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1. Root systems

Lemma 1.1. Let ∆ be a root system in a Euclidean space E and Π a base.
If β ∈ ∆+ \ Π then β − α ∈ ∆+ for some α ∈ Π

Proof. If (β, α) ≤ 0 for all α ∈ Π, then Π ∪ {β} would be a linearly inde-
pendent set. So (β, α) > 0 for some α ∈ Π, and hence by a previous lemma
β − α ∈ ∆. Since β is not proportional to α and α is simple, we conclude
that β − α ∈ ∆+. �

Corollary 1.2. If β ∈ ∆+, then there exist αi ∈ Π, i = 1, . . . s, such that
β = α1 + · · ·+ αs and each partial sum α1 + · · ·+ αk ∈ ∆+, (k ≤ s).

Proof. This is proven by induction on the height of β, using the previous
lemma. �

2. Free Lie algebras

Let L be a Lie algebra generated by a set X. We say that L is free on
X if, given any mapping φ : X → M with M a Lie algebra, there exists a
unique homomorphism ψ : L → M extending φ. Uniqueness is simple to
verify. For existence, let V be a vector space with basis X. Let T (V ) be
the tensor algebra on V viewed as a Lie algebra via the bracket operation
([x, y] := x ⊗ y − y ⊗ x for x, y ∈ T (V )), and let L be the Lie subalgebra
generated by X.

If L is a free Lie algebra on the set X, and K is an ideal of L generated by
elements ki (i ∈ I), then we call the Lie algebra L/K the Lie algebra with
generators xj and relations ki = 0, where xj are the images of the elements
of X in L/K.
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3. Automorphisms

Let g be a semisimple Lie algebra. An automorphism of g is an isomorphism
φ : g→ g. An automorphism of the form

ead(x) =
∞∑
n=0

1

n!
(ad(x))n,

x ∈ g is called inner, and the subgroup of Aut(g) generated by these is
denoted Int(g) and its elements are called inner automorphisms. Note that

ead(x) is well defined when ad(x) is nilpotent.
Let φ : g→ g be an isomorphism of g, and let h be a Cartan subalgebra of

g with root system ∆. If φ(h) = h, then φ induces an automorphism of the
root system ∆.

Every element w of the Weyl group W is induced by an inner automorphism
of g which leaves h invariant. In particular, the reflection σα ∈ W , α ∈ ∆, is
induced by the element

ead(xα)e−ad(yα)ead(xα).

4. Borel subalgebras

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let

g = h⊕ (⊕α∈∆gα)

be the corresponding root space decomposition. Choose a set of simple roots
Π and corresponding decomposition ∆ = ∆+ ∐

∆−. Set

n+ :=
∑
α∈∆+

gα, n− :=
∑
α∈∆−

gα.

Then one has a triangular decomposition of g

g = n− ⊕ h⊕ n+.

Also, n+ and n− are nilpotent subalgebras of g. Indeed, n+ is a subalgebra,
since [gα, gβ] ⊂ gα+β and if α, β ∈ ∆+ then either α + β ∈ ∆+ or gα+β = 0.

To check nilpotence of n+ recall that for α ∈ ∆+ we have α =
∑

β∈Π rββ
with rβ ∈ Z≥0, and the height of α is ht(α) =

∑
β∈Π rβ. Also, for α1, α2 ∈ ∆
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we have ht(α1+α2) = ht(α1)+ht(α2). Set n+
1 := [n+, n+] and n+

k+1 := [n+
k , n

+].
Then

n+
k ⊂

∑
α∈∆+:ht(α)>k

gα.

Since ∆+ is finite, there exists an integer m such that ht(α) < m for all
α ∈ ∆+. Thus n+

m = 0.
Set

b+ := n+ ⊕ h, b− := n− ⊕ h.

The subalgebra b+ (resp. b−) is solvable because [b+, b+] = n+ (resp. [b−, b−] =
n−), which is nilpotent. The algebra b+ (resp. b−) is a Borel subalgebra: a
maximal solvable subalgebra.

To see that b+ is a maximal solvable subalgebra, first observe that if
S ) b+ ⊃ h is a subalgebra then h acts diagonally on S. Then g−α ⊂ S
for some α > 0, implying that S contains a simple subalgebra isomorphic to
sl2. Thus S is not solvable.

5. Generators and relations

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Fix a base
Π = {α1, . . . , αn} for the corresponding root system ∆. Recall that 〈αj, αi〉 =
2(αj ,αi)
(αi,αi)

= αj(hi), and the matrix A with entries aij = 〈αj, αi〉 is the Cartan

matrix. For each i = 1, . . . , n, choose xi ∈ gαi, yi ∈ g−αi such that [xi, yi] = hi.

Theorem 5.1. (a) n+ is generated by the elements xi, n− is generated by the
elements yi, and g is generated by the elements xi, yi, hi with 1 ≤ i ≤ n.

(b) These elements satisfy the Weyl relations, 1 ≤ i, j ≤ n:

(1) [hi, hj] = 0;
(2) [xi, yj] = δijhi;
(3) [hi, xj] = aijxj, [hi, yj] = −aijyj.

(c) They also satisfy the Serre relations:

(1) ad(xi)
−aij+1xj = 0 (i 6= j);

(2) ad(yi)
−aij+1yj = 0 (i 6= j).
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Proof. (a) It suffices to show that n+ is generated by the elements xi. Let
β ∈ ∆+. Write β = αi1 + · · ·+αis such that partial sums αi1 + · · ·+αik belong
to ∆+ for each k ≤ s. Let xβ = [xis, [xis−1

, ...[xi2, xi−1]]]. This is nonzero since
for any β1, β2 ∈ ∆, [gβ1

, gβ2
] = gβ1+β2

(follows from the proof of Proposition
1.2 in Lecture 8). Since dim gβ = 1 for β ∈ ∆, gβ = Fxβ. Since n+ is the sum
spaces gβ with β ∈ ∆+, we conclude that n+ is generated by the elements xi.

(b) Now [xi, yj] = 0 for i 6= j since αi − αj is not a root. Also, [hi, xj] =
αj(hi)xj = aijxj. The other relations are clear.

(c) Set fij = ad(xi)
−aij+1xj. Then fij ∈ gαj+αi−aijαi. But, αj + (1− aij)αi =

σαi(αj − αi). Since αj − αi is not a root, neither is σαi(αj − αi). Hence,
fij = 0. The other relation is proved in the same manner. �

Theorem 5.2. The algebra g is defined by the generators xi, yi, hi, with
1 ≤ i ≤ n, along with the Weyl relations and Serre relations.

The proof of this theorem will be given at the end of the lesson.

6. Existence and Uniqueness

To read about the existence of a Cartan subalgebra and the conjugacy the-
orem for Cartan subalgebras, see Serre “Complex Semisimple Lie Algebras”
Chapter 3. It follows that the root system of a semisimple Lie algebra is
independent (up to isomorphism) of the chosen Cartan subalgebra.

Theorem 6.1. Two semisimple Lie algebras with isomorphic root systems
are isomorphic.

Proof. Let g (resp. g′) be a semisimple Lie algebra, h (resp. h′) a Cartan
subalgebra of g (resp. g′), and Π (resp. Π′) a base for the corresponding root
system. Let r : Π → Π′ be a bijection sending the Cartan matrix of Π to
the Cartan matrix of Π′. For each αi ∈ Π (resp. α′j ∈ Π′) let xi (resp. x′j)
be a nonzero element of gαi (resp. g′α′j

). There is a a unique isomorphism

φ : g → g′ sending hi to h′r(i) and xi to x′r(i) for all αi ∈ Π. Indeed, let yi
(resp. y′j) be the element of g−αi (resp. g−α′j) such that [xi, yi] = hi (resp.

[x′j, y
′
j] = h′j). Since ∆ ∼= ∆′, these generators satisfy the same relations.
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Hence, Theorem 5.2 provides a unique homomorphism φ : g→ g′. This map
is clearly surjective, since the generators of g′ are in the image. And since
dim g = dim g′, we conclude that φ is an isomorphism. �

Theorem 6.2. Let ∆ be a root system. Then there exists a semisimple Lie
algebra g whose root system is isomorphic to ∆.

Proof. Let Π = {α1, . . . , αn} be a base for ∆, with Cartan matrix A where
aij = 〈αj, αi〉. Let g be the Lie algebra defined by 3n generators xi, yi, hi and
by the Weyl and Serre relations. We will prove that this Lie algebra is finite
dimensional, semisimple, and has root system isomorphic to ∆. �

Corollary 6.3. For a semisimple Lie algebra g to be simple, it is necessary
and sufficient that ∆ should be irreducible.

Proof. We proved previously that a simple Lie algebra has an irreducible root
system. Now suppose g is a semisimple Lie algebra containing a proper ideal
a. Then h acts diagonally on a, so a = h′ ⊕ (⊕α∈∆′gα), where h′ = h ∩ a and
∆′ = {α ∈ ∆ | gα ∩ a 6= {0}}. Let c be the ideal of g which is complement to
a, g = a⊕ c. Then c = h′′ ⊕ (⊕α∈∆′′gα), where h′′ = h ∩ c and ∆′′ = ∆ \∆′.
Then ∆ = ∆′ ∪ ∆′′ is a non-trivial decomposition of ∆ into orthogonal
sets. Indeed, let α ∈ ∆′ and β ∈ ∆′′. If (α, β) < 0 then α + β ∈ ∆.
But gα+β = [gα, gβ] ⊂ a ∩ c = {0}. If (α, β) > 0 then α − β ∈ ∆. But
gα−β = [gα, g−β] ⊂ a ∩ c = {0} Hence, (α, β) = 0. �

Now g is simple ⇔ ∆ is irreducible ⇔ Π is irreducible ⇔ the Dynkin di-
agram is irreducible ⇔ the Cartan matrix is irreducible. (A matrix A is
irreducible if the index set I can not be non-trivially decomposed I = I1 ∪ I2
such that aij = aji = 0 for all i ∈ I1, j ∈ I2.)

7. Serre’s Theorem

Let ∆ be a root system in a Euclidean space E, with positive definite
symmetric bilinear form (−,−). Let h = E∗, so that E = h∗. Let Π =
{α1, . . . , αn} be a base for ∆, and define h1, . . . , hn ∈ h such that αj(hi) =
2(αj ,αi)
(αi,αi)

= 〈αj, αi〉 for 1 ≤ i, j ≤ n. Let A be the Cartan matrix of ∆,

aij = 〈αj, αi〉.
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Theorem 7.1. Let g be the Lie algebra defined by the 3n generators xi, yi, hi,
and by the relations (1 ≤ i, h ≤ n):

W1: [hi, hj] = 0;
W2: [xi, yj] = δijhi;
W3: [hi, xj] = aijxj, [hi, yj] = −aijyj;
S1: ad(xi)

−aij+1xj = 0 (i 6= j);
S2: ad(yi)

−aij+1yj = 0 (i 6= j).

Then g is a finite dimensional semisimple Lie algebra, with a Cartan subal-
gebra h generated by the elements hi, and its root system is ∆.

Proof. First consider the algebra a defined by the 3n generators xi, yi, hi, and
by the Weyl relations W1-W3. Then a = m−⊕h⊕m+, where m+ (resp. m−)
is the free Lie algebra generated by xi (resp. yi), and h has the elements hi
as a basis. (For a proof of this statement, see Humphreys Section 18.)

Now let f+
ij = ad(xi)

−aij+1xj and f−ij = ad(yi)
−aij+1yj. Then f+

ij ∈ m+ and

f−ij ∈ m−. Let u+ (resp. u−) denote the ideal of m+ (resp. m−) generated by

f+
ij (resp. f−ij ).

(a): u+, u−, and u+ ⊕ u− are ideals of a.

Let U(a) be the universal enveloping algebra of a. The adjoint rep-
resentation ad : a → End(a) defines a U(a)-module structure on a.
The ideal uij of a generated by f+

ij is equal to the submodule U(a) ·f+
ij .

By the PBW Theorem, uij is spanned by elements XYH · fij with
X ∈ U(m+), Y ∈ U(m−), and H ∈ U(h). Since ad(ht)(f

+
ij ) = β(ht)f

+
ij

with β = αi + (1 − aij)αj, we have that H ·f+
ij is proportional to f+

ij .

A computation shows that ad(yk)(f
+
ij ) = 0 for all k, thus Y ·f+

ij is pro-

portional to f+
ij . Hence, uij is generated by the elements X ·f+

ij , and
therefore is contained in u+. Since u+ =

∑
uij we conclude that u+ is

an ideal of a.

(b): g = n− ⊕ h⊕ n+ where n− = m−/u− and n+ = m+/u+.

This is true since u+ ⊕ u− is the ideal generated by f−ij and f+
ij .

6



(c): The endomorphisms ad(xi) and ad(yi) of g are locally nilpotent: for
each element z ∈ g there exists k ∈ Z+ such that ad(xi)

k(z) = 0,
ad(yi)

k(z) = 0.

Let Vi be set of all z ∈ g such that ad(xi)
k(z) = 0 for some inte-

ger k. Then a computation shows that Vi is a Lie subalgebra of g.
Now Vi contains yj (1 ≤ j ≤ n) by the Weyl relations and contains xj
(1 ≤ j ≤ n) by the Serre relations, and hence Vi contains hj = [xj, yj]
(1 ≤ j ≤ n). Since these generate g, we conclude that Vi = g.

Now if λ ∈ h∗, denote by aλ (resp. gλ) the set of z ∈ a (resp. z ∈ g)
such that ad(h)z = λ(h)z for all h ∈ h. Then a is direct sum of the
weight spaces aλ, since m+ and m− are free Lie algebras and h = a0.
The ideal u+ ⊕ u− is generated by homogeneous elements, so the quo-
tient Lie algebra g = a/(u+⊕u−) is also a direct sum of weight spaces.
Since a = m− ⊕ h ⊕ m+, we have that aλ 6= 0 implies that λ is lin-
ear combination of simple roots with integer coefficients and all of the
same sign. Thus the same is true for the quotient g. Then h = g0,
n+ = ⊕λ>0gλ and n− = ⊕λ<0gλ. Next we want to find the dimension
of each gλ.

(d): If λ, µ ∈ h∗ such that λ = w(µ) for some element w of the Weyl
group W , then dim gλ = dim gµ.

It suffices to prove this when w is a simple reflection. For each αi ∈ Π,

we define an automorphism of g by φi = ead(xi)e−ad(yi)ead(xi). Then φi
induces the simple reflection σαi on ∆, so φi sends gµ to gλ if λ = σαi(µ)
implying dim gλ = dim gµ.

(e): For αi ∈ Π, dim gαi = 1 and dim gmαi = 0 for m 6= ±1, 0.

This is clear for a, and since the ideal u+ does not contain xi, it is
also true for g.

(f): If α ∈ ∆, then dim gα = 1.
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For each α ∈ ∆ there exists w ∈ W such that w(α) ∈ Π. This claim
then follows from (d) and (e).

(g): Let λ be a linear combination of the simple roots αi, with real coef-
ficients, and suppose that λ is not a multiple of any root. Then there
exists w ∈ W such that w(λ) =

∑
tiαi with some ti > 0 and some

ti < 0. (This was a homework exercise.)

(h): If λ is not a root and λ 6= 0, then gλ = 0.

λ is a linear combination of simple roots, since Π is a basis for E.
If λ is a multiple of a root, then (h) follows from (d) and (e). Other-
wise, there is some w ∈ W such that µ = w(λ) is a linear combination
of simple roots such that two coefficient have opposite signs. Then
aµ = 0 implying gµ = 0. Applying (d) we have that gλ = 0.

(i): The algebra g has finite dimension, equal to n+ |∆|.

By (f) and (h), we have that g = h ⊕ (⊕α∈∆gα) and for each α ∈ ∆
the dimension of gα is one.

(j): If α ∈ ∆, then [gα, g−α] = Fhα and the subalgebra sα generated hα,
gα, and g−α is isomorphic to sl2.

This is clear for simple roots, and follows by applying the automor-
phisms φi.

(k): g is a semisimple Lie algebra.

Suppose that I is an abelian ideal in g. Then h act diagonally on
I, so I = (I ∩ h) ⊕

∑
α∈∆ I ∩ gα. If I ∩ gα 6= 0 for some α ∈ ∆, then

sα ⊂ I since sα ∼= sl2. But we assumed that I is abelian, thus I ⊂ h.
But [I, xj] = 0 for all j implies that αj(I) = 0 for all j. Hence, I = 0.

(l): h is a Cartan subalgebra of g and ∆ is the corresponding root system.

�
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