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1. Preliminaries

A Lie algebra is a vector space g over a field k, with a bilinear operation g × g → g,
denoted (x, y) 7→ [x, y] and called the bracket or commutator of x and y, which satisfies the
following axioms, for all x, y, z ∈ g:

(1) [x, x] = 0 (anticommutativity),
(2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity).

Note that property (1) implies that [x, y] = −[y, x] for all x, y ∈ g. If char k 6= 2, then this
condition is equivalent to (1).

Example 1.1. Let A be an associative algebra with bilinear operation denoted x · y for
x, y ∈ A. We can define a new operation [−,−] ,called the bracket of x and y, as follows:

[x, y] = x · y − y · x.
Then A with the operation [−,−] is a Lie algebra.

Example 1.2. The general linear algebra. Let V be a finite dimensional vector space over
k, and denote by End(V ) the set of linear transformations V → V . Then End(V ) with the
bracket operation [−,−] is a Lie algebra, which we write as gl(V ). If we choose a basis for
V , we may identify gl(V ) with the set of n×n matrices over k, and we denote this by gln(k).
The dimension of gln(k) is n2.

Example 1.3. The special linear algebra. Define sln(k) = {x ∈ gln | Tr(x) = 0}, where
Tr(x) is the sum of the diagonal elements of the matrix x.

Example 1.4.

sl2(k) =

{(
a b
c −a

)
| a, b, c ∈ k

}
has as a basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Then one can check that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

A vector subspace B ⊆ g is called a subalgebra if a, b ∈ B implies [a, b] ∈ B. A vector
subspace I ⊆ g is called an ideal if a ∈ A, x ∈ I imply [a, x], [x, a] ∈ I. We call an a Lie
algebra g simple if dim(g) ≥ 2 and g has no non-trivial ideals.
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A linear map f : g→ a of Lie algebras is called a homomorphism if f([a, b]) = [f(a), f(b)]
for each a, b ∈ g. A representation of a Lie algebra g is a homomorphism φ : g → gl(V ). A
representation is called faithful if the kernel of φ is trivial. The dimension of a representation
is by definition the dimension of the vector space V .

Then linear endomorphism d : g → g is called a derivation if the following Leibniz rule
holds: d([a, b]) = [d(a), b] + [a, d(b)]. Define a linear transformation adx : g → g by the
formula adx(y) = [x, y]. Then adx is a derivation by the Jacobi identity. Derivations of the
form adx are called inner derivations, and all others are called outer derivations.

Let g be a Lie algebra, and define a map ad : g → gl(g) by x 7→ adx. (For the definition
of gl(g) one considers g only as a vector space.) The map ad : g→ gl(g) is a homomorphism
of Lie algebras, and is refereed to as the adjoint representation of g.

2. Simple finite-dimensional Lie algebras

Let g be a simple finite-dimensional Lie algebra over C. Fix a Cartan subalgebra h. All
Cartan subalgebras are conjugate. Define the rank of g to be rk g := dim h. For α ∈ h∗, let

gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h}
and let ∆ = {α ∈ h∗ \ {0} | gα 6= 0}. Then g0 = h and g has a root space decomposition

g = h⊕
⊕
α∈∆

gα.

Note that for α ∈ ∆, dim gα = 1. Note that [gα, gβ] ⊂ gα+β. There is a nondegenerate
invariant symmetric bilinear form (·, ·) on g. Any such form is proportional to the Killing
form κ(x, y) := Trace((ad x)(ad y)). The restriction of the form to h is nondegenerate.

We fix a set of simple roots Π = {α1, . . . , αn} ⊂ ∆. Then for each β ∈ ∆ there are integers
ki such that β =

∑n
i=1 kiαi. Moreover, ∆ is the disjoint union of ∆+ := {β ∈ ∆ | ki ≥ 0}

and ∆− := {β ∈ ∆ | ki ≤ 0}. Note that Π is a basis for the vector space h∗, so in particular
n = rk g. The decomposition of ∆ determines a decomposition g = n− ⊕ h ⊕ n+ where
n+ := ⊕α∈∆+gα and n− := ⊕α∈∆−gα. This is called a triangular decomposition.

Example 2.1. Roots for g = sl(n). Let h be the set of traceless n × n-diagonal matrices.
Then h is a Cartan subalgebra for sl(n). For i = 1, . . . , n, define εi : h → C by εi(h) = hi
(the ith diagonal entry of h). Then for i, j ∈ {1, . . . , n}, i 6= j, we have gεi−εj

= CEij.
Since the Eij : i 6= j together with h span g, we conclude that ∆ = {εi − εj}1≤i 6=j≤n and
dim gεi−εj

= 1.

Let h∗ = {linear maps f : h → C}. We can identify h with h∗ as follows. Define a linear
map ν : h → h∗ by 〈ν(h), h′〉 = (h, h′). Then one can define (·, ·) on h∗ using this identifi-

cation. Now for α ∈ h∗ let α∨ := 2ν−1(α)
(α,α)

. The Cartan matrix A is defined to be the n × n
matrix with entries aij := 〈α∨i , αj〉. A Dynkin diagram encodes the information of the Cartan
matrix in a diagram.
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Example 2.2. Cartan matrix and Dynkin diagram for sl(5).
2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 © © © ©

Let g be a simple finite dimensional Lie algebra and let h be a Cartan subalgebra. Fix a
base Π = {α1, . . . , αn} for the corresponding root system ∆. Let A be the Cartan matrix.
For each i = 1, . . . , n, choose ei ∈ gαi

, fi ∈ g−αi
such that hi := [ei, fi] satisfy the sl2 relations

given in Example 1.4. Then n+ is generated by the elements ei and n− is generated by the
elements fi. So g is generated by the elements ei, fi, hi with 1 ≤ i ≤ n. These are called the
Chevalley generators. These elements satisfy the Weyl relations. For 1 ≤ i, j ≤ n:

(1) [hi, hj] = 0;
(2) [ei, fj] = δijhi;
(3) [hi, ej] = aijej, [hi, fj] = −aijfj.

They also satisfy the Serre relations:

(1) ad(ei)
−aij+1ej = 0 (i 6= j);

(2) ad(fi)
−aij+1fj = 0 (i 6= j).

Moreover, g is defined by these generators and relations.

3. Affine Lie algebras

Let g be a simple finite-dimensional Lie algebra and let (·, ·) be a nondegenerate invariant
symmetric bilinear form. The associated (non-twisted) affine Lie superalgebra is

ĝ =
(
C[t, t−1]⊗C g

)
⊕ CK ⊕ Cd

with commutation relations

[atm, btn] = [a, b]tm+n +mδm,−n(a, b)K, [K, ĝ] = 0 [d, atm] = matm, [d, d] = 0

where a, b ∈ g; m,n ∈ Z. Note that (C[t, t−1]⊗C g) ⊕ CK is a central extension of
(C[t, t−1]⊗C g), and d is an outer derivation of (C[t, t−1]⊗C g) ⊕ CK. By identifying g
with 1⊗ g, we have that the Cartan subalgebra of ĝ is

ĥ = h⊕ CK ⊕ Cd
. The set of roots ∆̂ for ĝ is calculated as follows. For each α ∈ ∆ ⊂ h∗, we can extend α to

ĥ by letting α(K) = α(d) = 0. Let δ be the linear function defined on h by δ |h⊕CK= 0 and
δ(d) = 1. For each α ∈ ∆, fix xα ∈ gα nonzero. Then for each α ∈ ∆, m ∈ Z one can check
by direct calculation that xαt

m ∈ ĝmδ+α. Similarly, one can check that for each h ∈ h and
m ∈ Z \ {0} that one has htm ∈ ĝmδ. If we fix a basis h1, . . . , hn for h, then the following is
a basis for ĝ:

{xαtm}m∈Z,α∈∆ ∪ {hitm}m∈Z\{0},i=1,...,n ∪ {h1, . . . , hn, K, d}.
In particular,

∆̂ = {mδ + α}m∈Z,α∈∆ ∪ {mδ}m∈Z\{0},

dim ĝmδ+α = 1, and dim ĝmδ = rk g.
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