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Abstract
One of the major problems in modeling images for vi-

sion tasks is that images with very similar structure may
locally have completely different appearance, e.g., images
taken under different illumination conditions, or the im-
ages of pedestrians with different clothing. While there
have been many successful attempts to address these prob-
lems in application-specific settings, we believe that un-
derlying a large set of problems in vision is a representa-
tional deficiency of intensity-derived local measurements
that are the basis of most efficient models. We argue that
interesting structure in images is better captured when the
image is defined as a matrix whose entries are discrete in-
dices to a separate palette of possible intensities, colors or
other features, much like the image representation often
used to save on storage. In order to model the variabil-
ity in images, we define an image class not by a single
index map, but by a probability distribution over the in-
dex maps, which can be automatically estimated from the
data, and which we call probabilistic index maps. The ex-
isting algorithms can be adapted to work with this repre-
sentation, as we illustrate in this paper on the example of
transformation-invariant clustering and background sub-
traction. Furthermore, the probabilistic index map rep-
resentation leads to algorithms with computational costs
proportional to either the size of the palette or the log
of the size of the palette, making the cost of significantly
increased invariance to non-structural changes quite bear-
able.

1 Introduction
An image is typically defined as a matrix whose

entries are intensity levels, colors, or features, which
are all fairly sensitive to changes in the environment
illumination, let alone more interesting changes, such
as the change in a persons clothes. We argue that for
general image matching tasks, the interesting struc-
ture in images is better captured when the image is
defined as a matrix whose entries are indices to a sep-
arate palette of possible intensities, colors or other fea-
tures, much like the image representation often used to
save on storage. An advantage of this representation
is that the palette can be arbitrarily changed with-

out changing the image structure. In order to model
the variability in image structure, we define an image
class not by a single index map, but by a probability
distribution over the index maps, which can be auto-
matically estimated from the data. Under this model,
images of a certain class (e.g., head-and-shoulder pho-
tographs of people) will have similar index maps which
are all likely under this probabilistic model, but their
palettes can be completely different. With the cost
proportional to the size of the palette, the existing al-
gorithms can be adapted to work with this represen-
tation, as we illustrate in this paper on the example
of transformation-invariant clustering.

In previous work, a very interesting step in the di-
rection of color-invariance was made by Stauffer et al,
who replace the image intensities with a self-similarity
measure [4,5]. They build a large ”co-occurrence ma-
trix” with an entry for every pair of pixels. This statis-
tic is computed from a labeled training set, and as
far as we know their technique is only used in su-
pervised algorithms. The major problem is the size
of the matrix (105 × 105 entries for a 256 × 256 im-
age). Computational and storage problems have so
far limited their experiments to tasks that use small
images, e.g., pedestrian detection. Our representation
is considerably more efficient and is easily used in un-
supervised algorithms. It is also easily combined with
other causes of variability in graphical models, e.g.,
the models developed by Jojic and Frey [1, 2]. How-
ever, as our experiments show, our new representation
provides much greater color- and feature-invariance,
which helped it outperform these appearance-based
models in unsupervised transformation-invariant clus-
tering tasks.

2 Palette indexing
One efficient representation of an image is as the

collection of indices, one index per pixel, that points to
a separate table of possible values the pixels can take.
This representation is heavily used in image formats,
as it drastically reduces the storage requirements. Al-
though the goal is usually storage efficiency, this is
achieved by exploring self-similarity in the image, at
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Figure 1: An illustration of the index map as a palette-
invariant representation

least at the lowest level. Thus, such a representation
is potentially useful in other image processing tasks
including image understanding. The index table is
typically a color table, or a palette, but there is no
reason why it would not contain derived features, such
as wavelet coefficients, for example. The palette can
be shared across a collection of images, e.g. a video
sequence, or a set of objects with similar structure but
different colors.

In this section, we discuss possible assumptions on
dependencies among variables in such a representa-
tion to point out the similarities and differences be-
tween standard techniques based on color/feature his-
tograms and our models based on the idea of complete
or partial palette invariance.

Consider a collection of T I × J images X =
{Xt}T

t=1, where each image is defined on the domain
{(i, j)|i ∈ [1..I], j ∈ [1..J ]}, and the individual pixels
(or other measurements) are indexed by t, i, and j,
i.e., Xt = {xt

ij}(I,J)
(1,1) . Despite the redundancy, we tem-

porarily associate a separate color (or feature) palette
Ct

i,j and an index st
ij with each pixel. We will later

make the images share the index maps but not the
palettes (Fig. 1). Each palette C is a table of S
color or feature models, indexed by s. For example,
C(s) = µs could be an [r, g, b]T vector for the sth color
in the table, as customary. Then, the color of a pixel
is xt

ij = C(st
ij). The information stored in the palette

can be extended to include:

• Extra features (both in C and x)

– Wavelet or Gabor coefficients

– Edge descriptors

– Texture measurements, etc.

• Description of uncertainty/variability:

– Color variance parameters, e.g., the covari-
ance matrix describing E[xt

ij−µs][xt
ij−µs]T

in a Gaussian distribution

– Other forms of error distributions, e.g., a
hand-tuned robust distribution (a mixture

of Gaussian and uniform, for example, which
would discount large errors)

– Hidden causes of variability (mixture vari-
ables, subspace coordinates (in case of high-
dimensional observations xt

ij , or when the
model spans the entire palette), etc.

In general, we can think of each color model Ct
ij(s)

as the parameters of a distribution p(x|C(s)) over all
possible measurements, x. For example, a color table
C(s) could be simply defined as the mean µs and the
covariance matrix Φs of a Gaussian distribution over
the observation xt

ij ,

p(xt
ij |C(s)) = N (xt

ij ; µs,Φs), (1)

where xt
ij could be a vector with the color coordinates

in a suitable color space, or a vector of Gabor coeffi-
cients, or a vector of quantitative texture descriptors,
vector of spatial and temporal derivatives, or any other
vector describing an image location.

Obviously, there are many other ways to describe
the distribution over image measurements, but the
discussion that follows is largely independent of the
choice of image features and the form of the probabil-
ity model p(xt

ij |Ct
ij(s)).

First, we show how some of the traditional image
representations map into our notation.
Color palette and image compression.

In many image formats, it is assumed that each
image has its own color table, i.e.,

C1
11 = C1

12 = ... = C1
I,J−1 = C1

IJ = C1 = {µ1
s}S

s=1

C2
11 = C2

12 = ... = C2
I,J−1 = C2

IJ = C2 = {µ2
s}S

s=1

...

CT
11 = CT

12 = ... = CT
I,J−1 = CT

IJ = CT = {µT
s }S

s=1.

This representation is useful when each image contains
a relatively small number of colors, but sampled from a
large portion of the color space. Then, a small number
of colors, e.g., S = 256, are found that represent all
the colors in the image most faithfully. Each entry
in the palette is a 24-bit color, but in each location
i, j in the image, only the 8-bit index sij is stored,
yielding almost a three-fold compression, as the size
of the palette is negligible in comparison with the size
of the image. Usually, each image has a separate color
palette, although the palettes can also be shared.

Spatially-invariant color or feature distribution
models Lots of simple image understanding tools rely
on color or feature histograms. Faced with the huge



variability in the visual data, these algorithms typi-
cally assume that images or their portions are as sim-
ilar as the distribution of colors present in them, and
they ignore the spatial configuration of the colors. In
our notation this idea can be expressed as the assump-
tion that similar images share the same color model
for all pixels

C1
11 = C1

12 = ... = CT
I,J−1 = CT

IJ = C. (2)

3 Palette-invariant models
We can derive a new class of models that assume

that indices s are dependent on the coordinates i, j,
but this information is shared across the collection of
images. For example, if we assume that index sij for
each location in the image is shared across the entire
collection

s1
ij = s2

ij = ... = st
ij = ... = sT−1

ij = sT
ij = sij , (3)

and the palette Ct for each image is shared across all
locations i, j,

Ct
11 = Ct

12 = ... = Ct
ij = Ct

I,J−1 = Ct
IJ = Ct, (4)

we obtain a basic palette-invariant model which as-
sumes a fixed spatial arrangement of the features, but
the features themselves can arbitrarily change from
one image to the next. For example, Fig. 2 shows
an index map that describes a whole class of objects.
The index map was learned from 50 examples of car
images, using the algorithm we will describe shortly.
In the same figure, we show the inferred palettes for 8
detected car images outside our training set. One use-
ful property of the palette-invariant model is that it
equates the images taken under different overall levels
of illumination. However, as shown in our example,
the objects with different surface properties but simi-
lar spatial structure are also considered similar under
this model. The basic palette-invariant model can be
extended in several ways, but the most important con-
cept that we would like to focus on in this paper is the
introduction of the variability in the index map.

Modeling uncertainty: probabilistic index
maps (PIM) . We can relax the hard assumption in
(3) and allow the indices that model the same location
in the image to vary, but follow the same distribution

p(s1
ij = s) = p(s2

ij = s) = ... = p(sT
ij = s) = pij(s),

(5)
where location-dependent distributions pij describe
the variability in different locations of the image, and

the overall distribution over the index maps S = {st
ij}

is
p(S) =

∏

i,j,t

pij(st
ij), (6)

and the joint probability distribution is

p(S,X) =
∏

i,j,t

p(xt
ij |st

ij)pij(st
ij) (7)

For example, if the image collection X contains the
frames from a video of a tree that moves slightly in
the wind while the illumination conditions are varying
due to the movement of the clouds, then added level
of variability in the index map (pij) helps capture the
flutter of the leaves, still allowing generalization of the
image under varying illuminations. This variability is
separate from the intra-image appearance variability
captured in the individual palettes, and tends to model
intra-class structural variability instead.

4 Inference and learning procedures
for models using probabilistic index
maps

Some of the models in the previous section are not
only simple to express in terms of a joint probability
distribution functions, but also the standard Bayesian
inference and EM learning algorithms can be used to
infer the index maps and learn the palettes. However,
in general, even the simple models will in practice only
be used as components of more complex models that
capture other causes of variability in the images, such
as large motion, multiple objects and their mutual
occlusions, etc. In such models, the indexed-image
representations discussed above can be valuable for
modeling illumination variability or other significant
appearance variability that is not due to structural
changes.

In order to use these components in more elaborate
generative models, we first derive the cost function and
the associated inference and learning algorithm that
will make these components more easily extensible.

4.1 Free energy of a graphical model
In the previous section, we expressed various mod-

els as the joint probability distributions over the data
and the variables describing hidden causes of variabil-
ity. A standard criterion to optimize when fitting such
(graphical) models is the likelihood or the log likeli-
hood of the observed data, obtained by summing or
integrating over the hidden variables h for a given set
of parameters θ, i.e., log p(x|θ) =

∑
h log p(x,h|θ).

In our models, we will treat the index variables s as
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Figure 2: The palette-invariant generative model trained on car images uses the common index map (shown in
color on the left) to model different images (bottom), by varying the palettes (top) to produce the corresponding
synthesized images (middle).

hidden variables and color/features maps or palettes
C as model parameters.

When this optimization is intractable, approximate
methods must be used. The machine-learning commu-
nity has recently started to converge to a unified view
of various approximations. This view is based on an
alternative cost, named free energy for its similarity
with the quantity used in statistical physics. The free
energy bounds the negative log likelihood of the data,
and is defined as

F =
∑

h

q(h) log
q(h)

p(x,h|θ)
=

=
∑

h

q(h) log q(h) −
∑

h

q(h) log p(x,h|θ)(8)

where q(h) is an arbitrary distribution. Making the
substitution q(h) = p(h|x,θ) yields F = − log p(x|θ).
In addition, using Jensen’s inequality, it can be F ≥
− log p(x|θ) for any probability distribution q(h)—
that is for any function q(h) such that

∑
h q(h) = 1.

Thus, q is seen as an approximate posterior distribu-
tion, that can be used to compute a lower bound on
the log likelihood of the data. In a class of inference
algorithms called variational methods, q functions are
chosen so as to simplify the free energy into a tractable
form that can be efficiently optimized using an itera-
tive algorithm [3]. The variational EM algorithm iter-
atively decreases F (q, θ), with respect to the posterior
distribution and the model parameters. Given that
the free energy is bounded from bellow, the algorithm
is guaranteed to converge to at least a local maximum.

4.2 Free energy of a probabilistic index
map (PIM)

Here, we derive the inference (E step) and the pa-
rameter update rules (M step) for the PIM model (7)
that uses a variable index map described by (5) and
sample-independent color maps (4). In this model,

each observation has a separate index st
ij but the

prior pij(s) for each location is shared among the ob-
served images. Using a factorized posterior q({st

ij}) =∏
i,j q(st

ij), where q(st
ij) are independent distributions,

we can write the free energy as

F =
∑

i,j,t

∑

st
ij

q(st
ij) log q(st

ij) −

−
∑

i,j,t

∑

st
ij

q(st
ij) log pij(st

ij) −

−
∑

i,j,t

∑

st
ij

q(st
ij) log p(xt

ij |st
ij , Ct). (9)

This can be derived from the general form of the free
energy expression by observing that

∑
s q(st

ij = s) =
1 (see also the tutorial at the author’s web page if
needed). Optimizing for the q distributions under the
constraint that

∑
st

ij
q(st

ij) = 1, we obtain

q(st
ij) ∝ pij(st

ij)p(xt
ij |st

ij , Ct), (10)

which is normalized to enforce
∑

st
ij

q(sij) = 1. Note
that this is the same result that would be obtained
from the exact Bayes rule, as the true posterior in
deed has the same factorized form. The parameters of
this simple model are the IJ multinomial distributions
pij(sij) and the T palettes Ct, and they are estimated
in the M step by keeping q(st

ij) fixed an minimizing
the free energy. Assuming a Gaussian model in each
entry of the palette Ct(s) = {µt

s,Φ
t
s}, we obtain the

following update rules:

pij(sij = s) =
1
T

∑

t

q(st
ij = s)

µt
s =

∑
ij q(st

ij = s)xt
ij∑

ij q(st
ij = s)

Φt
s =

∑
ij q(st

ij = s)[xt
ij − µt

s][x
t
ij − µt

s]
T

∑
ij q(st

ij = s)
.



5 Probabilistic index maps in
complex graphical models

The factorized form of the posterior discussed in
the previous section is actually exact when there are
no additional hidden variables, but in general, factor-
ization can be used as an approximation not only to
make inference and learning more tractable for com-
plex graphical models, but also to modularize the in-
ference engine.

5.1 PIM mixtures
If the dataset consists of images of different objects,

we can add the cluster variable c and use the resulting
mixture model to automatically cluster the objects.
The cluster variable should affect the structure con-
tained in the index variables S = {sij} and the joint
probability distribution is

P t = p(ct)p(St|ct)p(Xt|St, Ct), (11)

and we can tractably use both the fully factorized
posterior q = q(c)q(S) or the full (correct) posterior
q(c)q(S|c).

5.2 Spatial transformation invariance
and alignment

We consider now the case when the images under
consideration may have undergone unknown spatial
transformations in addition to the palette changes.
Such situations are a norm, rather than exception in
realistic applications. For example, photographs of
the same scene will not only be obtained with slightly
different exposure settings, but the angle of view will
change, video frames undergo transformations due to
camera motion, and even a collection of object pho-
tographs will usually come unaligned.

The model that describes such images should in-
clude the transformation variable, T [1]. At a first
glance, it may seem that estimating at the same time
the transformation and the palette colors will be in-
tractable. However, we show here that the complexity
of aligning a map of indices S = {sij} with an un-
known palette to an image X = {xij} is of the same
complexity as aligning two images, the problem for
which the computer vision community has proposed
many tractable solutions, e.g., the FFT-based transla-
tional alignment and the multi-resolution affine align-
ment of Lucas and Kanade. To be more precise, cost
of inference of both the color map for an image and
the transformation will grow only linearly in the num-
ber of colors in the palette, as it can be reduced to
multiple minimizations of variance in image segments,

where each minimization is computationally of similar
nature as aligning two images.

To make this point, we will consider the log-
distribution over the image X given the transforma-
tion and the index map,

log p(X|S,T) =
− 1

2

∑
ij

[
(xij − µsT(ij)

)′Φ−1
sTij

(xij − µsT(ij)
)

+ log |2πΦsTij

]
, (12)

where T(ij) are the coordinates into which ij maps
under T. If not handled properly, this part of the gen-
erative model will be the main source of intractability,
as maximizing it jointly over color distribution param-
eters (µs,Φs) and transformations T will be required.
To transform the above into a more tractable com-
putation, we rearrange the summation so that we first
sum over all pixels that map to color s = 1, then those
that map to color s = 2, and so on:

log p(X|S,T) =

− 1
2

∑S
k=1

∑
i,j|sT(ij)=k

[
(xij − µk)′Φ−1

k (xij − µk)

+ log |2πΦk|], (13)

Without the loss of generality, and for the sake of no-
tational simplicity, we will focus on the case of a gray
level (scalar) pixels 1, in which case we can write

log p(X|S,T)=−1
2

S∑

k=1

dk, (14)

dk =T(Sk)′[φ−1
k (X − µk)2 + log 2πφk].(15)

where we use Sk to denote the binary image indicat-
ing for each pixel if it is assigned to palette entry k
or not, and T(Sk) is the transformed version of this
binary image. These binary images and image X are
represented as one-dimensional vectors of pixels (un-
wrapped images), so that the distance dk can be writ-
ten as an inner product. Palette entry parameters
µk, φk are scalar, and the sum of a vector and a scalar
is defined as adding the scalar to all elements of the
vector, i.e., X+ µ = X+ µE, where E is the vector of
ones.

The sum like the one above will be a part of every
model that uses indexed images as well as transforma-
tions, and so we will first analyze the computational
requirements of optimizing this sum alone, which is

1When the covariance matrix Φk is diagonal, the Maha-
lanobis distance breaks into a sum of distances between scalars,
and if Φk is not diagonal, it can be diagonalized by SVD, so
both cases can be reduced to the case of scalar observations xij .



equivalent to aligning the index map S to the im-
age X when palette parameters are unknown. For the
transformation T, the palette means and variances the
maximize the sum are given by

µk =
T(Sk)′X
T(Sk)′E

, φk =
T(Sk)′(X − µk)2

T(Sk)′E
. (16)

The efficient optimization of − ∑
k dk should eval-

uate for each transformation under the consideration
the optimal palette entry µk, φk before evaluating the
entire sum. All of the computations are inner products
of vectors, just as traditional image alignment tech-
niques are optimizing the inner product between an
image and a transformed version of another T(Y)′X.
Substituting the estimates for the mean and variance
in each segment back into (15), we obtain

dk = log 2πφk, (17)

which is the log of the variance (16) in the image region
defined by sT(ij) = k. In other words, aligning the
index map to an image when the palette is unknown
corresponds to minimizing the variances in the image
segments defined by the pixel indices.

When S is unknown (hidden variable) the free en-
ergy will involve expectations under q(sij) of the above
distance, which will in the end have a similar form with
Sk now being a soft image of probabilities q(sij = k).

As noted above, an efficient way of optimizing im-
age distances is the one based on multiresolution. In
our case, we would severely downsample Sk and X and
perform quick but rough alignment (search for T), and
then refine the search at higher and higher resolutions.
In that case, the main increase in computational load
in comparison to image-to-image registration would
come from having to sum over all indices k = 1, ..., S.
However, this optimization can be sped up following
the same recipe, except that we would deal in addition
with the palette multiresolution.

Another efficient way for alignment is based on fast
Fourier transformation which can be computed in the
time proportional to the log of the image resolution,
leading to a representation in which convolution be-
comes pointwise multiplication. For instance, the fol-
lowing piece of Matlab code would compute the vari-
ances φk in (16) for all discrete shifts T in O(log(IJ))
time:

fs=fft2(Sk); fx=fft2(X);
fx2=fft2(X.ˆ2); fe=fft2(ones(size(X)));
D=ifft2(conj(fs)*fx-(conj(fs)*fx2./(conj(fs)*fe)).ˆ2);

(a) Aligning two images via joint PIM

(b) Inferred individual index maps

Figure 3: Aligning two images with different colors and
features. The first two images in the first column of (a)
show two different images of a child taken on different
days. One image is in color and the other one is black and
white. The third image in the column shows the result
of BW image alignment. The middle two columns show
the probabilistic index map in terms of its components
p(sij = k) using a palette with only five entries. The last
column shows the probabilistic index map in terms of the
palettes inferred in two images. In (b), we contrast the
common probabilistic index map p(sij) (top row) with
the inferred index maps qt(sij = k) for individual images.

In this implementation, X and Sk are 2D images
(I×J) and the final result D is also a matrix of the
same dimensions, so that i, j-th entry contains the
variance φk (whose log is the distance dk) for the shift
of i pixels in one direction and j in the other.

5.3 Transformed mixtures of
probabilistic index maps

Adding both the mixing variables c and transfor-
mation variables T, we can construct a transformed
mixture of PIMs (TMPIM), with the joint probability
distribution for the t-th image

p(Xt, St, ct,Tt) = p(Xt|Tt, St)p(St|ct)p(T t)p(ct) (18)

To minimize the free energy of this model, we use the
following, this time approximate, form of the posterior
q:

qt = q(ct)q(St|ct)q(Tt|ct), (19)



q(St|ct) =
∏

ij

q(st
ij |ct) (20)

Following the recipe from the previous sections, we de-
rived the update rules leading to the optimization that
iterates (a) optimization of the color or feature palette
({µk,φk}) for each image; (b) inference of the varia-
tional posterior for each image (posterior distribution
over the segmentation map, transformation that aligns
the image with the current guess at PIM p(S|c), and
the posterior distribution over the class c for each im-
age); and (c) re-estimation of the class PIMs p(s|c)
and the prior p(c). All of these steps are performed by
minimizing the free energy of the model, as described
above, with the efficient treatment of transformations
as described in the previous section.

The resulting algorithm is illustrated on a mini two-
image dataset in Fig. 3. In order to align a color
image of a child with another gray-level image, we
train a single-class TMPIM model which brings the
two images into alignment with respect to the shared
probabilistic index map. An example of unsupervised
clustering images with TMPIM is given in the next
section.

6 Experimental results and
conclusions

The probabilistic index map is a universal image
representation that can find its way into many exist-
ing computer vision algorithms. To illustrate its ben-
efits, we used the PIM representation in two typical
computer vision tasks: background subtraction and
transformation-invariant image clustering.

In Fig. 4 we show that PIM representation al-
lows for background subtraction based on a single
frame, rather than on tracking incremental changes in
a continuous video stream. An 8-index PIM model is
learned by minimizing its free energy on the small col-
lection of background images (Section 4.2). Then, for
each new test image, the color palette is inferred and
the pixel-wise free energy F t

ij is estimated. The fore-
ground detection is then given in terms of the bumps
in the energy profile, shown in the last column in (c-
f). To better illustrate what is happening ”under the
hood,” the middle column shows the expected back-
ground image Bt using the inferred color palette for
each test image,

E[bt
ij ] =

∑

k

q(st
ij = k)µk. (21)

Note, however, that the free energy also depends on
the inferred variance for each palette entry.

It is interesting to compare the use of PIM repre-
sentation with standard appearance models in more
complex graphical models. Here, we use Frey and
Jojic’ transformed mixtures of Gaussians (TMG) for
comparison, as this model captures variability in both
appearance and transformation, and has been shown
to be successful at unsupervised image clustering [1].
As we show in Fig. 5, PIM representation leads to
superior illumination invariance at a low extra com-
putation cost. Using the 200 images from the dataset
published with the TMG algorithm (Fig. 4a in [1]),
the transformed mixture of probabilistic index maps
was able to automatically cluster the data in (a) into
two clusters representing two different people with an
error rate of only 2.5%. In contrast regular mixture
of Gaussians and TMG had much poorer error rates
of 40.5% and 26%, respectively. All three techniques
were applied in a completely unsupervised fashion.2

In all experiments we report in this paper, we only
used color or gray-level intensity as image features.
This makes it easier to separate the benefits of the
probabilistic image map representation from the wise
choice of local image features. To use other features,
we can form an extended feature vector that concate-
nates the color information with other local measure-
ments. As the model allows for learning the covariance
structures for various entries in the palette, (or even
more complex probability distributions), the feature
selection occurs automatically.
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2For TMG to start separating the two faces into nonoverlap-
ping classes, the complexity (number of classes) has to be in-
creased beyond the equivalent complexity of the TMPIM model.
Even then, it is not clear how the resulting multiple classes
would be grouped into two identities.



(a) The entire training data (20 images):

(b)The learned index map:

(c-f)Background subtraction results:

Input Palette Synthesized Foreground

Figure 4: Illumination-invariant background subtrac-
tion. The background model is trained using only the
20 images shown in (a). The learned index map is
shown in (b). Rows (c)-(d) show the images with dras-
tic illumination changes, the recomputed background
to match the the new conditions and the result of the
background subtraction. The situations PIM model
can handle include low illumination (c), image sat-
uration (d), color channel malfunction (e), or even
a switch to a different set of measurements, such as
IR, or as in (f), gray-level images. Note that in all
cases the recovery from the illumination change is in-
stantaneous, and that the color training data had no
examples remotely similar in intensities to the test ex-
amples.

(a) A subset of the dataset

(b) TMG clusters (Error rate 26%)

(c) TMPIM clusters (Error rate 2.5%)

(d) Examples of inference in the TMPIM model

Figure 5: Unsupervised clustering using transformed
mixtures of probabilistic index maps (TMPIM). TMPIM
clusters are represented by two distributions p(S|c),
shown as probability maps for index k=1,...,5. TMPIM,
with its clustering accuracy of 97.5%, compares favor-
ably to the standard mixture of Gaussians model that
had a clustering accuracy of only 59.5% and the TMG
technique [1] with accuracy of 74%. In (b) we show
inferred variational posterior q(S|c), the palette means,
the synthesized image and the aligned input for three
images.


