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1. Representations

Let L be a Lie algebra. In this course, we shall restrict our attention
to the case that dimL is finite. A representation of a Lie algebra L is a
homomorphism

φ : L→ gl(V ).

A representation is called faithful if the kernel of φ is trivial. The dimension
of a representation is by definition the dimension of the vector space V .

Example 1.1. dimL = 1. Then L = ke, and φ : L → gl(V ) is determined
by the image of e. A representation is given by an endomorphism of V , φ(e).

Example 1.2. L is commutative. If L = 〈e1, . . . , en〉, then a homomorphism
φ : L → gl(V ) is determined by the images φ(ei). It is necessary and suf-
ficient that the endomorphisms φ(ei) commute in order for φ to define a
homomorphism.

Example 1.3. Natural representation. The Lie algebra gln admits an n-
dimensional representation, which is given by the identity map

id : gln → gl(kn).

Similarly, if L ⊆ gln we have a natural n-dimensional representation of g.

Let L be a Lie algebra, and x ∈ L. Define a linear transformation

adx : L→ L

by the formula adx(y) = [x, y].
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Lemma 1.4. adx ∈ DerL, i.e. adx is a derivation.

Proof. The fact that adx is a linear endomorphism follows from the linearity
of [−,−]. The fact that the Leibniz rule holds follows from the Jacobi identity
and anticommutativity of the bracket. Indeed, for all x, y, z ∈ L,

adx[y, z] = [x, [y, z]]

= [[x, y], z] + [y, [x, z]]

= [adx(y), z] + [y, adx(z)].

�

Derivations of the form adx are called inner derivations, and all others are
called outer derivations.

Lemma 1.5. Let L be a Lie algebra, and define a map

ad :L→ Der(L)

x 7→ adx .

The map ad : L→ Der(L) is a homomorphism of Lie algebras.

Proof. One simply has to check that

ad[x,y] = [adx, ady] = adx ◦ ady− ady ◦ adx,

which follows from the Jacobi identity. �

The map ad : L→ Der(L) is called the adjoint representation of L, and is
indeed a representation since Der(L) ⊆ gl(L) induces a map ad : L→ gl(L).
The center of a Lie algebra L is defined as

Z(L) = {z ∈ L | [z, x] = 0 for all x ∈ L}.
By the definition of the map ad, one has that Z(L) = Ker(ad). Hence, the
adjoint representation of a Lie algebra L is faithful if and only if Z(L) = 0.

L is abelian if and only if Z(L) = L. The center of a Lie algebra L is an
ideal in L. Another important ideal of L is the derived algebra of L, which
is defined as

[L,L] = span{[x, y] | x, y ∈ L}.
L is abelian if and only if [L,L] = 0. The quotient L/[L,L] is an abelian Lie
algebra.
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Lemma 1.6. If X ∈ [L,L] and φ : L → gln is a representation, then
Trφ(X) = 0.

Proof. Indeed, write X =
∑

[Ai, Bi], then

Tr(φ(X)) = Tr(φ(
∑

[Ai, Bi])) =
∑

Tr([φ(Ai), φ(Bi)]) = 0,

since Tr(ab) = Tr(ba) for all a, b ∈ gln. �

Example 1.7. If L = gln, then [L,L] = sln. So, if g is a subalgebra of gln,
then [g, g] is a subalgebra of sln.

Let L be a Lie algebra. The normalizer of a subalgebra K of L is defined
by

NL(K) = {x ∈ L | [x,K] ⊆ K}.
By the Jacobi identity, NL(K) is a subalgebra of L. In particular, it is the
largest subalgebra of L which contains K as an ideal. If K = NL(K), we call
K self normalizing. The centralizer of a subset X of L is

CL(X) = {y ∈ L | [y,X] = 0.}

By the Jacobi identity, CL(X) is a subalgebra of L. For example, CL(L) =
Z(L).

2. Nilpotent Lie algebras

Define a sequence of ideals of L (the lower central series) by

D1L := [L,L], D2L := [L,D1L], DkL := [L,Dk−1L].

L is called nilpotent if DnL = 0 for some n.

Example 2.1. The Lie algebra nn of strictly upper triangular matrices is
nilpotent. nn = {a ∈ gln | aij = 0 for i ≥ j}

Proposition 2.2. Let L be a Lie algebra.

(1) If L is nilpotent, then so are all subalgebras and homomorphic images
of L.

(2) If L/Z(L) is nilpotent, then so is L.
(3) If L is nilpotent and nonzero, then Z(L) 6= 0.
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Proof. (1)If K is a subalgebra of L, then DnK ⊆ DnL. If φ : L → M
is an epimorphism, then φ(DnL) = DnM . This follows from φ([L,L]) =
[φ(L), φ(L)] using induction.
(2)If L/Z(L) is nilpotent, then for some n DnL ⊆ Z(L). But then Dn+1 =
[L,Dn] ⊆ [L,Z(L)] = 0.
(3) If L is nilpotent with DnL = 0 and Dn−1L 6= 0, then Dn−1L ⊆ Z(L). �

An element x ∈ L is called ad-nilpotent if adx is a nilpotent endomorphism,
i.e. (adx)n = 0 for some n.

Lemma 2.3. If x ∈ gl(V ) is a nilpotent linear endomorphism of V , then x
is ad-nilpotent.

Proof. Let x ∈ gl(V ) be a nilpotent linear endomorphism. Then xn = 0 for
some n. Define two linear endomorphisms of gl(V ) as follows:

L : gl(V )→ gl(V ) R : gl(V )→ gl(V ).

y 7−→ xy y 7−→ yx

Since LR(y) = xyx = RL(y), we have that L and R commute. Since Ln(y) =
xny and Rn(y) = yxn, we have that Ln = 0 and Rn = 0. Hence, L and R are
nilpotent. Since adx = L−R, we conclude

(adx)2n = (L−R)2n =
2n∑

k=0

(
2n
k

)
L2n−k(−R)k = 0.

Therefore, x is ad-nilpotent. �

Note that id ∈ gl(V ) is ad-nilpotent, and is clearly not nilpotent.

Lemma 2.4. DnL = 0 if and only if for any x0, . . . , xn ∈ L,

[xn, [..[x2[x1, x0]]]] = (ad xn)(adxn−1) . . . (adx1)(x0) = 0.

This lemma implies that any element of a nilpotent Lie algebra is ad-
nilpotent. The converse of this statement is the following theorem.

Theorem 2.5. Engel’s Theorem. If a finite dimensional Lie algebra con-
sists of ad-nilpotent elements, then it is nilpotent.

First we will prove:
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Theorem 2.6. Let L be a subalgebra of gl(V ), where V is a non-zero finite
dimensional vector space (over k). If L consists of nilpotent endomorphisms,
then there exists a non-zero v ∈ V for which Lv = 0, (Lv = {xv | x ∈ L}).

Proof. We prove this by induction on dimL. If dimL = 1, then L = kx
where x is nilpotent. Then any non-zero v ∈ Kerx satisfies Lv = 0. Let
K be a proper subalgebra of L. Then K acts on the vector space L via the
adjoint action (i.e. ad : K → gl(L)), and by Lemma 2.3, the elements of K
act nilpotently. This induces an action of K on the vector space L/K, given
as follows. For each y ∈ K, we have a map

φ(y) : L/K −→ L/K

x+K 7→ [y, x] +K.

This map is well-defined since K is a subalgebra of L, and the map is linear
by the linearity of [, ]. The map φ : K → gl(L/K) is an homomorphism. This
can be checked using the Jacobi identity. The elements of K act nilpotently
the vector space L/K, since they act nilpotently on L by the adjoint action.

By applying the induction hypothesis to φ(K) ⊂ gl(L/K), there exists a
vector x+K 6= K in L/K which is killed by the action of K. In other words,
there exists x ∈ L such that x 6∈ K and [x,K] ⊆ K. Hence, K ′ = K + kx
is a subalgebra of L containing K as an ideal. Thus, any subalgebra of L
is an ideal with codimension 1 in another subalgebra of L. Since L is finite
dimensional, this implies that L has an ideal I of codimension 1: L = I⊕kx.

By induction hypothesis, the space V ′ := {v ∈ V | Iv = 0} is non-zero.
The space V ′ is x-invariant, since for any y ∈ I, v ∈ V ′ we have:

yxv = xyv + [y, x]v = 0.

Since x is nilpotent, we have a non-zero vector v ∈ V ′ which is killed by x.
Hence Lv = 0. �

Theorem 2.7. Engel’s Theorem. Let L be a finite dimensional Lie alge-
bra. If all elements of L are ad-nilpotent, then L is nilpotent.

Proof. Let L be a finite dimensional Lie algebra with all elements ad-nilpotent.
Hence, the Lie algebra adL ⊂ gl(L) satisfies the hypothesis of Theorem 2.6.

5



Thus, there exists an x ∈ L such that [L, x] = 0, and so Z(L) 6= 0. Denote
Z = Z(L). Let x+ Z, y + Z ∈ L/Z. Then

(ad(x+ Z))n(y + Z) = [x+ Z, [x+ Z, . . . [x+ Z, y + Z]]]

= [x, [x, . . . [x, y]]] + Z

= (adx)n(y) + Z.

Thus, L/Z(L) consists of ad-nilpotent elements and has smaller dimension
than L. So by induction L/Z(L) is nilpotent. By part (b) of Proposition 2.2,
we conclude that L is nilpotent. �

Let V be a finite dimensional vector space, say dimV = n. A flag in V is
a chain of subspaces

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V,

where dimVi = i. If x ∈ EndV , we say x stabilizes this flag if xVi ⊂ Vi for
all i.

Corollary 2.8. Let L be a subalgebra of gl(V ), where V is a non-zero finite
dimensional vector space (over k). If L consists of nilpotent endomorphisms,
then there exists a flag (Vi) in V stable under L, with xVi ⊂ Vi−1 for all i.
In other words, there exists a basis of V relative to which L is a subalgebra
of nn, where n = dimV .

Proof. We prove this by induction on the dimension of V . Let v1 ∈ V be any
non-zero vector such that Lv1 = 0 (existence is given by Theorem 2.6). Set
V1 = kv1. Let W = V/V1. Let x ∈ L ⊂ gl(V ). Since V1 ∈ Kerx, we have a
well-defined linear map x̄ : V/V1 → V . Composing this with the projection
map ρ : V → V/V1, we obtain a map φ(x) ∈ gl(W ). Since x is a nilpotent
endomorphism, φ(x) is nilpotent. Thus the subalgebra φ(L) ⊂ gl(W ) consists
of nilpotent endomorphisms, and dimW < dimV . By induction hypothesis,
there exists a flag in W stable under L and satisfying xWi ⊂ Wi−1 for all i.
Then

{0} ⊂ V1 ⊂ ρ−1(W1) ⊂ . . . ⊂ ρ−1(Wn−1)

is a flag in V stable under L which satisfies xVi ⊂ Vi−1 for all i. �
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