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1. Modules and weight spaces

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let

g = h⊕ (⊕α∈∆gα)

be the corresponding root space decomposition. Choose a set of simple roots
Π and corresponding decomposition ∆ = ∆+∐∆−. Then one has a triangu-
lar decomposition, g = n−⊕ h⊕ n+, where n+ =

∑
α∈∆+ gα, n− =

∑
α∈∆− gα.

Set

Q :=
∑
α∈Π

Zα.

Q is called the root lattice. Let Q+ =
∑

α∈Π Z≥0α. Define a partial order on
h∗ by λ ≥ ν if λ− ν ∈ Q+.

Since h acts diagonally on g (via the adjoint action), h acts diagonally on
U(g). Indeed, take an ordered eigenbasis a1, . . . , ar in g with respect to h.
Then the corresponding PBW basis of U(g) is an eigenbasis with respect to
h. If ai has weight µi for 1 ≤ i ≤ r, then ak1

1 · · · akr
r has weight

∑r
i=1 kiµi.

Let V be a g-module. We do not assume that V is finite dimensional. Let
Vλ = {v ∈ V | hv = λ(h)v, for all h ∈ h}. If Vλ 6= 0, then Vλ is called a
weight space and λ is called a weight of V . Set

V ′ =
∑
λ∈h∗

Vλ.

Lemma 1.1.

(1) gαVλ ⊆ Vλ+α, (i.e. gα maps Vλ into Vλ+α).
(2) The sum V ′ =

∑
λ∈h Vλ is direct, and V ′ is a g-submodule of V .

(3) If dimV <∞, then V = V ′, (i.e. h acts diagonally on V ).
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Proof.

(1) Let x ∈ gα and v ∈ Vλ. Then h(xv) = x(hv) + [h, x]v = λ(h)xv −
α(h)xv = (λ + α)(h)xv. Thus, xv ∈ Vλ+α. Therefore, V ′ is stable
under the action of g.

(2) The sum is direct because eigenvectors in different eigenspaces are
linearly independent. By (1), V ′ is stable under the action of g.

(3) By Weyl’s Theorem, every finite dimensional g-module is a direct sum
of simple modules. So it suffices to consider the case when V is a simple
g-module. Since V is finite dimensional, it contains a non-zero vector
v which is an eigenvector for the action of h, by Lie’s Theorem (since
h is solvable). Since V is simple, V = U(g)v. Since h acts diagonally
on U(g), the lemma follows.

�

A g-module V is called a weight module if V = V ′. A g-module V is called
a highest weight module with highest weight µ, if there is a µ ∈ h∗ such that
Vµ 6= 0 and

V =
⊕

λ∈h∗:λ≤µ

Vλ.

A non-zero vector v+ ∈ Vλ (for some λ ∈ h∗) of a g-module V is called a max-
imal vector (of weight λ) if it is killed by gα for all α > 0, (i.e. U(n+)v+ = 0).
If V is a highest weight module with highest weight µ, then each non-zero
vector v ∈ Vµ is a maximal vector. If a g-module V is generated by a max-
imal vector v+ ∈ Vλ (i.e. V = U(g)v+), then V is called a standard cyclic
module and v+ is a cyclic vector.

2. Verma modules

Let I(λ) be the left ideal in U(g) generated by n+ and by the elements of
the form h− λ(h)1 with h ∈ h. Then

M(λ) := U(g)/I(λ)

is the Verma module of highest weight λ. The quotient map φ : U(g) � M(λ)
is a g-module homomorphism. Let vλ = φ(1), where 1 is the identity element
of U(g). The Verma module M(λ) is a standard cyclic module with cyclic
vector vλ. Indeed, n+vλ = 0 and vλ has weight λ, since (h− λ(h))vλ = 0 for
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all h ∈ h. The restriction of this map to U(n−) is a U(n−)-module homomor-
phism. By the PBW theorem, this map U(n−)→M(λ) given by u 7→ uvλ is
bijective. Thus, U(n−) ∼= M(λ) as U(n−)-modules.

Lemma 2.1. Any standard cyclic module is the quotient of a Verma module.

Proof. Let V be a standard cyclic module with cyclic vector v+ ∈ Vλ. Then
n+v+ = 0 and (h − λ(h))v+ = 0 for h ∈ h. So I(λ) is in the kernel of the
map U(g) → V given by u 7→ uv+. Hence, this map factors through M(λ).
Since v+ generates V , the induced map M(λ)→ V is surjective. �

Lemma 2.2. Let V be a standard cyclic g-module, with cyclic vector v+ ∈ Vλ.
Let ∆+ = {β1, . . . , βm} and choose nonzero vectors yβi

∈ g−βi
. Then:

(1) V is spanned by the vectors yk1

β1
· · · ykm

βm
v+ (ki ∈ Z≥0). In particular, V

is a highest weight module.

(2) The weights of V are of the form ν = λ−
∑n

i=1 ciαi (ci ∈ Z≥0), where
Π = {α1, . . . , αn}. Hence, all weights satisfy ν ≤ λ.

(3) For each ν ∈ h∗, dimVν <∞, and dimVλ = 1.

(4) Each submodule is a direct sum of its weight spaces.

(5) V is an indecomposable g-module, with a unique maximal submodule
and a corresponding unique irreducible quotient.

Proof. Now V is the quotient of the Verma module M(λ), where M(λ) � V
defined by vλ 7→ v+ extended by the action of g. Thus (1), (2), and (3) follow
from the fact that U(n−) ∼= M(λ) as U(n−)-modules, where U(n−) → M(λ)
is defined by u 7→ uvλ. If u ∈ U(n−) has weight

∑
αi∈Π−ciαi, ci ∈ Z≥0,

then uv+ has weight λ−
∑

αi∈Π ciαi. Now (4) holds because eigenvectors in
different eigenspaces are linearly independent.
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For (5), let S be the sum of the all the proper submodules of M(λ). Then
S is clearly unique and maximal, but we must show that it is a proper
submodule. Now each submodule is a direct sum of its weight spaces, and
the sum of weight modules is again a weight module, with weight spaces(∑

i∈I V
(i)
)
µ

=
∑

i∈I V
(i)
µ . To see that S is a proper submodule, observe that

v+ 6∈ P for any proper submodule P implying Pλ = 0. Hence, Sλ = 0. It
follows that V is indecomposable, since if V = M1 ⊕M2 where M1 and M2
are proper submodules, then M1, M2 ⊂ S implies V = S. �

Corollary 2.3. Let V be an irreducible standard cyclic g-module, with max-
imal vector v+ ∈ Vλ. Then v+ is the unique maximal vector in V , up to
non-zero scalar multiples.

Proof. Suppose w+ ∈ Vλ′ is another maximal vector. Since V is irreducible,
V = U(g)w+ implying that w+ is also a cyclic vector. Then the second part
of the lemma applies to both λ and λ′. Hence λ′ ≤ λ and λ ≤ λ′ implies that
λ′ = λ. Since dimVλ = 1, we conclude that w+ is proportional to v+. �

Corollary 2.4. Let M(λ) be the unique maximal submodule of the Verma
module M(λ). Then V (λ) := M(λ)/M(λ) is the unique simple quotient of
M(λ).

Corollary 2.5. If V is a finite dimensional simple module, the V ∼= V (λ)
for some λ ∈ h∗.

Proof. The set of weights of V is finite and so it contains a maximal element
λ under the partial ordering. Let v′ be a non-zero element of Vλ. Since
λ is a maximal weight, Lemma 1.1 implies that n+v′ = 0. Hence, v′ is a
maximal vector. Thus the map φ : M(λ) → V given by vλ 7→ v′ is a U(g)-
module homomorphism. Since V is simple, this map is surjective. Thus
V ∼= M(λ)/ker φ. Since V (λ) is the unique simple quotient of M(λ), we
conclude that V ∼= V (λ). �
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Let α ∈ ∆, and take Sα ∼= sl(2) with generators xα ∈ gα, yα ∈ g−α,

hα = [xα, yα] ∈ h∗. Recall that < λ, α >= 2(λ,α)
(α,α) = λ(hα).

Theorem 2.6. If V is a finite dimensional irreducible g-module of highest
weight λ, then < λ, α > ∈ Z≥0 for all α ∈ ∆+.

Proof. Let α ∈ ∆+. Then V is a finite dimensional Sα-module, with a max-
imal vector vλ of weight λ. Since Sα ∼= sl2 is simple, we have by Weyl’s
Theorem that V decomposes into a direct sum of irreducible Sα-modules.
The maximal weight of the irreducible Sα-submodule M that vλ generates
must be a non-negative integer. Now xαvλ = 0 and hαvλ = λ(hα)vλ. So
the maximal weight of the Sα-submodule M is λ(hα). Thus, λ(hα) ∈ Z≥0.
Since α ∈ ∆+ was chosen arbitrarily, we conclude that < λ, α > ∈ Z≥0 for
all α ∈ ∆+. �

Let Π = {α1, . . . , αn} be the set of simple roots. Define the weight lattice
to be

P (Π) :={λ ∈ h∗ |< λ, α >∈ Z for all α ∈ ∆+}
={λ ∈ h∗ |< λ, α >∈ Z for all α ∈ Π}.

Elements of P (Π) are called integral weights. The dominant integral weights
are the following:

P+(Π) = {λ ∈ h∗ |< λ, α >∈ Z≥0 for all α ∈ Π}.
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