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CRYSTAL HOYT

1. MODULES AND WEIGHT SPACES

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let
g = b % (@aeAga)

be the corresponding root space decomposition. Choose a set of simple roots
IT and corresponding decomposition A = AT [ A~. Then one has a triangu-
lar decomposition, g=n"@hdn", wheren™ =>" 80, 1 =D, ca- Ga-

Set
Q = Z L.
acll
Q) is called the root lattice. Let QT = >
hb* by A>vif A—ve Q™.

wen Zi>oov. Define a partial order on

Since b acts diagonally on g (via the adjoint action), b acts diagonally on
U(g). Indeed, take an ordered eigenbasis aq,...,a, in g with respect to b.
Then the corresponding PBW basis of U(g) is an eigenbasis with respect to
h. If a; has weight u; for 1 < ¢ < r, then a’fl - al has weight >0, k;u;.

Let V be a g-module. We do not assume that V is finite dimensional. Let
Vi={{v € V| hv = A(h)v, for all h € h}. If V) # 0, then V) is called a
weight space and A is called a weight of V. Set

V’:ZVA.

Ach*

Lemma 1.1.
(1) 9oV € Viasa, (i-e. go maps Vy into Viia).
(2) The sum V' =}, Vi is direct, and V' is a g-submodule of V.
mmV < oo, then V =V", (1.e. § acts diagonally on V).
3) If dim V/ hen V. =1V’ b d Il 1%
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Proof.

(1) Let z € g, and v € V). Then h(xv) = xz(hv) + [h,x]v = A(h)xv —
a(h)zv = (A + a)(h)zv. Thus, zv € Vi, Therefore, V' is stable
under the action of g.

(2) The sum is direct because eigenvectors in different eigenspaces are
linearly independent. By (1), V' is stable under the action of g.

(3) By Weyl’s Theorem, every finite dimensional g-module is a direct sum
of simple modules. So it suffices to consider the case when V' is a simple
g-module. Since V' is finite dimensional, it contains a non-zero vector
v which is an eigenvector for the action of b, by Lie’s Theorem (since
h is solvable). Since V is simple, V = U(g)v. Since bh acts diagonally
on U(g), the lemma follows.

]

A g-module V is called a weight module if V-=V'. A g-module V is called
a highest weight module with highest weight u, if there is a u € h* such that

V, # 0 and
v= 6 W
AEh A<y

A non-zero vector v+ € V), (for some A\ € h*) of a g-module V is called a maz-
imal vector (of weight \) if it is killed by g, for all &« > 0, (i.e. U(n")vt = 0).
If V is a highest weight module with highest weight u, then each non-zero
vector v € V), is a maximal vector. If a g-module V' is generated by a max-
imal vector v € V) (i.e. V = U(g)v"), then V is called a standard cyclic
module and v is a cyclic vector.

2. VERMA MODULES

Let I(\) be the left ideal in U(g) generated by n* and by the elements of
the form h — A(h)1 with h € h. Then

M(A) == U(g)/1(N)

is the Verma module of highest weight A. The quotient map ¢ : U(g) — M (A)
is a g-module homomorphism. Let vy = ¢(1), where 1 is the identity element
of U(g). The Verma module M (M) is a standard cyclic module with cyclic

vector vy. Indeed, ntv), = 0 and vy has weight A, since (h — A(h))v) = 0 for
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all h € h. The restriction of this map to U(n™) is a U (n~)-module homomor-
phism. By the PBW theorem, this map U(n~) — M(A) given by u — uw) is
bijective. Thus, U(n™) = M(A) as U(n~)-modules.

Lemma 2.1. Any standard cyclic module is the quotient of a Verma module.

Proof. Let V be a standard cyclic module with cyclic vector v € V). Then
nfot =0 and (h — A(h))vT = 0 for h € h. So I(N) is in the kernel of the
map U(g) — V given by u — uv™. Hence, this map factors through M()).
Since v* generates V', the induced map M (\) — V is surjective. L

Lemma 2.2. Let V be a standard cyclic g-module, with cyclic vector vt € V).
Let A* = {p,...,0n} and choose nonzero vectors ys, € g_p,. Then:

(1) V' is spanned by the vectors ygi e yé::v* (ki € Z>0). In particular, V
15 a highest weight module.

(2) The weights of V' are of the form v =X =" | ¢y (¢; € Z>p), where
Il ={a,...,a,}. Hence, all weights satisfy v < \.

(3) For each v € h*, dimV,, < oo, and dim V) = 1.
(4) Each submodule is a direct sum of its weight spaces.

(5) V' is an indecomposable g-module, with a unique mazximal submodule
and a corresponding unique 1rreducible quotient.

Proof. Now V' is the quotient of the Verma module M (\), where M(\) — V
defined by v, — v extended by the action of g. Thus (1), (2), and (3) follow
from the fact that U(n™) = M(\) as U(n~ )-modules, where U(n~) — M (X)
is defined by u +— wvy. If u € U(n™) has weight > . —cioi, ¢; € Zx,
then uv™ has weight A — >y cia;. Now (4) holds because eigenvectors in
different eigenspaces are linearly independent.
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For (5), let S be the sum of the all the proper submodules of M (\). Then
S is clearly unique and maximal, but we must show that it is a proper
submodule. Now each submodule is a direct sum of its weight spaces, and
the sum of weight modules is again a weight module, with weight spaces
(> V(i))ﬂ — 3., Vi To see that S is a proper submodule, observe that

v™ & P for any proper submodule P implying Py, = 0. Hence, S, = 0. It
follows that V' is indecomposable, since if V = M; & My where M; and M
are proper submodules, then M;, M, C S implies V = S. O

Corollary 2.3. Let V' be an irreducible standard cyclic g-module, with max-
imal vector v € Vy. Then v" is the unique maximal vector in V, up to
non-zero scalar multiples.

Proof. Suppose w' € V) is another maximal vector. Since V is irreducible,
V =U(g)w" implying that w™ is also a cyclic vector. Then the second part
of the lemma applies to both A and \'. Hence A < X and A < X\ implies that
A = A. Since dim V), = 1, we conclude that w™ is proportional to v™. O

Corollary 2.4. Let M()\) be the unique mazimal submodule of the Verma
module M(X). Then V(X)) := M(X\)/M(X) is the unique simple quotient of
M(N).

Corollary 2.5. If V is a finite dimensional simple module, the V' = V(\)
for some A € b*,

Proof. The set of weights of V' is finite and so it contains a maximal element
A under the partial ordering. Let v’ be a non-zero element of V). Since
A is a maximal weight, Lemma 1.1 implies that n™v’ = 0. Hence, ¢’ is a
maximal vector. Thus the map ¢ : M(\) — V given by vy — v is a U(g)-
module homomorphism. Since V' is simple, this map is surjective. Thus
V = M()A)/ker ¢. Since V(A) is the unique simple quotient of M(\), we
conclude that V = V(). [



Let o € A, and take S, = sl(2) with generators x, € @ga, Ya € 8_a,

o = [Za, ya] € B*. Recall that < A\, a >= % = M ha).

Theorem 2.6. If V is a finite dimensional irreducible g-module of highest
weight X\, then < \,a > € Zxq for all « € A™.

Proof. Let « € A*. Then V is a finite dimensional S,-module, with a max-
imal vector vy of weight A. Since S, = sly is simple, we have by Weyl’s
Theorem that V' decomposes into a direct sum of irreducible S,-modules.
The maximal weight of the irreducible S,-submodule M that v, generates
must be a non-negative integer. Now x,vy = 0 and h,vy = A(ha)vy. So
the maximal weight of the S,-submodule M is A(h,). Thus, A(hy) € Z>o.
Since a € A1 was chosen arbitrarily, we conclude that < A\, > € Z> for
all « € AT, O

Let IT = {aq,...,a,} be the set of simple roots. Define the weight lattice
to be

P(II) :={ e b |< \,a>e Zfor all « € AT}
={Aebh |< N\ a>ecZfor all a € IT}.

Elements of P(IT) are called integral weights. The dominant integral weights
are the following:

PTII) ={XN € b |< \,a >€ Z> for all a € IT}.



