Introduction to affine Lie algebras Notes for Lecture 2 October 26, 2010 Crystal Hoyt

1. Preliminaries

Let \mathfrak{g} be a finite-dimensional simple Lie algebra (over \mathbb{C}). Fix a set of simple roots. $\Pi = \{\alpha_1, \ldots, \alpha_n\} \subset \Delta$. Let $\Pi^{\vee} = \{\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}\} \subset \mathfrak{h}$ be the corresponding coroots.

We can define a partial ordering on Δ as follows. For $\alpha, \beta \in \Delta, \alpha > \beta$ if and only if $\alpha - \beta \in Q_+ := \sum_{i=1}^n \mathbb{Z}_{\geq 0} \alpha_i$. Let θ be the highest root for Δ_+ (defined by this ordering). Then θ is uniquely determine by Π since \mathfrak{g} is simple. Now \mathfrak{g} has a non-degenerate invariant symmetric bilinear form (\cdot, \cdot) , which is uniquely determined up to a scalar. We normalize this form by assuming that $(\theta, \theta) = 2$.

2. Simple roots and the Cartan matrix for $\widehat{\mathfrak{g}}$

As a vector space $\widehat{\mathfrak{g}} = \mathbb{C}[t, t^{-1}] \otimes \mathfrak{g} \oplus \mathbb{C}K \oplus \mathbb{C}d$. We can extend (\cdot, \cdot) to \mathfrak{g} as follows. For all $m, n \in \mathbb{Z}$ and $a, b \in \mathfrak{g}$. Let

$$(at^m, bt^n) = \delta_{m,-n}(a, b)$$

 $(K, K) = (d, d) = 0$
 $(K, d) = 1$
 $(at^m, K) = (at^m, d) = 0.$

Recall from the last lecture that $\widehat{\Delta} = \{m\delta + \alpha\}_{m \in \mathbb{Z}, \alpha \in \Delta} \cup \{m\delta\}_{m \in \mathbb{Z} \setminus \{0\}}$. If Π is a set of simple roots for \mathfrak{g} with highest root θ , then

$$\widehat{\Pi} := \{\delta - \theta\} \cup \Pi$$

is a set of simple roots for $\widehat{\mathfrak{g}}$. We define $\alpha_0 := \delta - \theta$. One can check that

$$\Delta_{+} = \{m\delta + \alpha\}_{m \in \mathbb{Z}_{>0}, \alpha \in \Delta} \cup \{m\delta\}_{m \in \mathbb{Z}_{>0}} \cup \Delta_{+}.$$

Corresponding to the decomposition $\widehat{\Delta} = \widehat{\Delta}_+ \cup \widehat{\Delta}_+$ we have a triangular decomposition

 $\widehat{\mathfrak{g}}=\widehat{\mathfrak{n}}_{+}\oplus\widehat{\mathfrak{h}}\oplus\widehat{\mathfrak{n}}_{-}.$

Example 2.1. $\widehat{\mathfrak{sl}}(2)$. Let $\Delta = \{\pm \alpha\}$ be the roots of $\mathfrak{sl}(2)$ and $\Pi = \{\alpha\}$. Then

$$\Delta = \{ m\delta \pm \alpha \}_{m \in \mathbb{Z}} \cup \{ m\delta \}_{m \in \mathbb{Z} \setminus \{0\}}, \text{ and } \Pi = \{ \delta - \alpha, \alpha \}.$$

Let $\{e, f, h\}$ be a basis satisfying the relations [h, e] = 2e, [h, f] = -2f, [e, f] = h. Set

$$e_0 = ft \qquad \qquad \alpha_0 = \delta - \alpha$$

$$f_0 = et^{-1} \qquad \qquad \alpha_0^{\vee} = K - h.$$

Then e_0, e generate $\widehat{\mathfrak{n}}_+$, and f_0, f generate $\widehat{\mathfrak{n}}_-$.

The Cartan matrix and Dynkin diagram of $\widehat{\mathfrak{sl}}(2)$ are

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \qquad \bigcirc \Longleftrightarrow \bigcirc .$$

Now we look at the general case. Let $\omega : \mathfrak{g} \to \mathfrak{g}$ be the Chevalley involution, which is defined by $e_i \mapsto -f_i : i = 1, \ldots, n$ and $h \mapsto -h$ for all $h \in \mathfrak{h}$. Take $f_{\theta} \in \mathfrak{g}_{-\theta}$ such that $(-\omega(f_{\theta}), f_{\theta}) = 1$. Let $e_{\theta} = -\omega(f_{\theta})$. Then $[e_{\theta}, f_{\theta}] = \theta^{\vee}$. Set

$$e_0 = f_{\theta}t \qquad \qquad \alpha_0 = \delta - \theta$$
$$f_0 = e_{\theta}t^{-1} \qquad \qquad \alpha_0^{\vee} = K - \theta^{\vee}$$

For $i = 1, \ldots, n$, choose $e_i \in \mathfrak{g}_{\alpha_i}, f_i \in \mathfrak{g}_{-\alpha_i}$ such that $[e_i, f_i] = \alpha_i^{\vee}$. Then e_0, e_1, \ldots, e_n generate $\widehat{\mathfrak{n}}_+$, and f_0, f_1, \ldots, f_n generate $\widehat{\mathfrak{n}}_-$.

The Cartan matrix A for $\hat{\mathfrak{g}}$ is obtained from the Cartan matrix A' for \mathfrak{g} by adding one row and column. Explicitly, $a_{i0} = \langle \alpha_i^{\lor}, \alpha_0 \rangle = -\langle \alpha_i^{\lor}, \theta \rangle$ and $a_{0i} = \langle \alpha_0^{\lor}, \alpha_i \rangle = -\langle \alpha_i, \theta^{\lor} \rangle$. Now A' is invertible and the corank of A is 1.

3. Kac-Moody Algebras

An $n \times n$ -matrix is called a *generalized Cartan matrix* if for i, j = 1, ..., n,

- $a_{ii} = 2$
- $a_{ij} \in \mathbb{Z}_{\leq 0}$ for $i \neq j$
- $a_{ij} = 0 \Leftrightarrow a_{ji} = 0.$

Let A be a generalized Cartan matrix, and let \mathfrak{h} be a vector space (over \mathbb{C}) with dimension $n + \operatorname{corank}(A)$. Let

$$\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \mathfrak{h}^*$$
$$\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_n^{\vee}\} \subset \mathfrak{h}$$

be linearly independent sets satisfying

$$\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}.$$

Define $\bar{\mathfrak{g}}(A)$ by generators: $e_1, \ldots, e_n, f_1, \ldots, f_n, \mathfrak{h}$ and relations:

$$[e_i, f_j] = \delta_{ij} \alpha_i^{\vee} \qquad [h, e_i] = \langle h, \alpha_i \rangle e_i$$
$$[h, h'] = 0 \qquad [h, f_i] = -\langle h, \alpha_i \rangle f_i.$$

Let \mathfrak{m} be the unique maximal ideal which intersects \mathfrak{h} trivially. Then the Kac-Moody algebra with Cartan matrix A is defined to be

$$\mathfrak{g}(A) := \overline{\mathfrak{g}}(A)/\mathfrak{m}$$

One can check that the generators of $\mathfrak{g}(A)$ satisfy the Serre's relations:

$$(ad e_i)^{1-a_{ij}}e_j = 0$$
$$(ad f_i)^{1-a_{ij}}f_j = 0$$

If the matrix A is "symmetrizable" then these relations generate the ideal \mathfrak{m} . In other words, these are the only additional relations needed to define $\mathfrak{g}(A)$.

A matrix A is called *symmetrizable* if there exists an invertible diagonal matrix D and a symmetric matrix B such that A = DB. In this case, $\mathfrak{g}(A)$ is also called symmetrizable. The Kac-Moody algebra $\mathfrak{g}(A)$ is symmetrizable if and only if there exists a nondegenerate invariant symmetric bilinear form on $\mathfrak{g}(A)$.

Affine Lie algebras are Kac-Moody algebras. If A is the Cartan matrix of $\hat{\mathfrak{g}}$, then there is an isomorphism $\hat{\mathfrak{g}} \cong \mathfrak{g}(A)$ which can be defined using the Chevalley generators. Similarly, finite-dimensional simple Lie algebras and twisted affine Lie algebras are Kac-Moody algebras.

Given a Kac-Moody algebra $\mathfrak{g}(A)$ such that A is the Cartan matrix on an affine Lie algebra, we can recover the elements K and δ which were previously defined. It follows from $[K, e_i] = 0$ for $i = 0, 1, \ldots, n$ that $\langle K, \alpha_i \rangle = 0$ for $i = 0, 1, \ldots, n$. Let $[a_i^{\vee}]$ be a row vector such that $[a_i^{\vee}]A = 0$. It is determined up to a scalar since the corank of A is 1. Then

$$K = \sum_{i=0}^{n} a_i^{\vee} \alpha_i^{\vee}.$$

Similarly, $\langle \alpha_i, \delta \rangle = 0$ for i = 0, 1, ..., n. So if $[a_i]$ is a column vector such that $A[a_i] = 0$, then

$$\delta = \sum_{i=0}^{n} a_i \alpha_i.$$

Simple finite-dimensional, affine and twisted affine Lie algebras are all the Kac-Moody algebras of "finite growth". The *principal grading*

$$\mathfrak{g} = \oplus_{m \in \mathbb{Z}} \mathfrak{g}(m)$$

of \mathfrak{g} for a set of simple roots Π is defined by $\mathfrak{g}(0) = \mathfrak{h}$ and

$$\mathfrak{g}(1) = \oplus_{\alpha_i \in \Pi} \mathfrak{g}_{\alpha_i}.$$

Then \mathfrak{g} is said to have *finite growth* if dim $\mathfrak{g}(m)$ grows polynomially with respect to m, and the Gelfand-Kirillov dimension is the degree of this polynomial. For affine and twisted affine Lie algebras, the Gelfand-Kirillov dimension is 1.

4. Affine Weyl group

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and fix a base $\Pi \in \Delta$. Let (\cdot, \cdot) be the non-degenerate invariant symmetric bilinear form normalized such that $(\theta, \theta) = 2$. Recall that θ is the highest root of Δ_+ .

For $j = 0, 1, \ldots, n$, define $\Lambda_j \in \hat{\mathfrak{h}}^*$ by

$$\langle \alpha_i^{\vee}, \Lambda_j \rangle = \delta_{ij}$$
 for $i = 0, \dots, n$, and $\langle d, \lambda_j \rangle = 0$

We identify $\widehat{\mathfrak{h}}$ with $\widehat{\mathfrak{h}^*}$ via the linear map $\nu : \widehat{\mathfrak{h}} \to \widehat{\mathfrak{h}^*}$ defined by $\nu(\alpha_i^{\vee}) = \frac{(\alpha_i^{\vee}, \alpha_i^{\vee})}{2} \alpha_i, \nu(K) = \delta,$ $\nu(d) = a_0 \Lambda_0$. For $\alpha, \beta \in \widehat{\mathfrak{h}^*}$, define $(\alpha, \beta) := (\nu^{-1}(\alpha), \nu^{-1}(\beta)).$

Simple reflections at the roots $\alpha_i : i = 0, 1, ..., n$ are defined as follows. For $\lambda \in \hat{\mathfrak{h}}^*$, let

$$r_i(\lambda) = \lambda - \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i.$$

The affine Weyl group \widehat{W} is the group generated by r_0, r_1, \ldots, r_n . The subgroup W generated by r_1, \ldots, r_n is canonically isomorphic to the Weyl group of \mathfrak{g} .

To simplify notation, fix $\lambda \in \hat{\mathfrak{h}}^*$ and set $k = \langle \lambda, K \rangle = (\lambda, \delta)$. Then $r_0(\lambda) = \lambda - ((\lambda, \theta) - k)(\delta - \theta)$

and

$$r_0 r_{\theta}(\lambda) = \lambda - ((\lambda, \theta) + k)\delta + k\theta$$

For $\mu \in \mathfrak{h}^*$ we define the translation

$$t_{\mu}(\lambda) = \lambda + k\mu - ((\lambda, \mu) + k\frac{(\mu, \mu)}{2})\delta.$$

One can check that

$$t_{\theta} = r_0 r_{\theta}$$

$$t_{\mu} t_{\mu'} = t_{\mu+\mu'}$$

$$t_{w\mu} = w t_{\mu} w^{-1} \qquad \text{for all } w \in W.$$

Hence,

$$T := \{ t_{\mu} \mid \mu \in \mathbb{Z}(W\theta) \}$$

is a normal subgroup of \widehat{W} . Since W is finite and T is free abelian, $W \cap T = 1$. Thus, $W \ltimes T$ is a subgroup of \widehat{W} . Now $r_i \in W \subset \widehat{W}$ for $i = 1, \ldots, n$ and $r_0 = t_{\theta}r_{\theta} \in W \ltimes T$. Since r_0, r_1, \ldots, r_n generate \widehat{W} , we conclude that

$$\widehat{W} = W \ltimes T.$$