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1. MODULES

Let L be a Lie algebra. A vector space V' with an operation

LxV =V
(x,v) — zw

is called an L-module if for all x,y € L, v,w € V, a,b € F the following
conditions hold:

(1) (ax + by).v = a(x.v) + b(y.v)

(2) x.(av + bw) = a(x.v) + b(x.w)

(3) [xy].v = xy.v - y.x.V.

Example 1.1. If ¢ : L — gl(V) is a representation of L, then V is an L-
module via the action x.v = ¢(x)v. Conversely, if V' is an L-module then
¢(x)v = x.v defines a representation.

Fix a Lie algebra L, and let V and W be L-modules. An L-module homo-

morphism is a linear map f : V — W such that f(z.v) = x.f(v) forallz € L
and v € V. The kernel of this map is an L-submodule of V.

If f:V — W is an L-module homomorphism and is an isomorphism of
vector spaces, then f~!: W — V is also an L-module homomorphism. In
this case, we call f an isomorphism of L-modules, and the modules V and
W are called equivalent representations of L.

An L-module V is called irreducible (or simple) if it has precisely two L-
submodules: itself and 0. A direct sum of L-modules Vi,...,V; is a direct
sum of vector spaces V; @ --- @ V;, with the action of L defined:

x.(V1, V2, ..., 0) = (T.U1, Vg, . .., TV,
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An L-module V is called completely reducible (or semisimple) if V' is a direct
sum of irreducible of L-submodules. If V' is finite dimensional, then this is

equivalent to the condition that each L-submodule W of V' has a compliment
submodule W’ such that V =W @ W',

Example 1.2. If L is a one dimensional Lie algebra, say L = [Fz. Then the
module V' given by the representation ¢ : L — gl, with

¢<x>:(33)

is not completely reducible. Indeed, let {vi,v2} be a basis for the vector
space V. Then v; is an eigenvector for ¢(x) with eigenvalue 0. So Fuy is
an L-submodule of V. Now suppose M = F(av; + bvs) is the 1-dimensional
compliment submodule to Fvy, so that V = Fv; & M is a direct sum of
modules. Then b # 0, since {vy, (av; + bvy)} is a vector space basis for V.
But ¢(x)(avy + bvg) = bvy, so M is not a submodule. Hence, the module V
is not completely reducible.

Example 1.3. Two representations ¢ : L — gl(V') and ¢9 : L — gl(W) are
equivalent if there exists a linear isomorphism f : V' — W such that f(z.v) =
x.f(v) for all v € V| or equivalently, such that f(¢1(z)v) = ¢a(x) f(v) for all
x € L, v € V. Thus, the representations ¢ and ¢ are equivalent if and only
if there exists a linear isomorphism f : V' — W such that f¢;(z)f™ = ¢o(z)
for all x € L. So two representations are equivalent when one is obtained
from the other by conjugation, i.e. a change a basis if V= W as vector spaces.

Let L be a one dimensional Lie algebra, say L. = Fx. Then a representa-
tion ¢ : L — gl(V) is determined by the image of x, i.e. it is determined by
the endomorphism ¢(z) € gl(V'). Hence, the classification of n-dimensional
representations is equivalent to the classification of square matrices up to
conjugation. When the base field F is algebraically closed, there is a bi-
jection between isomorphism classes of n-dimensional representations and
n X n-matrices in Jordan normal form. In this case, simple modules are one
dimensional and finite dimensional modules are not completely reducible.

Why? Because, an upper triangular matrix preserves a flag of submodules,
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so a module can only be simple if it is one dimensional. Also, not all fi-
nite dimensional modules are completely reducible, since not all matrices are
diagonalizable.

Example 1.4. Let L be a solvable Lie algebra over a field F which is al-
gebraically closed and has characteristic zero. Then all irreducible finite di-
mensional representations of L are 1-dimensional. This follows immediately
by applying Lie’s Theorem to the image of the representation, ¢(L) C gl,,.
If n # 1, then we have a non-trivial flag of submodules.

Denote by Homp(V, W) the collection of all L-module homomorphisms
from V to W. This is a vector space over IF, since ifa € F, f,g € Homp(V, W)
then af, f+ g € Homp(V,W), where (f + ¢g)(v) := f(v) + g(v).

Lemma 1.5 (Schur’s Lemma). Suppose that the base field F is algebraically
closed. Let V' be a simple finite dimensional module over a Lie algebra L.
Then Homp(V,V) =F -id. Thus, the only endomorphisms of V' commuting
with ¢(L) are the scalars.

Proof. Let f € Homp(V, V). For any ¢ € F the linear operator (f —c-id) is an
L-module homomorphism. It must be either injective or zero, since the kernel
is a submodule of V. If f : V — V is injective then it is an isomorphism,
since V' is finite dimensional. Thus, (f — ¢ - id) is either an isomorphism or
zero. If ¢ is an eigenvalue of f, then (f —c-id) has a non-zero kernel, implying
(f —c-id) = 0. Hence, f = c¢-id for some ¢ € F, since F is algebraically
closed. If f:V — V is an endomorphism of the simple module V' such that
foo(x)=¢(x)o f for all z € L, then f = c-id for some ¢ € F. O

Given an L-module V' we construct the dual module using the dual vector
space V*. We define an action of L on V* as follows: for f e V*,x € L,v eV,
let (z.f)(v) = —f(x.v). One can check that ([zy].f)(v) = (z.y —y.x).f)(v).



2. CASIMIR ELEMENT

Let L be a semisimple Lie algebra, and let ¢ : L — gl(V') be a representa-
tion. Define a symmetric invariant bilinear form (G(z,y) = Tr(¢(z)¢(y)) on
L, called the trace form. The kernel of (x,y), denote Ker 3, is a ideal in
L. If ¢ is a faithful representation, then §(x,y) is nondegenerate. Indeed,
by Cartan’s Criterion, ¢(Ker () is a solvable ideal in ¢(L). If ¢ is a faithful
representation, so that L = ¢(L) C gl(V), then Ker 5 (= ¢(Ker )) is a
solvable ideal in L (= ¢(L)). Since L is semisimple this implies Ker § = 0.

Let L be a Lie algebra, and let 3 be a nondegenerate symmetric invariant
bilinear form on L. Let {z1,...,z,} be a basis of L, and let {y1,...,y,}
be dual basis relative to 3, i.e. B(x;,y;) = d;;. The dual basis exists when
B(z,y) is symmetric nondegenerate, because the corresponding matrix Mp
is invertible, so we can solve the following system for the vectors y;:

]
T
X
P M (v v o own ) =1
7,

For each x € L, we can write [z, z;] = 3, ajx;j and [z, y;] = >, bijy;. Then

we can show that a;; = —by; using the fact that ( is invariant.
Qi = Z aij5jk = Z Clz‘jﬁ(ﬂ?j, yk)
J J

= ﬁ([x7x2]7yk) = —ﬂ([fi,ﬂ,yk) - _ﬁ(xb [xayk])
= — Zbkjﬁ(%,yj) = —by;

Let ¢ : L — gl(V') be a representation of L, and let

c(B) = Z ¢(xi)p(y:) € End (V).
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Now if x,y, z € gl(V), then [z, yz] = [z, y]z + y[z, 2]. So
[6(x), co(B)] = Y o), olx)lo(y) + Z¢(xi)[¢($)a¢(yz‘)]

:Zaij¢(xj)¢(yi) + szﬂb(l’z)ﬁb(yg)

= 0.
Thus, ¢s(3) is an endomorphism of V' which commutes with ¢(L).

Now suppose ¢ : L — gl(V') is a faithful representation, so that the trace
form G(z,y) = Tr(¢(x),d(y)) is nondegenerate. Fix a basis {xi,...,2,}.
Then ¢, is called the Casimir element of ¢, and

Tees) = 3 Te(0(2)o(yi)) = Y Alais ) = dim L.

If ¢ is an irreducible representation, then by Schur’s Lemma, ¢4 is a scalar
(equal to dim L/ dim V'), and so is independent of the choice of basis.

Example 2.1. Let L = sl5(F) and consider the natural representation ¢ :
L — gl(V), dimV = 2. The dual basis with respect to the trace form of the

3
standard basis {e, h, f} is: {f,h/2,e}. So cy =ef + hh+ fe = ( (2) g )
2

If L is semisimple but ¢ : L — gl(V') is not faithful, then L = ker ¢ @ L'.
Then the restriction of ¢ to L' is a faithful representation with ¢(L) = ¢(L').
The Casimir element ¢4 of ¢ : L — gl(V) is defined to be the Casimir element
of ¢ : L' — gl(V). It commutes with ¢(L) since ¢(L) = ¢(L').



