Introduction to affine Lie algebras Extended notes for Lecture 1 October 19, 2010 Crystal Hoyt

1. Preliminaries

A Lie algebra is a vector space \mathfrak{g} over a field k, with a bilinear operation $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, denoted $(x, y) \mapsto [x, y]$ and called the *bracket* or *commutator* of x and y, which satisfies the following axioms, for all $x, y, z \in \mathfrak{g}$:

(1) [x, x] = 0 (anticommutativity), (2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity).

Note that property (1) implies that [x, y] = -[y, x] for all $x, y \in \mathfrak{g}$. If char $k \neq 2$, then this condition is equivalent to (1).

Example 1.1. Let A be an associative algebra with bilinear operation denoted $x \cdot y$ for $x, y \in A$. We can define a new operation [-, -], called the bracket of x and y, as follows:

$$[x, y] = x \cdot y - y \cdot x.$$

Then A with the operation [-, -] is a Lie algebra.

Example 1.2. The general linear algebra. Let V be a finite dimensional vector space over k, and denote by $\operatorname{End}(V)$ the set of linear transformations $V \to V$. Then $\operatorname{End}(V)$ with the bracket operation [-, -] is a Lie algebra, which we write as $\mathfrak{gl}(V)$. If we choose a basis for V, we may identify $\mathfrak{gl}(V)$ with the set of $n \times n$ matrices over k, and we denote this by $\mathfrak{gl}_n(k)$. The dimension of $\mathfrak{gl}_n(k)$ is n^2 .

Example 1.3. The special linear algebra. Define $\mathfrak{sl}_n(k) = \{x \in \mathfrak{gl}_n \mid \operatorname{Tr}(x) = 0\}$, where $\operatorname{Tr}(x)$ is the sum of the diagonal elements of the matrix x.

Example 1.4.

$$\mathfrak{sl}_2(k) = \left\{ \left(\begin{array}{cc} a & b \\ c & -a \end{array} \right) \mid a, b, c \in k \right\}$$

has as a basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then one can check that

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

A vector subspace $B \subseteq \mathfrak{g}$ is called a *subalgebra* if $a, b \in B$ implies $[a, b] \in B$. A vector subspace $I \subseteq \mathfrak{g}$ is called an *ideal* if $a \in A$, $x \in I$ imply [a, x], $[x, a] \in I$. We call an a Lie algebra \mathfrak{g} simple if dim $(\mathfrak{g}) \geq 2$ and \mathfrak{g} has no non-trivial ideals.

A linear map $f : \mathfrak{g} \to \mathfrak{a}$ of Lie algebras is called a *homomorphism* if f([a, b]) = [f(a), f(b)]for each $a, b \in \mathfrak{g}$. A *representation* of a Lie algebra \mathfrak{g} is a homomorphism $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$. A representation is called *faithful* if the kernel of ϕ is trivial. The dimension of a representation is by definition the dimension of the vector space V.

Then linear endomorphism $d : \mathfrak{g} \to \mathfrak{g}$ is called a *derivation* if the following *Leibniz rule* holds: d([a,b]) = [d(a),b] + [a,d(b)]. Define a linear transformation $\mathrm{ad}_x : \mathfrak{g} \to \mathfrak{g}$ by the formula $\mathrm{ad}_x(y) = [x,y]$. Then ad_x is a derivation by the Jacobi identity. Derivations of the form ad_x are called *inner derivations*, and all others are called *outer derivations*.

Let \mathfrak{g} be a Lie algebra, and define a map $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ by $x \mapsto \mathrm{ad}_x$. (For the definition of $\mathfrak{gl}(\mathfrak{g})$ one considers \mathfrak{g} only as a vector space.) The map $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is a homomorphism of Lie algebras, and is referred to as the adjoint representation of \mathfrak{g} .

2. SIMPLE FINITE-DIMENSIONAL LIE ALGEBRAS

Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} . Fix a Cartan subalgebra \mathfrak{h} . All Cartan subalgebras are conjugate. Define the rank of \mathfrak{g} to be rk $\mathfrak{g} := \dim \mathfrak{h}$. For $\alpha \in \mathfrak{h}^*$, let

$$\mathfrak{g}_{\alpha} := \{ x \in \mathfrak{g} \mid [h, x] = \alpha(h) x \text{ for all } h \in \mathfrak{h} \}$$

and let $\Delta = \{ \alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_{\alpha} \neq 0 \}$. Then $\mathfrak{g}_0 = \mathfrak{h}$ and \mathfrak{g} has a root space decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\Delta}\mathfrak{g}_lpha$$

Note that for $\alpha \in \Delta$, dim $\mathfrak{g}_{\alpha} = 1$. Note that $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$. There is a nondegenerate invariant symmetric bilinear form (\cdot, \cdot) on \mathfrak{g} . Any such form is proportional to the Killing form $\kappa(x, y) := \operatorname{Trace}((\operatorname{ad} x)(\operatorname{ad} y))$. The restriction of the form to \mathfrak{h} is nondegenerate.

We fix a set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\} \subset \Delta$. Then for each $\beta \in \Delta$ there are integers k_i such that $\beta = \sum_{i=1}^n k_i \alpha_i$. Moreover, Δ is the disjoint union of $\Delta_+ := \{\beta \in \Delta \mid k_i \geq 0\}$ and $\Delta_- := \{\beta \in \Delta \mid k_i \leq 0\}$. Note that Π is a basis for the vector space \mathfrak{h}^* , so in particular $n = \operatorname{rk} \mathfrak{g}$. The decomposition of Δ determines a decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ where $\mathfrak{n}^+ := \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}$ and $\mathfrak{n}^- := \bigoplus_{\alpha \in \Delta^-} \mathfrak{g}_{\alpha}$. This is called a *triangular decomposition*.

Example 2.1. Roots for $\mathfrak{g} = \mathfrak{sl}(n)$. Let \mathfrak{h} be the set of traceless $n \times n$ -diagonal matrices. Then \mathfrak{h} is a Cartan subalgebra for $\mathfrak{sl}(n)$. For $i = 1, \ldots, n$, define $\varepsilon_i : \mathfrak{h} \to \mathbb{C}$ by $\varepsilon_i(h) = h_i$ (the i^{th} diagonal entry of h). Then for $i, j \in \{1, \ldots, n\}, i \neq j$, we have $\mathfrak{g}_{\varepsilon_i - \varepsilon_j} = \mathbb{C}E_{ij}$. Since the $E_{ij} : i \neq j$ together with \mathfrak{h} span \mathfrak{g} , we conclude that $\Delta = \{\varepsilon_i - \varepsilon_j\}_{1 \leq i \neq j \leq n}$ and dim $\mathfrak{g}_{\varepsilon_i - \varepsilon_j} = 1$.

Let $\mathfrak{h}^* = \{ \text{linear maps } f : \mathfrak{h} \to \mathbb{C} \}$. We can identify \mathfrak{h} with \mathfrak{h}^* as follows. Define a linear map $\nu : \mathfrak{h} \to \mathfrak{h}^*$ by $\langle \nu(h), h' \rangle = (h, h')$. Then one can define (\cdot, \cdot) on \mathfrak{h}^* using this identification. Now for $\alpha \in \mathfrak{h}^*$ let $\alpha^{\vee} := \frac{2\nu^{-1}(\alpha)}{(\alpha,\alpha)}$. The *Cartan matrix A* is defined to be the $n \times n$ matrix with entries $a_{ij} := \langle \alpha_i^{\vee}, \alpha_j \rangle$. A *Dynkin diagram* encodes the information of the Cartan matrix in a diagram.

Example 2.2. Cartan matrix and Dynkin diagram for $\mathfrak{sl}(5)$.

$$\begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \qquad \bigcirc -\bigcirc -\bigcirc$$

Let \mathfrak{g} be a simple finite dimensional Lie algebra and let \mathfrak{h} be a Cartan subalgebra. Fix a base $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ for the corresponding root system Δ . Let A be the Cartan matrix. For each $i = 1, \ldots, n$, choose $e_i \in \mathfrak{g}_{\alpha_i}$, $f_i \in \mathfrak{g}_{-\alpha_i}$ such that $h_i := [e_i, f_i]$ satisfy the sl_2 relations given in Example 1.4. Then \mathfrak{n}^+ is generated by the elements e_i and \mathfrak{n}^- is generated by the elements f_i . So \mathfrak{g} is generated by the elements e_i, f_i, h_i with $1 \leq i \leq n$. These are called the Chevalley generators. These elements satisfy the Weyl relations. For $1 \leq i, j \leq n$:

(1)
$$[h_i, h_j] = 0;$$

(2) $[e_i, f_j] = \delta_{ij}h_i;$
(3) $[h_i, e_j] = a_{ij}e_j, [h_i, f_j] = -a_{ij}f_j.$

They also satisfy the Serre relations:

(1) $\operatorname{ad}(e_i)^{-a_{ij}+1}e_j = 0$ $(i \neq j);$ (2) $\operatorname{ad}(f_i)^{-a_{ij}+1}f_j = 0$ $(i \neq j).$

Moreover, \mathfrak{g} is defined by these generators and relations.

3. Affine Lie Algebras

Let \mathfrak{g} be a simple finite-dimensional Lie algebra and let (\cdot, \cdot) be a nondegenerate invariant symmetric bilinear form. The associated (non-twisted) affine Lie superalgebra is

$$\widehat{\mathfrak{g}} = \left(\mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g} \right) \oplus \mathbb{C}K \oplus \mathbb{C}d$$

with commutation relations

$$[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m,-n}(a, b)K, \quad [K, \widehat{\mathfrak{g}}] = 0 \quad [d, at^m] = mat^m, \quad [d, d] = 0$$

where $a, b \in \mathfrak{g}; m, n \in \mathbb{Z}$. Note that $(\mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g}) \oplus \mathbb{C}K$ is a central extension of $(\mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g})$, and d is an outer derivation of $(\mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g}) \oplus \mathbb{C}K$. By identifying \mathfrak{g} with $1 \otimes \mathfrak{g}$, we have that the Cartan subalgebra of $\widehat{\mathfrak{g}}$ is

$$\widehat{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}d$$

. The set of roots $\widehat{\Delta}$ for $\widehat{\mathfrak{g}}$ is calculated as follows. For each $\alpha \in \Delta \subset \mathfrak{h}^*$, we can extend α to $\widehat{\mathfrak{h}}$ by letting $\alpha(K) = \alpha(d) = 0$. Let δ be the linear function defined on \mathfrak{h} by $\delta \mid_{\mathfrak{h}\oplus\mathbb{C}K} = 0$ and $\delta(d) = 1$. For each $\alpha \in \Delta$, fix $x_{\alpha} \in \mathfrak{g}_{\alpha}$ nonzero. Then for each $\alpha \in \Delta$, $m \in \mathbb{Z}$ one can check by direct calculation that $x_{\alpha}t^m \in \widehat{\mathfrak{g}}_{m\delta+\alpha}$. Similarly, one can check that for each $h \in \mathfrak{h}$ and $m \in \mathbb{Z} \setminus \{0\}$ that one has $ht^m \in \widehat{\mathfrak{g}}_{m\delta}$. If we fix a basis h_1, \ldots, h_n for \mathfrak{h} , then the following is a basis for $\widehat{\mathfrak{g}}$:

$$\{x_{\alpha}t^m\}_{m\in\mathbb{Z},\alpha\in\Delta}\cup\{h_it^m\}_{m\in\mathbb{Z}\setminus\{0\},i=1,\ldots,n}\cup\{h_1,\ldots,h_n,K,d\}.$$

In particular,

$$\widehat{\Delta} = \{m\delta + \alpha\}_{m \in \mathbb{Z}, \alpha \in \Delta} \cup \{m\delta\}_{m \in \mathbb{Z} \setminus \{0\}},\$$

dim $\widehat{\mathfrak{g}}_{m\delta+\alpha} = 1$, and dim $\widehat{\mathfrak{g}}_{m\delta} = \operatorname{rk} \mathfrak{g}$.