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Abstract

This paper studies the problem of sequence-to-sequence alignment, namely establishing corre-
spondences in time and in space between two di�erent video sequences of the same dynamic scene.
The sequences are recorded by uncalibrated video cameras, which are either stationary or jointly
moving, with �xed (but unknown) internal parameters and relative inter-camera external param-
eters. Temporal variations between image frames (such as moving objects or changes in scene
illumination) are powerful cues for alignment, which cannot be exploited by standard image-to-
image alignment techniques. We show that by folding spatial and temporal cues into a single
alignment framework, situations which are inherently ambiguous for traditional image-to-image
alignment methods, are often uniquely resolved by sequence-to-sequence alignment. Further-
more, the ability to align and integrate information across multiple video sequences both in time

and in space gives rise to new video applications that are not possible when only image-to-image
alignment is used.

1 Introduction
The problem of image-to-image alignment has been extensively studied in the literature ([3, 4,

19, 24, 20, 29, 33, 34] to list just a few). By \image-to-image alignment" we refer to the problem
of estimating dense point correspondences between two or more images, i.e., for each pixel (x; y)
in one image, �nd its corresponding pixel in the other image: (x0; y0) $ (x + u; y + v), where
(u; v) is the spatial displacement. This paper addresses a di�erent problem { the problem of
\sequence-to-sequence alignment", which establishes correspondences both in time and in space

between multiple sequences (as opposed to multiple images). Namely, for each pixel (x; y) at
frame (time) t in one sequence, �nd its corresponding time t0 and position (x0; y0) in the other
sequence: (x0; y0; t0) = (x + u; y + v; t + w), where (u; v; w) is the spatio-temporal displacement.
Note, that (u; v) (the spatial displacement) and w (the temporal displacement) are not necessarily
integer values, i.e., they may be sub-pixel or sub-frame values.
There are two main motivations for using sequence-to-sequence alignment:

�A preliminary version of this paper appeared in CVPR' 2000 [8].
yThis work was supported by the Moross Laboratory for Vision and Motor Control.
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1. It can resolve spatial ambiguities and handle situations where image-to-image alignment
fails.

2. The ability to align and integrate information across multiple sequences both in space and
in time gives rise to new video applications that are not possible when only image-to-image
alignment is used.

These are brie
y explained here and further elaborated in Sections 4 and 5. Image-to-image
alignment methods are inherently restricted to the information contained in individual images,
i.e., the spatial variations within image frames (which capture the scene appearance). But there
are cases when there is not enough common spatial information within the two images to allow
reliable image alignment. One such example is illustrated in Fig. 1. Alignment of image 1.a to
image 1.b. is not uniquely de�ned (see Fig. 1.c). However, a video sequence contains much more
information than any individual frame does. In particular, a video sequence captures information
about scene dynamics such as the trajectory of the moving object shown in Fig. 1.d and 1.e, which
in this case provides enough information for unique alignment both in space and in time (see
Fig. 1.f). Moreover, scene dynamics is not limited to moving objects. It also includes non-rigid
changes in the scene (e.g., 
owing water), changes in illumination, etc. All these changes are not
captured by any of the individual frames, but are found between the frames. The scene dynamics
is a property that is inherent to the scene, and is thus common to all sequences recording the
same scene, even when taken from di�erent video cameras. It therefore forms an additional or
alternative powerful cue for alignment across sequences.
We show in the paper (Section 4) that by folding spatial and temporal cues into a single align-

ment framework, situations that are inherently ambiguous for image-to-image alignment methods
are often uniquely resolved by sequence-to-sequence alignment. Furthermore, in situations where
there is very little common appearance (spatial) information across the two sequences, such as in
alignment of sequences of di�erent sensing modalities (e.g., Infra-Red and visible-light sensors),
coherence of the scene dynamics (i.e., temporal cues) becomes the major source of information
for alignment of the two sequences.
Sequence-to-sequence alignment enables integration of information across multiple video se-

quences. This can be used to generate new video sequences which exceed the spatial and temporal
physical bounds of a single sensor. In particular, it allows to exceed the limited spatial resolution
(via super-resolution, e.g., [17]), the limited depth of focus, the limited dynamic range, the limited
spectral response (e.g., via fusion of multiple sensing modalities [7]), and the limited �eld of view.
While spatial bounds of sensors can also be exceeded via image-to-image alignment, sequence-to-
sequence alignment further allows to exceed temporal bounds of sensors. For example, it allows to
exceed the limited temporal resolution (the limited frame rate) of recorded sequences. Temporal
super-resolution allows visual observation of dynamic events that occur faster than frame-rate,
and therefore cannot be seen in any of the input video sequences. Temporal super-resolution
requires temporal alignment of the sequences at sub-frame accuracy which cannot be obtained
by image-to-image alignment. This and other applications of sequence-to-sequence alignment
are discussed in Section 5.
We present in the paper two possible sequence-to-sequence alignment algorithms. One is a

direct gradient-based sequence-to-sequence alignment algorithm, and the other is a feature-based
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Figure 1: Spatial ambiguities in image-to-image alignment (a) and (b) show two corre-

sponding frames in time from two di�erent video sequences viewing the same moving ball. There are

in�nitely many valid image alignments between the two frames, some of them shown in (c). (d) and (e)

display the two sequences of the moving ball. There is only one valid alignment of the two trajectories of

the ball. This uniquely de�nes the alignment both in time and in space between the two video sequences

(f).

sequence-to-sequence alignment algorithm. Both algorithms receive as input two video sequences
and simultaneously estimate the spatial and temporal transformation between the two sequences.
The current implementations assume parametric transformations in space and in time. However,
the concept of sequence-to-sequence alignment is more general and is not limited to the particular
algorithms or implementations described in this paper. Possible extensions of these algorithms
to more complex models are also brie
y sketched.
The rest of the paper is organized as follows: In Section 2 we formulate the problem of

sequence-to-sequence alignment. In Section 3 we present two sequence-to-sequence alignment al-
gorithms (the feature-based and the direct-based). Section 4 discusses the properties of sequence-
to-sequence alignment, and Section 5 describes potential applications of sequence-to-sequence
alignment.

2 Problem Formulation
Let S and S 0 be two input image sequences, where S denotes the \reference" sequence, and

S 0 denotes the second sequence. Let ~x = (x; y; t) be a space-time point in the reference sequence
S, and let ~x0 = (x0; y0; t0) = (x + u; y + v; t + w) be the corresponding space-time point in
sequence S 0. The spatio-temporal displacement ~u = (u; v; w) need not be of integer values. u,v
(the spatial displacements) can be sub-pixel displacements, and w (the temporal displacement)
can be a sub-frame time shift. While every space-time point ~x has a di�erent local spatio-
temporal displacement ~u, we assume they are all globally constrained by a single parametric
model ~P = (~Pspatial; ~Ptemporal). The recorded scene can change dynamically, i.e., it can include
moving objects, non-rigid deformations of the scene, changes in illumination over time, and/or
other types of temporal changes. The cameras can be either stationary or jointly moving with
�xed (but unknown) internal and relative external parameters.

Temporal misalignment results when the two input sequences have a time-shift (o�set) between
them (e.g., if the cameras were not activated simultaneously), and/or when they have di�erent
frame rates (e.g., PAL and NTSC). Such temporal misalignments can be modeled by a 1-D a�ne
transformation in time, and may be at sub-frame time units.
The spatial misalignment between the two sequences results from the fact that the two cameras
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(a)Frame from S1 (b) Frame from S2 (c) Sequence S1 (d) Sequence S2

Figure 2: Point vs. trajectory correspondences. (a) and (b) display two frames out of two

sequences recording �ve small moving objects (marked by A,B,C,D,E). (c) and (d) display the trajectories

of these moving objects over time. When analyzing only single frames, it is di�cult to determine the

correct point correspondences across images. However, point trajectories have additional properties,

which simplify the correspondence problem across two sequences (both in space and in time).

have di�erent external and internal calibration parameters. In our current implementation Pspatial

was chosen to be a 2D projective transformation (homography). 2D projective transformations
approximate the inter-sequence spatial transformation when the distance between the camera
projection centers is negligible relative to the distance of the cameras from the scene, or if
the scene is roughly planar. Note that althogh the inter-sequence transformation is a simple 2D
parametric transformation, the intra-sequence changes (i.e., changes between consecutive frames)
can be very complex.
Let ~p = (x; y; 1)T denote the homogeneous coordinates of only the spatial component of a

space time point ~x = (x; y; t) in S. Let H be the 3� 3 homography matrix of the spatial

parametric transformation between the two sequences, H =

2
64 H1

H2

H3

3
75 =

2
64 h11 h12 h13
h21 h22 h23
h31 h32 h33

3
75. Then,

corresponding space-time point ~x0 = ~x+ ~u can be expressed by: x0 = H1~p

H3~p
, y0 = H2~p

H3~p
, where Hi is

the ith row of H, and for the temporal components by t0 = s � t +�t (1D a�ne transformation
in time). Note that H is common to all frames because the cameras are �xed relative to each
other over time (both internal parameters and inter-camera external parameters). Also, note
that in most cases s is known - it is the ratio between the frame rates of the two cameras (e.g.,
for PAL and NTSC sequences, it is s = 25=30 = 5=6). Therefore, the unknown parameters are:
~P = [h11 h12 h13 h21 h22 h23 h31 h32 h33 �t], i.e., 10 unknowns with 9 d.o.f. (the homography is
de�ned only up to scale)1.
While in the current implementations the inter-camera spatial transformations are 2D paramet-

ric transformations, the framework presented in this paper is more general, and is not restricted
to 2D transformations alone. Thus for example ~Pspatial may represent the entries of the funda-
mental matrix, or may be extended to other 3D models to include shape parameters, similar to
the hierarchy of spatial alignment models described in [3]. ~Ptemporal can also be a non-parametric
transformation in time (e.g., see [11, 12]).

1The modi�cation to other 2D parametric models, such as, translation, similarity or a�ne, is trivial (e.g., set
h31 = h32 = 0 for a 2D a�ne model).
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3 Sequence-to-Sequence Alignment Algorithms
This section proposes two possible algorithms for sequence-to-sequence alignment: A feature-

based algorithm (Section 3.1), and a direct gradient-based algorithm (Section 3.2).
3.1 Feature-Based Sequence Alignment

Typical feature-based image alignment methods (see [31] for a review) �rst apply a local
operator to detect interest points in a pair of images (e.g., the Harris corner detector [14]). Once
interest points are extracted in the two images, robust estimation methods, such as RANSAC [10],
LMS [13], etc, are used for �nding corresponding points and extracting the spatial transformation
between the two images. In some other cases [32] a correlation based matching is used to
initialize the approximation of matching features. In general the correlation may be based on any
properties of a feature point, but it is usually based on brightness values of small neighborhoods
of the feature point.
Feature-based image-to-image alignment can be generalized to feature-based sequence-to-

sequence alignment by extending the notion of features from feature points into feature tra-

jectories. A feature trajectory is the trajectory of a point (static or dynamic) representing its
location in each frame along the sequence. Spatio-temporal alignment between the two sequences
can then be recovered by establishing correspondences between trajectories. The advantage of
this approach is illustrated in Fig. 2, which shows two sequences recording several small moving
objects. Each feature point in the image-frame of Fig. 2.a (denoted by A-E) can in principle be
matched to any other feature point in the image-frame of Fig. 2.b. There is not su�cient informa-
tion in any individual frame to uniquely resolve the point correspondences. Point trajectories, on
the other hand, have additional shape properties which simplify the trajectory correspondence
problem across the two sequences (i.e., which trajectory corresponds to which trajectory), as
shown in Fig. 2.c and 2.d. Furthermore, a single pair of (non-trivial) corresponding trajectories
(i.e., a trajectory of an object which is not moving on a straight line and covers a large enough
image region) can uniquely de�ne: (i) the spatial transformation, (ii) the temporal transforma-
tion, (iii) can provide a convenient error measure for the quality of the extracted spatio-temporal
alignment.
We next outline the feature-based sequence-to-sequence alignment algorithm that we have

used in our experiments (which is a RANSAC-based algorithm). Each step of the algorithm is
then explained in more detail below:
(1) Construct feature trajectories (i.e., detect and track feature points for each sequence).
(2) For each trajectory estimate its basic properties (e.g., dynamic vs. static, or other properties
as explained below).
(3) Based on basic properties construct an initial correspondence table between trajectories.

(4) Estimate candidate parameter vectors ~P = (Pspatil; Ptemporal) by repeatedly choosing (at
random) a pair of possibly corresponding trajectories2. At each trial compute the parametric

spatio-temporal transformation ~P which best aligns the two trajectories.
(5) Assign a score for each candidate ~P to be the number of corresponding pairs of trajectories

whose distance after alignment by ~P is smaller than some threshold.
(6) Repeat steps (4) and (5) N times.

2If these are roughly along a straight line choose an additional pair.
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(7) Choose ~P which has the highest score.

(8) Re�ne ~P using all trajectory pairs that supported this candidate.

In our current implementation feature trajectories were computed either by using the KLT fea-
ture tracker [22, 30] or by tracking the center of mass of moving objects (Step 1). The trajectories
were then classi�ed as static or dynamic, to reduce the complexity of trajectory correspondences
(Step 2). In the presence of many trajectories, shape properties of the trajectories may also
be used (e.g., normalized length, average speed, curvature, 5-points projective invariance). Al-
though some of these are not projective invariants, they are useful for crude initial sorting (Step
3).
Two matching trajectories across the two sequences induce multiple point correspondences

across the camera views. These point correspondences are used for computing the spatial and
temporal transformation between the two sequences. In our current implementation ~Pspatial is
a homography. However the same framework may be used for recovering a fundamental matrix
in the presence of 3D parallax (e.g., when the two video sequences are recorded from di�erent
viewpoints). A similar approach embedded in an event detection framework was taken by [28].

To evaluate a candidate transformation parameter ~P = (h11; � � � ; h33;�t), where h11; � � � ; h33 are
the components of a homography H, we minimize the following error function3 (Step 4 and Step
8) :

~P = argmin
H;�t

X
Trajectories

(
X

t2Trajectory

jjp0(s � t +�t)�H(p(t))jj2) (1)

where, p(t) = [x(t); y(t); 1]T is the spatial position (i.e., pixel coordinates) of a feature point along
the trajectory at time t (in homogeneous coordinates), H is a homography, and p0(s � t + �t)
is the location of the corresponding feature point in the corresponding trajectory in the other
sequence at time: t0 = s � t+�t. Since t0 is not necessarily an integer value (allowing sub-frame
time shift), it is interpolated from the adjacent (integer time) point locations: t1 = bt0c and
t2 = dt0e. The minimization was performed by alternating the following two steps:
(i) Fix �t and approximate H using standard methods (e.g., the DLT algorithm described in
[15]).
(ii) Fix H and re�ne �t by �tting the best linear interpolation value. In other words we search
for � = t0 � t1 such that minimizes:

min
�

X
t

jj(p0(t1) � (1� �) + p0(t2) � (�))�Hp(t)jj : � 2 [0::1]: (2)

The iterations stop when the residual error does not change4. Only a few (less than 5) iterations
were required in all cases. As an initial guess for the spatial transform, we used the identity
homography, and performed an exhaustive search over integer time shifts within a given time
interval.

3In Step 4 the summation is over only one trajectory.
4When the spatial model is a�ne (i.e., h31 = h32 = 0 and h32 = 1 in the homography H), it is possible to

approximate the spatial and temporal parameters simultaneously (without iterations), since the spatial parameters
do not multiply the unknown time parameter.
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The above approach can similarly be used for estimating the fundamental matrix F between
two sequences taken from separate views (i.e., in the presence of 3D parallax). Eq. (1) would
then become:

~P = argmin
F;�t

X
Trajectories

(
X

t2Trajectory

jjp0(s � t+�t)T F p(t)jj2) (3)

We currently implemented and experimented only with the homography-based version of sequence-
to-sequence alignment.
Stein [26] and Lee et.al [21] described a method for estimating a time shift and a homography

between two sequences based on alignment of centroids of moving objects. Moving objects were
detected and tracked in each sequence and their centroids computed. However, there is a funda-
mental di�erence between [26, 21] and our approach. The centroids in [26, 21] were treated as
an unordered collection of feature points and not as trajectories. The spatio-temporal transfor-
mation between the two sequences was accordingly computed by examining all possible pairings
of corresponding centroids within a time interval. In contrast, we enforce correspondences be-
tween trajectories, thus avoiding the combinatorial complexity of establishing point matches of
all points in all frames, resolving ambiguities in point correspondences, and allowing for tem-
poral correspondences at sub-frame accuracy. This is not possible when the points are treated
independently (i.e., as a \cloud of points").
In our experiments we used two types of feature trajectories: (i) Feature points were auto-

matically selected and tracked using the KLT package [5], and (ii) Centroids of moving objects
were detected and tracked using blob tracking. In general, the suggested algorithm is not limited
to a particular choice of features. The advantages of tracking centroids of moving objects are
discussed in [21]. In particular they emphasize the stability and invariance of such \features"
to wide base line transformations. Our experiments con�rm their results. We further observed
the following advantage of using trajectories of moving objects centroids over trajectories of
intensity-based interest points. Multiple disparate interest points on a translating rigid object
(e.g., on a large moving object) may produce similar trajectories, because they undergo the same
3D motion. This results in possible ambiguities in trajectory correspondences. Taking centroids
of moving objects eliminates this problem, because each moving object is extracted as one part
(and not as several). Ambiguities in trajectory matching is handled by incorporating an outlier

rejection mechanism into Step 5 of the algorithm, i.e., iterative estimation of ~P using all trajec-
tories supporting the current candidate, and updating the score accordingly. On the other hand,
because each moving object contributes only one point per frame (the centroid), and because
there may be only a small number of moving objects, the sequence length required to uniquely
resolve the alignment may increase signi�cantly (to allow coverage of a large enough image region
by the moving objects). We therefore use both types of point trajectories. Robust methods other
than RANSAC (see [27] for a nice review) can also be incorporated into the sequence-to-sequence
alignment algorithm.
3.2 Direct-Based Sequence Alignment

The previous section focused on exploiting dynamic information that is mainly due to moving
objects and requires prior detection and tracking of such objects. However, scene dynamics is not
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Figure 3: Direct sequence-to-sequence alignment. A spatio-temporal pyramid is constructed

for each input sequence: one for the reference sequence (on the right side), and one for the second

sequence (on the left side). The spatio-temporal alignment estimator is applied iteratively at each level.

It re�nes the approximation based on the residual misalignment between the reference sequence and

warped version of the second sequence (warping in time and in space, marked by a skewed cube). The

output of the current level is propagated to the next level to be used as an initial estimate.

limited to moving objects. The scene may also contain more complex dynamic changes such as
non rigid deformations (e.g., 
owing water, 
ickering �re, etc.) or changes in illumination. Such
changes are not conveniently modeled by feature trajectories, yet are captured by spatio-temporal
brightness variations within each sequence. In this section we describe a direct intensity-based
sequence-to-sequence alignment algorithm which exploits such dynamic changes.
In direct image-to-image alignment (e.g., [3, 18, 29]) the spatial alignment parameters between

two images were recovered directly from image brightness variations. This is generalized here to
recover the spatial and temporal alignment parameters between the two sequences directly from
sequence brightness variations. The coarse-to-�ne estimation framework is also generalized here
to handle both time and space.
We recover the spatio-temporal displacement parameters ~P by minimizing the following SSD

error function:
ERR(~P ) =

X
~x=x;y;t

(S(~x)� S 0(~x+ ~u(~x; ~P )))2: (4)

The parameter vector ~P =
�
~Pspatial; ~Ptemporal

�
that minimizes the above error function is esti-

mated using the Gauss-Newton minimization technique. Similar to the way it was done in [29]
for image-to-image alignment, at each iteration we linearize the term in parentheses of Eq. (4)
as follows (see Appendix A):

ERR(~P ) =
X

~x=(x;y;t)

h
(S(~x)� S 0(~x))�rS 0T (~x)JP ~P

i2
: (5)

where rS 0T = [S 0

x` S
0

y S 0

t] denotes the spatio-temporal derivative of the sequence S', and JP
(the Jacobian matrix) denotes the matrix of partial derivatives with respect to the unknown
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components of ~P . For example, when Pspatial is a homography, and Ptemporal is a 1D a�ne
transformation in time, then:

JP =

2
64 x y 1 0 0 0 x2 �xy 0 0
0 0 0 x y 1 �xy y2 0 0
0 0 0 0 0 0 0 0 t 1

3
75 :

To recover ~P which minimizes Eq. (5), we di�erentiate ERR(~P ) with respect to the unknown

parameters of ~P and equate to zero. This leads to the following set of linear equations in ~P ,
which is solved to recover ~P :

X
~x=x;y;t

(JT
PrS

0rS 0TJP )~P =
X

~x=x;y;t

(S 0 � S)JT
PrS

0: (6)

For more details on the derivation of Eqs. (5) and (6) see Appendix A.
Because the estimation does not require detection or tracking of moving objects, nor extraction

of features, it can handle very complex dynamic scenes. Note that Eq. (6) integrates all available
spatio-temporal information within the sequence. Each space-time point ~x = (x; y; t) contributes
as much information as it reliably can. Any spatial or temporal variation in the scene, be it due
to non-rigid motion, changes in illumination, or just a strong spatial feature in the scene, is
captured by the space-time gradient rS 0, and therefore contributes to the estimation of the
spatio-temporal transformation ~P .
To allow for large spatio-temporal displacements ~u = (u; v; w) and to speed up the convergence

rate, the estimation process described above is embedded in an iterative-warp coarse-to-�ne
estimation framework. Fig. 3 illustrates the hierarchical spatio-temporal estimation framework.
The multi-scale analysis is done simultaneously in space and in time. The Gaussian image

pyramid [6] used in image-to-image alignment [3, 18, 29] is generalized here to a space time
Gaussian sequence pyramid5. The highest resolution level in the sequence pyramid is the input
sequence. Consecutive lower resolution levels are obtained by low-pass �ltering the sequence at
the current level both in space and in time, followed by sub-sampling by a factor of 2 in all three
dimensions x, y, and t. Thus, for example, if one resolution level of the volumetric sequence
pyramid contains a sequence of 64 frames of size 256� 256 pixels, then the next resolution level
contains a sequence of 32 frames of size 128� 128, etc. In our experiments we usually employed
�ve pyramid levels and about 5 iterations per level. The iterations were initialized by the identity
transformation (i.e., no initial guess was provided).
Unlike standard 3D volumetric alignment (e.g., in medical imagery) where (x,y,z) are treated

uniformly, in our case the spatial (x; y) and the temporal (t) components are of di�erent nature.
They must be treated separately, and cannot be intermixed. Furthermore, there are tradeo�s
between time and space. Some of these tradeo�s are discussed in Appendix B. Although our
current implementation is limited to 2D parametric spatial transformations, it can be extended
to other spatial models (including 3D models), similar to the hierarchy of models described in
[3] for direct image-to-image alignment.

5A Laplacian sequence pyramid can equally be used.
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frame0 frame100 frame200 frame300 frame400

(a)

(b)

(c)

(d)

Figure 4: Scene with moving objects. Rows (a) and (b) display �ve representative frames

(0,100,200,300,400) from the reference and second sequences, respectively. The spatial misalignment

is easily noticeable near image boundaries, where di�erent static objects are visible in each sequence

(e.g., the white car at the top-right portion of the frames in reference sequence (a)). The temporal

misalignment is noticeable by comparing the position of the gate in frames 400: In the second se-

quence it is already open, while still closed in the reference sequence. Row (c) displays superposition

of the representative frames before spatio-temporal alignment. The superposition composes the red and

blue bands from reference sequence with the green band from the second sequence. Row (d) displays

superposition of corresponding frames after spatio-temporal alignment. The dark pink boundaries in

(d) correspond to scene regions observed only by the reference camera. The dark green boundaries in

(d) correspond to scene regions observed only by the second camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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frame0 frame100 frame200 frame300

(a)

(b)

(c)

(d)

Figure 5: Scene with non rigid motion. Rows (a) and (b) display four representative

frames (0,100,200,300) from the reference and second sequences, respectively. Row (c) displays su-

perposition of the representative frames before spatio-temporal alignment. The spatial misalignment

between the sequences is primarily due to di�erences in cameras focal lengths (i.e., di�erences in

scale). The temporal misalignment is most evident in frames 300.a vs. 300.b, where the wind blows

the 
ag in opposite directions. Row (d) displays superposition of corresponding frames after spatio-

temporal alignment, using the direct-based algorithm of Section 3.2. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.

3.3 Examples

Before proceeding to studying properties, bene�ts and applications of sequence-to-sequence
alignment, we show some results of applying the two proposed algorithms on real world sequences.
Fig. 4 shows a scene with a car driving in a parking lot. The two input sequences Fig. 4.(a) and
Fig. 4.(b) were taken from two di�erent windows of a tall building. No synchronization between
the two sequences was used. Typical sequence length is several hundreds of frames. Fig. 4.(c)
displays superposition of representative frames, generated by mixing the red and blue bands from
the reference sequence with the green band from the second sequence. This demonstrates the
initial misalignment between the two sequences, both in time and in space. Note the temporal
misalignment of dynamic objects (e.g., di�erent timing of the gate being lifted), and spatial
misalignment of static scene parts (such as the parked car or the bushes). Fig. 4.(d) shows
the superposition after applying spatio-temporal sequence alignment. The second sequence was
spatio-temporally warped towards the reference sequence according to the computed parameters.
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frame80 frame114 frame166 frame185

(a)

(b)

Figure 6: Image-to-Image alignment vs. Sequence-to-Sequence alignment (a) Results of

applying image-to-image alignment to temporally corresponding frames. Spatial alignment is inaccurate

due to insu�cient spatial information in any of these individual frames. (b) Accurate alignment of the

same frames obtained by sequence-to-sequence alignment. The input sequences are displayed in Fig 5.

The recovered spatial transformation indicated that the initial spatial misalignment between the
two input sequences was on the order of a 1=5 of the image size, including a small rotation, a
small scaling, and a small skew (due to di�erent aspect ratios of the two cameras). The recovered
temporal shift between the two sequences was 46.63 frames. Comparable results were obtained
for this sequence when using both the direct sequence-to-sequence alignment (Section 3.2) and
the feature-based sequence-to-sequence alignment (Section 3.1).
The example in Fig. 4 is rich in spatial texture. Image-to-image alignment therefore also

provides high quality spatial alignment in this case (when applied to corresponding frames in
time across the two sequences). However, this is not the case for the next example. Fig. 5
shows two sequences (5.a and 5.b) of a 
ag blowing in the wind (non-rigid motion). The spatial
texture in each frame is concentrated in a small image region. Fig. 5.c shows a superposition of
representative frames from both sequences before spatio-temporal alignment, displaying initial
misalignment in time and space. Fig. 5.d shows superposition of corresponding frames after

spatio-temporal sequence alignment (using the direct algorithm of Section 3.2). The recovered
temporal shift was 31.43 frames. Empirical evaluation of the accuracy of our direct sequence-
to-sequence algorithm (which was found in our experiments to be up to 0.1 sub-pixel accuracy
and 0.1 sub-frame accuracy) can be found in Appendix C. More results of sequence-to-sequence
alignment will be shown in Sections 4 and 5 in the context of properties, bene�ts and applications
of sequence-to-sequence alignment.

4 Properties of Sequence-to-Sequence Alignment

4.1 Bene�ts of Sequence Alignment over Image Alignment

When there are no dynamic changes in the scene, then sequence-to-sequence alignment reduces
to image-to-image alignment (with improved signal-to-noise ratio; see Appendix D). However,
when the scene is dynamic, sequence alignment is superior to image alignment in multiple ways.
Beyond providing temporal alignment, it also provides the following bene�ts to spatial alignment:
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(a) Reference Sequence:
frame20 frame30 frame40 frame50 frame60

frame70 frame80 frame90 frame100 frame110

(b) Second Sequence:
frame20 frame30 frame40 frame50 frame60

frame70 frame80 frame90 frame100 frame110

(c) Before Alignment:
frame70 frame80 frame90 frame100 frame110

(d) After Alignment:
frame70 frame80 frame90 frame100 frame110

Figure 7: A scene which constantly changes its appearance. Rows (a) and (b) dis-

play 10 frames (20,...,110) from the reference and second sequences of �reworks, respectively. It is

di�cult to visually establish the connection between the two sequences. The event in frames 90-110

in the reference sequence (7.a), is the same as the event in (approximately) frames 20-40 in the sec-

ond sequence (7.b). Row (c) displays superposition of the representative frames before spatio-temporal

alignment. The �reworks apper green and pink due to the spatio-temporal misalignment between the

sequences. The spatial misalignment is mainly due to scale di�erences. Row (d) displays superposition

of corresponding frames after spatio-temporal alignment, using the direct-based algorithm of Section

3.2. Due to the scale di�erence (approximately 1 : 2) there is an overlap between the two sequences

only in the upper right region of every frame. Fireworks in the overlapping regions appear white, as

they should. Fireworks in the non-overlapping regions appear dark pink, as they were observed by only

one camera. The recovered temporal misalignment was 66.40 frames. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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frame 200 frame 250 frame 300

(a)

(b)

(c)

(d)

Figure 8: Scene with varying illumination. Rows (a) and (b) display three representative

frames (200,250,300) from the reference and second sequences, respectively. The temporal misalign-

ment can be observed at frame 250, by small di�erences in illumination. (c) displays superposition of

the representative frames before alignment (red and blue bands from reference sequence and green band

from the second sequence). (d) displays superposition of corresponding frames after spatio-temporal

alignment, using the direct-based algorithm of Section 3.2. The accuracy of the temporal alignment is

evident from the hue in the upper left corner of frame 250, which is pink before alignment (frame

250.c) and white after spatio-temporal alignment (frame 250.d). The dark pink boundaries in (d)

correspond to scene regions observed only by the reference camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.

(i) Resolving Spatial Ambiguities. Inherent ambiguities in image-to-image alignment oc-
cur, for example, when there is insu�cient common appearance information across images. This
can occur when there is not enough spatial information in the scene, such as in the case of the
small ball against a uniform background in Fig. 1, or in the example shown in Fig. 6. Fig.
6 shows a comparison of image-to-image and sequence-to-sequence alignment for the input se-
quences of Fig. 5 (the 
ag blowing in the wind sequences). Image-to-image alignment performs
poorly in this case, even when applied to temporally corresponding frames, as there is not enough
spatial information in many of the individual frames. Since in this example the detected temporal
misalignment (using sequence-to-sequence alignment) was 31.43 � 31.5, we matched odd �elds
from one camera with even �elds from the second camera to provide the best possible temporal
correspondence for image-to-image alignment. Only 55% the of corresponding frames converged
to accurate spatial alignment. The other 45% su�ered from noticeable spatial misalignment. A
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frame 3

frame 2
frame 1

Time

frame 3

frame 2
frame 1

(a) Sequence S1 (b) Sequence S2 (c) Trajectory 1 (d) Trajectory 2

Figure 9: Spatio-temporal ambiguities This �gure shows a small airplane crossing a scene

viewed by two cameras. The airplane trajectory does not su�ce to uniquely determine the alignment

parameters. Arbitrary time shifts can be compensated by appropriate spatial translation along the air-

plane motion direction. Sequence-to-sequence alignment, on the other hand, can uniquely resolve this

ambiguity, as it uses both the scene dynamics (the plane at di�erent locations) and the scene appearance

(the static ground). Note that spatial information alone does not su�ce either in this case.

few representative frames (out of the 45% misaligned pairs) are shown in Fig. 6.a. These pairs of
frames (as well as all the other pairs) were well aligned by sequence-to-sequence alignment (Fig.
6.b).
Insu�cient common appearance information across images can also occur when the two cam-

eras are at signi�cantly di�erent zooms (such as in Fig. 12) thus observing di�erent features at
di�erent scales. It can also occur when the two cameras have di�erent sensing modalities (such
as the Infra-Red and visible-light cameras in Fig 10), thus sensing di�erent features in the scene.
In all these cases, the lack of common appearance information makes the problem of image-to-
image alignment very di�cult. However, in sequence-to-sequence alignment the need for coherent
appearance information can be replaced by coherent temporal behavior, e.g., as captured by tra-
jectories of moving objects estimated within each sequence separately. An example of successfully
applying sequence-to-sequence alignment to such cases where image-to-image alignment is ex-
tremely di�cult are shown in Figs. 12 and 10 (using the feature-based sequence-to-sequence
alignment algorithm of Section 3.1). These are discussed in more detail in the \Applications"
section (Sections 5.2 and 5.3).

(ii) Improved Accuracy of Alignment. Even when there is su�cient spatial information
within the images and accurate temporal synchronization is known between the two sequences,
direct sequence-to-sequence alignment may still provide higher accuracy in the estimation of the
spatial transformation than image-to-image alignment. This is true even when all the spatial
constraints from all pairs of corresponding images across the two sequences are simultaneously
used to solve for the spatial transformation. This is because image-to-image alignment is re-
stricted to alignment of existing physical frames, whereas these may not have been recorded at
exactly the same time due to (possibly known) sub-frame temporal misalignment between the
two sequences. Sequence-to-sequence alignment, on the other hand is not restricted to physical
(\integer") image frames. Because sequence warping here is done not only in space but also in
time (see Fig. 3), it can thus spatially match information across the two sequences at sub-frame
temporal accuracy. This leads to higher sub-pixel accuracy in the spatial alignment. This is best
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illustrated by Fig. 7. The sequences show explosions of �reworks. The �reworks change their
appearance (size, shape, color and brightness) drastically throughout the sequence. These rapid
changes cause signi�cant di�erences between \corresponding" frames in time across the two se-
quences, due to the residual sub-frame temporal misalignment (in this case the extracted time
shift was 66.40 frames). Thus, many of these small bright dots cannot be accurately matched
across physical image frames. Direct sequence-to-sequence alignment (Section 3.2), on the other
hand matches elongated space-time traces of lights and not isolated spatial points of lights. The
sub-frame temporal accuracy provided be sequence-to-sequence alignment is thus essential for
recovering accurate sub-pixel spatial alignment.

(iii) Reduced Combinatorial Complexity. Another bene�t of feature-based sequence-
to-sequence alignment is that it signi�cantly reduces the combinatorial complexity of feature
matching, thus simplifying the correspondence problem for feature-based image alignment. There
are two reasons for this: (a) Correspondence of feature trajectories is less ambiguous than cor-
respondence of feature points due to the added \shape" properties of feature trajectories. This
is illustrated in Fig. 2 and discussed in Section 3.1. (b) The number of trials required by a
RANSAC-like algorithm is signi�cantly lower in sequence-to-sequence alignment. This is be-
cause the number of trials grows exponentially with the number of features to be matched. The
number of feature correspondences required to compute a candidate parameter vector (e.g., a
homography) in image-to-image alignment is four (4 feature points), while the number of re-
quired feature correspondences in sequence-to-sequence alignment is one (1 feature trajectory).
A trajectory contains many feature points which are sorted in time. Thus, matching one point
in one trajectory to another point in another trajectory automatically determines all other point
correspondences across the two trajectories. One might claim that generating the trajectories
involves additional computations. However, tracking is considered a much simpler problem than
establishing correspondences across separate views because of its very limited search range. These
additional computations are thus negligible. Note that when all feature points along a trajec-
tory are treated as an unordered cloud of points (as in [26, 21]), there is no reduction in the
complexity.

4.2 Space-Time Ambiguities

We showed how spatial ambiguities can often be uniquely resolved by sequence-to-sequence
alignment. However, adding the temporal dimension may sometimes introduce spatio-temporal
ambiguities. This occurs when di�erent temporal alignment can compensate for di�erent spatial
alignment, and is illustrated in Fig. 9. When only the trajectory of the moving object is con-
sidered (i.e., the trajectory of the airplane), then for any temporal shift there exists a di�erent
consistent spatial transformation between the two sequences which will bring the two trajectories
in Figs. 9.c and 9.d into alignment. Namely, in this scenario, using temporal changes alone pro-
vides in�nitely many valid spatio-temporal transformations. Stein [26] noted this spatio-temporal
ambiguity and reported its occurrence in car-tra�c scenes where all the cars move in the same
direction with similar velocities. Giese and Poggio [11, 12] (who modeled biological motion pat-
terns using linear combinations of prototypical sequences) also reported a similar problem. Such
ambiguities are resolved when there exists another object moving in a di�erent direction, at a
di�erent speed, or by combining also static information (i.e., \moving objects" with zero speed).
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While using information from the trajectory of the moving object alone provides in�nitely many
valid spatio-temporal transformations for the scenario in Fig. 9, only one of those spatio-temporal
transformations is consistent with the static background (i.e., the tree, the horizon) or any other
independent motion.

4.3 Feature-Based vs. Direct-Based Sequence Alignment

All the pros and cons of feature-based versus direct-based methods for image alignment (see
[31, 16] and debate) apply here as well. However, there are additional di�erences between these
two classes of methods that are unique to sequence alignment, because of the added temporal
dimension. These are brie
y discussed next.
The suggested approach to feature-based sequence alignment (Section 3.1) focuses on exploiting

dynamic changes which are due to moving objects or moving points. It further requires detection
and tracking of such objects. The direct approach to sequence alignment (Section 3.2), on the
other hand, requires no detection or tracking of moving objects. It captures dynamic changes
via the temporal derivatives without needing to explicitly model these changes by features. It
can therefore handle much more complex scene dynamics, such as varying illumination (Fig. 8),
non-rigid motions (Figs. 5 and 7). Moreover, a dimming or a brightening of a light source can
provide su�cient information to determine the temporal alignment between the two sequences.
Since global changes in illumination produce prominent temporal derivatives, even homogeneous
image regions contribute temporal constraints to the direct sequence-to-sequence alignment. This
is illustrated in Fig. 8. A light source was brightened and then dimmed, resulting in observable
illumination variations in the scene. The e�ects of illumination are particularly evident in the
upper left corner of the image. (Note the di�erence in illumination in frame 250 of the two
sequences: frame 250.a and frame 250.b). The recovered temporal o�set in this case was 21.32
frames. The correctness of the temporal alignment is evident from the hue in the upper left corner
of frame 250, which is pink before alignment (frame 250.c) and white after temporal alignment
(frame 250.d).
The limitation of the feature-based sequence alignment method in processing complex temporal

changes is a result of the way the features are currently selected and tracked in the algorithm
of Section 3.1. Although trajectories of features capture dynamic information, the features
themselves are still 2D features within images. However, the notion of \features" can be extended
from 2D features within images, to 3D space-time features within the space-time sequence volume.
This will allow to capture more complex dynamic changes other than moving objects. However,
appropriate volumetric spatio-temporal feature detectors must �rst be designed in order to obtain
such a goal. Such a task is beyond the scope of this paper.
While our feature-based approach to sequence-to-sequence alignment cannot handle complex

dynamic changes within the sequence, it can handle complex appearance changes across se-
quences, such as in sequences obtained by cameras of di�erent sensing modalities (see Fig. 10),
or cameras at signi�cantly di�erent zooms (e.g., 1 : 3 as in Fig. 12). In those cases the photo-
metric properties of the two input sequences are very di�erent. Yet, the trajectories of moving
objects over time are very similar, thus forming a powerful cue for alignment across the two
sequences in the feature-based alignment method. This is not the case for the direct-based
alignment algorithm, which minimizes the SSD (Sum of Square Di�erences) between the two
sequences, thus implicitly assuming similar photometric properties.
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5 New and Emerging Application
Sequence-to-sequence alignment gives rise to new video applications, that are otherwise very

di�cult or else impossible to obtain using existing image-to-image alignment tools. These are
discussed next.
5.1 Super-Resolution in Time and Space

In image-based (i.e., spatial) super-resolution [17], multiple low-resolution images (imaged at
sub-pixel shifts) are combined to obtain a single high-resolution image which contains spatial
features not visible in any of the input sequences. Such applications are naturally also supported
by sequence-to-sequence alignment. However, beyond that, sequence-to-sequence alignment also
provides temporal alignment at high sub-frame accuracy. This gives rise to totally new video
applications, such as super-resolution in time. By super-resolution in time we mean integrating
information from multiple video sequences (recorded at sub-frame time shift) into a single new
video sequence of higher frame-rate (i.e., higher temporal resolution). Such a sequence can display
dynamic events that occur faster than regular video frame-rate, and are therefore not visible (or
else observed incorrectly) in all the input video sequences. For example, when a wheel is turning
fast, beyond a certain speed it will appear to be rotating in the wrong direction in all the input
video sequences (the \wagon wheel e�ect"). This visual e�ect is due to temporal aliasing. Playing
the recorded video in \slow motion" will not make this e�ect go away. However, the reconstructed
high-resolution sequence will display the correct motion of the wheel. It is interesting to note
that temporal super-resolution cannot be obtained when the video cameras are synchronized
using dedicated hardware (e.g., genlock). In this case all the synchronized cameras will capture
the same time instance. Sequence-to-sequence alignment can therefore provide the basis for
exceeding the temporal and spatial resolution of existing video cameras. For more details see
[25].
5.2 Multi-Sensor Alignment

Images obtained by sensors of di�erent modalities, e.g., IR (Infra-Red) and visible light, can
vary signi�cantly in their appearance. Features visible in one image may barely be visible in the
other image, and vice versa. This poses a problem for image alignment methods. However, when
trajectories of moving objects are used as the features to match across the two sequences (see
Section 3.1), then the similar image appearance across the two sensors is no longer necessary.
The need for coherent appearance information is replaced with coherent dynamic behavior of
feature trajectories. Fig. 10 illustrates alignment of a PAL visible light sequence with an NTSC
Infra-Red sequence using the feature-based algorithm of Section 3.1 with trajectories of centroids
of moving objects (the two kites, waves, and several cars shown in Fig. 10.c). The di�erences in
appearance of the objects across the two sequences will not a�ect the processing, which is not the
case in feature-based image-to-image alignment. The results after spatio-temporal alignment are
displayed after fusing the two sequences (using Burt's fusion algorithm [7]). The fused sequence
clearly displays features from both sequences (representative frames shown in Fig. 10.d and 10.e).
5.3 Recovering Large Transformations and Wide Baseline Matching

Alignment of images taken at signi�cantly di�erent internal or external camera parameters
(e.g., a wide baseline between the cameras, signi�cant scale di�erences, large image rotations,
etc.) is di�cult. This is best understood by analyzing the number of trials that are required in
a RANSAC-like algorithm to ensure accurate alignment.
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Let m be the minimal number of correspondences required for computing a spatial transfor-
mation Pspatial. For example, for homography (which has 8 d.o.f) the number of required point
correspondences for image-to-image alignment is m = 4. Let e be the probability that a feature
matching across the two images is correct (i.e., the probability that it is a mismatch or an outlier
is (1� �)). A RANSAC-like alignment algorithm requires that at least in one of the trials (i.e.,
one random sample of m correspondences) will not contain any mismatches (outliers). Then N
- the number of trials that are required to ensure with probability p (usually p = 99%) that at
least one random sample of m features is free of mismatches, is given by the following formula
[23, 15]:

N �
log(1� p)

log(1� em)
: (7)

In regular feature-based image alignment, an initial bounded search for corresponding feature
points is performed, to guarantee that e is large enough (e.g., e > 0:5), thus limiting the number
of trials N to a reasonable number. However, when there is a large baseline between the cameras,
a large scale di�erence, or a large image rotation, then e � 1

#features
(the probability to choose

corresponding features at random). e may even be smaller if the two sets of features from
the two images are inconsistent. Thus for example, if there are 100 features in the image (all
appearing in both images), then according to Eq. (7) the number of necessary trials for computing
a homography (m = 4; e = 1

100
; p = 99%) is N > 46; 000; 000 = 4:6� 108.

On the other hand, when using feature-based sequence-to-sequence alignment (Section 3.1), a
single feature trajectory (e.g., a trajectory generated by a moving object which covers a large
enough image region) su�ces for computing Pspatial. This is because all point correspondences
can be extracted from a single trajectory matching across the two sequences. The RANSAC-
like feature-based sequence-to-sequence alignment algorithm therefore requires that at each trial
only one feature trajectory will be matched correctly (i.e., m = 1). Even if we ignore the
shape properties of feature trajectories and assume that all trajectories are equally likely (i.e.,
e = 1

#trajectories
), we still get reasonable number of trials even for large transformations and

baselines. For example, using Eq. (7) with e = 1
100

, m = 1, and p = 99%, we get that the
number of required trials is N � 459. In practice, the actual needed number of trails N is lower,
because the nature of the trajectories can still be used for reliable initial matching (i.e., their
shape properties or the fact that they result from static or dynamic points), thus increasing the
value of e.
An example of alignment of sequences obtained at signi�cantly di�erent zooms (1 : 3) using

the feature-based algorithm of Section 3.1 is shown in Fig. 12.

6 Conclusion and Future Work
In this paper we studied the problem of aligning two video sequences in time and in space

by utilizing spatio-temporal information contained in the space-time volumes. We showed that
there are several bene�ts to using sequence-to-sequence alignment. Since (i) it resolves many
of the inherent di�culties associated with image-to-image alignment, and (ii) it gives rise to
new video applications. We showed that in particular sequence-to-sequence alignment facilitates
super-resolution in time, multi-sensor alignment and wide-baseline matching. We presented two
speci�c algorithms: a direct-based sequence-to-sequence alignment algorithm, and a feature-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Multi-Sensor Alignment. (a) and (b) display representative frames from a PAL

visible light sequence and an NTSC Infra-Red sequence, respectively. The scene contains several moving

objects: 2 kites, 2 moving cars, and sea waves. The trajectories induced by tracking the moving objects

are displayed in (c) and (d). The two camera centers were close to each other, therefore the spatial

transformation was modeled by a homography. The output after spatio-temporal alignment via trajectory

matching (Section 3.1) is displayed in (e) and (f). The recovered temporal misalignment was 1.31 sec.

The results are displayed after fusing the two input sequences (using Burt's fusion algorithm [7]). We

can now observe spatial features from both sequences. In particular note the right kite which is more

clearly visible in the visible-light sequence (circled in green), and the left kite which is more clearly visible

in the IR sequence (circled in red).
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based sequence-to-sequence alignment algorithm. However, the notion of sequence-to-sequence
alignment goes beyond the proposed algorithms in Section 3, and extends to more complex
transformations in time and in space. Furthermore, sequence-to-sequence alignment can exploit
not only common dynamic behavior in the scene, but also common dynamic behavior of the
cameras. This gives rise to alignment of non-overlapping sequences [9].
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Appendix A: Derivation of the Direct Method Equations
We follow the formulation proposed in [29] for image alignment and derive the normal equations

from our error function of Eq.(4):

ERR(~P ) =
X

~x=(x;y;t)

(S(~x)� S 0(~x + ~u(~x; ~P )))2:

We linearize S 0(~x+ ~u) using a �rst order Taylor approximation of S 0 around P0 { the parameter
vector corresponding to the identity transformation (i.e., no displacement in time or in space):

S 0(~x+ ~u(~x; ~P )) = S 0(~x+ ~u(~x;P0)) +rS 0T (~x0)JP (~P � ~P0) + � (8)
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Figure 11: Induced temporal frequencies. Three frames 0,1,2 of a car moving up right with

velocity v are presented above. A �xed pixel (x0; y0) is marked on each frame. (a) displays the trace of

the pixel. (b) displays the gray level values along this trace.

where rS 0T = [S 0

x0S 0

y0S 0

t0 ] denotes the spatio-temporal derivative of the sequence S' at ~x0 =

~x + ~u(P̂), and P̂ is the estimate of ~P from the previous iteration. JP - the Jacobian matrix -
denotes the matrix of partial derivatives of the displacement vector ~u = (u; v; w) with respect

to the components of ~P . (Alternatively, we can linearize the term in Eq. (4) with respect to ~x,

instead of with respect to the parameters ~P , and then express the spatio-temporal displacement
~u in terms of the parameters ~P , similar to the way it was done for image-to-image alignment in
[18] (for this formulation and its derivations see [8]).
Using the fact that ~u() is zero at the identity transformation P0 we obtain:

ERR(~P ) =
X

~x=(x;y;t)

h
(S(~x)� S 0(~x))�rS 0T (~x)JP ~P

i2
: (9)

Solving the above least squares problem leads to the following set of linear equations in the
unknown ~P : X

~x

(JT
PrS

0rS 0TJP )~P =
X
~x

(S 0 � S)JT
PrS

0: (10)

For computing the Jacobian matrix for the case when Pspatial is a homography and Ptemporal

is a 1D a�ne transformation, at each iteration we used the instantaneous approximation of a
homography [3] and get:

JP =

2
64 x y 1 0 0 0 x2 �xy 0 0
0 0 0 x y 1 �xy y2 0 0
0 0 0 0 0 0 0 0 t 1

3
75 :

Using the formulation derived in Eq. (10), the derivatives of rS 0 must be recomputed at every
iteration as S 0 is warped. To speed the estimation process, we can replace rS 0 by rS with
some small modi�cations (which introduce an additional approximation). The same trick was
proposed for image-to-image alignment in [3], and is described in further detail in [1, 2].

Appendix B: Spatio-Temporal Aliasing
This appendix discusses the tradeo� between temporal aliasing and spatial resolution. The

intensity values at a given pixel (x0; y0) along time induce a 1-D temporal signal: s(x0;y0)(t) =
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S(x0; y0; t). Due to the object motion, a �xed pixel samples a moving object at di�erent locations,
denoted by the \trace of pixel (x0; y0)". Thus temporal variations at pixel (x0; y0) are equal to
the gray level variations along the trace (See Fig. 11). Denote by �trace the spatial step size
along the trace. For an object moving at velocity v: �trace = v�t, where �t is the time
di�erence between two successive frames (�t = 1

frame rate
). To avoid temporal aliasing, �trace

must satisfy the Shannon-Whittaker sampling theorem: �trace <= 1
2!
; where ! is the upper

bound on the spatial frequencies. Applying this rule to our case, yields the following constraint:
v�t = �trace <= 1

2!
: This equation characterizes the temporal sampling rate which is required

to avoid temporal aliasing. In practice, video sequences of scenes with fast moving objects often
contain temporal aliasing. We cannot control the frame rate ( 1

�t
) nor object's motion (v): We

can, however, decrease the spatial frequency upper bound ! by reducing the spatial resolution
of each frame (i.e., apply a spatial low-pass-�lter). This implies that for video sequences which
inherently have high temporal aliasing, it may be necessary to compromise in spatial resolution
of alignment in order to obtain correct temporal alignment. Therefore, the LPF (low pass �lters)
in our spatio-temporal pyramid construction (Sec. 3.2) should be adaptively selected in space
and in time, in accordance with the rate of temporal changes. This method, however, is not
applicable when the displacement of the moving object is larger than the object itself.

Appendix C: Empirical Evaluation
We quantitatively evaluated the accuracy of our direct sequence-to-sequence alignment algo-

rithm on sequences where ground truth information was available. In the �rst experiment we
warped a video sequence using known spatio-temporal parameters, to synthetically generate a
second sequence. We then applied our method to the warped and the original sequences and
compared the computed parameters with the known ones. This produced highly accurate results.
The temporal error was less than 0.01 of a frame time, and spatial error was less than 0.02 pixel.
To generate a less synthetic example with ground truth, we split a video sequence into two

sub-sequences { one containing the odd-�elds, and one containing the even-�elds. The two \�eld"
sequences are related by a known temporal shift of 0.5 a frame time and a known spatial shift
of a 0.5 pixel along the Y axis. Note, that in this case the data comes from the same camera,
but from completely di�erent sets of pixels (odd rows constitute one sequence and even rows
constitute the other sequence). We repeated the experiment several (10) times using di�erent
sequences and di�erent spatial models (a�ne, projective). In all cases the temporal error was
smaller than 0.02 of a frame time (i.e., the recovered time shift between the two sequences was
between 0.48 { 0.52). The error in the Y-shift was smaller than 0.03 pixel (i.e., the recovered
Y-shift was between 0.47 { 0.53 pixel), and the overall error in spatial misalignment was less
than 0.1 pixels.
To test a more realistic case of sequences obtained by two di�erent cameras we performed the

following experiment. Each of the two input sequences was split into two sub-sequences of odd
and even �elds, resulting in 4 sub-sequences: Odd1; Even1; Odd2; Even2. Because the ground
truth is not known between the two sequences, it is therefore not known between Odd1 $
Odd2, Odd1 $ Even2, Even1 $ Odd2, Even1 $ Even2 . However, what is known is how
transformations of pairs of these sequences are related to each other. That is, if the time shift
between Odd1 and Odd2 is �t, then the time shift between Even1 and Even2 should be also
�t, and the time shift between Odd1 and Even2 should be �t+0:5. Similarly, a simple relation
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also holds for pairwise spatial transformations. This experiment was performed several times on
several di�erent sequences, and in all cases the temporal error was bounded by 0.05 frame time
and the spatial error was bounded by 0.1 pixel.
Finally we veri�ed the accuracy of alignment using three (or more) real video sequences:

S1; S2; S3. For each pair of sequences Si and Sj, we computed the spatio-temporal misalignment
between the sequences, denoted here by �(Si ! Sj). The evaluation was based on the degree of
transitivity, i.e., �(S1 ! S3) should be equal to �(S1 ! S2) + �(S2 ! S3). Thus, we can use
the following evaluation measure:

Err = jj�(S1 ! S2) + �(S2 ! S3)��(S1 ! S3)jj:

This experiment was repeated several times, for several di�erent sequences. The temporal error
did not exceed 0:1 frame time, and was usually about 0.05 frame time. The spatial errors were
on the order of 0.1 pixel.

Appendix D: Sequence Alignment as a Generalization of Image Align-

ment
We �rst show that the direct sequence-to-sequence alignment algorithm of Section 3.2 is a

generalization of direct image-to-image alignment. When there are no temporal changes in the
scene, and no camera motion, then I(x; y) = S(x; y; t) where I is a single image in the sequence
(i.e., all frames are equivalent), and the temporal derivatives within the sequence are zero: St � 0.
Therefore, the error function described in Eq. (5), reduces to:

ERR(~P )| {z }
seq-to-seq

=
P

x;y;t S � S 0 +
h
S 0

x S
0

y 0
i " Jspatial 0

0 Jtemporal

# "
Pspatial

Ptemporal

#
=

=
P

t

�P
x;y I

0 � I + [Ix Iy]Jspatial ~Pspatial

�
=
P

t err(~Pspatial)| {z }
img-to-img

where Jspatial is the 2�n \spatial minor" and Jtemporal is the 1�m \temporal minor", respectively,
of the 3� (m + n) Jacobian matrix J (m,n are the number of temporal and spatial parameters

of ~P , respectively). This shows that in such cases the SSD function of Eq. (5) reduces to the
image-to-image alignment objective function of [29], averaged over all frames6.
The same holds for the feature-based sequence-to-sequence alignment algorithm (Section 3.1).

When there are no changes in the sequences, feature points remain at the same image positions
over time. Their trajectories thus become degenerate and reduce to points. Therefore, the
feature-based sequence-to-sequence alignment algorithm reduces to a feature-based image-to-
image algorithm with improved signal-to-noise ratio.
Namely, when there are no dynamic changes in the scene and no camera motion, sequence-

to-sequence alignment may provide only improved signal-to-noise ratio, but no new information.
However, when there are temporal changes over time, sequence-to-sequence alignment exploits
more information than image-to-image alignment can. This is discussed at length in Section 4.

6A similar derivation for the error functions of [3, 18] is found in [8].
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(a) Zoomed-out (b) Zoomed-in (c) Super-position

Figure 12: Alignment of sequences obtained at di�erent zooms. Columns (a) and (b)

display four representative frames from the reference sequence and second sequence, showing a ball

thrown from side to side. The sequence in column (a) was captured by a wide �eld-of-view camera,

while the sequence in column (b) was captured by a narrow �eld-of-view camera (the ratio in zooms

was approximately 1 : 3). The two sequences capture features at signi�cantly di�erent spatial resolu-

tion, which makes the problem of inter-camera image-to-image alignment very di�cult. The dynamic

information (the ball trajectory) on the other hand, forms a powerful cue for alignment both in time

and in space. Column (c) displays superposition of corresponding frames after spatio-temporal align-

ment, using the feature-based algorithm of Section 3.1. The dark pink boundaries in (c) correspond

to scene regions observed only by the reference (zoomed-out) camera. For full color sequences see

www.wisdom.weizmann.ac.il/Seq2Seq.
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