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1. PRELIMINARIES

Let g be a finite-dimensional simple Lie algebra (over C). Fix a set of simple roots.
II={ay,...,an} CTA. Let IV = {a,...,a,} C b be the corresponding coroots.

We can define a partial ordering on A as follows. For a,3 € A, a > ( if and only if
a—0 € Qs =1 Zsoe. Let 0 be the highest root for A, (defined by this ordering).
Then 6 is uniquely determine by II since g is simple. Now g has a non-degenerate invariant
symmetric bilinear form (-,-), which is uniquely determined up to a scalar. We normalize
this form by assuming that (0, 0) = 2.

2. SIMPLE ROOTS AND THE CARTAN MATRIX FOR g

As a vector space g = C[t,t7'] ® g ® CK & Cd. We can extend (-,-) to g as follows. For
all m,n € Z and a,b € g. Let

(at™, bt") = dp.—n(a,b) (K,K)=(d,d)=0
(K,d)=1 (at™, K) = (at™,d) = 0.

Recall from the last lecture that A = {md+atmezaea U{mo}mezn 0. If I1is a set of simple
roots for g with highest root 6, then

I:={0—6}ull
is a set of simple roots for g. We define ag := § — #. One can check that
A, ={md+ O} mezegoea U {md}tmer., U AL
Corresponding to the decomposition A= 3+ U KJF we have a triangular decomposition
G=n,Bhon_.
Example 2.1. s(2). Let A = {£a} be the roots of s[(2) and II = {a}. Then
A ={mé+ a}mez U {mé}mez 10y, and ={6-a,a}.

]

Let {e, f,h} be a basis satisfying the relations [h, €] = 2e, [h, f] = =2f, [e, f] = h. Set
eg = ft g =0 — «
Jo=et™ aj = K —h.

S . . —d ) . . _

Then eg, e generate n., and fy, f generate n_.
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The Cartan matrix and Dynkin diagram of sl(2) are

-(373) o-o

Now we look at the general case. Let w : g — g be the Chevalley involution, which is
defined by e, — —f; : i =1,...,n and h — —h for all h € h. Take f; € g_y such that
(—w(fo), fo) = 1. Let eg = —w(fp). Then [eq, fo] = 6". Set

€y — fet Qg = o0—20

Jo=eqt™ af = K —6".
For ¢ = 1,...,n, choose €; € @, fi € g_a, such that [e;, f;] = «f. Then eg,ey,..., e,
generate ny, and fy, fi,..., fn generate n_.

The Cartan matrix A for g is obtained from the Cartan matrix A’ for g by adding one
row and column. Explicitly, a;,o = (o), 20) = — (o, 0) and ao; = (o, i) = —(a;,0"). Now
A’ is invertible and the corank of A is 1.

3. KAC-MOODY ALGEBRAS
An n x n-matrix is called a generalized Cartan matriz if for i, =1,...,n,

® a; =2
® q;; € L<ofori#j
° aij:O<:>aji:O.
Let A be a generalized Cartan matrix, and let h be a vector space (over C) with dimension
n + corank(A). Let

II={ay,...,a,} Ch"*
Y ={af,...,a,} Ch
be linearly independent sets satisfying
(o, ;) = ay;.
Define g(A) by generators: ey, ..., €., fi,..., fn, b and relations:
lei, 3] = di0f [h, ei] = (h, av)e;
[, W] =0 [h, fi] = —(h, ) fi

Let m be the unique maximal ideal which intersects § trivially. Then the Kac-Moody
algebra with Cartan matrix A is defined to be

g(A) == g(4)/m.

One can check that the generators of g(A) satisfy the Serre’s relations:
(ad ;) "%ie; =0
(ad f)' = f; =0

If the matrix A is “symmetrizable” then these relations generate the ideal m. In other words,

these are the only additional relations needed to define g(A).
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A matrix A is called symmetrizable if there exists an invertible diagonal matrix D and a
symmetric matrix B such that A = DB. In this case, g(A) is also called symmetrizable.
The Kac-Moody algebra g(A) is symmetrizable if and only if there exists a nondegenerate
invariant symmetric bilinear form on g(A).

Affine Lie algebras are Kac-Moody algebras. If A is the Cartan matrix of g, then there is
an isomorphism g = g(A) which can be defined using the Chevalley generators. Similarly,
finite-dimensional simple Lie algebras and twisted affine Lie algebras are Kac-Moody alge-
bras.

Given a Kac-Moody algebra g(A) such that A is the Cartan matrix on an affine Lie
algebra, we can recover the elements K and § which were previously defined. It follows from
[K,e;] =0 fori=0,1,...,n that (K,«a;) =0 fori =0,1,...,n. Let [a/] be a row vector
such that [a;]A = 0. It is determined up to a scalar since the corank of A is 1. Then

n
_ Y
K = g a; o .
i=0

Similarly, (o, ) = 0 for i = 0,1,...,n. So if [a;] is a column vector such that Ala;] = 0,

then
n
0= Z a; ;.
1=0

Simple finite-dimensional, affine and twisted affine Lie algebras are all the Kac-Moody
algebras of “finite growth”. The principal grading

g = ®mezg(m)
of g for a set of simple roots II is defined by g(0) = h and
8(1) = @ayena,-

Then g is said to have finite growth if dim g(m) grows polynomially with respect to m, and
the Gelfand-Kirillov dimension is the degree of this polynomial. For affine and twisted affine
Lie algebras, the Gelfand-Kirillov dimension is 1.

4. AFFINE WEYL GROUP

Let g be a finite-dimensional simple Lie algebra, ) C g a Cartan subalgebra and fix a base
IT € A. Let (-,-) be the non-degenerate invariant symmetric bilinear form normalized such
that (0,0) = 2. Recall that 6 is the highest root of A,.

For 7 =0,1,...,n, define A; EE* by

(o), A;) =6y for i =0,...,n, and (d, \;) = 0.

We identify 6 with 6:" via the linear map v : H — i)\* defined by v(«)) = (aéi"v)ozi, v(K) =4,
v(d) = aply. For a, 3 € b*, define (o, 8) == (v (), v 1(B)).

Simple reflections at the roots a; : ¢ = 0,1...,n are defined as follows. For \ € E*, let
2(\,
(aia al)
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The affine Weyl group W is the group generated by rg,r1,...,r,. The subgroup W gener-
ated by ry,...,r, is canonically isomorphic to the Weyl group of g.

To simplify notation, fix A € h* and set k = (A, K) = (\,9). Then
ro(A) =A—((A,0) —k)(6 —0)

and
rorg(A) = A — (X, 0) + k) + k6.
For pu € h* we define the translation

) = Atk — (O ) + K25
One can check that
to = 10Ty
buby = Ly
bwp = wtuw’1 for all w e W.

Hence,

T = {t, | € Z(WO)}
is a normal subgroup of W. Since W is ﬁmte and T is free abelian, W N'T = 1. Thus,
WMTlsasubgroupofW Now r;, € W C W for i = 1,....,nand rg =tyrg € W x T'. Since
r0,T1,--.,Tn generate W we conclude that

/W:WIXT.



