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1. REPRESENTATIONS

Let L be a Lie algebra. In this course, we shall restrict our attention
to the case that dim L is finite. A representation of a Lie algebra L is a
homomorphism

¢ L— gl(V).
A representation is called faithful if the kernel of ¢ is trivial. The dimension
of a representation is by definition the dimension of the vector space V.

Example 1.1. dim L = 1. Then L = ke, and ¢ : L — gl(V) is determined
by the image of e. A representation is given by an endomorphism of V', ¢(e).

Example 1.2. L is commutative. If L = (eq,...,e,), then a homomorphism
¢ : L — gl(V) is determined by the images ¢(e;). It is necessary and suf-
ficient that the endomorphisms ¢(e;) commute in order for ¢ to define a
homomorphism.

Example 1.3. Natural representation. The Lie algebra gl, admits an n-
dimensional representation, which is given by the identity map

id : gl, — gl(k").

Similarly, if L C gl, we have a natural n-dimensional representation of g.

Let L be a Lie algebra, and x € L. Define a linear transformation
ad, : L — L
by the formula ad,(y) = [z, y].



Lemma 1.4. ad, € Der L, 1.e. ad, is a derwation.

Proof. The fact that ad, is a linear endomorphism follows from the linearity
of [—, —]. The fact that the Leibniz rule holds follows from the Jacobi identity
and anticommutativity of the bracket. Indeed, for all x,y, z € L,
adw[yv Z] = [.I, [ya Z“
= llz, y], 2] + [y, [z, 2]]
- [adx(y)a Z] + [yu adx(z)]
O]

Derivations of the form ad, are called inner derivations, and all others are
called outer derivations.

Lemma 1.5. Let L be a Lie algebra, and define a map
ad :L — Der(L)

xr — ad, .
The map ad : L — Der(L) is a homomorphism of Lie algebras.
Proof. One simply has to check that

ad, , = [ad,,ad,] = ad, oad, —ad, o ad,,

which follows from the Jacobi identity. ]

The map ad : L — Der(L) is called the adjoint representation of L, and is
indeed a representation since Der(L) C gl(L) induces a map ad : L — gl(L).
The center of a Lie algebra L is defined as

Z(L)={z€ L||z,x2]=0forall z € L}.

By the definition of the map ad, one has that Z(L) = Ker(ad). Hence, the
adjoint representation of a Lie algebra L is faithful if and only if Z(L) = 0.

L is abelian if and only if Z(L) = L. The center of a Lie algebra L is an
ideal in L. Another important ideal of L is the derived algebra of L, which
is defined as

(L, L] = span{[x,y] | =,y € L}.
L is abelian if and only if [L, L] = 0. The quotient L/[L, L] is an abelian Lie

algebra.
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Lemma 1.6. If X € [L,L] and ¢ : L — gl, is a representation, then
Tro(X) = 0.

Proof. Indeed, write X = > [A;, B;], then

Te(p(X)) = Tr(¢() _[Ai, Bi])) = > Tr([¢(Ai), 6(By)]) =0,
since Tr(ab) = Tr(ba) for all a,b € gl,,. O

Example 1.7. If L = gl,, then [L, L] = sl,. So, if g is a subalgebra of gl,,
then [g, g] is a subalgebra of sl,.

Let L be a Lie algebra. The normalizer of a subalgebra K of L is defined
by
Ny(K)={x e L|[z,K] C K}.
By the Jacobi identity, N(K) is a subalgebra of L. In particular, it is the

largest subalgebra of L which contains K as an ideal. If K = N (K), we call
K self normalizing. The centralizer of a subset X of L is

Co(X)={yel|ly,X]=0}

By the Jacobi identity, C'r(X) is a subalgebra of L. For example, Cp(L) =
Z(L).

2. NILPOTENT LIE ALGEBRAS

Define a sequence of ideals of L (the lower central series) by
DL :=[L, L], DyL = [L, D1}, DyL :=[L,Dy_1L].
L is called nilpotent if D, L = 0 for some n.

Example 2.1. The Lie algebra n, of strictly upper triangular matrices is
nilpotent. n,, = {a € gl, | a;; =0 for i > j}

Proposition 2.2. Let L be a Lie algebra.

(1) If L is nilpotent, then so are all subalgebras and homomorphic images
of L.

(2) If L/Z(L) is nilpotent, then so is L.

(3) If L is nilpotent and nonzero, then Z(L) # 0.
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Proof. (1)If K is a subalgebra of L, then D,K C D,L. If ¢ : L — M
is an epimorphism, then ¢(D,L) = D, M. This follows from ¢([L,L]) =
[6(L), ¢(L)] using induction.

(2)If L/Z(L) is nilpotent, then for some n D,L C Z(L). But then D, =
IL,D,| C[L,Z(L)] =0.

(3) If L is nilpotent with D,,L =0 and D,,_1L # 0, then D, 1L C Z(L). O

An element x € L is called ad-nilpotent if ad x is a nilpotent endomorphism,
i.e. (adz)" = 0 for some n.

Lemma 2.3. If z € gl(V) is a nilpotent linear endomorphism of V', then x
s ad-nilpotent.

Proof. Let © € gl(V') be a nilpotent linear endomorphism. Then z" = 0 for
some n. Define two linear endomorphisms of gl(V') as follows:

L:gl(V) = gl(V) R:gl(V) = gl(V).
Yy — zy Yy — yx

Since LR(y) = xyx = RL(y), we have that L and R commute. Since L"(y) =
2™y and R"(y) = yz", we have that L™ = 0 and R" = 0. Hence, L and R are
nilpotent. Since adx = L — R, we conclude

(adz)? = (L — R)" = i ( 2/? ) L (—R)* =0.

k=0
Therefore, x is ad-nilpotent. ]

Note that id € gl(V) is ad-nilpotent, and is clearly not nilpotent.

Lemma 2.4. D,,L = 0 if and only if for any xq,...,x, € L,
[z, [..[22]21, 20]]]] = (ad zy,)(ad 1) ... (ad z1)(z0) = 0.

This lemma implies that any element of a nilpotent Lie algebra is ad-
nilpotent. The converse of this statement is the following theorem.

Theorem 2.5. Engel’s Theorem. If a finite dimensional Lie algebra con-
sists of ad-nilpotent elements, then it is nilpotent.

First we will prove:



Theorem 2.6. Let L be a subalgebra of gl(V'), where V' is a non-zero finite
dimensional vector space (over k). If L consists of nilpotent endomorphisms,
then there exists a non-zero v € V' for which Lv =0, (Lv = {xv | x € L}).

Proof. We prove this by induction on dim L. If dim L = 1, then L = kx
where x is nilpotent. Then any non-zero v € Kerx satisfies Lv = 0. Let
K be a proper subalgebra of L. Then K acts on the vector space L via the
adjoint action (i.e. ad : K — gl(L)), and by Lemma 2.3, the elements of K
act nilpotently. This induces an action of K on the vector space L/K, given
as follows. For each y € K, we have a map

oy): L/K — LJK
r+ K[y ]+ K.

This map is well-defined since K is a subalgebra of L, and the map is linear
by the linearity of [,]. The map ¢ : K — gl(L/K) is an homomorphism. This
can be checked using the Jacobi identity. The elements of K act nilpotently
the vector space L/K, since they act nilpotently on L by the adjoint action.

By applying the induction hypothesis to ¢(K) C gl(L/K), there exists a
vector x + K # K in L/K which is killed by the action of K. In other words,
there exists © € L such that z ¢ K and [z, K] C K. Hence, K/ = K + kx
is a subalgebra of L containing K as an ideal. Thus, any subalgebra of L
is an ideal with codimension 1 in another subalgebra of L. Since L is finite
dimensional, this implies that L has an ideal I of codimension 1: L = I P kx.

By induction hypothesis, the space V' := {v € V | Iv = 0} is non-zero.
The space V' is z-invariant, since for any y € I, v € V' we have:
yrv = zyv + [y, zJv = 0.

Since x is nilpotent, we have a non-zero vector v € V'’ which is killed by .
Hence Lv = 0. O

Theorem 2.7. Engel’s Theorem. Let L be a finite dimensional Lie alge-
bra. If all elements of L are ad-nilpotent, then L is nilpotent.

Proof. Let L be a finite dimensional Lie algebra with all elements ad-nilpotent.
Hence, the Lie algebra ad L C gl(L) satisfies the hypothesis of Theorem 2.6.
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Thus, there exists an x € L such that [L,z] = 0, and so Z(L) # 0. Denote
Z=Z(L). Let x+Z, y+ Z € L/Z. Then

(ad(x+2)"(y+ 2) =[x+ Zx+Z,...[x+ Z,y + Z]]]
=lz,[z,...[x,y]]] + Z
= (adx)"(y) + Z.

Thus, L/Z(L) consists of ad-nilpotent elements and has smaller dimension
than L. So by induction L/Z(L) is nilpotent. By part (b) of Proposition 2.2,
we conclude that L is nilpotent. ]

Let V be a finite dimensional vector space, say dimV =n. A flagin V is
a chain of subspaces

where dimV; = ¢. If x € End V', we say x stabilizes this flag if xV; C V; for
all 7.

Corollary 2.8. Let L be a subalgebra of gl(V'), where V' is a non-zero finite
dimensional vector space (over k). If L consists of nilpotent endomorphisms,
then there ezists a flag (V;) in V' stable under L, with xV; C V;_y for all i.
In other words, there exists a basis of V' relative to which L is a subalgebra
of n,, where n =dimV.

Proof. We prove this by induction on the dimension of V. Let v; € V be any
non-zero vector such that Lv; = 0 (existence is given by Theorem 2.6). Set
Vi=kv. Let W =V/Vi. Let x € L C gl(V). Since Vi € Kerz, we have a
well-defined linear map z : V/V; — V. Composing this with the projection
map p : V — V/Vi, we obtain a map ¢(x) € gl(W). Since z is a nilpotent
endomorphism, ¢(x) is nilpotent. Thus the subalgebra ¢(L) C gl(W) consists
of nilpotent endomorphisms, and dim W < dim V. By induction hypothesis,
there exists a flag in W stable under L and satisfying xW, C W;_; for all i.
Then
{0y cvicp (W) c...Cp (W)

is a flag in V' stable under L which satisfies zV; C V;_; for all i. O



