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1. Root space decomposition (continued)

Let F be an algebraically closed field with characteristic zero. Let g be a
semisimple Lie algebra over F, and let h be a Cartan subalgebra. Let

g = h⊕ (⊕α∈∆ gα)

be the root space decomposition, where ∆ ⊂ h∗ is the set of roots of the g.

Recall that for α ∈ h∗ we define tα ∈ h to be the unique element such
that α(h) = κ(tα, h) for all h ∈ h. We define hα = 2tα

κ(tα,tα) . Then if xα ∈ gα
and yα ∈ g−α such that κ(xα, yα) = 1, then {xα, hα, yα} are a basis for a
subalgebra Sα which is isomorphic to the standard sl2. Last time, we showed
that for each α there exists a subalgebra of this form. The next proposition
implies that this subalgebra is uniquely determined for each α ∈ ∆.

Proposition 1.1. If α ∈ ∆, then dim gα = 1 and Fα ∩∆ = {±α}.

Proof. Fix α ∈ ∆, and choose Sα ∼= sl(2) (see Proposition 2.6 in Lecture 7)
Let

M = h⊕
(
⊕c∈F\{0} gcα

)
.

Then M is a finite dimensional Sα module. Hence, it decomposes into a direct
sum of irreducible modules. The weights are 0 (with multiplicity dim h) and
cα(hα) = 2c. Since these must be integers, we have that c ∈ 1

2Z \ {0}.
Now Kerα = {h ∈ h | α(h) = 0} is a subspace of codimension 1 in h, and

Sα acts trivially on Kerα for h ∈ Ker α since

[xα, h] = −α(h)xα = 0.

Also, Sα is an irreducible Sα-submodule of M . Now Kerα and Sα exhaust all
occurrences of the weight 0 in the module M . Hence, the only even weights
occuring in M are 0 and 2. In particular, c 6= 2 which implies that 2α is
never a root. Equivalently, α

2 is never a root. Hence, 1 is not a weight. Thus
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we have found all of the weights of M occurring in Kerα and Sα. Therefore,
M = h + Sα and the proposition follows. �

Set 〈β, α〉 := β(hα). Note that 〈·, ·〉 is linear in the first argument.

Proposition 1.2. If α, β ∈ ∆, then 〈β, α〉 ∈ Z and β− < β, α > α ∈ ∆.
If β 6= ±α, let r, q be the largest integers for which β − rα, β + qα are roots.
Then all β + iα ∈ ∆ for −r ≤ i ≤ q, and < β, α >= r − q ∈ Z. (Note that
this is called an α-string through β.) Thus, [gα, gβ] = gα+β.

Proof. Fix α, β ∈ ∆, and choose Sα ∼= sl(2). The proposition is clear if
β = ±α, so suppose that β 6= ±α. Set K =

∑
i∈Z gβ+iα. Then K is a

Sα-submodule of g with one dimensional weight spaces and integral weights
〈β, α〉 + 2i. Thus, 〈β, α〉 ∈ Z. Since 0 and 1 can not both occur as weights,
K is irreducible. By sl(2) theory, the weights are β − rα, . . . , β, . . . , β + qα.
Since (β − rα)(hα) = −(β + qα)(hα) we have that

〈β, α〉 = β(hα) = r − q.

Since β + iα ∈ ∆ when −r ≤ i ≤ q, we conclude that

β− < β, α > α = β + (q − r)α ∈ ∆.

�

2. Euclidean space

Let g be a semisimple Lie algebra and h a Cartan subalgebra. Recall,
that since the Killing form is non-degenerate when restricted to h, we may
define a pairing between h and h∗ as follows: for λ ∈ h∗ define tλ to be the
unique element of h satisfying λ(h) = κ(tλ, h) for all h ∈ h. Then we have a
non-degenerate symmetric bilinear form on h∗ defined by

(λ, µ) := κ(tλ, tµ).

Then define 〈β, α〉 := β(hα) = 2(β,α)
(α,α) . Note that 〈β, α〉 is not symmetric.

Since ∆ spans h∗, we can choose a basis {α1, . . . , αt} ⊂ ∆ for h∗.

Lemma 2.1. Let EQ be the rational span of {α1, . . . , αt}, then ∆ ⊂ EQ and
dimQEQ = t.
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Proof. If β ∈ ∆, then we can write β uniquely as β =
∑t

i=1 ciαi. We claim
that ci ∈ Q. Now for i = 1, . . . , t,

(β, αj) =
t∑
i=1

ci(αi, αj)

By multiplying by 2
(αj ,αj)

we obtain for each j = 1, . . . , t:

〈β, αj〉 =
t∑
i=1

〈αi, αj〉ci

Since {α1, . . . , αt} is a basis and the form is non-degenerate, the matrix
Aij := (〈αi, αj〉) is non-singular and hence invertible. Since this is a system
of integral equations, the solution will be rational. Therefore, ci ∈ Q. �

Lemma 2.2. The form (−,−) is a positive definite symmetric bilinear form
on EQ, .

Proof. The form (−,−) is symmetric and bilinear by definition, because the
Killing form is symmetric and bilinear. First, we must show that for any
λ, µ ∈ EQ we have (λ, µ) ∈ Q. It suffices to show this is true for any
α, β ∈ ∆ since EQ is defined to be the rational span of the roots {α1, . . . , αt}
and the form (−,−) is bilinear. Now we have that for λ, µ ∈ EQ,

(λ, µ) = Tr(ad tλad tµ) =
∑
α∈∆

α(tλ)α(tµ) =
∑
α∈∆

(α, λ)(α, µ).

In particular, for β ∈ ∆

(β, β) =
∑
α∈∆

(α, β)2.

Then by multiply both sides by 4
(β,β)2 we obtain

4

(β, β)
=
∑
α∈∆

〈α, β〉2 ∈ Z.

Hence, (β, β) ∈ Q for all β ∈ ∆. Then for α, β ∈ ∆,

2(α, β)

(β, β)
= 〈α, β〉 ∈ Z
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implies that (α, β) ∈ Q.
So for λ ∈ EQ, we have (λ, λ) =

∑
α∈∆(α, λ)2 ≥ 0. If λ 6= 0, this must be

strict inequality since the Killing form is non-degenerate on h, and ∆ spans
h. Therefore, (−,−) is positive definite. �

Let E be the real vector space obtained by extending the base field of
EQ to R (E := R ⊗Q EQ). Then E is an inner product space, i.e. a finite
dimensional vector space over R with a positive definite symmetric bilinear
form.

Lemma 2.3. A real finite dimensional inner product space E is a Euclidean
space (i.e. a real vector space with the dot product).

Proof. Let E be a real finite dimensional inner product space E with inner
product (−,−). Then since (−,−) is positive definite we can define length

on E by ||v|| =
√

(v, v). We define the distance between two vectors v, w to
be ||v − w||. The Cauchy-Schwartz inequality follows: |(v, w)| ≤ ||v|| ||w||.
(For y 6= 0 by let r = (y, y)−1(x, y) and use the fact that 0 ≤ (x−ry, x−ry).)
We define the angle between two vectors x, y to be

θ = cos−1
(

(v, w)

||v|| ||w||

)
with 0 ≤ θ < Π, which is well defined by the Cauchy-Schwartz inequality.
Since E is finite dimensional, we can use the Gram-Schmidt process to find an
orthonormal basis {v1, . . . , vn} with respect to the the inner product. Then
(vi, vj) = δij, and in this basis (−,−) is the dot product and E is a Euclidean
space. �

In summary, we have proven:

Theorem 2.4. Let g be a semisimple Lie algebra and h a Cartan subalgebra.
Let ∆ be the set of roots for h. Then there exists a Euclidean space E with
E ⊂ h∗ and dimE = dim h. In addition,

(1) ∆ is finite, spans E, and 0 6∈ ∆.
(2) If α ∈ ∆, then Zα ∩∆ = {±α}.
(3) For all α, β ∈ ∆, 〈β, α〉 ∈ Z.
(4) If α, β ∈ ∆, then β − 〈β, α〉α ∈ ∆.
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3. Abstract root systems

Let E be a Euclidean space with inner product (·, ·). Define 〈β, α〉 := 2(β,α)
(α,α)

for α, β ∈ E. A non-zero vector α ∈ E determines a reflection σα ∈ GL(E)
defined by

σα(β) = β − 〈β, α〉α.
Then σα fixes the hyperplane Pα = {β ∈ E | (β, α) = 0} and sends α to −α.
A subset ∆ in a Euclidean space E is called a root system if it satisfies the
following axioms:

(1) ∆ is finite, spans E, and does not contain 0.
(2) If α ∈ ∆, then ∆ ∩ Zα = {±α}.
(3) For all α, β ∈ ∆, 〈β, α〉 ∈ Z.
(4) If α ∈ ∆, then σα leaves ∆ invariant.

Elements of ∆ are called roots. The dimension of E is called the rank of ∆.

The Weyl group, denoted by W , is the subgroup of GL(E) generated by
the reflections σα for α ∈ ∆.

Lemma 3.1. Let ∆ be a root system in E, with Weyl group W . If σ ∈
GL(E) leaves ∆ invariant, then σσασ

−1 = σσ(α) for all α ∈ ∆, and 〈β, α〉 =
〈σ(β), σ(α)〉.
Proof. First we show that if σ is refection preserving the root system ∆ and
sending α to −α for some α ∈ ∆, then σ = σα. Let τ = σσα. Then τ
preserves ∆ and τ(α) = α. Now τ acts as the identity on Rα and on E/Rα,
so all eigenvalues of τ are equal to 1. Because ∆ is finite, there is some
integer n ≥ 1 such that τ(β) = β for all β ∈ ∆. Since ∆ spans E, this
implies τn = 1. Hence, τ is diagonalizable with diagonal entries equal to 1.
Therefore, τ = 1 implying σ = σα.

Next observe that σσασ
−1 is a reflection preserving ∆ which sends σ(α) to

−σ(α), and hence σσασ
−1 = σσ(α). Now σσ(α)(σ(β)) = σ(β)−〈σ(β), σ(α)〉σ(α)

and σσ(α)(σ(β)) = σ(σα(β)) = σ(β − 〈β, α〉α) = σ(β) − 〈β, α, 〉σ(α). Hence,
〈β, α〉 = 〈σ(β), σ(α)〉. �

There is only on root system of rank 1, namely

A1 //oo .

This is the root system of sl2.
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Lemma 3.2. The root systems of rank 2 are A1 × A1, A2, B2, and G2, as
depicted below.

A1 × A1 β

��

// αoo

OO
A2 β

��.......................

���������������������������

// αoo

GG�������������������������

WW.......................

B2

β

��>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

�����������������������������������

// αoo

@@�������������������������������

OO__>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

G2

��

β

$$IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

��-------------------------

���������������������������

zzuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

// αoo

::uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

HH�������������������������

VV-------------------------

ddIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

OO

Proof. First we determine the admissible angles between any two roots α, β.
Now (α, β) = ||α|| ||β||cos θ implies that

〈α, β〉 〈β, α〉 = 4 cos2 θ.

This is a non-negative integer between 0 and 3, because < α, β > ∈ Z and
0 ≤ cos2θ < 1. This equation determines the possible values for 〈α, β〉, 〈β, α〉
and θ. The following equation determines the ratio of lengths of these roots:

〈β, α〉 =
2(β, α)

(α, α)
= 2
||β||
||α||

cos θ.
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The possibilities with α 6= ±β, ||β|| ≥ ||α|| and 0 ≤ θ < Π are listed in the
following table.

Table 1

〈α, β〉 〈β, α〉 θ ||β||2
||α||2

0 0 Π
2 undefined

1 1 Π
3 1

-1 -1 2Π
3 1

1 2 Π
4 2

-1 -2 3Π
4 2

1 3 Π
6 3

-1 -3 5Π
6 3

Finally, we use the fact that the diagram is invariant under the reflections
of roots (the Weyl group) to find the remaining roots of a diagram. (In
particular, the reflections preserve root length.) �

Application: We have shown that if a semisimple Lie algebra has a Car-
tan subalgebra with dimension 2, then it has one of the roots systems listed
above. We have not shown that there exists a Lie algebra for each of these
abstract root systems.

The Weyl groups of A1×A1, A2, B2, G2 (respectively) are dihedral groups
of order 4, 6, 8, 12.
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Lemma 3.3. Let α and β be two non-proportional roots. If 〈α, β〉 > 0 (i.e.
if (α, β) > 0, the angle between α and β is strictly acute), then α − β is a
root. If 〈α, β〉 < 0 (i.e. if (α, β) < 0, the angle between α and β is strictly
obtuse), then α + β is a root.

Proof. The second statement follows from the first, by replacing β with −β.
The proof of this lemma follows from the classification proof for rank 2 root
systems. We see that when 〈α, β〉 > 0, either 〈α, β〉 = 1 or 〈β, α〉 = 1 (See
page 45 of Humphreys). Since σα and σβ leave ∆ invariant, we have that
β − 〈β, α〉α ∈ ∆ and α− 〈α, β〉β ∈ ∆. Hence, α− β ∈ ∆. �
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