LIE ALGEBRAS: LECTURE 8 25 May 2010

CRYSTAL HOYT

1. ROOT SPACE DECOMPOSITION (CONTINUED)

Let \mathbb{F} be an algebraically closed field with characteristic zero. Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{F} , and let \mathfrak{h} be a Cartan subalgebra. Let

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$$

be the root space decomposition, where $\Delta \subset \mathfrak{h}^*$ is the set of roots of the \mathfrak{g} .

Recall that for $\alpha \in \mathfrak{h}^*$ we define $t_{\alpha} \in \mathfrak{h}$ to be the unique element such that $\alpha(h) = \kappa(t_{\alpha}, h)$ for all $h \in \mathfrak{h}$. We define $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$. Then if $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $\kappa(x_{\alpha}, y_{\alpha}) = 1$, then $\{x_{\alpha}, h_{\alpha}, y_{\alpha}\}$ are a basis for a subalgebra S_{α} which is isomorphic to the standard \mathfrak{sl}_{2} . Last time, we showed that for each α there exists a subalgebra of this form. The next proposition implies that this subalgebra is uniquely determined for each $\alpha \in \Delta$.

Proposition 1.1. If $\alpha \in \Delta$, then dim $\mathfrak{g}_{\alpha} = 1$ and $\mathbb{F}\alpha \cap \Delta = \{\pm \alpha\}$.

Proof. Fix $\alpha \in \Delta$, and choose $S_{\alpha} \cong \mathfrak{sl}(2)$ (see Proposition 2.6 in Lecture 7) Let

$$M = \mathfrak{h} \oplus \left(\bigoplus_{c \in \mathbb{F} \setminus \{0\}} \mathfrak{g}_{c\alpha} \right).$$

Then M is a finite dimensional S_{α} module. Hence, it decomposes into a direct sum of irreducible modules. The weights are 0 (with multiplicity dim \mathfrak{h}) and $c\alpha(h_{\alpha}) = 2c$. Since these must be integers, we have that $c \in \frac{1}{2}\mathbb{Z} \setminus \{0\}$.

Now Ker $\alpha = \{h \in \mathfrak{h} \mid \alpha(h) = 0\}$ is a subspace of codimension 1 in \mathfrak{h} , and S_{α} acts trivially on Ker α for $h \in \text{Ker } \alpha$ since

$$[x_{\alpha}, h] = -\alpha(h)x_{\alpha} = 0.$$

Also, S_{α} is an irreducible S_{α} -submodule of M. Now Ker α and S_{α} exhaust all occurrences of the weight 0 in the module M. Hence, the only even weights occuring in M are 0 and 2. In particular, $c \neq 2$ which implies that 2α is never a root. Equivalently, $\frac{\alpha}{2}$ is never a root. Hence, 1 is not a weight. Thus

we have found all of the weights of M occurring in Ker α and S_{α} . Therefore, $M = \mathfrak{h} + S_{\alpha}$ and the proposition follows.

Set $\langle \beta, \alpha \rangle := \beta(h_{\alpha})$. Note that $\langle \cdot, \cdot \rangle$ is linear in the first argument.

Proposition 1.2. If $\alpha, \beta \in \Delta$, then $\langle \beta, \alpha \rangle \in \mathbb{Z}$ and $\beta - \langle \beta, \alpha \rangle \alpha \in \Delta$. If $\beta \neq \pm \alpha$, let r, q be the largest integers for which $\beta - r\alpha$, $\beta + q\alpha$ are roots. Then all $\beta + i\alpha \in \Delta$ for $-r \leq i \leq q$, and $\langle \beta, \alpha \rangle = r - q \in \mathbb{Z}$. (Note that this is called an α -string through β .) Thus, $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.

Proof. Fix $\alpha, \beta \in \Delta$, and choose $S_{\alpha} \cong \mathfrak{sl}(2)$. The proposition is clear if $\beta = \pm \alpha$, so suppose that $\beta \neq \pm \alpha$. Set $K = \sum_{i \in \mathbb{Z}} \mathfrak{g}_{\beta+i\alpha}$. Then K is a S_{α} -submodule of \mathfrak{g} with one dimensional weight spaces and integral weights $\langle \beta, \alpha \rangle + 2i$. Thus, $\langle \beta, \alpha \rangle \in \mathbb{Z}$. Since 0 and 1 can not both occur as weights, K is irreducible. By $\mathfrak{sl}(2)$ theory, the weights are $\beta - r\alpha, \ldots, \beta, \ldots, \beta + q\alpha$. Since $(\beta - r\alpha)(h_{\alpha}) = -(\beta + q\alpha)(h_{\alpha})$ we have that

$$\langle \beta, \alpha \rangle = \beta(h_{\alpha}) = r - q.$$

Since $\beta + i\alpha \in \Delta$ when $-r \leq i \leq q$, we conclude that

$$\beta - < \beta, \alpha > \alpha = \beta + (q - r)\alpha \in \Delta.$$

2. Euclidean space

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Recall, that since the Killing form is non-degenerate when restricted to \mathfrak{h} , we may define a pairing between \mathfrak{h} and \mathfrak{h}^* as follows: for $\lambda \in \mathfrak{h}^*$ define t_{λ} to be the unique element of \mathfrak{h} satisfying $\lambda(h) = \kappa(t_{\lambda}, h)$ for all $h \in \mathfrak{h}$. Then we have a non-degenerate symmetric bilinear form on \mathfrak{h}^* defined by

$$(\lambda,\mu) := \kappa(t_{\lambda},t_{\mu}).$$

Then define $\langle \beta, \alpha \rangle := \beta(h_{\alpha}) = \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$. Note that $\langle \beta, \alpha \rangle$ is not symmetric. Since Δ spans \mathfrak{h}^* , we can choose a basis $\{\alpha_1, \ldots, \alpha_t\} \subset \Delta$ for \mathfrak{h}^* .

Lemma 2.1. Let E_Q be the rational span of $\{\alpha_1, \ldots, \alpha_t\}$, then $\Delta \subset E_Q$ and $\dim_{\mathbb{Q}} E_Q = t$.

Proof. If $\beta \in \Delta$, then we can write β uniquely as $\beta = \sum_{i=1}^{t} c_i \alpha_i$. We claim that $c_i \in \mathbb{Q}$. Now for $i = 1, \ldots, t$,

$$(\beta, \alpha_j) = \sum_{i=1}^t c_i(\alpha_i, \alpha_j)$$

By multiplying by $\frac{2}{(\alpha_j,\alpha_j)}$ we obtain for each $j=1,\ldots,t$:

$$\langle \beta, \alpha_j \rangle = \sum_{i=1}^t \langle \alpha_i, \alpha_j \rangle c_i$$

Since $\{\alpha_1, \ldots, \alpha_t\}$ is a basis and the form is non-degenerate, the matrix $A_{ij} := (\langle \alpha_i, \alpha_j \rangle)$ is non-singular and hence invertible. Since this is a system of integral equations, the solution will be rational. Therefore, $c_i \in \mathbb{Q}$.

Lemma 2.2. The form (-,-) is a positive definite symmetric bilinear form on E_Q , .

Proof. The form (-,-) is symmetric and bilinear by definition, because the Killing form is symmetric and bilinear. First, we must show that for any $\lambda, \mu \in E_Q$ we have $(\lambda, \mu) \in \mathbb{Q}$. It suffices to show this is true for any $\alpha, \beta \in \Delta$ since E_Q is defined to be the rational span of the roots $\{\alpha_1, \ldots, \alpha_t\}$ and the form (-,-) is bilinear. Now we have that for $\lambda, \mu \in E_Q$,

$$(\lambda, \mu) = Tr(\text{ad } t_{\lambda} \text{ad } t_{\mu}) = \sum_{\alpha \in \Delta} \alpha(t_{\lambda}) \alpha(t_{\mu}) = \sum_{\alpha \in \Delta} (\alpha, \lambda)(\alpha, \mu).$$

In particular, for $\beta \in \Delta$

$$(\beta, \beta) = \sum_{\alpha \in \Lambda} (\alpha, \beta)^2.$$

Then by multiply both sides by $\frac{4}{(\beta,\beta)^2}$ we obtain

$$\frac{4}{(\beta,\beta)} = \sum_{\alpha \in \Delta} \langle \alpha, \beta \rangle^2 \in \mathbb{Z}.$$

Hence, $(\beta, \beta) \in \mathbb{Q}$ for all $\beta \in \Delta$. Then for $\alpha, \beta \in \Delta$,

$$\frac{2(\alpha,\beta)}{(\beta,\beta)} = \langle \alpha,\beta \rangle \in \mathbb{Z}$$

implies that $(\alpha, \beta) \in \mathbb{Q}$.

So for $\lambda \in E_Q$, we have $(\lambda, \lambda) = \sum_{\alpha \in \Delta} (\alpha, \lambda)^2 \ge 0$. If $\lambda \ne 0$, this must be strict inequality since the Killing form is non-degenerate on \mathfrak{h} , and Δ spans \mathfrak{h} . Therefore, (-, -) is positive definite.

Let E be the real vector space obtained by extending the base field of E_Q to \mathbb{R} ($E := \mathbb{R} \otimes_{\mathbb{Q}} E_Q$). Then E is an inner product space, i.e. a finite dimensional vector space over \mathbb{R} with a positive definite symmetric bilinear form.

Lemma 2.3. A real finite dimensional inner product space E is a Euclidean space (i.e. a real vector space with the dot product).

Proof. Let E be a real finite dimensional inner product space E with inner product (-,-). Then since (-,-) is positive definite we can define length on E by $||v|| = \sqrt{(v,v)}$. We define the distance between two vectors v,w to be ||v-w||. The Cauchy-Schwartz inequality follows: $|(v,w)| \leq ||v|| ||w||$. (For $y \neq 0$ by let $r = (y,y)^{-1}(x,y)$ and use the fact that $0 \leq (x-ry,x-ry)$.) We define the angle between two vectors x,y to be

$$\theta = \cos^{-1}\left(\frac{(v,w)}{||v|| \ ||w||}\right)$$

with $0 \le \theta < \Pi$, which is well defined by the Cauchy-Schwartz inequality. Since E is finite dimensional, we can use the Gram-Schmidt process to find an orthonormal basis $\{v_1, \ldots, v_n\}$ with respect to the inner product. Then $(v_i, v_j) = \delta_{ij}$, and in this basis (-, -) is the dot product and E is a Euclidean space.

In summary, we have proven:

Theorem 2.4. Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let Δ be the set of roots for \mathfrak{h} . Then there exists a Euclidean space E with $E \subset \mathfrak{h}^*$ and dim $E = \dim \mathfrak{h}$. In addition,

- (1) Δ is finite, spans E, and $0 \notin \Delta$.
- (2) If $\alpha \in \Delta$, then $\mathbb{Z}\alpha \cap \Delta = \{\pm \alpha\}$.
- (3) For all $\alpha, \beta \in \Delta$, $\langle \beta, \alpha \rangle \in \mathbb{Z}$.
- (4) If $\alpha, \beta \in \Delta$, then $\beta \langle \beta, \alpha \rangle \alpha \in \Delta$.

3. Abstract root systems

Let E be a Euclidean space with inner product (\cdot, \cdot) . Define $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ for $\alpha, \beta \in E$. A non-zero vector $\alpha \in E$ determines a reflection $\sigma_{\alpha} \in GL(E)$ defined by

$$\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha.$$

Then σ_{α} fixes the hyperplane $P_{\alpha} = \{\beta \in E \mid (\beta, \alpha) = 0\}$ and sends α to $-\alpha$. A subset Δ in a Euclidean space E is called a *root system* if it satisfies the following axioms:

- (1) Δ is finite, spans E, and does not contain 0.
- (2) If $\alpha \in \Delta$, then $\Delta \cap \mathbb{Z}\alpha = \{\pm \alpha\}$.
- (3) For all $\alpha, \beta \in \Delta$, $\langle \beta, \alpha \rangle \in \mathbb{Z}$.
- (4) If $\alpha \in \Delta$, then σ_{α} leaves Δ invariant.

Elements of Δ are called *roots*. The dimension of E is called the *rank* of Δ .

The Weyl group, denoted by W, is the subgroup of GL(E) generated by the reflections σ_{α} for $\alpha \in \Delta$.

Lemma 3.1. Let Δ be a root system in E, with Weyl group W. If $\sigma \in GL(E)$ leaves Δ invariant, then $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)}$ for all $\alpha \in \Delta$, and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$.

Proof. First we show that if σ is refection preserving the root system Δ and sending α to $-\alpha$ for some $\alpha \in \Delta$, then $\sigma = \sigma_{\alpha}$. Let $\tau = \sigma \sigma_{\alpha}$. Then τ preserves Δ and $\tau(\alpha) = \alpha$. Now τ acts as the identity on $\mathbb{R}\alpha$ and on $E/\mathbb{R}\alpha$, so all eigenvalues of τ are equal to 1. Because Δ is finite, there is some integer $n \geq 1$ such that $\tau(\beta) = \beta$ for all $\beta \in \Delta$. Since Δ spans E, this implies $\tau^n = 1$. Hence, τ is diagonalizable with diagonal entries equal to 1. Therefore, $\tau = 1$ implying $\sigma = \sigma_{\alpha}$.

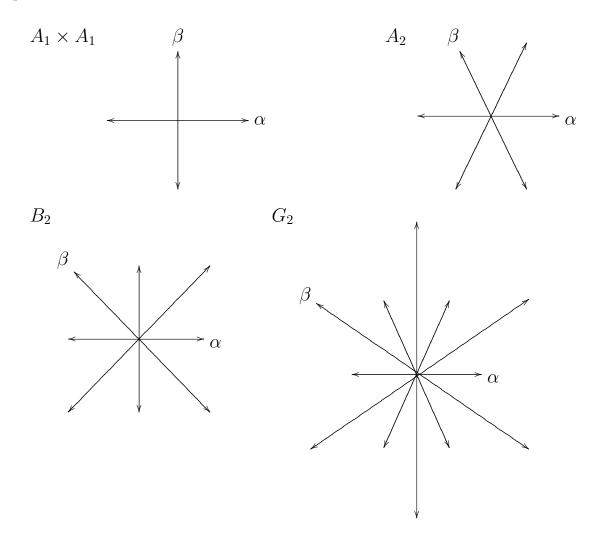
Next observe that $\sigma\sigma_{\alpha}\sigma^{-1}$ is a reflection preserving Δ which sends $\sigma(\alpha)$ to $-\sigma(\alpha)$, and hence $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)}$. Now $\sigma_{\sigma(\alpha)}(\sigma(\beta)) = \sigma(\beta) - \langle \sigma(\beta), \sigma(\alpha) \rangle \sigma(\alpha)$ and $\sigma_{\sigma(\alpha)}(\sigma(\beta)) = \sigma(\sigma_{\alpha}(\beta)) = \sigma(\beta - \langle \beta, \alpha \rangle \alpha) = \sigma(\beta) - \langle \beta, \alpha, \rangle \sigma(\alpha)$. Hence, $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$.

There is only on root system of rank 1, namely

$$A_1 \longleftrightarrow .$$

This is the root system of \mathfrak{sl}_2 .

Lemma 3.2. The root systems of rank 2 are $A_1 \times A_1$, A_2 , B_2 , and G_2 , as depicted below.



Proof. First we determine the admissible angles between any two roots α, β . Now $(\alpha, \beta) = ||\alpha|| \ ||\beta|| \cos \theta$ implies that

$$\langle \alpha, \beta \rangle \ \langle \beta, \alpha \rangle = 4 \cos^2 \theta.$$

This is a non-negative integer between 0 and 3, because $\langle \alpha, \beta \rangle \in \mathbb{Z}$ and $0 \leq \cos^2 \theta < 1$. This equation determines the possible values for $\langle \alpha, \beta \rangle$, $\langle \beta, \alpha \rangle$ and θ . The following equation determines the ratio of lengths of these roots:

$$\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)} = 2 \frac{||\beta||}{||\alpha||} \cos \theta.$$

The possibilities with $\alpha \neq \pm \beta$, $||\beta|| \geq ||\alpha||$ and $0 \leq \theta < \Pi$ are listed in the following table.

Table 1			
$\langle \alpha, \beta \rangle$	$\langle \beta, \alpha \rangle$	θ	$\frac{ \beta ^2}{ \alpha ^2}$
0	0	$\frac{\Pi}{2}$	undefined
1	1	$\frac{\Pi}{3}$	1
-1	-1	$\frac{2\Pi}{3}$	1
1	2	$\frac{\Pi}{4}$	2
-1	-2	$\frac{3\Pi}{4}$	2
1	3	$\frac{\Pi}{6}$	3
-1	-3	$\frac{5\Pi}{6}$	3

Finally, we use the fact that the diagram is invariant under the reflections of roots (the Weyl group) to find the remaining roots of a diagram. (In particular, the reflections preserve root length.)

Application: We have shown that if a semisimple Lie algebra has a Cartan subalgebra with dimension 2, then it has one of the roots systems listed above. We have not shown that there exists a Lie algebra for each of these abstract root systems.

The Weyl groups of $A_1 \times A_1$, A_2 , B_2 , G_2 (respectively) are dihedral groups of order 4, 6, 8, 12.

Lemma 3.3. Let α and β be two non-proportional roots. If $\langle \alpha, \beta \rangle > 0$ (i.e. if $(\alpha, \beta) > 0$, the angle between α and β is strictly acute), then $\alpha - \beta$ is a root. If $\langle \alpha, \beta \rangle < 0$ (i.e. if $(\alpha, \beta) < 0$, the angle between α and β is strictly obtuse), then $\alpha + \beta$ is a root.

Proof. The second statement follows from the first, by replacing β with $-\beta$. The proof of this lemma follows from the classification proof for rank 2 root systems. We see that when $\langle \alpha, \beta \rangle > 0$, either $\langle \alpha, \beta \rangle = 1$ or $\langle \beta, \alpha \rangle = 1$ (See page 45 of Humphreys). Since σ_{α} and σ_{β} leave Δ invariant, we have that $\beta - \langle \beta, \alpha \rangle \alpha \in \Delta$ and $\alpha - \langle \alpha, \beta \rangle \beta \in \Delta$. Hence, $\alpha - \beta \in \Delta$.