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Abstract

We propose a method for constructing a video sequence of high space-time res-

olution by combining information from multiple low-resolution video sequences of

the same dynamic scene. Super-resolution is performed simultaneously in time and

in space. By “temporal super-resolution” we mean recovering rapid dynamic events

that occur faster than regular frame-rate. Such dynamic events are not visible (or

else observed incorrectly) in any of the input sequences, even if these are played in

“slow-motion”.

The spatial and temporal dimensions are very different in nature, yet are inter-

related. This leads to interesting visual tradeoffs in time and space, and to new

video applications. These include: (i) treatment of spatial artifacts (e.g., motion-

blur) by increasing the temporal resolution, and (ii) combination of input sequences

of different space-time resolutions (e.g., NTSC, PAL, and even high quality still

images) to generate a high quality video sequence.

We further analyze and compare characteristics of temporal super-resolution to

those of spatial super-resolution. These include: How many video cameras are needed

to obtain increased resolution? What is the upper bound on resolution improvement

via super-resolution? What is the optimal camera configuration for various scenarios?

What is the temporal analogue to the spatial “ringing” effect?
∗This research was supported in part by the Israel Science Foundation grant no. 267/02.
†This research was done while Yaron Caspi was still at the Weizmann Institute of Science.
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1 Introduction

A video camera has limited spatial and temporal resolution. The spatial resolution is

determined by the spatial density of the detectors in the camera and by their induced

blur. These factors limit the minimal size of spatial features or objects that can be visually

detected in an image. The temporal resolution is determined by the frame-rate and by the

exposure-time of the camera. These limit the maximal speed of dynamic events that can

be observed in a video sequence.

Methods have been proposed for increasing the spatial resolution of images by combin-

ing information from multiple low-resolution images obtained at sub-pixel displacements

(e.g. [1, 2, 3, 6, 7, 11, 13, 14, 15, 16]. See [4] for a comprehensive review). An extension

of [15] for increasing the spatial resolution in 3-dimensional (x,y,z) medical imagery has

been proposed in [12], where MRI data was reconstructed both within image slices (x and

y axis) and between the slices (z axis).

The above mentioned methods, however, usually assume static scenes with limited

spatial resolution, and do not address the limited temporal resolution observed in dynamic

scenes. In this paper we extend the notion of super-resolution to the space-time domain.

We propose a unified framework for increasing the resolution both in time and in space by

combining information from multiple video sequences of dynamic scenes obtained at (sub-

pixel) spatial and (sub-frame) temporal misalignments. As will be shown, this enables new

visual capabilities of dynamic events, gives rise to visual tradeoffs between time and space,

and leads to new video applications. These are substantial in the presence of very fast

dynamic events. From here on we will use SR as an abbreviation for the frequently used
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term “super-resolution”.

Rapid dynamic events that occur faster than the frame-rate of video cameras are not

visible (or else captured incorrectly) in the recorded video sequences. This problem is often

evident in sports videos (e.g., tennis, baseball, hockey), where it is impossible to see the

full motion or the behavior of the fast moving ball/puck. There are two typical visual

effects in video sequences which are caused by very fast motion. One effect (motion blur)

is caused by the exposure-time of the camera, and the other effect (motion aliasing) is due

to the temporal sub-sampling introduced by the frame-rate of the camera:

(i) Motion Blur: The camera integrates the light coming from the scene during the

exposure time in order to generate each frame. As a result, fast moving objects produce

a noted blur along their trajectory, often resulting in distorted or unrecognizable object

shapes. The faster the object moves, the stronger this effect is, especially if the trajectory

of the moving object is not linear. This effect is notable in the distorted shapes of the

tennis ball shown in Fig. 1. Note also that the tennis racket also “disappears” in Fig. 1.b.

Methods for treating motion blur in the context of image-based SR were proposed in [2, 1].

These methods however, require prior segmentation of moving objects and the estimation

of their motions. Such motion analysis may be impossible in the presence of severe shape

distortions of the type shown in Fig. 1. We will show that by increasing the temporal

resolution using information from multiple video sequences, spatial artifacts such as motion

blur can be handled without the need to separate static and dynamic scene components

or estimate their motions.

(ii) Motion-Based (Temporal) Aliasing: A more severe problem in video sequences of fast

dynamic events is false visual illusions caused by aliasing in time. Motion aliasing occurs

when the trajectory generated by a fast moving object is characterized by frequencies which

are higher than the frame-rate of the camera (i.e., the temporal sampling rate). When that
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(a) (b)

Figure 1: Motion blur. Distorted shape due to motion blur of very fast moving objects (the
tennis ball and the racket) in a real tennis video. The perceived distortion of the ball is marked
by a white arrow. Note, the “V”-like shape of the ball in (a), and the elongated shape of the ball
in (b). The racket has almost “disappeared”.

happens, the high temporal frequencies are “folded” into the low temporal frequencies. The

observable result is a distorted or even false trajectory of the moving object. This effect

is illustrated in Fig. 2, where a ball moves fast in sinusoidal trajectory of high frequency

(Fig. 2.a). Because the frame-rate is much lower (below Nyquist frequency of the trajec-

tory), the observed trajectory of the ball over time is a straight line (Fig. 2.b). Playing that

video sequence in “slow-motion” will not correct this false visual effect (Fig. 2.c). Another

example of motion-based aliasing is the well-known visual illusion called the “wagon wheel

effect”: When a wheel is spinning very fast, beyond a certain speed it will appear to be

rotating in the “wrong” direction.

Neither the motion-based aliasing nor the motion blur can be treated by playing such

video sequences in “slow-motion”, even when sophisticated temporal interpolations are used

to increase the frame-rate (as in video format conversion or “re-timing” methods [10, 20]).

This is because the information contained in a single video sequence is insufficient to

recover the missing information of very fast dynamic events. The high temporal resolution

has been lost due to excessive blur and excessive subsampling in time. Multiple video

sequences, on the other hand, provide additional samples of the dynamic space-time scene.

While none of the individual sequences provides enough visual information, combining the

information from all the sequences allows to generate a video sequence of high space-time

resolution, which displays the correct dynamic events. Thus, for example, a reconstructed
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(a) (b) (c)

Figure 2: Motion aliasing. (a) shows a ball moving in a sinusoidal trajectory over time.
(b) displays an image sequence of the ball captured at low frame-rate. The perceived motion is
along a straight line. This false perception is referred to in the thesis as “motion aliasing”. (c)
Illustrates that even using an ideal temporal interpolation for “slow-motion” will not produces the
correct motion. The filled-in frames are indicated by dashed blue line. In other words, the false
perception cannot be corrected by playing the video sequence in slow-motion, as the information
is already lost in the video recording (b).

high-resolution sequence will display the correct motion of the wagon wheel despite it

appearing incorrectly in all of the input sequences.

The spatial and temporal dimensions are very different in nature, yet are inter-related.

This introduces visual tradeoffs between space and time, which are unique to spatio-

temporal SR, and are not applicable in traditional spatial (i.e., image-based) SR. For

example, output sequences of different space-time resolutions can be generated from the

same input sequences. A large increase in the temporal resolution usually comes at the

expense of a large increase in the spatial resolution, and vice versa.

Furthermore, input sequences of different space-time resolutions can be meaningfully

combined in our framework. In traditional image-based SR there is no benefit in combin-

ing input images of different spatial resolutions, since a high-resolution image will subsume

the information contained in a low-resolution image. This, however, is not the case here.

Different types of cameras of different space-time resolutions may provide complementary

information. Thus, for example, we can combine information obtained by high-quality

still cameras (which have very high spatial-resolution, but extremely low “temporal reso-

lution”), with information obtained by standard video cameras (which have low spatial-

resolution but higher temporal resolution), to obtain an improved video sequence of high

spatial and high temporal resolution.

Differences in the physical properties of temporal vs. spatial imaging lead to marked
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differences in performance and behavior of temporal SR vs. spatial SR. These include issues

such as: the upper bound on improvement in resolution, synchronization configurations,

and more. These issues are also analyzed and discussed in this paper.

The rest of this paper is organized as follows: Sec. 2 describes our space-time SR

algorithm. Sec. 3 shows some examples of handling motion aliasing and motion blur in

dynamic scenes. Sec. 4 analyzes how temporal SR can resolve motion blur, and derives a

lower bound on the minimal number of input cameras required for obtaining an effective

motion deblurring. Sec. 5 explores the potential of combining input sequences of different

space-time resolutions (e.g., video and still). Finally in Sec. 6 we analyze the commonalities

and the differences between spatial SR and temporal SR.

A shorter version of this paper appeared in [22].

2 Space-Time Super-Resolution

Let S be a dynamic space-time scene. Let {Sl
i}n

i=1 be n video sequences of that dynamic

scene recorded by n different video cameras. The recorded sequences have limited spatial

and temporal resolution (the subscript “l” stands for “low” space-time resolution). Their

limited resolutions are due to the space-time imaging process, which can be thought of as

a process of blurring followed by sampling both in time and in space.

We denote each pixel in each frame of the low resolution sequences by a “space-time

point” (marked by the small boxes in Fig. 3.a). The blurring effect results from the fact

that the value at each space-time point is an integral (a weighted average) of the values

in a space-time region in the dynamic scene S (marked by the large pink and blue boxes

in Fig. 3.a). The temporal extent of this region is determined by the exposure-time of the

video camera (i.e., how long the shutter is open), and the spatial extent of this region is

determined by the spatial point-spread-function (PSF) of the camera (determined by the
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properties of the lens and the detectors [5]).

The sampling process also has a spatial and a temporal component. The spatial sam-

pling results from the fact that the camera has a discrete and finite number of detectors

(the output of each detector is a single pixel value), and the temporal sampling results

from the fact that the camera has a finite frame-rate resulting in discrete frames (typically

25 frames/sec in PAL cameras and 30 frames/sec in NTSC cameras).

The above space-time imaging process inhibits high spatial and high temporal frequen-

cies of the dynamic scene, resulting in video sequences of low space-time resolutions. Our

objective is to use the information from all these sequences to construct a new sequence Sh

of high space-time resolution. Such a sequence will ideally have smaller blurring effects and

finer sampling in space and in time, and will thus capture higher space-time frequencies

of the dynamic scene S. In particular, it will capture fine spatial features in the scene

and rapid dynamic events which cannot be captured (and are therefore not visible) in the

low-resolution sequences.
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Figure 3: The space-time imaging process. (a) illustrates the continuous space-time
scene and two of the low resolution sequences. The large pink and blue boxes are the support
regions of the space-time blur corresponding to the low resolution space-time measurements marked
by the respective small boxes. (b,c) show two different possible discretizations of the continuous
space-time volume S resulting in two different possible types of high resolution output sequences
Sh. (b) has a low frame-rate and high spatial resolution, whereas (c) has a high frame-rate but
low spatial resolution.
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The recoverable high-resolution information in Sh is limited by its spatial and temporal

sampling rate (or discretization) of the space-time volume. These rates can be different in

space and in time. Thus, for example, we can recover a sequence Sh of very high spatial

resolution but low temporal resolution (e.g., see Fig. 3.b), a sequence of very high temporal

resolution but low spatial resolution (e.g., see Fig. 3.c), or a bit of both. These tradeoffs

in space-time resolutions and their visual effects will be discussed in more detail later in

Sec. 6.1.

We next model the geometrical relations (Sec. 2.1) and photometric relations (Sec. 2.2)

between the unknown high-resolution sequence Sh and the input low-resolution sequences

{Sl
i}n

i=1.

2.1 The Space-time Coordinate Transformations

In general a space-time dynamic scene is captured by a 4D representation

(x, y, z, t). For simplicity, in this paper we deal with dynamic scenes which can be modelled

by a 3D space-time volume (x, y, t) (see in Fig. 3.a). This assumption is valid if one of

the following conditions holds: (i) the scene is planar and the dynamic events occur within

this plane, or (ii) the scene is a general dynamic 3D scene, but the distances between the

recording video cameras are small relative to their distance from the scene. (When the

camera centers are very close to each other, there is no relative 3D parallax.) Under those

conditions the dynamic scene can be modelled by a 3D space-time representation. Note

that the cameras need not have the same viewing angles or zooms.

W.l.o.g., let Sl
1 (one of the input low-resolution sequences) be a “reference” sequence.

We define the coordinate system of the continuous space-time volume S (the unknown

dynamic scene we wish to reconstruct), so that its x, y, t axes are parallel to those of the

reference sequence Sl
1. Sh is a discretization of S with a higher sampling rate than that of
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Sl
1 (see Fig. 3.b). Thus, we can model the transformation T1 from the space-time coordinate

system of Sl
1 to the space-time coordinate system of Sh by a scaling transformation (the

scaling can be different in time and in space). Let Ti→1 denote the space-time coordinate

transformation from the i-th low resolution sequence Sl
i to the reference sequence Sl

1 (see

below). Then the space-time coordinate transformation of each low-resolution sequence Sl
i

is related to that of the high-resolution sequence Sh by Ti = T1 · Ti→1.

The space-time coordinate transformation Ti→1 between input sequences (and thus also

the space time transformations from the low resolution sequences to the high resolution

sequence) results from the different setting of the different cameras. A temporal misalign-

ment between two video sequences occurs when there is a time-shift (offset) between them

(e.g., if the two video cameras were not activated simultaneously), or when they differ

in their frame rates (e.g., one PAL and the other NTSC). Such temporal misalignments

can be modelled by a 1-D affine transformation in time, and are typically at sub-frame

time units. The spatial misalignment between the sequences results from the fact that

the cameras have different external and internal calibration parameters. In our current

implementation, as mentioned above, because the camera centers are assumed to be very

close to each other or else the scene is planar, the spatial transformation between the two

sequences can thus be modelled by an inter-camera homography (even if the scene is a

cluttered 3D scene). We computed these space-time coordinate transformations using the

method of [9], which provides high sub-pixel and high sub-frame accuracy.

Note that while the space-time coordinate transformations ({Ti}n
i=1) between the se-

quences are very simple (a spatial homography and a temporal affine transformation), the

motions occurring over time within each sequence (i.e., within the dynamic scene) can be

very complex. Our space-time SR algorithm does not require knowledge of these complex

intra-sequence motions, only the knowledge of the simple inter-sequence transformations
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{Ti}n
i=1. It can thus handle very complex dynamic scenes. For more details see [9].

2.2 The Space-Time Imaging Model

As mentioned earlier, the space-time imaging process induces spatial and temporal blurring

in the low-resolution sequences. The temporal blur in the low-resolution sequence Sl
i is

caused by the exposure-time (shutter-time) of the i-th video camera (denoted henceforth

by τi). The spatial blur in Sl
i is due to the spatial point-spread-function (PSF) of the i-th

camera, which can be approximated by a 2D spatial Gaussian with std σi. (A method for

estimation of the PSF of a camera may be found in [14].)

Let Bi = B(σi,τi,pl
i)

denote the combined space-time blur operator of the i− th video

camera corresponding to the low resolution space-time point pl
i = (xl

i, y
l
i, t

l
i). Let

ph = (xh, yh, th) be the corresponding high resolution space-time point ph = Ti(p
l
i) (ph is

not necessarily an integer grid point of Sh, but is contained in the continuous space-time

volume S). Then the relation between the unknown space-time values S(ph), and the

known low resolution space-time measurements Sl
i(p

l
i), can be expressed by:

Sl
i(p

l
i) = (S ∗Bh

i )(ph) =

∫
x

∫
y

∫
t

p = (x, y, t) ∈ Support(Bh
i )

S(p) Bh
i (p− ph)dp (1)

where Bh
i = Ti(B(σi,τi,pl

i)
) is a point-dependent space-time blur kernel represented in the

high resolution coordinate system. Its support is illustrated by the large pink and blue

boxes in Fig. 3.a. This equation holds wherever the discrete values in the left hand side are

defined. To obtain a linear equation in the terms of the discrete unknown values of Sh we

used a discrete approximation of Eq. (1). See [7, 8] for a discussion of the different spatial

discretization techniques in the context of image-based SR . In our implementation we used

a non-isotropic approximation in the temporal dimension, and an isotropic approximation

in the spatial dimension (for further details refer to [21]). Eq. (1) thus provides a linear
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equation that relates the unknown values in the high resolution sequence Sh to the known

low resolution measurements Sl
i(p

l
i).

When video cameras of different photometric responses are used to produce the input

sequences, then a preprocessing step is necessary. We used simple histogram specification

to equalize the photometric response of all sequences. This step is required to guarantee

consistency of the relation in Eq. (1) with respect to all low resolution sequences.

2.3 The Reconstruction Step

Eq. (1) provides a single equation in the high resolution unknowns for each low resolution

space-time measurement. This leads to the following huge system of linear equations in

the unknown high resolution elements of Sh:

A
−→
h =

−→
l (2)

where
−→
h is a vector containing all the unknown high resolution values (or color values in

YIQ) of Sh,
−→
l is a vector containing all the space-time measurements from all the low

resolution sequences, and the matrix A contains the relative contributions of each high

resolution space-time point to each low resolution space-time point, as defined by Eq. (1).

When the number of low resolution space-time measurements in
−→
l is greater than

or equal to the number of space-time points in the high-resolution sequence Sh (i.e., in

−→
h ), then there are more equations than unknowns, and Eq. (2) is typically solved using

LSQ methods. This is obviously a necessary requirement, however not sufficient. Other

issues such as dependencies between equations or noise magnification may also affect the

results (see [3, 18] and also Sec. 6.2). However, the above-mentioned requirement on the

number of unknowns implies that a large increase in the spatial resolution (which requires

very fine spatial sampling in Sh) will come at the expense of a significant increase in the
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temporal resolution (which also requires fine temporal sampling in Sh), and vice versa.

This is because for a given set of input low-resolution sequences, the size of
−→
l is fixed,

thus dictating the number of unknowns in Sh. However, the number high resolution space-

time points (unknowns) can be distributed differently between space and time, resulting

in different space-time resolutions (This issue is discussed in more detail in Sec. 6.1).

Directional space-time regularization: When there is an insufficient number of

cameras relative to the required improvement in resolution (either in the entire space-time

volume, or only in portions of it), then the above set of equations (2) becomes ill-posed.

To constrain the solution and provide additional numerical stability (as in image-based

SR [6, 11, 19]), a space-time regularization term can be added to impose smoothness on

the solution Sh in space-time regions which have insufficient information. We introduce

a directional (or steerable [16]) space-time regularization term which applies smoothness

only in directions within the space-time volume where the derivatives are low, and does

not smooth across space-time “edges”. In other words, we seek
−→
h which minimize the

following error term:

min(||A−→h −−→l ||2 + ||WxLx
−→
h ||2 + ||WyLy

−→
h ||2 + ||WtLt

−→
h ||2) (3)

Where Lj (j = x, y, t) is a matrix capturing the second-order derivative operator in the

direction j, and Wj is a diagonal weight matrix which captures the degree of desired regu-

larization at each space-time point in the direction j. The weights in Wj prevent smoothing

across space-time “edges”. These weights are determined by the location, orientation and

magnitude of space-time edges, and are approximated using space-time derivatives in the

low resolution sequences. Thus, in regions that have high spatial resolution, but small

motion (or no motion), the regularization will be stronger in the temporal direction (thus

preserving sharp spatial features). Similarly, in regions that have fast dynamic changes
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Figure 4: Space-Time Regularization. The fig-
ure shows the space-time volume with one high reso-
lution frame from the example of Fig. 6. It illustrates
a couple of interesting cases where the space-time reg-
ularization is applied in a physically meaningful way.
In regions that have high spatial resolution but small
(or no) motion (such as in the static background), the
temporal regularization is strong (green arrow). Sim-
ilarly, in regions with fast dynamic changes and low
spatial resolution (such as in the rotating fan), the
spatial regularization is strong (yellow arrows).

but low spatial resolution, the regularization will be stronger in the spatial direction. In a

smooth and static region, the regularization will be strong both in time and in space. This

is illustrated in Fig. 4.

Solving the equation: The optimization problem of Eq. (3) has a very large dimen-

sionality. For example, even for a simple case of four low resolution input sequences, each of

one-second length (25 frames) and of size 128×128 pixels, we get: 1282×25×4 ≈ 1.6×106

equations from the low resolution measurements alone (without regularization). Assum-

ing a similar number of high resolution unknowns poses a severe computational problem.

However, because the matrix A is sparse and local (i.e., all the non zero entries are located

in a few diagonals), the system of equations can be solved using “box relaxation” [23] [19].

For more details see [21].

Figure 5 shows a result of our algorithm where the resolution of the output sequence is

increased both in space and in time relative to each of the input sequences (i.e., space-time

SR). Note that in addition to the increase of the frame-rate in the output sequence, there is

also reduction in the motion-blur of moving object that is achieved without any estimation

of object motion or object segmentation. The next section illustrates by example different

aspects of temporal SR.
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Figure 5: Space-time super-resolution example. This figure shows results of resolution
enhancement both in time and in space using the algorithm described in Sec. 2. The left hand side
shows the input and output sequences. The top part shows one out of 36 sequence used as input,
each synthesized (blurred and sub sampled in space and in time) to represent a low resolution
sequence. The lower part shows the relative size of the output sequence, which is 2X2 times larger
and x8 slower (i.e., 8 times more frames). The right hand side shows the resolution enhancement
in space (text) and in time (moving coke can). It should be appreciated that no object motion
estimation or segmentation was involved in generating these results.

3 Examples of Temporal Super-Resolution

Before proceeding with more in-depth analysis and details, we first show a few examples

of applying the above algorithm for recovering higher temporal resolution of fast dynamic

events. In particular, we demonstrate how this approach provides a solution to the two

previously mentioned problems encountered when fast dynamic events are recorded by slow

video cameras: (i) motion aliasing, and (ii) motion blur.

Example 1: Handling Motion Aliasing

We used four independent PAL video cameras to record a scene of a fan rotating clock-

wise very fast. The fan rotated faster and faster, until at some stage it exceeded the

maximal velocity that can be captured correctly by the video frame-rate. As expected,

at that moment all four input sequences display the classical “wagon wheel effect” where
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the fan appears to be falsely rotating backwards (counter clock-wise). We computed the

spatial and temporal misalignments between the sequences at sub-pixel and sub-frame

accuracy using [9] (the recovered temporal misalignments are displayed in Fig. 6.a-d using

a time-bar). We used the SR method of Sec. 2 to increase the temporal resolution by a

factor of 3, while maintaining the same spatial resolution. The resulting high-resolution

sequence displays the true forward (clock-wise) motion of the fan, as if recorded by a high-

speed camera (in this case, 75 frames/sec). Example of a few successive frames from each

low resolution input sequence are shown in Fig.6.a-d for the portion where the fan falsely

appears to be rotating counter clock-wise. A few successive frames from the reconstructed

high temporal-resolution sequence corresponding to the same time are shown in Fig.6.e,

showing the correctly recovered (clock-wise) motion. It is difficult to perceive these strong

dynamic effects via a static figure. We therefore urge the reader to view the video clips in

www.wisdom.weizmann.ac.il/∼vision/SuperRes.html, where these effects are very vivid.

Note that playing the input sequences in “slow-motion” (using any type of temporal

interpolation) will not reduce the perceived false motion effects, as the information is

already lost in any individual video sequence (as illustrated in Fig. 2). It is only when

the information is combined from all the input sequences, that the true motion can be

recovered.

Example 2: Handling Motion Blur

In the following example we captured a scene of fast moving balls using 4 PAL video

cameras of 25 frames/sec and exposure-time of 40 msec. Fig. 7.a-d shows 4 frames, one

from each low-resolution input sequence, that were the closest to the time of collision of

the two balls. In each of these frames at least one of the balls is blurred. We applied the

SR algorithm and increased the frame-rate by factor 4. Fig. 7.e shows an output frame at
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(a) (b)

(c) (d)

(e)

Figure 6: Example 1: Handling motion aliasing - The “wagon wheel effect”.
(a)-(d) display 3 successive frames from four PAL video recordings of a fan rotating clock-
wise. Because the fan is rotating very fast (almost 90o between successive frames), the
motion aliasing generates a false perception of the fan rotating slowly in the opposite direc-
tion (counter clock-wise) in all four input sequences. The temporal misalignments between
the input sequences were computed at sub-frame temporal accuracy, and are indicated by
their time bars. The spatial misalignments between the sequences (e.g., due to differences
in zoom and orientation) were modeled by a homography, and computed at sub-pixel ac-
curacy. (e) shows the reconstructed video sequence in which the temporal resolution was
increased by a factor of 3. The new frame rate (75frames

sec
) is also indicated by a time

bars. The correct clock-wise motion of the fan is recovered. For video sequences see:
www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

time of collision. Motion-blur is reduced significantly. Such a frame did not exist in any of

the input video sequences. Note that this effect was obtained by increasing the temporal

resolution (not the spatial), and hence did not require the estimation of the motions of the

balls. This phenomena is explained in more details in Sec. 4.

To examine the performance of the algorithm under severe effects of motion-blur of the

kind shown in Fig. 1, one needs many (usually more than 10) video cameras. A quantitative

analysis of the amount of input data needed appears in Sec. 4. Since we do not have so

many video cameras, we resorted to simulations, as described in the next example.

Example 3: Handling Severe Motion Aliasing & Motion Blur

In the following example we simulated a sports-like scene with an extremely fast moving
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Figure 7: Example 2: Handling motion blur via temporal SR. A “tic-tac” toy (2 balls
hanging on strings and bouncing against each other) was shot by 4 video cameras. (a)-(d) display
the 4 frames, one from each of the input sequences, which were closest to the time of collision. In
each one of these frames, at least one of the balls is blurred. The 4 input sequences were plugged
into the temporal SR algorithm and the frame-rate was increased by a factor of 4. (e) shows the
frame from the output, closest to the time of collision. Motion-blur is evidently reduced.

object (of the type shown in Fig. 1) recorded by many video cameras (in our example - 18

cameras). We examined the performance of temporal SR in the presence of both strong

motion aliasing and strong motion blur.

To simulate such a scenario, we recorded a single video sequence of a slow moving object

(a basketball bouncing on the ground). We temporally blurred the sequence using a large

(9-frame) blur kernel(to simulate a large exposure time), followed by a large subsampling in

time by factor of 1 : 30 (to simulate a low frame-rate camera). Such a process results in 18

low temporal-resolution sequences of a very fast dynamic event having an “exposure-time”

of about 1
3

of its frame-time, and temporally sub-sampled with arbitrary starting frames.

Each generated “low-resolution” sequence contains 7 frames. Three of the 18 sequences

are presented in Fig 8.a-c. To visually display the dynamic event, we super-imposed all 7

frames in each sequence. Each ball in the super-imposed image represents the location of

the ball at a different frame. None of the 18 low resolution sequences captures the correct

trajectory of the ball. Due to the severe motion aliasing, the perceived ball trajectory is

roughly a smooth curve, while the true trajectory was more like a cycloid (the ball jumped

5 times on the floor). Furthermore, the shape of the ball is completely distorted in all

input image frames, due to the strong motion blur.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Example 3: Handling motion blur & motion aliasing. We simulated
18 low-resolution video recordings of a rapidly bouncing ball inducing strong motion blur and
motion aliasing (see text). (a)-(c) Display the dynamic event captured by three representative
low-resolution sequences. These displays were produced by super-position of all 7 frames in each
low-resolution sequence. All 18 input sequences contain severe motion aliasing (evident from
the falsely perceived curved trajectory of the ball) and strong motion blur (evident from the dis-
torted shapes of the ball). (d) The reconstructed dynamic event as captured by the recovered
high-resolution sequence. The true trajectory of the ball is recovered, as well as its correct shape.
(e) A close-up image of the distorted ball in one of the low resolution sequences. (f) A close-up
image of the ball at the exact corresponding frame in time in the high-resolution output sequence.
For video sequences see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

We applied the SR algorithm of Sec. 2 on these 18 low-resolution input sequences, and

constructed a high-resolution sequence whose frame-rate is 15 times higher than that of the

input sequences. (In this case we requested an increase only in the temporal sampling rate).

The reconstructed high-resolution sequence is shown in Fig. 8.d. This is a super-imposed

display of some of the reconstructed frames (every 8’th frame). The true trajectory of

the bouncing ball has been recovered. Furthermore, Figs. 8.e-f show that this process has

significantly reduced effects of motion blur and the true shape of moving ball has been

automatically recovered, although no single low resolution frame contains the true shape

of the ball. Note that no estimation of the ball motion was needed to obtain these results.

The above results obtained by temporal SR cannot be obtained by playing any low-

resolution sequence in “slow-motion” due to the strong motion aliasing. While interleaving

and interpolating between frames from the 18 input sequences may resolve some of the
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motion aliasing, it will not handle the severe motion-blur observed in the individual image

frames. Note, however, that even though the frame rate was increased by a factor of 15,

the effective reduction in motion blur in Fig. 8 is only by a factor of ∼ 5. These issues are

explained in the next section.

A method for treating motion blur in the context of image-based SR was proposed by

[2, 1]. However, these methods require a prior segmentation of the moving objects and

the estimation of their motions. These methods will have difficulties handling complex

motions or motion aliasing. The distorted shape of the object due to strong blur will pose

severe problems in motion estimation. Furthermore, in the presence of motion aliasing,

the direction of the estimated motion will not align with the direction of the induced blur.

For example, the motion blur in Fig. 8.a-c. is along the true trajectory and not along the

perceived one. In contrast, our approach does not require separation of static and dynamic

scene components, nor their motion estimation, and therefore can handle very complex

scene dynamics. However, we require multiple cameras. These issues are explained and

analyzed next.

4 Resolving Motion Blur

A crucial observation for understanding why temporal SR reduces motion blur, is that

motion blur is caused by temporal blurring and not by spatial blurring. The blurred colors

induced by a moving object (e.g., Fig. 9) result from blending color values along time and

not from blending with spatially neighboring pixels. This observation and its implications

are the focus of Sec. 4.1. Section 4.2 derives a bound on the best expected quality (temporal

resolution) of a high resolution output sequence which yields a practical formula for the

recommended number of input cameras.
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(a) (b)

Figure 9: What is Motion Blur? A spa-
tial smear induced by temporal integration. A
free falling tennis ball was shot by two cameras
through a beam-splitter (hence the flip). The
camera on the left (a) had a long exposure time,
and the camera on the right (b) had a short one.
The longer the exposure time, the larger the spa-
tial smear of moving objects is.

4.1 Why is Temporal Treatment Enough?

The observation that motion blur is a purely temporal artifact is non intuitive. After all,

the blur is visible in a single image frame. This is misleading, however, as even a single

image frame has a non-infinitesimal exposure time. The first attempts to reduce motion

blur, which dates back to the beginning of photography, tried to reduce the exposure time

by increasing the amount of light.

Figs. 9.a and 9.b, display the same event (a ball falling) captured by two cameras with

different exposure times. Since the exposure time of the camera in Fig. 9.a was longer than

that of Fig. 9.b, its shape is more elongated. The amount of induced motion blur is linearly

proportional to the temporal length of the exposure time. The longer the exposure-time,

the larger the induced spatial effect of motion blur.

Another source of confusion is the indirect link to motion. The blur results from

integration over time (due to the exposure time). In general, it captures any temporal

changes of intensities. In practice most of the temporal changes result from moving objects

(which is why this temporal blur is denoted as “motion blur”). However, there exist

temporal changes that do not result from motion exists, e.g., in a video recording a flashing

light spot. With sufficiently long exposure time, the spot of light will be observed as a

constant dim light in all frames. This light dimming effect and motion blur are both caused

directly by temporal blur (integration over exposure time), but with different indirect
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causes of temporal change. Our algorithm addresses the direct cause (i.e., temporal blur),

thus does not need to analyze which of the indirect causes where involved (i.e., motion,

light-changes, etc.).

To summarize, we argue that all pixels (static and dynamic) experience the same tem-

poral blur - a convolution with a temporal rectangular function. However the temporal

blur is visible only in image locations where there are temporal changes (e.g., moving ob-

jects). Our algorithm addresses this temporal blur directly by reducing the exposure time

and thus does not require motion analysis, segmentation, or any scene interpretation.

4.2 What is the Minimal Number of Required Video Cameras?

Denote by ∆tin and ∆tout the elapsed time between successive frames in the input and

output sequences respectively i.e., ∆t = 1
FR

where FR is the frame-rate. ∆tin is a physical

property of the input cameras. ∆tout is dictated by the output frame rate (specified by

the user). Similarly, denote by τin and τout the exposure time of the input and output

sequences. All these quantities are illustrated in Fig. 10. τin is a physical quantity - the

exposure time of the input sequences. On the other hand, τout is not a physical quantity.

It is a measure of the quality of the output sequence. Its units are the exposure time of

a real camera that will generate an equivalent output (an output with the same motion-

blur). Thus, τout is denoted here as the “induced exposure time” and quantifying it is the

objective of this section.

We have shown analytically in [21] that under ideal conditions (i.e., uniform sampling

in time and no noise), τout is bounded by:

τout ≥ ∆tout. (4)

Eq. 4 should be read as follows: the residual motion blur in the output sequence is at least

as the motion blur caused by a true camera with exposure time ∆tout.
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Figure 10: Frame-time and exposure time. This
figure graphically illustrates the quantities used in sec. 4.2.
The time-bars in (a) and (b) denote the frame-rates of the
input and output sequences respectively (the same time
scale is used). The quantity ∆t denotes the elapsed time
between successive frames (frame-time), where FR is the
video frame-rate. The quantity τ denotes the exposure
times.

Furthermore, the experiment in Fig. 11 shows that in ideal conditions (i.e., optimal

sample distribution and ignoring noise amplification) this bound may be reached. Namely,

τout ≈ ∆tout. Rows (b) and (c) compare the SR output to the “ground truth” temporal

blur for various specified ∆tout. These “ground truth” frames were synthesized by temporal

blurring the original sequence (in the same way the low resolution sequence was generated),

such that their exposure time is ∆tout. One can see that the induced motion blur in the

reconstructed sequences is similar to the motion blur caused by the imaging process with

the same exposure time (i.e., τ ≈ ∆tout).

(a) Input:

(b)
Super-Resolution
Output:

(c) ∆tout: 1/15 1/10 1/5 1/2 1/1

(d)
“Ground truth”
motion blur :

Figure 11: Residual motion blur as a function of ∆tout. Using the same number of input
cameras (18), we have reconstructed several output sequences with increasing ∆tout. (a) shows
a frame from one of the input sequences in Fig. 8. (b) displays frames from the reconstructed
outputs. A user defined ∆tout in each case is indicated below in row (c). As can be seen, the
amount of motion-blur increases as ∆tout increases. Row (d) displays frames from “ground truth”
blurring. These are frames from synthesized blurred sequences, each with exposure time that equals
to the corresponding ∆tout (i.e., (c) above). The similarity between the observed motion blur in
rows (b) and (d) argues that in this example τout ≈ ∆tout.
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(a) Input:

(b) Output:

(c) τout vs. τin:
(d) Req. Ncam: 15 10 5 2 1

Figure 12: The required number of input cameras. This figure shows the relation
between the number of cameras in use and the reduction in motion blur. We have reconstructed
several output sequences with decreasing FRout. (a) shows a frame from one of the input sequences
in Fig. 8. (b) displays frames from reconstructed outputs. (c) The blue and red rectangles illustrate
the input and output exposure-time respectively (the input is identical in all cases and the output
is induced by the output frame-rate FRout - the red bars). Row (d) indicates the minimal number
of cameras required for obtaining the corresponding FRout (eq. 5). In order to reduce motion blur
with respect to the input frame (a), τout (the red rectangles) should be smaller than τin (the blue
rectangles). Therefore in the left three sequences the the motion blur is decreased, while in the
right two sequences, although we increase the frame-rate, the motion blur is increased.

Given the above observation we obtain a practical constraint on the required number

of input video sequences (cameras) Ncam.

Naturally, the smaller the exposure time, the smaller the motion blur. In our case

the output induced exposure time (τout) is dictated by the user-selected output frame-rate

(τout ≈ ∆tout = 1
FRout

). However, there is a limit on how much the output frame-rate

(FRout) can be increased (or equivalently, how much ∆tout can be decreased). This bound

is determined by the number of low resolution input sequences, and their frame rate:

FRout ≤ Ncam · FRin, (5)

or equivalently, ∆tout ≥ ∆tin/Ncam. If the frame-rate is further increased we will get more

equations than unknowns. Fig. 12 displays several results of applying our algorithm, but

with different specified FRout. The minimal number of required cameras for each such

reconstruction quality is indicated below each example. These numbers are dictated by

the required increase in frame-rate (Eq. 5).

It is interesting to note that is some cases the “SR” increases the motion blur. Such

undesired outcome occurs when the input exposure time τin is smaller than the induced
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output exposure time τout . Thus, requiring that the output motion blur will be better than

the input motion blur (τout < τin) yields the following constraint on the minimal number

of input cameras:

τin ≥ τout ≈ ∆tout =
∆tin
Ncam

(6)

Substituting input frame-rate and reordering terms provides:

Ncam ≥ 1

τinFRin

(7)

A numerical example of this constraint is illustrated in Fig. 12. Rows (a) and (b) display

input and output frames as in Fig. 11. Row (c) illustrates graphically the ratio between

τout (the red rectangle) and τin (the blue rectangle). It is evident from the figure that

if τin > τout (the three left images) the output quality outperform the input quality (a).

Similarly when τin < τout (the two most right images) then the output motion blur is

worse than the input motion blur. In this example the input frame rate is FRin = 1frames
sec

and τin = 1
3
sec (see sec. 3 for details), thus the minimal number of required cameras to

outperform the input motion blur is at least 3, exactly as observed in the example.

Finally, the analysis in this section assumed ideal conditions. It did not take into

account the following factors: (a) There may be errors due to inaccurate sequence alignment

in space or in time, and (b) Non-uniform sampling of sequences in time may increase the

numerical instability. This analysis therefore provides only a lower-bound on the number

of required cameras. In practice, the actual number of required cameras is likely to be

slightly larger. For example, in our experiments we never used more than twice this lower

bound.
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5 Combining Different Space-Time Inputs

So far we assumed that all input sequences were of similar spatial and temporal resolutions.

However, the space-time SR algorithm of Sec. 2 is not restricted to this case, and can also

handle input sequences of different space-time resolutions. Such a case is meaningless in

image-based super-resolution SR (i.e., combining information from images of varying spatial

resolution), because a high resolution input image would always contain the information of

a low resolution image. In space-time SR, however, this is not the case. One camera may

have high spatial resolution but low temporal resolution, and the other vice-versa. Thus,

for example, it is meaningful to combine information from NTSC and PAL video cameras.

NTSC has higher temporal resolution than PAL (30 frames/sec vs. 25 frames/sec), but

lower spatial resolution (640×480 pixels vs. 768×576 pixels). An extreme case of this idea is

to combine information from still and video cameras. Such an example is shown in Fig. 13.

Two high quality still images (Fig. 13.a) of high spatial resolutions (1120×840 pixels) but

extremely low “temporal resolution” (the time gap between the two still images was 1.4

sec), were combined with an interlaced (PAL) video sequence using the algorithm of Sec. 2.

The video sequence (Fig. 13.b) has 3 times lower spatial resolution (we used fields of size

384×288 pixels), but a high temporal resolution (50 frames/sec). The goal is to construct

a new sequence of high spatial and high temporal resolutions (i.e., 1120×840 pixels at 50

frames/sec). The output sequence shown in Fig. 13.c contains the high spatial resolution

from the still images (the sharp text) and the high temporal resolution from the video

sequence (the rotation of the toy dog and the brightening and dimming of illumination).

In the example of Fig. 13 we used only one input video sequence and two still images,

thus we did not attempt to exceed the temporal resolution of the video or the spatial

resolution of the stills. However, when multiple video sequences and multiple still images
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Figure 13: Combining Still and Video. A dynamic scene of a rotating toy-dog and varying
illumination was captured by: (a) A still camera with spatial resolution of 1120×840 pixels, and
(b) A video camera with 384×288 pixels at 50 f/sec. The video sequence was 1.4sec long (70
frames), and the still images were taken 1.4sec apart (together with the first and last frames).
The algorithm of Sec. 2 is used to generate the high resolution sequence (c). The output sequence
has the spatial dimensions of the still images and the frame-rate of the video (1120× 840×50).
It captures the temporal changes correctly (the rotating toy and the varying illumination), as well
the high spatial resolution of the still images (the sharp text). Due to lack of space we show only
a portion of the images, but the proportions between video and still are maintained. For video
sequences see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

are used (so that the number of input measurements exceeds the number of output high

resolution unknowns), then an output sequence can be recovered, that exceeds the spatial

resolution of the still images and temporal resolution of the video sequences.

In the example of Fig. 13, the number of unknowns was significantly larger than the

number of low resolution measurements (the input video and the two still images). Al-

though theoretically this is an ill-posed set of equations, the reconstructed output is of

high quality. This is achieved by applying physically meaningful space-time directional
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regularization (Sec. 2.3), that exploits the high redundancy in the video sequence.

6 Temporal vs. Spatial Super-Resolution :

Differences and Similarities

Unlike in image-based SR, where both x and y dimensions are of the same type (spatial),

different types of dimensions are involved in space-time SR. The spatial and temporal

dimensions are very different in nature, yet are inter-related. This leads to different phe-

nomena in space and in time, but also to interesting tradeoffs between the two dimensions

In Section 5 we saw one of the differences between spatial SR and space-time SR. In

this section we will discuss more differences, as well as similarities between space and time

that lead to new kinds of phenomena, problems and challenges.

6.1 Producing Different Space-Time Outputs

The mix of dimensions introduces visual tradeoffs between space and time, which are

unique to spatio-temporal SR, and are not applicable to the traditional spatial (image-

based) SR. In spatial SR the increase in sampling rate is equal in all spatial dimensions.

This is necessary to maintain the aspect ratio of image pixels. However, this is not the case

in space-time SR. The increase in sampling rate in the spatial and temporal dimensions

need not be the same. Moreover, increasing the sampling rate in the spatial dimension

comes at the expense of increase in the temporal frame rate and the temporal resolution,

and vice-versa. This is because the number of equations provided by the low resolution

measurements is fixed, dictating the maximal number of possible unknowns (the practical

upper limit on the number of unknowns is discussed later in Sec. 6.2). However, the

arrangement of the unknown high resolution space-time points in the high resolution space-

time volume depends on the manner in which this volume is discretized.
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(a) (b) (c) (d)
Figure 14: Tradeoffs between spatial and temporal resolution. (a) 2 out of 8 input
sequences. (b)-(d) graphically display output discretization options. (b) One option - apply SR to
increase the density by a factor of 8 in time only. The spatial resolution remains the same. (c)
Another option - apply SR to increase the density by a factor of 2 in all three dimensions x, y, t.
(d) A third option - increase the spatial resolution alone by a factor of

√
8(≈ 2.8) in each of the

spatial dimensions (x and y) maintaining the same frame-rate. Note that (b)-(d) are not actual
output of the SR algorithm. Results appear in [22].

For example, assume that 8 video cameras are used to record a dynamic scene. One can

increase the temporal frame-rate alone by a factor of 8, or increase the spatial sampling

rate alone by a factor of
√

8 in x and in y (i.e., increase the number of pixels by a factor of

8), or do a bit of both: increase the sampling rate by a factor of 2 in all three dimensions

x, y, t. These options are graphically illustrated in Fig. 14. For more details see [22].

6.2 Upper Bounds on Temporal vs. Spatial Super-Resolution

The limitations of spatial SR have been discussed in [3, 18]. Both showed that the noise that

is amplified by the SR algorithm, grows quadratically with the magnification factor. Thus

large magnification factors in image-based SR are not practical. Practical assumptions

about the initial noise in real images [18] lead to a realistic magnification factor of 1.6 (and

a theoretical factor of 5.7 is claimed for synthetic images with quantization noise). Indeed

many image-based SR algorithms (e.g. [1, 2, 6, 7, 11, 13, 14, 15, 16]) illustrate results

with limited magnification factors (usually up to 2). In this section we will show and

explain why we get significantly larger magnification factors (and resolution enhancement)

for temporal SR.
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Figure 15: Temporal vs. Spatial Blur Kernels.

The analysis described in [3, 18] applies to temporal SR as well. The differences result

from the different types of blurring functions used in temporal and in spatial domains: (1)

The temporal blur function induced by the exposure time has approximately a rectangular

shape, while the spatial blur function has a Gaussian-like shape. (2) The supports of spatial

blur functions typically have a diameter larger than one pixel, whereas the exposure time is

usually smaller than a single frame-time (i.e., τ < ∆t). These two differences are depicted

in Fig. 15. (3) Finally, the spatial blurring acts along 2 dimensions (x and y), while

temporal blurring is limited to a single dimension (t). These differences in shape, support,

and dimensionality of the blur kernels are the cause of having a significantly larger upper

bound in temporal SR, as explained below.

When the blur function is an “ideal” low-pass filter, no SR can be obtained, since

all high frequencies are eliminated in the blurring process. On the other hand, when

high frequencies are not completely eliminated and are found in aliased form in the low

resolution data, SR can be applied (those are the frequencies that are recovered in the SR

process). The spatial blur function (the point spread function) has a Gaussian shape, and

its support extends over several pixels (samples). As such, it is a much “stronger” low-pass

filter. In contrast the temporal blur function (the exposure time), has a rectangular shape,
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and its extent is sub-frame (i.e., less than one sample), thus preserves more high temporal

frequencies. Figs. 15.c-d illustrate this difference. In addition to the above, it was noted

in [3] that the noise in image-based SR (2D signals) tends to grow quadratically with the

increase of the spatial magnification. Using similar arguments and following the same

derivations we deduce that the noise in one dimensional temporal SR grows only linearly

with the increase in the temporal magnification. Hence, larger effective magnification

factors are expected. Note that in the case of SR in space and in time simultaneously, the

noise amplification grows cubically with the magnification factor.

The next experiment illustrates that: (1) Large magnification factors in time are fea-

sible, (i.e., recovery of high temporal frequencies, and not just a magnification of the

frame-rate). (2) The noise growths linearly with temporal magnification factor.

To show this, we took 4 sets of 30 input sequences with different exposure times. Each

set was synthetically generated by temporal blurring followed by temporal subsampling,

Input frames:

(a) (b) (c) (d)
τin = 0.16 τin = 0.43 τin = 0.70 τin = 1.00

Output frames:

(e) (f) (g) (h)
M = 2.5 M = 6.5 M = 10.5 M = 15

(i)

Figure 16: Temporal SR with large magnification factors. In the following example
we simulated 4 sets of 30 sequences with different exposure times for each set. (a)-(d) display the
corresponding frame from each set of the simulated low resolution sequences. The corresponding
exposure-times are indicated below each frame (where “1”= ∆tin) . (e)-(h) display the correspond-
ing frames in the reconstructed high resolution sequence with frame-rate increased by a factor of
15. The resulting temporal SR magnification factors, M = τin

τout
, are indicated below. Note that we

denote the magnification as the increase of temporal resolution (captured by the change in expo-
sure time τ) and not as the increase of the frame-rate (which is captured by ∆t, and is ∆tin

∆tout
= 15

in all cases). The graph in (i) shows the RMS of the output temporal noise σout as a function of
M , where the noise level of all input sequences was σin = 2.3.
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similarly to the way described in Sec. 3 (Example 3). Small Gaussian noise was added to

the input sequences in a way that in all of them the temporal noise would be the same

(σin ≈ 2.3 gray-levels, RMS). Figs. 16.a-d show matching frames from each set of the

simulated sequences with increasing exposure times.

We increased the frame-rate by factor 15 in each of the sets using the temporal SR

algorithm. No regularization was applied to show the “pure” output noise of the temporal

SR algorithm without any smoothing. Figs. 16.e-h are the corresponding frames in the

reconstructed sequences. It is vivid that: (a) the size of the ball is similar in all cases thus

the residual motion-blur in the output sequences is similar regardless of the SR magnifi-

cation (the reconstructed shape of the ball is correct). Note that the SR magnification

factors M = τin

τout
are defined as the increase of temporal resolution (the reduction in the

exposure-time) and not as the increase of the frame-rate1 ∆tin/∆tout. (b) The measured

noise was amplified linearly with the SR magnification factor (Fig. 16.i).

To conclude, it is evident that typical magnifications factors of temporal SR are likely to

be much larger than in spatial super resolution. Note, however, that spatial and temporal

SR are inherently the same process. The differences reported above result from the different

spatial and temporal properties of the sensor. In special devices (e.g., a non diffraction

limited imaging system [17]), where the spatial blur of the camera lens is smaller than

the size of a single detector pixel, spatial SR can reach similar bounds as temporal SR of

regular video cameras.

6.3 Temporal vs. Spatial “Ringing”

So far we have shown that the rectangular shape of the blur kernel has an advantage over

a Gaussian shape in the ability to increase resolution. On the other hand, the rectangular

1In spatial SR there is no difference between the two, since the diameter of a typical PSF is close to a
pixel size.
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(a) (b) (c) (d)

(e)

Figure 17: “Ghosting” effect in video sequence. In order to show the “ghosting” effect
caused by temporal SR , we applied the algorithm without any regularization to the basket-ball
example (see Sec. 3). One input frame of the blurred ball is shown in (a). The temporal SR
matching frame is shown in (b). (c) is the difference between the frame in (b) and a matching
frame of the background. The “ghosting” effect is hard to see in a single frame (c) but is observable
when watching a video sequence (due to the high sensitivity of the eye to motion). In order to
show the effect in a single frame we magnified the differences by a factor of 5. The resulting
“ghosting” trail of the ball is shown in (d). Note that some of the trail values are positive (bright)
and some are negative (dark). (e) illustrates that although this effect has spatial artifacts, its
origin is purely temporal. As explained in the text, due to the rectangular shape of the temporal
blur, for each pixel (as the one marked in green) there are some specific temporal frequencies (e.g.,
the sinusoids marked in black) that will remain in the reconstructed sequence.

shape of the temporal blur is more likely to introduce a temporal artifact which is similar

to the spatial “ringing” ([11, 7, 3]). This effect appears in temporal super-resolved video

sequences as a trail that is moving before and after the fast moving object. We refer to

this temporal effect as “ghosting”. Fig. 17.a-c shows an example of the “ghosting” effect

resulting in the basketball example when temporal SR is applied without any space-time

regularization. (The effect is magnified by factor of 5, to make it more visible).

The explanation of the “ghosting” effect is simple if we look at the frequencies of the

temporal signals. The SR algorithm (spatial or temporal) can reconstruct correctly the

true temporal signal at all frequencies except for specific frequencies that have been set to

zero by the temporal rectangular blur. The system of equations (2) does not provide any
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constraints on those frequencies. If such frequencies are somehow “born” in the iterative

process, they will stay in the solution and will not be suppressed. These “unsuppressed”

frequencies are connected directly to the shape of the rectangular blur kernel through its

exposure-time. If the exposure-time width is an integer multiple of the wavelength (the

period time) of a periodic signal (thus the integral over the periodic signal is 0), then such

a signal cannot be handled by the SR algorithm. This is illustrated in Fig. 17.d where the

“unsuppressed” frequencies are shown as temporal sinusoidal signals in one of the pixels

of the “ghosting” trail2. These frequencies can be predicted (see [21]) from the number of

input cameras, their frame-rate and the frame-rate of the output sequence.

The “ghosting” effect, is significantly reduced by the space-time regularization. It

smoothes those trails in regions where no spatial or temporal edges are expected. This is

why the ghosting effect is barely visible in our example output videos.

7 Conclusions

We have shown that space-time SR can improve resolution of both static and dynamic scene

components, without the need to segment them or to perform any motion estimation within

the sequence. We further showed that because motion blur is a temporal phenomenon in

nature, temporal SR (and not spatial SR) is the correct way to address it. Space-time SR

can be used for generating a high-speed video camera from multiple slow video cameras, as

well as for combining information from still and video cameras for producing high-quality

video. We have further provided analysis of the limitations and bounds of this method.
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