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1. SIMPLE 3-DIMENSIONAL LIE ALGEBRAS

Suppose L is a simple 3-dimensional Lie algebra over k, where k is alge-
braically closed. Then [L, L] = L, since otherwise either [L, L] would be a
non-trivial ideal or L would be abelian. Also, L is not nilpotent, because
otherwise Z (L) would be a non-trivial ideal in L. So, by Engel’s Theorem,
not every element of L is ad-nilpotent.

Choose H € L such that ad H is not nilpotent. Then ad H has a non-zero
eigenvalue A € k and a non-zero eigenvector X € L, so that [H, X]| = A X.
Since [H, H|] = 0, H is an eigenvector of ad H with eigenvalue zero. Now
Tr(ad H) = 0, because H € [L, L] = L. We choose a basis for L such that
adH is in Jordan normal form. Using the fact that the dimension of L is 3,
we see that the sum of the eigenvalues of ad H is zero. So there exists an
eigenvector Y for ad H with eigenvalue —\.

Since X, Y, H is an eigenbasis for the operator ad H, it is a basis for L. It
remains for us to express [X, Y] in terms of this basis, say
(X, Y] =aX +bY + cH, with a,b,c € k.
Now by the Jacobi identity,
[H,[X,Y]]=1[[H,X],Y]+ [X,[H, Y]] = A\X,Y] = A\[X,Y] =0.
Also, [H,[X,Y]] = [H,aX + bY + cH] = aAX — b\Y, which implies that
a,b =0 and [X,Y] = cH. Since [L, L] = L, ¢ must be non-zero. We may
rescale H so that A = 2, and we may then rescale X or Y so that c = 1. So

we see that if k is algebraically closed, then the only simple 3 dimensional
Lie algebra up to isomorphism is sly (k).

If k¥ = R, then it is possible that the eigenvalue A of adH is not in k. If
A € C\ R, then the complex conjugates A and A would both be eigenvalues
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of the real matrix ad H. Since Tr(ad H) = 0, we must have A =i and \ = —i
(after rescaling H). So over C,

00 0
adH =101 O
0 —1
Then over R in some basis,
00 O
adH =100 —1
01 0

So in some basis H, X, Y we have that [H, X] =Y and [H,Y] = —X. And as
before, we obtain [ X, Y] = ¢H for some non-zero ¢ € R. Then by multiplying
X and Y by an appropriate real scalar, we may assume that c is +1.

If c = —1, then we are in the previous case, since

Y. X+H|=X+H,
Y, X — H) = —(X - H),
X+ H, X — H)=2Y.
If ¢ =1, then we have
[H, X] =Y, [(X,Y]=H, Y,H| = X,

which we recognize as the Lie algebra on R?® with [,] given by the vector
product. This Lie algebra L is not isomorphic to sl when k£ = R, because
there does not exist an A € L such that ad A has a real non-zero eigenvalue.
Hence, when £ = R we have two distinct simple 3-dimensional Lie algebras.

2. LEMMA
Lemma 2.1. Let A and B be ideals in a Lie algebra L. Then
[A, B] := span{[a,b] | a € A, b€ B}
15 an ideal in L.

Proof. The set [A, B] is a vector subspace by definition, so we only need to
check that [L, [A, B]] C [A, B]. Let [z,[a,b]] € [L,[A,B]], withx € L,a € A
and b € B. By the Jacobi identity,

[IE, [av bH = Hxag]ab] + [CL, [:L‘,b]]



Since A and B are ideals, we have that [z,a] € A and [z,b] € B. Hence,
[z, [a,b]] € [A, B]. Since [L,[A, B]] is spanned by elements of this form, we
conclude that [L, [A, B]] C [A, BJ. O

3. SOLVABLE LIE ALGEBRAS
Define a sequence of ideals of L (the derived series) by
D'L :=[L, L], D?L := [D'L,D'L], DL .= [D* 'L, D"

L is called solvable if D" = 0 for some n.

Example 3.1. Nilpotent Lie algebras are solvable, because D'L C D;L for
all 7.

Example 3.2. The Lie algebra b,, of upper triangular matrices is solvable,
but is not nilpotent. b, = {a € gl, | a;; =0 for i > j}

Observe that if [L, L] is solvable then L is solvable, since they share the
same sequence of ideals. This statement is not true if we replace the word
“solvable” with “nilpotent”. A counter example is [b,,b,] = n, which is
nilpotent, but b,, is not nilpotent.

Proposition 3.3. Let L be a Lie algebra.

(1) If L is solvable, then so are all subalgebras and homomorphic images.
(2) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.
(3) If I, J are solvable ideals of L, then so is I + J.

Proof. (1)If K is a subalgebra of L, then D"K C D"L. If ¢ : L — M
is an epimorphism, then ¢(D"L) = D"M. This follows from ¢([L, L]) =
[6(L), ¢(L)] using induction.

(2) Suppose D"(L/I) = 0. Let m : L — L/I be the canonical projection
map. Then 7(D"L) = 0 implies D"L C I = Kerw. Then if D™I = 0 we
conclude that D" = D™(D"L) = 0.

(3) If I, J are ideals, then one can check that I+J := {a+b € Lla € I, b € J}
is an ideal. Note that I, J C I + J. By a standard isomorphism theorem

(I+J)/J=T/)(IN.J).



Suppose that I, J are solvable ideals of L. Then right hand side is solvable
since it is a homomorphic image of I. Hence (I + J)/J is solvable, and by
part (2) we conclude that I + J is solvable. O

Corollary 3.4. A Lie algebra L is solvable (nilpotent) if and only if ad L is
solvable (nilpotent).

Proof. “=" follows directly from part (1), since ad L is the image of the map
ad. For “«<" observe that ad L. = L/Ker(ad) = L/Z(L). The claim then
follows from part (2) and Proposition 2.2 (2), since the center Z (L) is abelian,
and hence solvable. O

The third part of this lemma yields the existence of a unique maximal
solvable ideal, called the radical of L and denoted Rad L. If Rad L = 0, then
L is called semisimple.

The quotient algebra L/Rad L is semisimple. A semisimple Lie algebra
has a trivial center. Hence, the adjoint representation of a semisimple Lie
algebra is faithful.

4. LIE’S THEOREM

In this course, we will now assume that our field [F is algebraically closed
and has characteristic zero, unless explicitly stated otherwise. We saw an
example illustrating the fact that working over R is not the same as working
over C.

Theorem 4.1 (Lie’s Theorem). Assume that the field F is algebraically closed
and has characteristic zero. Let L be a solvable subalgebra of gl(V'), with
dimV = n where n is non-zero and finite. Then V contains a common
eigenvector for all endomorphisms in L.

Thus, there ezists a flag (V;) in V which is stabilized by L, i.e. for all
x € L we have hat xV; C V; for all i. In other words, there exists a basis of
V' relative to which L is a subalgebra of b, where n = dim V.

Proof. The second statement follows directly from the first. We prove the
first statement by using induction on the dimension of L. If dim L = 1, then
L = Fz. Since [F is algebraically closed and dim V' is finite, x has an eigen-

vector v in V. Then v is an eigenvector for all elements of L. Now suppose
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that assertion holds when dim L < m.

First, we find an ideal of codimension 1. Since L is solvable, [L, L] # L.
Now any subspace of L which contains [L, L] is an ideal in L. Hence, L has
an ideal of codimension 1: L =1 & FZ.

Now by induction hypothesis, there exists a common eigenvector v € V for
all elements of I. So there is a linear function \ : I — [ such that for every
y € I we have y.v = A(y)v. Let

W={weV|yw=Ay)w for all y € I}.
Then v € W, so W # 0. One can show that W is a vector subspace of L.

We will show that L stabilizes W. Fix x € L and w € W. We need to
prove that x.w € W. In particular, we need to show that for all y € I,
y.(x.w) = My)z.w. Now

yo(waw) = 2. (yw) - 2,5l = Ay)aaw — Mz, y))w,

since [z,y] € I. Thus, we need to prove that A\([z,y]) =0, for all y € I. For
each k € N, let W}, denote the span of w, z.w, ..., 2" .w. Set Wy = 0. Let
n > 0 be the smallest integer for which W,, = W,,,;. Then x maps W,, into
W,,. Moreover dim W, = k for k < n.

We claim that for all y € I,
.2 w = \Ny)z*.w (mod W),

and we prove this by induction on k. For k = 0, this follows from the
definition of W. Suppose the claim holds for £k — 1. Now

Ml — [z, y]at .

yr*w = zyz
Since [ is an ideal, we have [z,y] € I. Then by induction hypothesis,
[, Y]z w = ([, y])2" w(mod Wy, _1)

and
yr"w = AMy)z"'w (mod Wj_y).

So [z, y]a*'w € W*. Hence, the claim follows.
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This proves that with respect to the basis w, z.w, ..., 2" tw, each y € I

is an upper triangular matrix with diagonal entries all equal to A\(y). In par-
ticular, Try = nA(y). Now the commutator [x,y| has trace zero. Thus,
0 = Tr[z,y] = nA([x,y]) implies that A([z,y]) = 0 (since we assumed
charF = 0).

Finally, since L stabilizes W and F is algebraically closed there exists an
eigenvector vy € W for Z, where L = I @ FZ. Thus v, is a common eigen-
vector for all of L. ]

Note . If L is a solvable finite dimensional Lie algebra and
¢:L— gl(V)

is a finite dimensional representation, then Lie’s Theorem applies to the image
o(L) C gl(V). In particular, Lie’s Theorem provides us with information
about the structure of a representation of a solvable Lie algebra.

Corollary 4.2. Let L be a solvable (finite dimensional) Lie algebra. Then
there exists a chain of ideals of L

O=LpclLiC---CL,=1L,
such that dim L; = 1.

Proof. Apply Lie’s Theorem to the image of the adjoint representation. A
subspace of L stable under the adjoint action is an ideal in L. [

Corollary 4.3. If L is a solvable (finite dimensional) Lie algebra, then [L, L]
s nilpotent.

Proof. Consider the adjoint representation ad : L — gl(L). By Lie’s Theo-
rem, there exists a basis such that the image ad(L) C b,,, where n = dim L.
Then ad([L, L]) = [ad(L),ad(L)] C n,. Hence, adz is nilpotent for any
x € [L, L]. By Engel’s theorem, we conclude that [L, L] is nilpotent. O



