
LIE ALGEBRAS: LECTURE 14
6 July 2010

CRYSTAL HOYT

1. Finite dimensional modules

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let

g = h⊕ (⊕α∈∆gα)

be the corresponding root space decomposition. Choose a set of simple roots
Π and corresponding decomposition ∆ = ∆+ ∐

∆−. Then one has a triangu-
lar decomposition, g = n−⊕ h⊕ n+, where n+ =

∑
α∈∆+ gα, n− =

∑
α∈∆− gα.

Set

Q :=
∑
α∈Π

Zα.

Q is called the root lattice. Let Q+ =
∑

α∈Π Z≥0α. Define a partial order on
h∗ by λ ≥ ν if λ− ν ∈ Q+.

Let Π = {α1, . . . , αn} be the set of simple roots. Define the weight lattice
to be

P (Π) :={λ ∈ h∗ |< λ, α >∈ Z for all α ∈ ∆+}
={λ ∈ h∗ |< λ, α >∈ Z for all α ∈ Π}.

Elements of P (Π) are called integral weights. The dominant integral weights
are the following:

P+(Π) = {λ ∈ h∗ |< λ, α >∈ Z≥0 for all α ∈ Π}.

Note that ∆ ⊂ P (Π). Define the fundamental weights ω1, . . . , ωn ∈ h∗ by the
condition < ωi, αj >= δij. Then P+(Π) =

∑n
i=1 Z≥0ωi.
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Example 1.1. Fundamental weights {ω1, ω2} for sl3 with Π = {α1, α2}:
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Example 1.2. If g = sln, then Π = {ε1 − ε2, . . . , εn−1 − εn}, where by εi we
mean the image of εi in (

∑n
j=1 Cεj)/C(

∑n
j=1 ε). Then ω1 = ε1, ω2 = ε1 + ε2,

and ωk =
∑k

i=1 εi for 1 ≤ r ≤ n− 1.

Let W be the Weyl group of g. For α ∈ Π and λ ∈ h∗ define

σα(λ) := λ− λ(hα)α.

Since W is generated by simple reflections, this defines an action of W on h∗.

Lemma 1.3. If w ∈ W and λ ∈ P (Π), then w(λ) ∈ P (Π).

Proof. It suffices to prove this for a simple reflection σα. Let β ∈ ∆+, then

〈σα(λ), β〉 = 〈λ, β〉 − λ(hα)〈α, β〉 ∈ Z.
�

Theorem 1.4. V (λ) is finite dimensional if and only if λ ∈ P+(Π). If
λ ∈ P+(Π), then the set of weights of V (λ) is permuted by W , with dimVµ =
dimVσ(µ) for σ ∈ W .

We have already proven that if V (λ) is finite dimensional then λ ∈ P+(Π).
This theorem has the following important corollary.

Corollary 1.5. The map λ → V (λ) induces a one-one correspondence be-
tween P+(Π) and the isomorphism classes of finite dimensional irreducible
g-modules.
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Outline of proof for Theorem 1.4. The idea is to show that the set of weights
of V (λ) is permuted by the Weyl group W , and hence is finite. Suppose now
that λ ∈ P+(Π). Fix a maximal vector v+ of V = V (λ) and setmi =< λ, αi >
for αi ∈ Π. For each simple root αi (1 ≤ i ≤ n) we have a subalgebra Si
isomorphic to sl(2), with generators xi, yi, hi. Denote the representation on
V by φ : g→ gl(V ).

(1) ymi+1
i v+ = 0. (For j 6= i, xjy

mi+1
i v+ = 0. Set ek = 1

k!y
k
i v

+. Then

xiek = (λ + 1 − k)ek−1. So ymi+1
i v+ is a maximal vector, and hence

zero.)

(2) For 1 ≤ i ≤ n, V contains a non-zero finite dimensional Si-module.
(The subspace spanned by yki v

+ for 1 ≤ k ≤ mi.)

(3) V is the sum of finite dimensional Si-submodules. (Let Ti be the set
of finite dimensional Si-submodules, and Ei be their sum. One can
check that if F ∈ Ti, then gF ∈ Ti for all g ∈ g. Then Ei is a non-zero
submodule. Since V is irreducible, Ei = V .)

(4) For 1 ≤ i ≤ n, φ(xi) and φ(yi) are locally nilpotent endomorphisms
of V (An element v ∈ V lies in a finite sum of finite dimensional Si-
submodules, and here φ(xi) and φ(yi) are nilpotent.)

(5) si = expφ(xi) expφ(−yi) expφ(xi) is a well-defined automorphism of
V . (expφ(xi) is defined on each finite dimensional Si-submodule, and
agrees on intersections.)

(6) If µ is any weight of V , then si(Vµ) = Vσi(µ) (where σi is the reflection
relative to αi). (In a finite dimensional submodule, si is the reflection
with respect to the root αi.)

(7) The set of weights of V is stable under W , and dimVµ = dimVσ(µ) for
σ ∈ W . (This follows since W is generated by simple reflections.)

(8) The set of weights of V is finite. We can reflect any weight to the
dominant Weyl chamber and its image must be ≤ λ in order for the
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weight space to be non-zero. (The set of dominant integral weights
µ ≤ λ is finite. Since W is finite, the set of W conjugates of this set is
finite. The set of weights of V is included in this set, and hence finite.)

(9) dimV is finite. (The set of weights is finite by the argument above,
and the dimension of each weight space is finite by a lemma from the
previous lecture about cyclic modules.)

�

2. Characters

Let g be a semisimple Lie algebra and let h be a Cartan subalgebra. Let
V be a finite dimensional g-module. A finite dimensional g-module V is a
weight module, i.e. V = ⊕λ∈h∗Vλ. (It follows from Weyl’s Theorem and a
lemma from last lecture that V = ⊕µ∈h∗V (µ)⊕nµ, and each V (µ) is a weight
module by the proposition on cyclic modules.)

Define the character of V to be the formal sum:

ch(V ) :=
∑
λ∈h∗

mλe
λ

where mλ = dimVλ. The elements eλ belong to a multiplicative group iso-
morphic to h∗ where multiplication is given by eλeµ = eλ+µ.

Example 2.1. Let V be the adjoint module of sl2. Here ∆ = {α,−α}. The
weight spaces of V have dimension 1. The character of V is

eα + e0 + e−α.

Lemma 2.2. Let V and W be finite dimensional g-modules. Then

(1) ch(V ⊕W ) = ch(V ) + ch(W )

(2) ch(V ⊗W ) = ch(V ) · ch(W )

Proof. The first statement follows from the fact that (V ⊕W )λ = Vλ ⊕Wλ.
The second statement follows from exercise 3 on homework 13. �
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Define an action of W on ch(V ) by:

w ch(V ) :=
∑
λ∈h∗

mλe
w(λ).

Proposition 2.3. Let g be a semisimple Lie algebra. If V is a finite dimen-
sional g-module, then ch(V ) is W invariant: w ch(V ) = ch(V ).

Proof. By Weyl’s Theorem, it suffices to prove this statement for irreducible
modules since ch(V ⊕W ) = ch(V ) + ch(W ). We already proved this claim
for irreducible finite dimensional modules while proving Theorem 1.4. �

Proposition 2.4. Let g be a semsimple Lie algebra. If V and W are finite
dimensional g-modules with ch(V ) = ch(W ), then V ∼= W .

Proof. Note that

ch V (λ) = eλ +
∑
µ<λ

mµe
µ.

Since V is finite dimensional, we have by Weyl’s Theorem that

V = ⊕V (λi)
⊕ni

for some set {λi} with multiplicities ni. Choose λ1 to be a maximal element
in this set. Then dimVλ1

= nλ1
and λ1 is a maximal weight of V . Since

ch(V ) = ch(W ), λ1 is also a maximal weight of W . Thus, W contains a
submodule isomorphic to V (λ1)

⊕n1. This follows from Weyl’s Theorem and
from the fact that an irreducible finite dimensional module is determine up
to isomorphism by its highest weight. Thus,

V = L⊕ V (λ1)
⊕n1, W = M ⊕ V (λ1)

⊕n1.

Thus ch(L) = ch(M). Since dimL < dimV , the result follows by induction
on dimension. �
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3. Weyl Character Formula

The Weyl character formula allows one to calculate the character of an
irreducible g-module as a function of its highest weight. Before stating the
theorem, we will introduce some notation.

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Let Π be a
base for ∆. Let

ρ =
1

2

∑
β∈∆+

β.

One can show that ρ(hα) = 1 for α ∈ Π, so that ρ ∈ P+(Π).

Theorem 3.1. For λ ∈ P+(Π) one has that

chV (λ) =

∑
w∈W (−1)l(w)ew(λ+ρ)−ρ∏

α∈∆+(1− eα)
.

For λ = 0, it follows that

1 = chV (0) =

∑
w∈W (−1)l(w)ew(0+ρ)−ρ∏

α∈∆+(1− eα)
.

Hence, ∏
α∈∆+

(1− eα) =
∑
w∈W

(−1)l(w)ew(ρ)−ρ.

Corollary 3.2. For λ ∈ P+(Π) one has that

chV (λ) =

∑
w∈W (−1)l(w)ew(λ+ρ)∑
w∈W (−1)l(w)ew(ρ) .

6


