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1. Preliminaries

Let g be a finite-dimensional simple Lie algebra (over C). Fix a set of simple roots.
Π = {α1, . . . , αn} ⊂ ∆. Let Π∨ = {α∨1 , . . . , α∨n} ⊂ h be the corresponding coroots.

We can define a partial ordering on ∆ as follows. For α, β ∈ ∆, α > β if and only if
α − β ∈ Q+ :=

∑n
i=1 Z≥0αi. Let θ be the highest root for ∆+ (defined by this ordering).

Then θ is uniquely determine by Π since g is simple. Now g has a non-degenerate invariant
symmetric bilinear form (·, ·), which is uniquely determined up to a scalar. We normalize
this form by assuming that (θ, θ) = 2.

2. Simple roots and the Cartan matrix for ĝ

As a vector space ĝ = C[t, t−1] ⊗ g ⊕ CK ⊕ Cd. We can extend (·, ·) to g as follows. For
all m,n ∈ Z and a, b ∈ g. Let

(atm, btn) = δm,−n(a, b) (K,K) = (d, d) = 0

(K, d) = 1 (atm, K) = (atm, d) = 0.

Recall from the last lecture that ∆̂ = {mδ+α}m∈Z,α∈∆∪{mδ}m∈Z\{0}. If Π is a set of simple
roots for g with highest root θ, then

Π̂ := {δ − θ} ∪ Π

is a set of simple roots for ĝ. We define α0 := δ − θ. One can check that

∆̂+ = {mδ + α}m∈Z>0,α∈∆ ∪ {mδ}m∈Z>0 ∪∆+.

Corresponding to the decomposition ∆̂ = ∆̂+ ∪ ∆̂+ we have a triangular decomposition

ĝ = n̂+ ⊕ ĥ⊕ n̂−.

Example 2.1. ŝl(2). Let ∆ = {±α} be the roots of sl(2) and Π = {α}. Then

∆̂ = {mδ ± α}m∈Z ∪ {mδ}m∈Z\{0}, and Π̂ = {δ − α, α}.
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Let {e, f, h} be a basis satisfying the relations [h, e] = 2e, [h, f ] = −2f , [e, f ] = h. Set

e0 = ft α0 = δ − α
f0 = et−1 α∨0 = K − h.

Then e0, e generate n̂+, and f0, f generate n̂−.
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The Cartan matrix and Dynkin diagram of ŝl(2) are

A =

(
2 −2
−2 2

)
© ks +3© .

Now we look at the general case. Let ω : g → g be the Chevalley involution, which is
defined by ei 7→ −fi : i = 1, . . . , n and h 7→ −h for all h ∈ h. Take fθ ∈ g−θ such that
(−ω(fθ), fθ) = 1. Let eθ = −ω(fθ). Then [eθ, fθ] = θ∨. Set

e0 = fθt α0 = δ − θ
f0 = eθt

−1 α∨0 = K − θ∨.

For i = 1, . . . , n, choose ei ∈ gαi
, fi ∈ g−αi

such that [ei, fi] = α∨i . Then e0, e1, . . . , en
generate n̂+, and f0, f1, . . . , fn generate n̂−.

The Cartan matrix A for ĝ is obtained from the Cartan matrix A′ for g by adding one
row and column. Explicitly, ai0 = 〈α∨i , α0〉 = −〈α∨i , θ〉 and a0i = 〈α∨0 , αi〉 = −〈αi, θ∨〉. Now
A′ is invertible and the corank of A is 1.

3. Kac-Moody algebras

An n× n-matrix is called a generalized Cartan matrix if for i, j = 1, . . . , n,

• aii = 2
• aij ∈ Z≤0 for i 6= j
• aij = 0⇔ aji = 0.

Let A be a generalized Cartan matrix, and let h be a vector space (over C) with dimension
n+ corank(A). Let

Π = {α1, . . . , αn} ⊂ h∗

Π∨ = {α∨1 , . . . , α∨n} ⊂ h

be linearly independent sets satisfying

〈α∨i , αj〉 = aij.

Define ḡ(A) by generators: e1, . . . , en, f1, . . . , fn, h and relations:

[ei, fj] = δijα
∨
i [h, ei] = 〈h, αi〉ei

[h, h′] = 0 [h, fi] = −〈h, αi〉fi.
Let m be the unique maximal ideal which intersects h trivially. Then the Kac-Moody

algebra with Cartan matrix A is defined to be

g(A) := ḡ(A)/m.

One can check that the generators of g(A) satisfy the Serre’s relations:

(ad ei)
1−aijej = 0

(ad fi)
1−aijfj = 0

If the matrix A is “symmetrizable” then these relations generate the ideal m. In other words,
these are the only additional relations needed to define g(A).
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A matrix A is called symmetrizable if there exists an invertible diagonal matrix D and a
symmetric matrix B such that A = DB. In this case, g(A) is also called symmetrizable.
The Kac-Moody algebra g(A) is symmetrizable if and only if there exists a nondegenerate
invariant symmetric bilinear form on g(A).

Affine Lie algebras are Kac-Moody algebras. If A is the Cartan matrix of ĝ, then there is
an isomorphism ĝ ∼= g(A) which can be defined using the Chevalley generators. Similarly,
finite-dimensional simple Lie algebras and twisted affine Lie algebras are Kac-Moody alge-
bras.

Given a Kac-Moody algebra g(A) such that A is the Cartan matrix on an affine Lie
algebra, we can recover the elements K and δ which were previously defined. It follows from
[K, ei] = 0 for i = 0, 1, . . . , n that 〈K,αi〉 = 0 for i = 0, 1, . . . , n. Let [a∨i ] be a row vector
such that [a∨i ]A = 0. It is determined up to a scalar since the corank of A is 1. Then

K =
n∑
i=0

a∨i α
∨
i .

Similarly, 〈αi, δ〉 = 0 for i = 0, 1, . . . , n. So if [ai] is a column vector such that A[ai] = 0,
then

δ =
n∑
i=0

aiαi.

Simple finite-dimensional, affine and twisted affine Lie algebras are all the Kac-Moody
algebras of “finite growth”. The principal grading

g = ⊕m∈Zg(m)

of g for a set of simple roots Π is defined by g(0) = h and

g(1) = ⊕αi∈Πgαi
.

Then g is said to have finite growth if dim g(m) grows polynomially with respect to m, and
the Gelfand-Kirillov dimension is the degree of this polynomial. For affine and twisted affine
Lie algebras, the Gelfand-Kirillov dimension is 1.

4. Affine Weyl group

Let g be a finite-dimensional simple Lie algebra, h ⊂ g a Cartan subalgebra and fix a base
Π ∈ ∆. Let (·, ·) be the non-degenerate invariant symmetric bilinear form normalized such
that (θ, θ) = 2. Recall that θ is the highest root of ∆+.

For j = 0, 1, . . . , n, define Λj ∈ ĥ∗ by

〈α∨i ,Λj〉 = δij for i = 0, . . . , n, and 〈d, λj〉 = 0.

We identify ĥ with ĥ∗ via the linear map ν : ĥ→ ĥ∗ defined by ν(α∨i ) =
(α∨i ,α

∨
i )

2
αi, ν(K) = δ,

ν(d) = a0Λ0. For α, β ∈ ĥ∗, define (α, β) := (ν−1(α), ν−1(β)).

Simple reflections at the roots αi : i = 0, 1 . . . , n are defined as follows. For λ ∈ ĥ∗, let

ri(λ) = λ− 2(λ, αi)

(αi, αi)
αi.
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The affine Weyl group Ŵ is the group generated by r0, r1, . . . , rn. The subgroup W gener-
ated by r1, . . . , rn is canonically isomorphic to the Weyl group of g.

To simplify notation, fix λ ∈ ĥ∗ and set k = 〈λ,K〉 = (λ, δ). Then

r0(λ) = λ− ((λ, θ)− k)(δ − θ)
and

r0rθ(λ) = λ− ((λ, θ) + k)δ + kθ.

For µ ∈ h∗ we define the translation

tµ(λ) = λ+ kµ− ((λ, µ) + k
(µ, µ)

2
)δ.

One can check that

tθ = r0rθ

tµtµ′ = tµ+µ′

twµ = wtµw
−1 for all w ∈ W.

Hence,
T := {tµ | µ ∈ Z(Wθ)}

is a normal subgroup of Ŵ . Since W is finite and T is free abelian, W ∩ T = 1. Thus,

W nT is a subgroup of Ŵ . Now ri ∈ W ⊂ Ŵ for i = 1, . . . , n and r0 = tθrθ ∈ W nT . Since

r0, r1, . . . , rn generate Ŵ , we conclude that

Ŵ = W n T.
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