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1. PRELIMINARIES

A Lie algebra is a vector space g over a field k, with a bilinear operation g x g — g,
denoted (x,y) — [z,y| and called the bracket or commutator of x and y, which satisfies the
following axioms, for all x,y, z € g:

(1) [x,2] =0 (anticommutativity),
(2) [x[yz]] + [y[zz]] + [z[zy]] =0 (Jacobi identity).
Note that property (1) implies that [z, y] = —[y,z] for all z,y € g. If char k # 2, then this

condition is equivalent to (1).

Example 1.1. Let A be an associative algebra with bilinear operation denoted x -y for
x,y € A. We can define a new operation [—, —] ,called the bracket of z and y, as follows:

[z, yl=2-y—y- o
Then A with the operation [—, —] is a Lie algebra.

Y

Example 1.2. The general linear algebra. Let V' be a finite dimensional vector space over
k, and denote by End(V') the set of linear transformations V' — V. Then End(V') with the
bracket operation [—, —] is a Lie algebra, which we write as gl(V'). If we choose a basis for
V', we may identify gl(V') with the set of n x n matrices over k, and we denote this by g, (k).
The dimension of gl,,(k) is n?.

Example 1.3. The special linear algebra. Define sl,(k) = {x € gl,, | Tr(x) = 0}, where
Tr(z) is the sum of the diagonal elements of the matrix z.

5[2(k):{<i _2)|a,b,cek}
() () (0 )

Then one can check that

[h, €] = 2e, [h, f] = —2f, e, f] = h.

Example 1.4.

has as a basis

A vector subspace B C g is called a subalgebra if a,b € B implies [a,b] € B. A vector
subspace I C g is called an ideal if a € A, x € I imply [a, x|, [x,a] € I. We call an a Lie
algebra g simple if dim(g) > 2 and g has no non-trivial ideals.
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A linear map f : g — a of Lie algebras is called a homomorphism if f([a,b]) = [f(a), f(b)]
for each a,b € g. A representation of a Lie algebra g is a homomorphism ¢ : g — gl(V). A
representation is called faithful if the kernel of ¢ is trivial. The dimension of a representation
is by definition the dimension of the vector space V.

Then linear endomorphism d : g — g is called a derivation if the following Leibniz rule
holds: d([a,b]) = [d(a),b] + [a,d(b)]. Define a linear transformation ad, : g — g by the
formula ad,(y) = [z,y]. Then ad, is a derivation by the Jacobi identity. Derivations of the
form ad, are called inner derivations, and all others are called outer derivations.

Let g be a Lie algebra, and define a map ad : g — gl(g) by x — ad,. (For the definition
of gl(g) one considers g only as a vector space.) The map ad : g — gl(g) is a homomorphism
of Lie algebras, and is refereed to as the adjoint representation of g.

2. SIMPLE FINITE-DIMENSIONAL LIE ALGEBRAS

Let g be a simple finite-dimensional Lie algebra over C. Fix a Cartan subalgebra . All
Cartan subalgebras are conjugate. Define the rank of g to be rk g := dim h. For a € b*, let

go ={x €g|[h,2] =a(h)r forall h €h}
and let A = {a € h*\ {0} | go # 0}. Then gy = h and g has a root space decomposition

g="b&EP ga
a€EA
Note that for o € A, dim g, = 1. Note that [ga,8s] C gat+s. There is a nondegenerate
invariant symmetric bilinear form (-,-) on g. Any such form is proportional to the Killing
form k(x,y) := Trace((ad z)(ad y)). The restriction of the form to h is nondegenerate.

We fix a set of simple roots IT = {ay,...,a,} C A. Then for each 5 € A there are integers
k; such that 3 = >""" | k;a;. Moreover, A is the disjoint union of A} := {f € A | k; > 0}
and A_ :={f € A | k; <0}. Note that II is a basis for the vector space h*, so in particular
n = rk g. The decomposition of A determines a decomposition g = n~ @ h & nt where
Nt = Boent o and nT = Ben-go. This is called a triangular decomposition.

Example 2.1. Roots for g = sl(n). Let h be the set of traceless n x n-diagonal matrices.
Then § is a Cartan subalgebra for sl(n). For i = 1,...,n, define ¢; : h — C by ¢;(h) = h;
(the ¢"" diagonal entry of h). Then for i,j € {1,...,n}, i # j, we have g.,_., = CEj;.
Since the E;; : i # j together with b span g, we conclude that A = {&; — ¢ }1<izj<, and
dim g., ., = 1.

Let h* = {linear maps f : h — C}. We can identify h with h* as follows. Define a linear
map v : h — b* by (v(h),h') = (h,h’). Then one can define (-,-) on h* using this identifi-

cation. Now for a € b* let oV := 212;—105)“) The Cartan matriz A is defined to be the n x n

matrix with entries a;; := (o, o;). A Dynkin diagram encodes the information of the Cartan
matrix in a diagram.



Example 2.2. Cartan matrix and Dynkin diagram for s[(5).

2 -1 0 0
-1 2 —1 0
0 0 —1 2

Let g be a simple finite dimensional Lie algebra and let h be a Cartan subalgebra. Fix a
base I = {ay,...,a,} for the corresponding root system A. Let A be the Cartan matrix.
Foreachi=1,...,n, choose ¢; € ga,, [i € g_q, such that h; := [e;, f;] satisfy the sly relations
given in Example 1.4. Then nt is generated by the elements e; and n~ is generated by the
elements f;. So g is generated by the elements e;, f;, h; with 1 <17 < n. These are called the
Chevalley generators. These elements satisfy the Weyl relations. For 1 <14, 7 < n:

(1) [hi, hy] = 0;

(2) [ess f5] = dijhi;

(3) [his e5] = ajej, [hi f3] = —aij /3.
They also satisfy the Serre relations:

(1) ad(e;)~**'e; =0 (i #4);

(2) ad(fi) @t f; =0 (1 #J)-

Moreover, g is defined by these generators and relations.

3. AFFINE LIE ALGEBRAS

Let g be a simple finite-dimensional Lie algebra and let (-, -) be a nondegenerate invariant
symmetric bilinear form. The associated (non-twisted) affine Lie superalgebra is
= (Clt,t7'|®cg) ®CK ®Cd
with commutation relations
[at™, bt"] = [a, b]t"™ " + My _n(a,D)K, [K,g]=0 [d,at™] =mat™, [d,d]=0
where a,b € g; m,n € Z. Note that (C[t,t7!]®cg) & CK is a central extension of

(C[t,t™ '] ®c g), and d is an outer derivation of (C[t,t '] ®c g) & CK. By identifying g
with 1 ® g, we have that the Cartan subalgebra of g is

h=haCKaCd

. The set of roots A for g is calculated as follows. For each o € A C h*, we can extend « to
b by letting o(K) = a(d) = 0. Let § be the linear function defined on b by 0 |peck= 0 and
d(d) = 1. For each o € A, fix z,, € g, nonzero. Then for each & € A, m € Z one can check
by direct calculation that x,t™ € @msia. Similarly, one can check that for each h € b and
m € Z\ {0} that one has ht™ € g,,5. If we fix a basis hy, ..., h, for b, then the following is
a basis for g:

{xatm}mEZ,OzGA U {hitm}meZ\{O},i:I ,,,,, n U {hh ey hn7 K7 d}
In particular,

3 = {m5 + a}mEZ,aEA U {mé}mGZ\{O}a
dim gns1a = 1, and dim g,,s = rk g.



