Introduction to affine Lie algebras Notes for Lecture 3 November 2, 2010 Crystal Hoyt

1. Kac-Moody Algebra

An $n \times n$ -matrix is called a generalized Cartan matrix if for i, j = 1, ..., n,

- $a_{ii} = 2$
- $a_{ij} \in \mathbb{Z}_{\leq 0}$ for $i \neq j$
- $a_{ij} = 0 \Leftrightarrow a_{ji} = 0.$

Let A be a generalized Cartan matrix, and let \mathfrak{h} be a vector space (over \mathbb{C}) with dimension $n + \operatorname{corank}(A)$. Let

$$\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \mathfrak{h}^*$$
$$\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_n^{\vee}\} \subset \mathfrak{h}$$

be linearly independent sets satisfying

$$\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}$$

Define $\bar{\mathfrak{g}}(A)$ by generators: $e_1, \ldots, e_n, f_1, \ldots, f_n, \mathfrak{h}$ and relations:

$$[e_i, f_j] = \delta_{ij} \alpha_i^{\vee} \qquad [h, e_i] = \langle h, \alpha_i \rangle e_i$$
$$[h, h'] = 0 \qquad [h, f_i] = -\langle h, \alpha_i \rangle f_i.$$

Let \mathfrak{m} be the unique maximal ideal which intersects \mathfrak{h} trivially. Then the Kac-Moody algebra with Cartan matrix A is defined to be

$$\mathfrak{g}(A) := \bar{\mathfrak{g}}(A)/\mathfrak{m}.$$

2. INTEGRABLE MODULES

For each i = 1, ..., n, let \mathfrak{s}_i be the Lie subalgebra with vector space basis $\{e_i, f_i, \alpha_i^{\vee}\}$. Then \mathfrak{s}_i is isomorphic to \mathfrak{sl}_2 , and \mathfrak{s}_i acts on $\mathfrak{g}(A)$ via the adjoint action.

Lemma 2.1. The generators $e_1, \ldots, e_n, f_1, \ldots, f_n$ satisfy the Serre's relations $(i \neq j)$:

$$(ad \ e_i)^{1-a_{ij}}e_j = 0$$

 $(ad \ f_i)^{1-a_{ij}}f_j = 0.$

Proof. We prove the second relation. The proof of the first is similar. Fix $i, j \in \{1, ..., n\}$: $i \neq j$. Claim: (ad e_k)((ad f_i)^{1- $a_{ij}f_j$}) = 0 for k = 1, ..., n.

If $k \neq i$, then $[e_k, f_i] = 0$ implies that

$$(ad e_k)(ad f_i)^{1-a_{ij}}f_j = (ad f_i)^{-a_{ij}}[f_i, [e_k, f_j]]$$
$$= \delta_{kj}(ad f_i)^{-a_{ij}}[f_i, h_j]$$
$$= \delta_{kj}a_{ij}(ad f_i)^{-a_{ij}}f_i$$
$$= 0$$

If k = i, then

$$V_{ij} := \sum_{m \in \mathbb{Z}_{\geq 0}} \mathbb{C}((\text{ad } f_i)^m f_j)$$

is an \mathfrak{s}_i -module with highest vector f_j and highest weight $-a_{ij}$. Indeed, $[e_i, f_j] = 0$, $[h_i, f_j] = -a_{ij}f_j$ and $U(\mathfrak{s}_i)v_j = V_{ij}$. Hence, (ad e_i)((ad f_i)^{1- $a_{ij}f_j$}) = 0 by standard \mathfrak{sl}_2 -theory.

Let $w_{ij} = (\text{ad } f_i)^{1-a_{ij}} f_j$. Then we have shown that $(\text{ad } e_k)w_{ij} = 0$ for k = 1, ..., n. So $I := U(\mathfrak{n}_-)U(\mathfrak{h})w_{ij}$ is an ideal in $\mathfrak{g}(A)$ which is contained in \mathfrak{n}_- . Since $I \cap \mathfrak{h} = 0$, we conclude that $I \subset \mathfrak{m}$ and in particular that $w_{ij} = 0$.

Definition 2.2. Let V be a module for a Lie algebra \mathfrak{g} . An element $x \in \mathfrak{g}$ is *locally nilpotent* on V if for any $v \in V$ there exists $m \in \mathbb{Z}_+$ such that $x^m v = 0$.

Lemma 2.3. If $\{y_i\}_{i\in I} \subset \mathfrak{g}$ generate \mathfrak{g} (as a Lie algebra) and $x \in \mathfrak{g}$ such that for each $i \in I$ there exists $N_i \in \mathbb{Z}_+$ so that $(ad x)^{N_i}y_i = 0$, then ad x is locally nilpotent on \mathfrak{g} .

Proof. Use Leibnitz rule $(ad x)^k[y, z] = \sum_{i=0}^k \binom{k}{i} [(ad x)^i y, (ad x)^{k-i} z]$ and induction. \Box

Lemma 2.4. ad e_i and ad f_i are locally nilpotent on $\mathfrak{g}(A)$

Proof. For each i = 1, ..., n, the defining relations of $\mathfrak{g}(A)$ imply that

$$(ad e_i)^2 h = (ad f_i)^2 h = 0$$

for all $h \in \mathfrak{h}$. Also,

$$(ad e_i)^3 f_j = (ad f_i)^3 e_j = 0$$

for j = 1, ..., n, and $[e_i, e_i] = 0$. We see that by taking $x = e_i$ or $x = f_i$, the set $\{e_1, ..., e_n, f_1, ..., f_n, \} \cup \mathfrak{h}$ satisfies the hypothesis of the previous lemma. Therefore, ad e_i and ad f_i are locally nilpotent on $\mathfrak{g}(A)$.

Definition 2.5. A $\mathfrak{g}(A)$ -module V is called a *weight module* if

$$V = \bigoplus_{\mu \in \mathfrak{h}^*} V_{\mu}$$

where $V_{\mu} = \{v \in V \mid hv = \mu(h)v, \text{ for all } h \in \mathfrak{h}\}$. If $V_{\mu} \neq 0$, then μ is called a weight.

Definition 2.6. A weight module V is called *integrable* if $e_1, \ldots, e_n, f_1, \ldots, f_n$ are locally nilpotent on V.

The adjoint module of $\mathfrak{g}(A)$ is integrable by Lemma 2.4.

Proposition 2.7. If V is an integrable $\mathfrak{g}(A)$ -module, then for each i = 1, ..., n, V decomposes into a direct sum of finite-dimensional irreducible \mathfrak{h} -invariant \mathfrak{s}_i -modules.

Proof. For each $v \in V$, $v = \sum_{\mu \in X} k_{\mu} v_{\mu}$ where X is a finite subset of \mathfrak{h}^* . The subspace

$$U = \sum_{k,m\in\mathbb{Z}_{\geq 0}} \sum_{\mu\in X} \mathbb{C}f_i^k e_i^m(v_\mu)$$

is an \mathfrak{h} -invariant \mathfrak{s}_i -module. Also, U is finite dimensional, since e_i and f_i are locally nilpotent on V. So by Weyl's theorem, U decomposes into a direct sum of irreducible \mathfrak{h} -invariant s_i modules. Hence, each $v \in V$ lies in a finite sum of finite-dimensional irreducible \mathfrak{h} -invariant s_i -submodules.

Using Zorn's Lemma, one can prove that there exists a maximal \mathfrak{h} -invariant completely reducible \mathfrak{s}_i -module $V' \subset V$. Suppose that $V' \neq V$, and let $x \in V \setminus V'$. Then by the previous paragraph there exist finite-dimensional \mathfrak{h} -invariant irreducible s_i -submodules U_j , $j = 1, \ldots, N$, such that $x \in \bigoplus_{j=1}^N U_j \subset V$. Since $x \notin V'$, there exists U_k such that $U_k \notin V'$. Since U_k is an irreducible module, this implies that $U_k \cap V' = 0$. Then $U_k \oplus V'$ is an \mathfrak{h} -invariant completely reducible s_i -module, which contradicts the maximality of V'.

3. The Weyl group of $\mathfrak{g}(A)$

The Weyl group of $\mathfrak{g}(A)$ is defined as follows. For each $i = 1, \ldots, n$ and $\lambda \in \mathfrak{h}^*$ define

$$r_i(\lambda) = \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i.$$

Then $r_i(\alpha_i) = -\alpha_i$ since $a_i i = 2$, and $H_i = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle = 0\}$ is fixed. So r_i defines a reflection on \mathfrak{h}^* . The Weyl group W for $\mathfrak{g}(A)$ is the group generated by r_1, \ldots, r_n .