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Abstract. This paper studies the problem of matching two unsynchronized video

sequences of the same dynamic scene, recorded by different stationary uncalibrated

video cameras. The matching is done both in time and in space, where the spatial

matching can be modeled by a homography (for 2D scenarios) or by a fundamental

matrix (for 3D scenarios). Our approach is based on matching space-time trajectories

of moving objects, in contrast to matching interest points (e.g., corners), as done

in regular feature-based image-to-image matching techniques. The sequences are

matched in space and time by enforcing consistent matching of all points along

corresponding space-time trajectories.

By exploiting the dynamic properties of these space-time trajectories, we ob-

tain sub-frame temporal correspondence (synchronization) between the two video

sequences. Furthermore, using trajectories rather than feature-points significantly

reduces the combinatorial complexity of the spatial point-matching problem when

the search space is large. This benefit allows for matching information across sensors

in situations which are extremely difficult when only image-to-image matching is

used, including: (a) matching under large scale (zoom) differences, (b) very wide

base-line matching, and (c) matching across different sensing modalities (e.g., IR

and visible-light cameras). We show examples of recovering homographies and

fundamental matrices under such conditions.
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1. Introduction

Image-to-image matching methods, e.g., (Faugeras et al., 2001; Hartley

and Zisserman, 2000; Xu and Zhang, 1996; Bergen et al., 1992; Szeliski

and Shum, 1997; Zhang et al., 1995; Zoghlami et al., 1997), are inher-

ently restricted to the information contained in individual images, i.e.,

the spatial variations within image frames (which capture the scene ap-

pearance). But there are cases when there is not enough common spatial

information within the two images to allow reliable image matching.

One such example is illustrated in Fig. 1. The input images 1.a and

1.b contain a single object, but we want to match (or align) the entire

frame. Alignment of image 1.a to image 1.b is not uniquely defined (see

Fig. 1.c). However, a video sequence contains much more information

than any individual frame does. In particular, a video sequence captures

information about scene dynamics such as the trajectory of the moving

object shown in Fig. 1.d and 1.e, which in this case provides enough

information for unique alignment both in space and in time (see Fig.

1.f). The scene dynamics, exemplified here by trajectories of moving

objects, is a property that is inherent to the scene, and is thus com-

mon to all sequences recording the same scene, even when taken from

t2t.tex; 3/02/2005; 18:37; p.2



3

different video cameras. It therefore forms an additional or alternative

powerful cue for matching video sequences.

The benefits of exploiting scene dynamics for matching sequences

was noted before. Caspi and Irani (Caspi and Irani, 2000) described a

direct (intensity-based) sequence-to-sequence alignment method. Their

method is based on finding the space-time transformation which min-

imizes the intensity differences (SSD) between the two sequences, and

was applied to cases where the spatial relation between the sequences

could be modeled by a 2D parametric transformation (a homography).

It was shown to be useful for addressing rigid as well as complex

non-rigid changes in the scene (e.g., flowing water), and changes in

illumination. However, that method does not apply when the two se-

quences have different appearance properties, such as with sensors

of different sensing modalities, nor when the spatial transformation

between the two sequences is very large, such as in wide base-line

matching, or in large differences in zoom.

This paper illustrates a feature-based approach for space-time match-

ing of video sequences. The “features” in our method are space-time

trajectories constructed from moving objects. This approach can re-

cover the 3D epipolar geometry between sequences recorded by widely

separated video cameras, and can handle significant differences in ap-

pearance between the two sequences.
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The advantage of our approach over using regular feature-based

image-to-image matching is illustrated in Fig. 2. This figure shows

two sequences recording several small moving objects. Each feature

point in the image-frame of Fig. 2.a (denoted by A-E) can in principle

be matched to any other feature point in the image-frame of Fig. 2.b

(ignoring matching using local appearance). In this case there is not

sufficient information in any individual frame to uniquely resolve the

point correspondences. Point trajectories, on the other hand, have ad-

ditional shape properties which simplify the trajectory correspondence

problem (i.e., which trajectory corresponds to which trajectory) across

the two sequences, as shown in Fig. 2.c and 2.d.

More recently, work has been devoted to development of feature de-

tectors and descriptors which are invariant to severe geometric transfor-

mations, such as large changes in scale and rotation (e.g., (Mikolajczyk

and Schmid, 2004; Matas et al., 2002; Tuytelaars and Gool, 2004; Fer-

rari et al., 2003; Kadir et al., 2004; Lowe, 2004; Mindru et al., 2004).

This made it possible to find feature correspondences between images

even when taken from significantly different view points. However, those

methods assume that there is some common spatial information in

the vicinity of the feature point. Such an assumption does not hold in

extreme cases, such as when the two cameras are opposed to each other.

In this work we show that when dynamic information is available, tra-

jectories of moving objects can be used to match features across images,
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not only in severe cases as handled by previous methods, but also in

extreme cases, when no common appearance information is available,

such as when the two cameras are facing each other (examples on Figs. 5

and 6).

Stein (Stein, 1998) and Lee et.al. (Lee et al., 2000) described a

method for estimating a time shift and a homography between two

sequences based on alignment of centroids of moving objects. How-

ever, in (Stein, 1998; Lee et al., 2000) the centroids were treated as

an unordered collection of feature points and not as trajectories. In

contrast, we enforce correspondences between trajectories, thus avoid-

ing the combinatorial complexity of establishing point matches of all

points in all frames, resolving ambiguities in point correspondences, and

allowing for temporal correspondences at sub-frame accuracy. This is

not possible when the points are treated independently (i.e., as a “cloud

of points”). Recently, based on the shorter version of our paper (our

ECCV’02 Workshop paper - (Caspi et al., 2002)), Stauffer and Tieu

(Stauffer and Tieu, 2003) demonstrated how the method of Stein and

Lee can indeed be improved using correspondences between trajectories.

Section 2 formulates the underlying problem, and Section 3 presents

our sequence matching algorithm that is based on matching feature

trajectories. The algorithm receives as input two unsynchronized video

sequences and simultaneously estimates the parameters of the tem-

poral and spatial transformation (relation) between the two sequences.
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Temporal misalignment (unsynchronization) occurs when the two input

sequences have a time-shift (offset) between them (e.g., if the cameras

were not activated simultaneously), and/or when they have different

frame rates (e.g., PAL vs. NTSC). The spatial relation between the

two sequences results from the camera setups. We have implemented

two variants for the two following camera setups: (i) when the spatial

relation between the two sequences is a 2D projective transformation

(i.e., a homography), and (ii) when the spatial relation between the

two sequences is expressed by epipolar geometry (i.e., a fundamental

matrix).

Section 4 shows that by replacing point features with trajectories

of moving points we can address several cases which are very difficult

for regular image-to-image matching. We show that situations that are

inherently ambiguous for image-to-image matching methods are often

uniquely resolved by the sequence-to-sequence matching approach. In

particular, these include situations where there is very little common

appearance (spatial) information across the two sequences, such as in

sequences of different sensing modalities (e.g., Infra-Red and Visible-

light sensors), large scale differences, and wide base-lines between the

cameras. We apply our method to such examples, and show that consis-

tency of the scene dynamics (i.e., temporal cues across sequences) can

become a major source of information for matching video sequences

both in time and in space.
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Figure 1. Spatial ambiguities in image-to-image alignment (a) and (b) show
two temporally corresponding frames from two different video sequences viewing
the same moving ball. There are infinitely many valid image alignments between
the two frames, some of them shown in (c). (d) and (e) display the two sequences
of the moving ball. There is only one valid alignment of the two trajectories of the
ball. This uniquely defines the alignment both in time and in space between the two
video sequences (f).

2. Problem Formulation

Let S and S′ be two input image sequences, where S denotes the “ref-

erence” sequence, and S′ denotes the second sequence. Let ~x = (x, y, t)

be a space-time point in the reference sequence S (namely, a pixel (x, y)

at frame (time) t) and let ~x′ = (x′, y′, t′) be the matching space-time

point in sequence S′. The recorded scene can change dynamically, i.e.,

it can include moving objects. The cameras can be either stationary or

jointly moving with fixed (but unknown) internal and relative external

parameters. In this setup correspondences in time and in space between

the video sequences can be described/modeled by a small set of param-

eters ~P = (~Pspatial, ~Ptemporal). Our goal is to recover these parameters.
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The specific models that we address and their parameters are discussed

next.

Temporal misalignment results when the two input sequences have a

time-shift (offset) between them (e.g., if the cameras were not activated

simultaneously), and/or when they have different frame rates (e.g., PAL

vs. NTSC). Such temporal misalignments can be modeled by a 1-D

affine transformation in time t′ = s · t + ∆t, and is typically at sub-

frame time units. Note that in most cases s is known – it is the ratio

between the frame rates of the two cameras (e.g., for PAL and NTSC

sequences, it is s = 25/30 = 5/6). Therefore, in such cases ~Ptemporal

contains only one unknown parameter, ∆t.

To model the spatial parameters let us look at the spatial part of a

space-time point. Let ~p(t) = (x, y, 1)T denote the homogeneous coordi-

nates of only the spatial component of a space-time point ~x = (x, y, t)

in S. The spatial misalignment between two sequences results from the

fact that the two cameras have different external and internal calibra-

tion parameters. We will consider two possible cases: the 2D case and

the the 3D case:

(i) By the 2D case we refer to the case where the distance between the

camera projection centers is negligible relative to the distances of the

cameras to the scene, or else if the scene is roughly planar. In this 2D

case the space-time relation between the two sequences is expressed by
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an unknown 3 × 3 homography H and the unknown ∆t:

H~p(t) ∼= ~p ′(s · t + ∆t).

In this case the nine spatial parameters

~Pspatial = [h11 h12 h13 h21 h22 h23 h31 h32 h33]

are defined up to a scale factor (hij are the 9 entries of H)1, and

~Ptemporal = ∆t.

(ii) By the 3D case we refer to the case where the cameras are disjoint

and the scene contains observable 3D variations. In this case the space-

time relation between the two sequences is expressed by an unknown

fundamental matrix F and the unknown ∆t :

~p ′(s · t + ∆t)
T
F~p = 0,

where [·]T denotes the transpose of a vector. In this case the spatial

relation parameters are: ~Pspatial = [f11 f12 f13 f21 f22 f23 f31 f32 f33],

where fij are the 9 entries of the 3 × 3 fundamental matrix F (up to a

scale factor), and ~Ptemporal = ∆t.

Note that in either case, F or H are shared by all temporally corre-

sponding pairs of frames because the cameras are fixed relative to each

other (both internal parameters and inter-camera external parameters

are fixed).

1 The modification to other 2D parametric models, such as translation, similarity
or affine, is trivial (e.g., set h31 = h32 = 0 for a 2D affine model).
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(a)Frame from S1 (b) Frame from S2 (c) Sequence S1 (d) Sequence S2

Figure 2. Point correspondences vs. trajectory correspondences. (a) and
(b) display two frames out of two sequences recording five small moving objects
(marked by A,B,C,D,E). (c) and (d) display the trajectories of these moving objects
over time. When analyzing only single frames, it is difficult to determine the correct
point correspondences across images. However, point trajectories have additional
properties, which simplify the correspondence problem across two sequences (both
in space and in time).

3. The Trajectory-Based Sequence Matching Algorithm

Feature-based image matching can be generalized to feature-based se-

quence matching by extending the notion of features from feature points

to feature trajectories. Let γ = {~xt0 , ~xt1 , . . . , ~xtn} be a space-time tra-

jectory (remember that by ~x = (x, y, t) we denote space-time points).

Denote by Γ and Γ′ the sets of all trajectories in sequences S and S′

respectively, then spatio-temporal matching between the two sequences

can be recovered by establishing correspondences between trajectories

from the sets Γ and Γ′.

In particular, a single pair of (non-trivial) corresponding trajecto-

ries2 γ and γ′ can uniquely define: (i) the spatial relation, (ii) the

temporal relation, (iii) can provide a convenient residual error measure:

err(~P ) =
∑

~x∈γ

D(~x, ~x ′) =
∑

t∈[t0,...,tn]
d(~p(t), ~p ′(t′)), where [t0, . . . , tn] is

the temporal support of the space-time trajectory γ, ~p(t) is the spatial

2 By a non-trivial trajectory we mean that it covers a large enough image region,
and that its points do not all belong to a degenerate configuration (e.g, a straight
line for a homography, or a plane for a fundamental matrix).
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position (i.e., pixel coordinates) of the space-time point ~x at time t (in

homogeneous coordinates), and ~p ′(t′) is the spatial position of ~x ′ in

the other sequence at time t′ = s · t + ∆t.

For the homography (2D) case the error measure is: d(~p, ~p ′) =

distH(H~p(t), ~p ′(s · t + ∆t)), where distH(q1, q2) is the distance be-

tween two points after normalizing each by its third coordinate. For

the fundamental matrix (3D) case the error measure is: d(~p, ~p ′) =

distF (F~p(t), ~p ′(s · t + ∆t)), where distF (l, q) is the distance (in pixels)

between a point q and a line l (an epipolar line).

We next outline the feature-based sequence-to-sequence alignment

algorithm that we have used in our experiments (which is a RANSAC/MDS

based algorithm - see (Fischler and Bolles, 1981; Hampel et al., 1986)).

Each step of the algorithm is then explained in more detail below:

(1) Construct feature trajectories (i.e., detect and track feature points

for each sequence).

(2) For each trajectory estimate its basic properties (e.g., dynamic vs.

static, see more examples below).

(3) Based on basic properties construct an initial table of tentative

matching between trajectories.

(4) Estimate candidate parameter vector ~P = (Pspatial, Ptemporal) by

repeatedly choosing (at random) a pair of possibly corresponding tra-

jectories3. At each trial compute the set of parameters ~P which mini-

3 If these are roughly along a straight line choose an additional pair.
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mizes the error function err(~P ) defined above.

(5) Assign a score for each candidate set of parameters ~P to be the

number of corresponding pairs of trajectories whose residual error (or

median residual error) is small.

(6) Repeat steps (4) and (5) N times.

(7) Choose ~P which has the highest score.

(8) Refine ~P using all trajectory pairs that supported this candidate.

In our current implementation trajectories of moving objects were

computed (Step 1) by tracking unique points on blobs of moving ob-

jects. This was done either by tracking the center of mass of moving

objects, or the top point on the silhouettes of moving objects4. The

reliability of the center of mass to be used as a feature point is discussed

in (Lee et al., 2000), and the reliability of extreme points on silhouettes

is discussed in (Wong and Cipolla, 2001). The KLT feature tracker

(Lucas and Kanade, 1981; Tomasi and Kanade, 1991) may also be used

to generate additional feature trajectories. In the presence of many

trajectories, trajectory properties may be used to reduce the matching

complexity (Step 2). For example, dynamic trajectories (of moving ob-

jects) in one sequence are matched only against dynamic trajectories

in the other sequence. When the cameras are expected to have similar

photometric properties, the spatial properties of the features may also

be used (e.g., the size or color distribution of the moving object). When

4 Implicitly assuming that the cameras are horizontal, and the object tip is not
occluded in one camera.
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we anticipate a significant change in appearance, shape properties of

the trajectories could still be used (e.g., normalized length, average

speed, curvature, 5-point projective invariance (Mundy and Zisserman,

1992)). Although some of these are not projective invariants, they are

useful in an initial search for crude tentative matching (Step 3).

A matching of a single pair of trajectories across the two sequences

induces multiple point correspondences across the camera views. These

point correspondences are used for computing the spatial and temporal

relation between the two sequences. To evaluate a candidate param-

eter vector ~P = (h11, · · · , h33, ∆t), or ~P = (f11, · · · , f33, ∆t) (where

h11, · · · , h33 or f11, · · · , f33 are the components of a homography H, or

a fundamental matrix F , respectively), we minimize the following error

function (Step 4 and Step 8) :

~P = argmin
~P

∑

γ∈Γ

∑

t∈support(γ)

d(~p(t), ~p ′(s · t + ∆t)) (1)

where d(·) is either distH(·) or distF (·), depending on whether the

scene is 2D or 3D (in Step 4 the summation is only over the selected

trajectory). The minimization of Eq.(1) is performed by iterating the

following two steps:

(i) Fix ∆t and approximate H (or F ) using standard methods (e.g.,

(Hartley and Zisserman, 2000) Chapters 3 and 10, respectively).

(ii) Fix H (or F ) and refine ∆t. Since t′ = s ·t+∆t is not necessarily an

integer value (allowing a sub-frame time shift), it is interpolated from
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the adjacent (integer time) point locations: t1 = ⌊t′⌋ and t2 = ⌈t′⌉. We

search for α = t′ − t1 (1 ≥ α ≥ 0) that minimizes the following term:

∑

γ∈Γ

∑

t∈support(γ)

d
(

~p(t) , ~p ′(t1) · (1 − α) + ~p ′(t2) · α
)

(2)

In our implementation we used a bounded number of refinement it-

erations (10 to 20), or stopped earlier if the residual error did not

change. An initial (integer) approximation for ∆t was derived using

exhaustive search over a small fixed temporal interval (20-25 frames in

our experiments).

Examples of applying the above algorithm to video sequences of

different scenarios are found in Figs. 3,4,5,6, (see figure captions for

further details).

4. Benefits of Feature-Based Sequence Matching

When there are no dynamic changes in the scene, sequence-to-sequence

matching provides no benefit over image-to-image matching. The in-

crease in the data size (sequences vs. images) only increases the signal-

to-noise ratio, but does not provide new information. On the contrary,

some degenerate cases may result in space-time ambiguities, see (Caspi

and Irani, 2000; Giese and Poggio, 2000; Stein, 1998). However, when

the scene dynamics is rich enough to exclude such ambiguities (see

Section 3.2 in (Caspi and Irani, 2000)), sequence matching is superior
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to image matching in multiple ways. Below we mention some of its

benefits:

(i) Resolving Spatial Ambiguities. Inherent ambiguities in image-

to-image matching occur, for example, when there is insufficient com-

mon appearance information across images. This can occur when there

is not enough spatial information in the scene, such as in the case of

the small ball against a uniform background in Fig. 1. Limited common

appearance information across images can also occur when the two

cameras record the scene at significantly different zooms (such as in

Fig. 4.a and 4.b), thus observing different features at different scales.

It can also occur when the two cameras have different sensing modalities

(such as the Infra-Red and visible-light cameras in Fig. 3.a and 3.b),

thus sensing different features in the scene. A number of approaches

have been proposed for such cases (e.g., (Lowe, 2004; Mindru et al.,

2004)). Yet, they still rely on some appearance similarity. However,

there are extreme cases, such as when the two cameras face each other,

when there is very little or no common appearance information.

In contrast, trajectories of moving objects over time are independent

of the sensor or appearance properties and therefore form a powerful

cue for matching across the two sequences, even in extreme cases such

as the moving people or the ball in Fig. 6. The need for consistent

appearance information is replaced by consistent temporal behavior,
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as captured by trajectories of moving objects estimated within each

sequence separately.

(ii) Improved Accuracy for Unsynchronized Video. Even when

there is sufficient spatial information within the images, and accurate

frame correspondences is known between the two sequences, sequence-

to-sequence matching may still provide higher accuracy in the estima-

tion of the spatial transformation than image-to-image matching. This

is true even when all the spatial constraints from all pairs of correspond-

ing images across the two sequences are simultaneously used to solve for

the spatial transformation. This is because image-to-image matching is

restricted to matching of existing physical frames, whereas these may

not have been recorded at exactly the same time due to sub-frame tem-

poral misalignment between the two sequences. Sequence-to-sequence

matching, on the other hand, is not restricted to physical (“integer”)

image frames. It can thus spatially match information across the two se-

quences at sub-frame temporal accuracy. This leads to higher sub-pixel

accuracy in the spatial matching/alignment.

This phenomenon is mostly noticeable when the scene is highly

dynamic. Fig. 7 shows such an example. Importance of recovery of sub-

frame time differences for accuracy improvement has also been recently

reported in (Tresadern and Reid, 2003), in the context of capturing

human motion.
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(iii) Reduced Combinatorial Complexity. The combinatorial

complexity of a matching algorithm depends on the following factors:

(a) the probability of detecting the same features in both images (“re-

detection”),

(b) the probability of finding correct feature matches across the two

images (“unique descriptors”),

(c) the minimal number of feature matches that are required for com-

puting the transformation (homography or fundamental matrix).

Recent methods propose sophisticated detectors and descriptors (e.g.,

(Mikolajczyk and Schmid, 2004; Lowe, 2004)), which decrease the com-

plexity of wide-baseline matching by increasing the probabilities of (a)

and (b) above. Nevertheless, in extreme wide-baseline cases, such as

when the two cameras are facing each other, the probability of correct

feature matching across the two images will still be very low (the prob-

abilities of both (a) and (b) will be low in this case). However, when

using trajectories as features, the probability of (a) and (b) remain

high.

Moreover, the main difference in complexity between sequences-

to-sequence matching and image-to-image matching results from the

difference in the minimal number of correspondences that are required

for computing the transformations, i.e., from item (c) above.
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Let m be the minimal number of correspondences required for com-

puting a spatial transformation ~Pspatial. For a homography m = 4 and

for a fundamental matrix m = 7 (or m = 8 if linear 8-point algorithm

is used). Let ǫ be the probability that a feature matching across the

two images is correct (and therefore the probability of a mismatch

or an outlier is (1 − ǫ)). ǫ results from both (a) and (b) above. A

RANSAC-like matching algorithm requires that at least one of the trials

(i.e., one random sampling of m correspondences) will not contain any

mismatches (outliers). Let N be the number of trials that are required

to ensure with probability p (usually p = 99%) that at least one random

sample of m features is free from mismatches. Then N is given by the

following formula (Rousseeuw, 1987; Hartley and Zisserman, 2000):

N ≥
log(1 − p)

log(1 − ǫm)
. (3)

This formula emphasizes why in a standard image-to-image match-

ing accurate candidate feature correspondences are crucial (e.g., SIFT

feature descriptor uses 128 values for each point to increase this prob-

ability).

If, however, ǫ is small (such as in Fig. 5), then having a small m is

crucial for keeping the complexity low. For example, assume ǫ = 1
100 ,

then according to Eq. (3) the number of necessary trials for computing

a homography (m = 4, ǫ = 1
100 , p = 99%) is N ≥ 4.6 × 108. On the

other hand, in the case of sequence-to-sequence matching, one pair of
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corresponding trajectories is enough5, therefore m = 1, and therefore

according to Eq. 3 the number of trials is reasonable: N ≥ 459.

When dealing with unsynchronized video sequences we should also

take into account the temporal ambiguity. Thus, for each pair of cor-

responding trajectories, we further have to verify T possible matches,

where T is the range of possible temporal misalignments. Therefore, the

number of trials for an unsynchronized pair of sequences is O(T · N)

(in our experiments we usually allow for T = 25 frames, i.e., we assume

that the temporal offset between the two sequences is at most ∆t = 1

second).

When only trajectories of moving objects are used, the number of

trajectories is usually very small, leading to an additional reduction in

the complexity of trajectory matching (by increasing ǫ). Furthermore,

when moving objects appear at different times in the sequence, the

complexity of trajectory matching is even further reduced.

5. Applications and Results

The above mentioned benefits of sequence-to-sequence matching/alignment

give rise to new video applications, that are very difficult or even im-

possible to obtain using existing image-to-image matching tools. Some

of these are illustrated in figures 3, 4, 5, 6 and briefly outlined below.

5 A simple trajectory match induces many point matches (of all the points on
the trajectory)
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For viewing the complete video sequences, see:

http://www.wisdom.weizmann.ac.il/∼vision/traj2traj.html

(i) Multi-sensor alignment. The same objects look different in vis-

ible and infra-red light, which often makes impossible to match them

across the views relying on their appearance. For example, 200 features

were extracted in the multi-sensor image pair of Fig. 3.a and Fig. 3.b

using Harris corner detector (Harris and Stephens, 1988), but only two

out of the 200 turned out belonging to the same real world point. On the

other hand, if we detect and track a moving object in both views, then

its trajectory no longer depends on the sensing modality of the camera,

and thus forms a powerful dynamic cue for alignment. An example of

multi-sensor sequence-to-sequence alignment is presented in Fig. 3. (In

this case a homography was computed).

(ii) Matching across significant zoom differences. Fig. 4 shows an

example of aligning sequences obtained at significantly different zooms.

Due to the scale difference (1 : 3) the search range for correspond-

ing features is large (the same features appear at distant locations

in the images). Furthermore, the scene is captured at significantly

different spatial resolutions and lacks prominent spatial structure in

the overlapping region of the two images, which makes the matching

of conventional features problematic. The homography was accurately
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recovered using sequence-to-sequence alignment. See caption of Fig. 4

for more details.

(iii) Wide base-line matching. Another difficult scenario for image

matching is the wide base-line case. When cameras capture the scene

from distant viewpoints, they see objects from different sides. We took

extreme examples of two cameras, situated on the opposite sides of

the scene (i.e., the cameras are facing each other; in fact each camera

sees the other camera). The cameras observe the same objects, but can

never see the same point.

Our algorithm succeeds to recover the fundamental matrix in this sit-

uation with reasonable accuracy, as shown in Figs. 5 and 6 (see figure

captions for more information).

(iv) New video applications. Unsynchronized video sequences can

be temporally matched (synchronized) at sub-frame accuracy. Such

sub-frame synchronization gives rise to new video applications includ-

ing super-resolution in time (Shechtman et al., 2002), where multiple

video sequences with low temporal resolution (low frame-rate) are com-

bined into a single high temporal resolution (high frame-rate) output

sequences.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Multi-Sensor Alignment. (a) and (b) display representative frames
from a PAL visible light sequence and an NTSC Infra-Red sequence, respec-
tively. The scene contains several moving objects: 2 kites, 2 moving cars,
and sea waves. The trajectories induced by tracking the moving objects are
displayed in (c) and (d). The two camera centers were close to each other,
therefore the spatial transformation was modeled by a homography. The out-
put after spatio-temporal alignment via trajectories matching (Section 3) is
displayed in (e) and (f). The recovered temporal misalignment was 1.31 sec.
The results are displayed after fusing the two input sequences (using Burt’s
fusion algorithm (Burt and Kolczynski, 1993)). We can now observe spatial
features from both sequences. In particular note the right kite which is more
clearly visible in the visible-light sequence (circled in light/green), and the left
kite which is more clearly visible in the IR sequence (circled in dark/red).
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(a) Zoomed-out (b) Zoomed-in (c) Superposition

Figure 4. Alignment of sequences obtained at different zooms. Columns
(a) and (b) display four representative frames from the reference sequence
and second sequence, showing a ball thrown from side to side. The sequence
in column (a) was captured by a wide field-of-view camera, while the sequence
in column (b) was captured by a narrow field-of-view camera. The cameras
where located next to each other (the spatial transformation was modeled by
a homography) and the ratio in zooms was approximately 1 : 3. The two
sequences capture features at significantly different spatial resolutions, which
makes the problem of inter-camera image-to-image alignment very difficult.
The dynamic information (the trajectory of the ball’s center of gravity), on the
other hand, forms a powerful cue for alignment both in time and in space. Col-
umn (c) displays superposition of corresponding frames after spatio-temporal
alignment, using the algorithm of Section 3 for estimating the homography
and the temporal correspondence between the two sequences. The dark (pink)
boundaries in (c) correspond to scene regions observed only by the reference
(zoomed-out) camera.
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(a) First camera sequence:

(b) Second camera sequence:

(c) (d)

Figure 5. Wide Base-Line Matching Rows (a) and (b) display a few corre-
sponding frames of one person (out of three that took part in the experiment)
walking and sitting in a hall. The sequences were taken from two opposite
sides of the hall. Each camera is visible by the other camera and is marked
on the right-most frame by an arrow. Using background subtraction we extract
moving objects (people), and select their head tips (the highest point on the
silhouette) as feature points (this is illustrated for the second sequence in (b)).
The recovered epipolar geometry is displayed in (c) and (d). Static points and
their epipolar lines are displayed for verification only and were not used in the
computation. Note that the recovered epipoles (the intersection of the epipolar
lines) fall very close to their true locations (which is the position of the other
camera, marked by a white cross). In this example only one person at a time
enters the scene, thus the trajectory correspondence problem becomes simple.
An initial temporal alignment with accuracy within one second (25 frames)
was manually provided, and the final recovered temporal shift was -2.8 frames.
Input data consisted of 7 trajectories with the total of 990 points (from the 1st

camera) and 8 trajectories with 1322 points (from the 2nd camera). Average
distance to the recovered epipolar lines was about 0.01 pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Wide Base-Line Matching (a) and (b) display two representative
frames from two sequences of a basketball game taken from two opposite sides
of the basket field (the cameras are facing each other). Each camera is visible
by the other camera and is circled and marked by a white arrow. Space-time
trajectories induced by moving objects (ball and two players) are displayed
in (c)-(d) (in different colors for the different objects). The recovered epipo-
lar geometry is displayed in (e) and (f). Points and their epipolar lines are
displayed in each image for verification. Note, that the only static objects
that are visible in both views are the basket ring and the board. Accuracy of
the recovered spatial alignment can be appreciated by the closeness of each
point to the epipolar line of its corresponding point, as well as by comparing
the intersection of epipolar lines with the ground truth epipole marked by a
cross (which is the other camera). In this example the relative blob size of
the moving objects was used to provide initial correspondence between the
trajectories across the two sequences. Two trajectories (instead of one) were
used on each RANSAC iteration, as most trajectories are planar. An initial
temporal alignment with accuracy within one second (25 frames) was manually
provided, and the final recovered temporal shift was 3.7 frames.
Input data consisted of 47 trajectories with the total of 2613 points (from
the 1st camera) and 47 trajectories with 2582 points (from the 2nd camera).
Average distance to the recovered epipolar lines was about 0.01 pixels.
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(a) In sequence 1:

(b) In sequence 2:

Figure 7. Subframe temporal synchronization (a) displays superposition of
the moving ball position in two consecutive frames in sequence 1 (at t = 0
and t = 1). The ball is falling at a high speed, thus its displacement is quite
noticeable. The feature point is the tip point of the ball in each frame (the
highest point on the ball). The dashed blue circle displays the interpolated ball
location at the correct time shift (i.e., the correct sub-frame time unit at which
the corresponding frame was recorded in the other sequence – sequence 2). In
this example it is 0.7 of a frame time, since the global temporal matching was
3.7 frames offset. (b) The light/red lines display the epipolar lines generated
on the image plane of sequence 2 by the “physical” ball in sequence 1 (imaged
at “integer” frames t = 0 and t = 1). The dark/magenta line displays the
epipolar line corresponding to the interpolated location of the ball at t = 0.7.
It can be clearly seen that the ball’s feature point (its tip) in sequence 2 is
on the epipolar line corresponding to the virtual point (its location at t = 0.7
in sequence 1). This example also shows that a large error can be introduced
by matching only “integer” frames across two sequences (while ignoring the
sub-frame temporal offset).
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