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1. Motivation

Let L be a (finite dimensional) Lie algebra over a field F (where char F = 0
and F is algebraically closed). Recall, that the radical of L, Rad L, is defined
to be the maximal solvable ideal of L. A Lie algebra L is called semisimple
if its radical is zero. Notice that L/Rad L is semisimple.

A non-trivial theorem, called Levi’s Theorem, states that L is semidirect
product of its radical and a semisimple subalgebra. Hence, every finite dimen-
sional Lie algebra is isomorphic to the semi-direct product of a solvable Lie
algebra and a semisimple Lie algebra. This often allows one to reduce prob-
lems about general Lie algebras to problems about solvable and semisimple
Lie algebras.

Last time, we saw Lie’s Theorem, which gave us information about the
representations of solvable Lie algebras. In this course, we will study the
representation theory of complex semisimple Lie algebras.

2. Cartan’s Criterion

Recall that we now assume that a Lie algebra L is finite dimensional, and
that our field F is algebraically closed and has characteristic zero.

Theorem 2.1 (Cartan’s Criterion). Let L be a subalgebra of gl(V ), V finite
dimensional. Then L is solvable if and only if Tr(xy) = 0 for all x ∈ [L,L],
y ∈ L.

Proof. “⇒” If L is solvable, then by Lie’s Theorem there is a basis in which
all matrices y ∈ L are upper triangular. Then all x ∈ [L,L] are strictly upper
triangular. Thus, xy is strictly upper triangular, and Tr(xy) = 0.

For the proof of “⇐”, see Humphreys pages 17-20. �
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Corollary 2.2. A Lie algebra L is solvable if and only if Tr(ad x · ad y) = 0
for all x ∈ [L,L], y ∈ L.

Proof. By Corollary 3.4 from Lecture 3, L is solvable if and only if adL is
solvable. Now since ad[L,L] = [adL, adL], we have by Cartan’s Criterion
that adL is solvable if and only if Tr(adx ·ad y) = 0 for all x ∈ [L,L], y ∈ L.
The result follows. �

3. Killing form

A bilinear form B on a vector space V is a bilinear map B : V × V → F.
Let B be a bilinear form on V = Fn. Then there is a matrix M ∈ End(Fn)
such that B(x, y) = xTMy for all x, y ∈ V . It can be computed by letting
Mij = B(xi, xj) where {x1, . . . , xn} is the chosen basis for V = Fn.

A bilinear form B is called symmetric if

B(v, w) = B(w, v)

for all v, w ∈ V . A bilinear form on Fn is symmetric if and only if the
corresponding matrix is symmetric. Define the kernel of a symmetric bilinear
form B to be

KerB := {v ∈ V | B(v, w) = 0, for all w ∈ V }.
A symmetric bilinear form is called nondegenerate if its kernel is equal to
zero. A symmetric bilinear form on Fn is nondegenerate if and only if the
corresponding matrix has non-zero determinant.

Let B be a symmetric nondegenerate bilinear form on a vector space V ,
and let {v1, . . . , vn} be a basis for V . Then the dual basis of V relative to
B is defined to be the basis {w1, . . . , wn} which satisfies B(vi, wj) = δij. In
particular, [v1 · · · vn]tM [w1 · · ·wn] = I where M is the matrix corresponding
to B and I is the identity matrix. Note that the dual basis exists because M
and [v1 · · · vn]t are invertible, and moreover it is unique.

Let φ : L→ gl(V ) be a representation of L. A bilinear form B : V ×V → F
is called L-invariant (w.r.t. the representation φ : L→ gl(V )) if

B(φ(x)v, w) +B(v, φ(x)w) = 0, for all x ∈ L, v, w ∈ V.
If ad : L → gl(L) is the adjoint representation, then this condition can be
rewritten for a bilinear form B : L× L→ F as

B([xy], z) = B(x, [yz]), for all x, y, z ∈ L.
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A bilinear form B on L satisfying this condition is called invariant. If B is a
symmetric invariant bilinear form on L, we define the orthogonal complement
of an ideal I relative to B to be

I⊥ := {x ∈ L | B(x, y) = 0, for all y ∈ I}.
One can show that I⊥ an ideal in L. Indeed, the fact that I⊥ is a linear
subspace follows from the linearity of B. Now suppose x ∈ L and y ∈ I⊥.
Then for all z ∈ I, we have [xz] ∈ I and

B([xy], z) = −B([yx], z) = −B(y, [xz]) = 0.

Hence, [xy] ∈ I⊥ and so I⊥ is an ideal. In particular, the kernel of B is an
ideal of L since it is by definition equal to L⊥.

Let L be a Lie algebra. The form

κ(x, y) := Tr(ad x ad y)

is called the Killing form. The Killing form is symmetric invariant bilinear
form. The fact that κ is invariant follows from the following calculation. If
A,B,C ∈ gln, then

Tr([A,B]C) =Tr(ABC)− Tr(B(AC))

= Tr(ABC)− Tr((AC)B)

= Tr(A[BC]).

Hence, κ([x, y], z) = κ(x, [y, z]) for all x, y, z ∈ L.

Lemma 3.1. Let I be an ideal of L. If κ : L× L→ F is the Killing form of
L and κ

I
: I × I → F is the Killing form of I, then κ

I
= κ |

I×I
.

Proof. First we need a fact from linear algebra. Suppose that W is a subspace
of the (finite dimensional) vector space V , and φ is an endomorphism of V
which maps V into W , then Tr(φ) = Tr(φ |

W
). (To see this, extend a basis

of W to a basis for V and consider the corresponding matrix for φ.) Now if
x, y ∈ I, then (ad x ad y) is an endomorphism of L which maps L into I,
since I is an ideal. Thus, for x, y ∈ I,

Tr((ad x ad y)) = Tr((ad x ad y) |
I
) = Tr(ad

I
x ad

I
y).

Therefore, κ |
I×I

= κ
I
. �
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Theorem 3.2 (Criterion for semisimplicity). Let L be a Lie algebra. Then
L is semisimple if and only if its Killing form is nondegenerate.

Proof. Let S denote the kernel of κ.
“⇒” Suppose that Rad L = 0. By definition, Tr(ad x ad y) = 0 for all

x ∈ S and y ∈ L, and in particular for all y ∈ [S, S]. By the corollary
to Cartan’s Criterion, S is solvable. Now since S is also an ideal in L,
S ⊆ Rad L = 0.

“⇐” Suppose S = 0. To prove that L is semisimple, it suffices to show
that every abelian ideal I of L is contained in S. Suppose x ∈ I and y ∈ L.
Then (ad x ad y) maps L into I and maps I to 0 (since [I, I] = 0). So
(ad x ad y)2 maps L to 0. Hence (ad x ad y) is nilpotent, which implies
0 = Tr(ad x ad y) = κ(x, y). Hence, I ⊆ S = 0. Thus Rad L = 0. �

A Lie algebra L is said to be a direct sum of ideals I1, . . . , It provided each
Ij is an ideal in L and L = I1 + · · · + It is a direct sum as subspaces. Then
[Ii, Ij] ⊂ Ii ∩ Ij = 0 when i 6= j. We write L = I1 ⊕ · · · ⊕ It, and can view L
as a direct product (external direct sum) of the Lie algebras Ij.

Lemma 3.3. Suppose L is a direct sum of ideals L1, . . . , Lt which are simple
(as Lie algebras). Then every simple ideal of L coincides with one of the Li,
and L = [LL]. The Lie algebra L is semisimple.

Proof. Let I be a simple ideal of L, then I = [II] ⊂ [IL] ⊂ I. Then

I = [IL] = [IL1]⊕ · · · ⊕ [ILt],

and all but one summand must be zero since I is simple. Say I = [ILi].
Then I = [ILi] ⊂ Li because Li is an ideal. Hence, I = Li since Li is simple.

Next we show that L = [LL]. Now [LiLj] ⊂ Li ∩ Lj = 0 when i 6= j, and
[LiLi] = Li since Li is simple, thus

[L,L] = [L1, L1]⊕ · · · ⊕ [Lt, Lt] = L1 ⊕ · · · ⊕ Lt = L.

Now we show that each ideal J of L is a sum of certain simple ideals,
Ji = J ∩ Li ⊂ Li so that each Ji equals Li or 0. Clearly, J ⊇ J1 ⊕ · · · ⊕ Jt.
Let x ∈ J and write x = x1 + · · · + xn such that xi ∈ Li. Then if xi 6= 0,
we have Ji ⊃ [x, Li] = [xi, Li] 6= 0 since Z(Li) = 0 (Li is simple). Then
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Ji is a non-zero ideal in Li, and hence Ji = Li. Thus, xi ∈ Ji. Therefore,
x ∈ J1 ⊕ · · · ⊕ Jt. We conclude that J = J1 ⊕ · · · ⊕ Jt.

Finally, by applying the first part of the lemma to the ideal Rad L, we have
[Rad L,Rad L] = Rad L. But this implies that Rad L = 0, since the radical
of L is solvable. �

Theorem 3.4. Let L be a semisimple Lie algebra. Then there exist simple
ideals L1, . . . , Lt of L, such that L = L1 ⊕ . . .⊕ Lt.

Proof. Let I be an arbitrary ideal of L. Then I⊥ := {x ∈ L | κ(x, y) =
0, for all y ∈ I} is also an ideal. By the corollary of Cartan’s Criterion, the
ideal I ∩ I⊥ is solvable (since κ(I ∩ I⊥, I ∩ I⊥) = 0) and hence zero. Since the
Killing form is non-degenerate we have that dim I + dim I⊥ = dimL, and we
conclude that L = I ⊕ I⊥.

The proof is by induction on the dimension of L. If L is simple, then we
are done. Otherwise, take a minimal nonzero ideal L1. Then L = L1 ⊕ L⊥1 .
Suppose I is an ideal in L1. Let x ∈ L = L1 ⊕ L⊥1 and y ∈ I. Write
x = a+ b where a ∈ L1 and b ∈ L⊥1 . Then [x, y] = [a+ b, y] = [a, y] + [b, y] =
[a, y] ∈ I since I is an ideal in L1. Hence, I is an ideal in L. Thus, L1 is
simple by minimality. Also, L⊥1 is semisimple by the same argument, since
a non-trivial solvable ideal in L⊥1 would be a non-trivial solvable ideal in L.
Thus, we can apply the induction hypothesis to L⊥1 to receive the desired
decomposition. �

Corollary 3.5. If L is semisimple then L = [LL], and all ideals and ho-
momorphic images of L are semisimple. Moreover, each ideal is a sum of
certain simple ideals of L.

Remark 3.6. We have shown that a Lie algebra is semisimple if and only if
it is a direct product of simple Lie algebras.

4. Automorphisms

Let L be a Lie algebra. Then an automorphism of L is a Lie algebra
homomorphism which is an isomorphism of L onto itself.

Example 4.1. Suppose L is a subalgebra of gl(V ). Let GL(V ) to be the
group of invertible endomorphisms of a vector space V . If g ∈ GL(V ) and if
gLg−1 = L, then the map x 7→ gxg−1 is an automorphism of L. For example,
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if L = gl(V ) or L = sl(V ) then the condition gLg−1 = L holds for any
g ∈ GL(V ).
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