. Ti is the transformation relating frame Ii
to Ii+1. These transformations can be either 2D paramet-
ric transformations (e.g., homographies or affine transfor-
mations) or 3D transformations/relations (e.g., fundamen-
tal matrices). We next show how we can recover the spatial
transformationH and the temporal shift�t between the two
video sequences directly from the two sequences of trans-
formationsT1; :::Tn and T 0

1; :::T
0

m. The problem formulated
above is illustrated in Fig. 2.

3 Recovering Spatial Alignment Between Se-
quences

Let us first assume that the temporal synchronization is
known. Such information is often available (e.g., from time
stamps encoded in each of the two sequences). Section
4 shows how we can recover the temporal shift between
the two sequences when that information is not available.
Therefore, without loss of generality, it is assumed that I i



and I 0i are corresponding frames in time in sequences S and
S0, respectively. Two cases are examined: (i) The case when
the scene is planar or distant from the cameras. We refer to
these scenes as “2D scenes”. In this case the frame-to-frame
transformations Ti can be modeled by homographies (Sec.
3.1). (ii) The case of a non-planar scene. We refer to these
scenes as “3D scenes”. In this case the frame-to-frame rela-
tion can be modeled by a fundamental matrix (Sec. 3.2).

3.1 Planar or Distant (2D) Scenes

When the scene is planar or distant from the cameras,
or when the joint 3D translation of the two cameras is neg-
ligible relative to the distance of the scene, then the in-
duced image motions within each sequence (i.e., T1; :::Tn
and T 0

1; :::T
0

n) can be described by 2D parametric transfor-
mations [10]. Ti thus denotes the homography between
frame Ii and Ii+1, represented by 3� 3 non-singular matri-
ces. We next show that temporally corresponding transfor-
mations Ti and T 0

i are also related by the fixed inter-camera
homographyH (which relates frames I i and I 0i).

Let P be a 3D point in the planar (or the remote) scene.
Denote by pi and p0i its image coordinates in frames Ii and
I 0i , respectively (the point P need not to be visible in the
frames, i.e., P need not be within the FOV of the cameras).
Let pi+1 and p0i+1 be its image coordinates in frames Ii+1
and I 0i+1, respectively. Then, pi+1 �= Tipi and p0i+1 �=
T 0

ip
0

i. Because the coordinates of the video sequences S and
S0 are related by a fixed homography H , then: p 0 �= Hp

and p0i+1 �= Hpi+1. Therefore:

HTipi �= Hpi+1 �= p0i+1
�= T 0

ip
0

i
�= T 0

iHpi (1)

Each pi could theoretically have a different scalar associated
with the equality in Eq. (1). However, it is easy to show that
because the relation in Eq. (1) holds for all points p i, there-
fore all these scalars are equal, and hence:

HTi �= T 0

iH: (2)

Because H is invertible, we may write T 0

i
�= HTiH

�1, or

T 0

i = siHTiH
�1 (3)

where si is a (frame-dependent) scale factor. Eq. (3) is true
for all frames (i.e., for any pair of corresponding transfor-
mations Ti and T 0

i , i = 1::n). Eq. (3) shows that there is
a similarity relation2 (or conjugacy relation) between the
two matrices Ti and T 0

i (up to a scale factor). A similar ob-
servation was made for case of hand-eye calibration (e.g.,
[20, 12]), and for auto-calibration of a stereo-rig (e.g. [22]).

2A matrixA is said to be “similar” to a matrixB if there exists an invert-
ible matrix M such that A = MBM�1 . See [9]. The term “conjugate
matrices” can be used as well.

Denote by eig(A) = [�1; �2; �3]
t a 3 � 1 vector con-

taining the eigenvalues of a 3 � 3 matrix A (in decreasing
order). Then it is known ([9] pp. 898.) that: (i) If A and B
are similar matrices, then they have the same eigenvalues:
eig(A) = eig(B), and, (ii) The eigenvalues of a scaled
matrix are scaled: eig(sA) = s(eig(A)). Using these two
facts and Eq. (3) we obtain:

eig(T 0

i ) = si eig(Ti) (4)

where si is the scale factor defined by Eq. (3). Eq. (4) im-
plies that eig(Ti) and eig(T 0

i ) are “parallel”. This gives rise
to a measure of similarity between two matrices Ti and T 0

i :

sim(Ti; T
0

i ) =
eig(Ti)

t eig(T 0

i )

jjeig(Ti)jj jjeig(T 0

i )jj
; (5)

where jj � jj is the vector norm. For real valued eigenval-
ues, Eq. (5) provides the cosine of the angle between the two
vectors eig(Ti) and eig(T 0

i ). This property will be used later
for obtaining the temporal synchronization (Section 4). This
measure is also used for outlier rejection of bad frame-to-
frame transformation pairs, Ti and T 0

i . The remainder of
this section explains how the fixed inter-camera homogra-
phy H is recovered from the list of frame-to–frame transfor-
mations T1; ::Tn and T 0

1; ::; T
0

n, and discusses uniqueness of
the solution.

For each pair of temporally corresponding transforma-
tions Ti and T 0

i in sequences S and S 0, we first compute
their eigenvalues eig(Ti) and eig(T 0

i ). The scale factor si
which relates them is then estimated from Eq. (4) using
least squares minimization. (three equations one unknown).
Once si is estimated, Eq. (3) (or Eq. (2)) can be rewritten as:

siHTi � T 0

iH = 0 (6)

Eq. (6) is linear in the unknown components of H . Re-
arranging the components of H in a 9 � 1 column vector
~h = [H11H12H13H21H22H23H31H32H33]

t, Eq. (6) can
be rewritten as a set of linear equations in ~h:

Mi
~h = ~0 (7)

where Mi is a 9� 9 matrix defined by Ti, T 0

i and si:

Mi =

2
4 siTi

t � T 0

i11
I �T 0

i12
I �T 0

i13
I

�T 0

i21
I siT

t � T 0

i22
I �T 0

i23
I

�T 0

i31
I �T 0

i32
I siT

t � T 0

i33
I

3
5
9�9

and I is the 3� 3 identity matrix.
Eq. (7) implies that each pair of corresponding transfor-

mations Ti and T 0

i contributes 9 linear constrains in the un-
known homography H (i.e., ~h). It can be shown [5] that if
Ti (and hence also T 0

i ) have 3 different eigenvalues, then H
can be determined by a single such pair of transformations
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Figure 3: Alignment of non-overlapping sequences. (a)
and (b) are temporally corresponding frames from sequences
S and S0. The correct time shift was automatically detected.
(c) shows one frame in the combined sequence after spatio-
temporal alignment. Note the accuracy of the spatial and tem-
poral alignment of the running person. For full sequences see
www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

up to three degrees of freedom. Therefore, at least two such
pairs of independent transformations are needed to uniquely
determine the homography H (up to a scale factor).

The constraints from all the transformations T1; ::; Tn
and T 0

1; ::; T
0

n can be combined into a single set of linear
equations in ~h:

A~h = ~0 (8)

where A is a 9n�9matrix: A =

2
64

M1

...
Mn

3
75. Eq. (8) is a ho-

mogeneous set of linear equations in ~h, that can be solved in
a variety of ways [3]. In particular, ~h may be recovered by
computing the eigenvector which corresponds to the small-
est eigenvalue of the matrix AtA.

3.2 3D Scenes

When the scene is neither planar nor distant, the relation
between two consecutive frames of an uncalibrated camera
is described by the fundamental matrix [10]. In this case the
input to our algorithm is two sequences of fundamental ma-
trices between successive frames, denoted by F1; :::Fn and
F 0

1; :::F
0

n. Namely, if pi 2 Ii and pi+1 2 Ii+1 are corre-
sponding image points, then: pti+1Fipi = 0. Although the
relations within each sequence are characterized by funda-
mental matrices, the inter-camera transformation remains a

(a) (b)

(c)

Figure 4: Alignment of non-overlapping sequences. (a)
and (b) are temporally corresponding frames from sequences
S and S0. The correct time shift was automatically detected.
(c) shows one frame in the combined sequence. Correspond-
ing video frames were averaged after spatio-temporal align-
ment. The small overlapping area was not used in the esti-
mation process, but only for verification (see text). Note the
accuracy of the spatial and temporal alignment of the soc-
cer player in the overlapping region. For full sequences see
www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

homographyH . This is because the two cameras still share
the same center of projection (Sec. 2).

Each fundamental matrix Fi can be decomposed into a
homography + epipole as follows [10]:

Fi = [ei]xTi

where ei is the epipole relating frames Ii and Ii+1, the
matrix Ti is the induced homography from I i to Ii+1 via
any plane (real or virtual). [�]x is the cross product matrix
([v]x ~w = ~v � ~w).

The homographies, T1; :::; Tn and T 0

1; :::; T
0

n, and the
epipoles e1; :::; en and e01; :::; e

0

n, impose separate con-
straints on the inter-camera homography H . These con-
straints can be used separately or jointly to recover H .
(i) Homography-based constraints: The homographies
T1; ::; Tn and T 0

1; ::; T
0

n (extracted from the fundamental ma-
trices F1; ::; Fn and F 0

1; ::; F
0

n, respectively), may corre-
spond to different 3D planes. In order to apply the algo-
rithm of Sec. 3.1 using these homographies, we need im-
pose plane-consistency across the two sequences (to guar-
antee that temporally corresponding homographies corre-
spond to the same plane in the 3D world). One possible
way for imposing plane-consistency across (and within) the
two sequences is by using the “Plane+Parallax” approach
[16, 14]. However, this approach requires that a real phys-



ical planar surface be visible in all video frames. Alterna-
tively, the “threading” method of [1] or other methods for
computing consistent set of camera matrices (e.g., [2]), can
impose plane-consistency within each sequence, even if no
real physical plane is visible in any of the frames. Plane con-
sistency across the two sequences can be guaranteed e.g.,
if [1] is initiated at frames which are known to simultane-
ously view the same real plane in both sequences. How-
ever, the two cameras can see different portions of the plane
(allowing for non-overlapping FOVs), and need not see the
plane at any of the other frames. This approach is therefore
less restrictive than the Plane+Parallax approach.
(ii) Epipole-based constraints: The fundamental matrices
F1::Fn and F 0

1::F
0

n also provide a list of epipoles e1; :::; en
and e01; :::; e

0

n. These epipoles are uniquely defined (there
is no issue of plane consistency here). Since the two cam-
eras have the same center of projection, then for any frame
i: e0i

�= Hei, or more specifically:

(e0i)x =
[h1h2h3] ei
[h7h8h9] ei

(e0i)y =
[h4h5h6] ei
[h7h8h9] ei

(9)

Multiplying by the dominator and rearranging terms yields
two new linear constrains onH for every pair of correspond-
ing epipoles ei and e0i:

�
ei
t ~0t (e0i)xei

t

~0t ei
t (e0i)yei

t

�
2�9

~h = 0 (10)

where ~0t = [0; 0; 0]. Every pair of temporally correspond-
ing epipoles, ei and e0i, thus imposes two linear constraints
on H . These 2n constraints (i = 1; ::; n) can be added to
the set of linear equations in Eq. (8) which are imposed by
the homographies. Alternatively, the epipole-related con-
straints can be used alone to solve for H , thus avoiding
the need to enforce plane-consistency on the homographies.
Theoretically, four pairs of corresponding epipoles e i and e0i
are sufficient.

4 Recovering Temporal Synchronization Be-
tween Sequences

So far we have assumed that the temporal synchro-
nization between the two sequences is known and given.
Namely, that frame Ii in sequence S corresponds to frame
I 0i in sequence S 0, and therefore the transformation T i cor-
responds to transformation T 0

i . Such information is often
available from time stamps. However, when such synchro-
nization is not available, we can recover it. Given two
unsynchronized sequences of transformations T1; :::Tn and
T 0

1; :::T
0

m, we wish to recover the unknown temporal shift
�t between them. Let Ti and T 0

i+�t be temporally cor-
responding transformations (namely, they occurred at the

same time instance). Then from Eq. (4) we know that they
should satisfy eig(Ti) k eig(T 0

i+�t) (i.e., the 3� 1 vectors
of eigenvalues should be parallel). In other words, the simi-
larity measure sim(Tti ; T

0

t0
i
+�t

) of Eq. (5) should equal 1

(corresponding to cos(0), i.e., an angle of 0� between the
two vectors). All pairs of corresponding transformations T i

andT 0

i+�t must simultaneously satisfy this constraint for the
correct time shift �t. Therefore, we recover the unknown
temporal time shift �t by maximizing the following objec-
tive function:

SIM(�t) =
X
i

sim(Ti; Ti+�t)
2 (11)

The maximization is currently performed by an exhaustive
search over a finite range of valid time shifts �t. To ad-
dress larger temporal shifts, we apply a hierarchical search.
Coarser temporal levels are constructed by composing trans-
formations to obtain fewer transformation between more
distant frames.

The objective function of Eq. (11) can be generalized to
handle sequences of different frame rates, such as sequences
obtained by NTSC cameras (30 frame/sec) vs. PAL cameras
(25 frames/sec). The ratio between frames corresponding to
equal time steps in the two sequences is 25 : 30 = 5 : 6.
Therefore, the objective function that should be maximized
for an NTSC-PAL pair of sequences is:

SIM(�t) =
X
i

sim(T
5(i+1)

5i
; T 0

6(i+1)+�t

6i+�t
)2 (12)

Where T j
i is the transformation from frame Ii to frame Ij .

In our experiments, all sequences were obtained by PAL
video cameras. Therefore only the case of equal frame-
rate (Eq. (11)) was experimentally verified. We found this
method to be very robust. It successfully recovered the tem-
poral shift up to field (sub-frame) accuracy. Sub-field accu-
racy may be further recovered by interpolating the values of
SIM(�t) obtained at discrete time shifts.

5 Applications

This section illustrates the applicability of our method to
solving some real-world problems, which are particularly
difficult for standard image alignment techniques. These
include: (i) Alignment of non-overlapping sequences for
generation of wide-screen movies from multiple narrow-
screen movies (such as in IMAX films), (ii) Alignment of
sequences obtained at significantly different zooms (e.g.,
for surveillance applications), and (iii) Alignment of multi-
sensor sequences for multi-sensor fusion. We show results
of applying the method to complex real-world sequences.
In addition, in order to empirically quantify the accuracy of
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Figure 5: Finding zoomed region. This figure displays three different examples (one at each row), each one with different zoom factor.
The left column (1.a, 2.a, 3.a) display one frame from each of the three wide-FOV sequences. The temporally corresponding frames from the
corresponding narrow-FOV sequences are displayed in the center column. The correct time shift was automatically detected for each pair
of narrow/wide FOV sequences. Each image on the right column shows super-position of corresponding frames of the two sequences after
spatio-temporal alignment, displayed by color averaging. For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

our method, we also applied it to pairs of sequences gener-
ated from a real sequence by warping it with known (ground
truth) homographies. All sequences which we experimented
with were captured by “of the shelf” consumer CCD cam-
eras. The cameras were attached to each other, to mini-
mize the distance between their centers of projections. The
joint camera motion was performed manually (i.e., a person
would manually hold and rotate the two attached cameras).
No temporal synchronization tool was used.

The frame-to-frame input transformations within each
sequence (homographies T1:::Tn and T 0

1:::T
0

n) were ex-
tracted using the method described in [15]. The input se-
quences were usually several seconds long to guaranty sig-
nificant enough motion. The temporal time shift was re-
covered using the algorithm described in Sec. 4 up to field
accuracy. Inaccurate frame-to-frame transformations T i

were pruned out by using two outlier detection mechanisms.
These are discussed in detail in [5]. Finally, the best thirty
or so transformations were used in the estimation of the
inter-camera homographyH (using the algorithm described

in Sec. 3.1).

5.1 Alignment of Non-Overlapping Sequences

Fig. 3 shows an example of alignment of non-
overlapping sequences. The left camera is zoomed-in
and rotated relative to the right camera. The correct
spatio-temporal alignment can be seen in Fig. 3.c. Note the
accurate alignment of the running person both in time and
in space.

Our approach to sequence alignment can be used to gen-
erate wide-screen movies from two (or more) narrow field-
of-view movies (such as in IMAX movies). Such an exam-
ple is shown in Fig. 4. To verify the accuracy of alignment
(both in time and in space), we allowed for a very small over-
lap between the two sequences. However, this image region
was not used in the estimation process, to imitate the case of
truly non-overlapping sequences. The overlapping region
was used only for display and verification purposes. Fig. 4.c
shows the result of combining the two sequences (by averag-



Visible IR Output

(a) (b) (c)

Figure 6: Multi-sensor Alignment. (a) and (b) are temporally corresponding frames from the visible-light and IR sequences, respec-
tively (the temporal alignment was automatically detected). The inside of the building is visible only in the visible-light sequence, while the
IR sequence captures the details outdoors (e.g., the dark trees, the sign, the bush). (c) shows the results of fusing the two sequences after
spatio-temporal alignment. The fused sequence preserves the details from both sequences. Note the high accuracy of alignment (both in time
and in space) of the walking lady. For more details see text. For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

ing corresponding frames) after spatio-temporal alignment.
Note the accurate spatial as well as temporal alignment of
the soccer players in the averaged overlapping region.

In order to empirically verify the accuracy of our method,
the real video sequence of Fig. 7 was split in the middle,
producing two non-overlapping sequences of half-a-frame
width each. The true (ground truth) homography in this case
corresponds to a horizontal shift by the width of a frame (352
pixels). The frame-to-frame transformation (T1:::Tn and
T 0

1:::T
0

n) were estimated separately within each sequence us-
ing [15]. The temporal shift (�t = 0) was recovered cor-
rectly from these transformations, and the “inter-camera”
homography H was recovered up to a misalignment error
of less than 0.7 pixel over the entire image. See Table 1 for
summary of the quantitative experimental results.

5.2 Alignment of Sequences Obtained at Different
Zooms

Often in surveillance applications two cameras are used,
one with a wide FOV (field-of-view) for observing large
scene regions, and the other camera with a narrow FOV
(zoomed-in) for detecting small objects. Matching two such
images obtained at significantly different zooms is a difficult
problem for standard image alignment methods, since the
two images display different features which are prominent at
the different resolutions. Our sequence alignment approach
may be used for such scenarios. Fig. 5 shows three such ex-
amples. The results of the spatio-temporal alignment (right
colunm of Fig. 5) are displayed in the form of averaging tem-
porally corresponding frames after alignment according to
the computed homography and the computed time shift. In
the first example (top row of Fig. 5) the zoom difference be-
tween the two cameras was approximately 1:3. In the sec-

ond example (second row) it was �1:4, and in the third ex-
ample (bottom row) it was �1:8. Note the small red flow-
ers in the zoomed view (Fig. 5.2.b). These can barely be
seen in the corresponding low resolution wide-view frame
(Fig. 5.2.a). The same holds for the Pagoda in Fig. 5.3.b

To empirically verify the accuracy of our method in the
presence of large zooms and large rotations, we ran the
algorithm on following three manipulated sequences with
known (ground truth) manipulations: We warped the se-
quence of Fig. 7 once by a zoom factor of 2, once by a zoom
factor of 4, and once rotated it by 180o. The results are sum-
marized in Table 1.

In each of these cases, the recovered homography was
composed with the inverse of the ground-truth homogra-
phy: H�1

trueHrecovored. Ideally, the composed homography
should be the identity matrix. The errors reported in Table 1
are the maximal residual misalignment induced by the com-
posed homography over the entire image.

5.3 Multi-Sensor Alignment

Images obtained by sensors of different modalities, e.g.,
IR (Infra-Red) and visible light, can vary significantly in
their appearance. Features appearing in one image may not
appear in the other, and visa versa. This poses a problem
for image alignment methods. Our sequence alignment ap-
proach, however, does not require coherent appearance be-
tween the two sequences, and can therefore be applied to
solve the problem. Fig. 6 shows an example of two such se-
quences, one captured by a near IR camera, while the other
by a regular video (visible-light) camera. The scene was
shot in twilight. In the sequence obtained by the regular
video camera (Fig.6.(a)), the outdoor scene is barely visi-
ble, while the inside of the building is clearly visible. The
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Figure 7: The sequence used for empirical evaluation.
(a,b,c) are three frames (0,150,300) out of the original 300 frames.
This sequence was used as the base sequence for the quantitative
experiments summarized in Table 1.

IR camera, on the other hand, captures the outdoor scene
in great detail, while the indoor part (illuminated by “cold”
neon light) was invisible to the IR camera (Fig. 6.(b)). The
result of the spatio-temporal alignment is illustrated by fus-
ing temporally corresponding frames. The IR camera pro-
vides only intensity information, and was therefore fused
only with the intensity (Y) component of the visible-light
camera (using the image-fusion method of [4]). The chrome
components (I and Q) of the visible-light camera supply the
color information.

The reader is encouraged to view color sequences at
www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

6 Conclusion

This paper presents an approach for aligning two se-
quences (both in time and in space), even when there is no
common spatial information between the sequences. This
was made possible by replacing the need for “coherent ap-
pearance” (which is a fundamental requirement in standard
images alignment techniques), with the requirement of “co-
herent temporal behavior”, which is often easier to satisfy.
We demonstrated applications of this approach to real-world
problems, which are inherently difficult for regular image
alignment techniques.

Acknowledgment

The authors would like to thank R. Basri and L. Zelnik-
Manor for their helpful comments.

References

[1] S. Avidan and A. Shashua. Thereading fundamaental matrices. In
European Conference on Computer Vision, pages 124–140, Freiburg,
June 1998.

[2] P. A. Beardsley, P. H. S. Torr, and A. Zisserman. 3D model aquisition
from extended image sequences. In Proc. 4th European Conference
on Computer Vision, LNCS 1065, Cambridge, pages 683–695, 1996.

[3] A. Bjorck. Numerical Methodes for Least Squares Problems. SIAM,
Philadelphia, 1996.

[4] P.R. Burt and R.J. Kolczynski. Enhanced image capture through fu-
sion. In International Conference on Computer Vision, 1993.

[5] Y. Caspi and M. Irani. Alignment of non overlapping sequences. jor-
nal version.

Applied Recovered Max Residual
Transformation Transformation Misalignment

Horizontal shift
of 352 pixels

Horizontal shift
of 351.6 pixels

0.7 pixels

Zoom factor = 2 Zoom factor = 1.9992 0.4 pixels
Zoom factor = 4 Zoom factor = 4.0048 0.4 pixels
Rotation by 180o Rotation by 180:00o 0.01 pixels

Table 1: Quantitative results. This table summarizes the
quantitative results with respect to ground truth. Each row cor-
responds to one experiment. In each experiment a real video se-
quence (Fig. 7) was warped (“manipulated”) by a known homog-
raphy, to generate a second sequence. The left column describes
the type of spatial transformation applied to the sequence, the cen-
ter column describes the recovered transformation, and the right
column describes the residual error between the ground-truth ho-
mography and the recovered homography (measured in maximal
residual misalignment in the image space). In all 4 cases the cor-
rect temporal shift was recovered accurately. See text for further
details.

[6] Y. Caspi and M. Irani. A step towards sequence-to-sequence align-
ment. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 682–689, 2000.

[7] D. Demirdijian, A. Zisserman, and R. Horaud. Stereo autocalibration
from one plane. In European Conference on Computer Vision, 2000.

[8] Y. Dufournaud, C. Schmid, and R. Horaud. Matching images with
different resolutions. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 612–619, 2000.

[9] C. E.P̃earson (ed.). Handbook of applied mathematics - Second Edi-
tion. Van Nostrand Reinhold Company, New York, 1983.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge university press, Cambridge, 2000.

[11] R. Horaud and G. Csurka. reconstruction using motions of a stereo
rig. In International Conference on Computer Vision, pages 96–103,
1998.

[12] R. Horaud and F. Dornaika. Hand-eye calibration. International Jour-
nal of Robotics Research, 14(3):195–210, June 1995.

[13] M. Irani and P. Anandan. About direct methods. In Vision Algorithms
Workshop, pages 267–277, Corfu, 1999.

[14] M. Irani, P. Anandan, and D. Weinshall. From reference frames to
reference planes: Multi-view parallax geometry and applications. In
European Conference on Computer Vision, Freiburg, June 1998.

[15] M. Irani, B. Rousso, and S. Peleg. Computing occluding and transpar-
ent motions. International Journal of Computer Vision, 12(1):5–16,
January 1994.

[16] R. Kumar, P. Anandan, and K. Hanna. Direct recovery of shape from
multiple views: A parallax based approach. In International Confer-
ence on Pattern Recognition, 1994.

[17] C.C. Slama. Manual of Photogrammetry. American Society of Pho-
togrammetry and Remote Sensing, 1980.

[18] G. P. Stein. Tracking from multiple view points: Self-calibration of
space and time. In DARPA IU Workshop, pages 1037–1042, 1998.

[19] P.H.S. Torr and A. Zisserman. Feature based methods for structure
and motion estimation. In Vision Algorithms Workshop, 1999.

[20] R. Y. Tsai and R. K. Lenz. A new technique for full autonomous and
efficient 3d robotics hand/eye calibration. IEEE Journal of Robotics
and Automation, 5(3):345–358, June 1989.

[21] P. Viola and W. Wells III. Alignment by maximization of mutual in-
formation. In International Conference on Computer Vision, pages
16–23, 1995.

[22] A. Zisserman, P.A. Beardsley, and I.D. Reid. Metric calibration of a
stereo rig. In Workshop on Representations of Visual Scenes, 1995.


