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1. ROOT SPACE DECOMPOSITION (CONTINUED)

Let IF be an algebraically closed field with characteristic zero. Let g be a
semisimple Lie algebra over F, and let ) be a Cartan subalgebra. Let

g= h D (@aEA ga)

be the root space decomposition, where A C h* is the set of roots of the g.

Recall that for a € h* we define t, € h to be the unique element such
that a(h) = k(ty, h) for all h € h. We define h, = —2=—~. Then if z, € g,

K(tasta)
and Y, € g_, such that k(z.,y.) = 1, then {z4, ha,ya} are a basis for a

subalgebra S, which is isomorphic to the standard sly. Last time, we showed
that for each « there exists a subalgebra of this form. The next proposition
implies that this subalgebra is uniquely determined for each a € A.

Proposition 1.1. If a € A, then dimg, =1 and Fa N A = {+a}.

Proof. Fix o € A, and choose S, =2 s[(2) (see Proposition 2.6 in Lecture 7)
Let

M=ho (EBCGIE‘\{O} gca) .
Then M is a finite dimensional S, module. Hence, it decomposes into a direct
sum of irreducible modules. The weights are 0 (with multiplicity dim ) and
ca(hy) = 2c. Since these must be integers, we have that ¢ € 37\ {0}.
Now Kerao = {h € h | a(h) = 0} is a subspace of codimension 1 in b, and
S, acts trivially on Ker a for h € Ker « since

(o, h] = —a(h)z, = 0.

Also, S, is an irreducible S,-submodule of M. Now Ker o and S, exhaust all
occurrences of the weight 0 in the module M. Hence, the only even weights
occuring in M are 0 and 2. In particular, ¢ # 2 which implies that 2« is

never a root. Equivalently, 5 is never a root. Hence, 1 is not a weight. Thus
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we have found all of the weights of M occurring in Ker o and S,,. Therefore,
M =1t + S, and the proposition follows. [

Set (6, a) := B(h,). Note that (-,-) is linear in the first argument.

Proposition 1.2. If a, 3 € A, then (3,a) € Z and f— < f,a > a € A.
If B # +a, let r,q be the largest integers for which 0 — ra, B+ qa are roots.
Then all B+ i € A for —r < i < q, and < B,a >=1r —q € Z. (Note that
this is called an a-string through 5.) Thus, [8a, 93] = Ga+s-

Proof. Fix a, 8 € A, and choose S, = sl(2). The proposition is clear if
B = Fa, so suppose that 3 # +a. Set K = >, ; 03+ia. Then K is a
Se-submodule of g with one dimensional weight spaces and integral weights
(B,) + 2i. Thus, (3,a) € Z. Since 0 and 1 can not both occur as weights,
K is irreducible. By s[(2) theory, the weights are 5 —ra, ..., 3,...,3 + qa.
Since (8 — ra)(hy) = —(8 + qa)(h,) we have that

<ﬁua> - ﬁ(ha) =T —q.
Since § + i € A when —r <1 < ¢, we conclude that

f—< fB,a>a=0+(q¢q—r)a € A.

2. EUCLIDEAN SPACE

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Recall,
that since the Killing form is non-degenerate when restricted to b, we may
define a pairing between h and h* as follows: for A € h* define ¢) to be the
unique element of h satisfying A(h) = &(ty, h) for all h € h. Then we have a
non-degenerate symmetric bilinear form on h* defined by

(A, 1) = K(tr, ty)-

Then define (3, ) = B(hy) = 2009 Note that (B, ) is not symmetric.

()
Since A spans h*, we can choose a basis {aq,...,a;} C A for h*.

Lemma 2.1. Let Eg be the rational span of {aa, ... ,a}, then A C Eg and
dim(@ EQ =t.
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Proof. If 8 € A, then we can write 3 uniquely as § = 22:1 c;a;. We claim
that ¢; € Q. Now for i =1,...,t,
t

ﬁ)a] ::5 G a“c%

1=1
By multiplying by @) we obtain for each 7 =1,...,t:

t

<5704j> = Z(%’;%‘}Ci

i=1
Since {a1,...,;} is a basis and the form is non-degenerate, the matrix

A;j = ({(ou, o)) is non-singular and hence invertible. Since this is a system
of integral equations, the solution will be rational. Therefore, ¢; € Q. O

Lemma 2.2. The form (—,—) is a positive definite symmetric bilinear form
on kg, .

Proof. The form (—, —) is symmetric and bilinear by definition, because the
Killing form is symmetric and bilinear. First, we must show that for any
A € Eg we have (A, ) € Q. It suffices to show this is true for any
a, 8 € A since Eg is defined to be the rational span of the roots {a, ..., a}
and the form (—, —) is bilinear. Now we have that for \, u € Ey,

(A ) =Tr(ad thad £,) = Y a(ta)alt,) =Y (a,\)(a, p).

acA aeA

In particular, for g € A

(8,8) = > (o, 8)*

aceA

Then by multiply both sides by ﬁ we obtain

4 2
G ZA(oz,@ € Z.

Hence, (5,6) € Q for all 5 € A. Then for a, 8 € A,

20.8) _
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implies that (o, 5) € Q.

So for A € Eg, we have (A\,\) = > _A(a,A)? > 0. If X # 0, this must be
strict inequality since the Killing form is non-degenerate on h, and A spans
f. Therefore, (—, —) is positive definite. H

Let E be the real vector space obtained by extending the base field of
Eg to R (E := R®qg Eg). Then E is an inner product space, i.e. a finite
dimensional vector space over R with a positive definite symmetric bilinear
form.

Lemma 2.3. A real finite dimensional inner product space E is a Fuclidean
space (i.e. a real vector space with the dot product).

Proof. Let E be a real finite dimensional inner product space E with inner
product (—,—). Then since (—, —) is positive definite we can define length
on E by ||[v|]| = +/(v,v). We define the distance between two vectors v, w to
be ||[v — w||. The Cauchy-Schwartz inequality follows: |(v,w)| < |[[v]| ||w]|.
(For y # 0 by let r = (y,y) '(z,y) and use the fact that 0 < (z —ry, z—ry).)
We define the angle between two vectors x,y to be

with 0 < 6 < II, which is well defined by the Cauchy-Schwartz inequality.
Since F is finite dimensional, we can use the Gram-Schmidt process to find an

orthonormal basis {vy,...,v,} with respect to the the inner product. Then
(vi,vj) = d;j, and in this basis (—, —) is the dot product and E is a Euclidean
space. ]

In summary, we have proven:

Theorem 2.4. Let g be a semisimple Lie algebra and b a Cartan subalgebra.
Let A be the set of roots for . Then there exists a Fuclidean space E with
ECbh® and dim E = dimb. In addition,
(1) A is finite, spans E, and 0 & A.
) If a« € A, then ZaN A = {+a}.
) For all a, 5 € A, (B,a) € Z.
)

(2
(3
(4) If a, B € A, then B — (6, a)a € A.



3. ABSTRACT ROOT SYSTEMS

Let F be a Euclidean space with inner product (-,-). Define (3, o) := 2((0?5))

for a, 5 € E. A non-zero vector a € E determines a reflection o, € GL(F)
defined by

oo(B) =B — (B, a)a.
Then o, fixes the hyperplane P, = {# € E | (3,a) = 0} and sends a to —a.
A subset A in a Euclidean space E is called a root system if it satisfies the
following axioms:

(1) A is finite, spans E, and does not contain 0.
(2) If a € A, then AN Za = {+a}.

(3) For all a, B € A, (6,a) € Z.

(4) If « € A, then o, leaves A invariant.

Elements of A are called roots. The dimension of F is called the rank of A.

The Weyl group, denoted by W is the subgroup of GL(E) generated by
the reflections o, for o € A.

Lemma 3.1. Let A be a root system in E, with Weyl group W. If o €
GL(E) leaves A invariant, then 00,0~" = 0,4 for all a € A, and (5, o) =
(0(0),0(a)).

Proof. First we show that if ¢ is refection preserving the root system A and
sending o to —« for some o« € A, then ¢ = 0,. Let 7 = 00,. Then 7
preserves A and 7(a) = . Now 7 acts as the identity on Ra and on E/Ra,
so all eigenvalues of 7 are equal to 1. Because A is finite, there is some
integer n > 1 such that 7(8) = § for all § € A. Since A spans FE, this
implies 7" = 1. Hence, 7 is diagonalizable with diagonal entries equal to 1.
Therefore, 7 = 1 implying o = o,.

Next observe that co,0 7! is a reflection preserving A which sends o(«) to
—o(a), and hence 00,0~ = 0,(4). Now 0,0 (0(8)) = 0(8)—(0(8), o(a))o ()
and O-U(Oé)(o-(ﬁ)) - O_(Ja(ﬁ)) - 0(5 - <6704>04) - O-(Q) o <ﬁ,0&, >U(&)' Hence,
(8, 0) = {o(B), o(a)). O]

There is only on root system of rank 1, namely

Ay

This is the root system of sl,.



Lemma 3.2. The root systems of rank 2 are Ay X Ay, Ay, By, and G, as
depicted below.

Al x Ay 16 Ay &

Proof. First we determine the admissible angles between any two roots «, 3.
Now (o, 3) = ||a]| ||5]|cos @ implies that

(o, B) (B, a) = 4cos? .

This is a non-negative integer between 0 and 3, because < «, 3 > € Z and
0 < cos?§ < 1. This equation determines the possible values for {a, 8), {3, a)
and #. The following equation determines the ratio of lengths of these roots:

(B, a) =




The possibilities with a # +3, ||3|| > ||a|| and 0 < 6 < IT are listed in the
following table.

Table 1
(.8) By o fo
0 0 % undefined
1 1 4 1
-1 -1 1
1 2 4 2
-1 2 4 2
1 3 o 3
-1 3 Al 3

Finally, we use the fact that the diagram is invariant under the reflections
of roots (the Weyl group) to find the remaining roots of a diagram. (In
particular, the reflections preserve root length.) l

Application: We have shown that if a semisimple Lie algebra has a Car-
tan subalgebra with dimension 2, then it has one of the roots systems listed
above. We have not shown that there exists a Lie algebra for each of these
abstract root systems.

The Weyl groups of A1 x Ay, As, By, Go (respectively) are dihedral groups
of order 4, 6, 8, 12.



Lemma 3.3. Let a and [ be two non-proportional roots. If (o, 3) > 0 (i.e.
if (a, B) > 0, the angle between o and (8 is strictly acute), then o — 3 is a
root. If (o, 3) < 0 (i.e. if (a,3) < 0, the angle between o and 3 is strictly
obtuse), then oo+ (3 is a root.

Proof. The second statement follows from the first, by replacing g with —f.
The proof of this lemma follows from the classification proof for rank 2 root
systems. We see that when («, 3) > 0, either (o, 5) =1 or (§,a) =1 (See
page 45 of Humphreys). Since o, and og leave A invariant, we have that
B —(6,a)a € Aand a — (o, B)5 € A. Hence, « — f € A. O



