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Abstract
We discuss the classification of good Z-gradings of basic Lie superalgebras. This problem arose in connection

to W -algebras, where good Z-gradings play a role in their construction.

1 Introduction
One component of the definition of a finite or affine super W -algebra is a good Z-grading for a nilpotent element.
Affine super W -algebras are (super) vertex algebras obtained from affine Lie superalgebras by quantum Hamil-
tonian reduction [8], whereas finite super W -algebras are associative superalgebras which can be defined via the
universal enveloping algebra of a finite-dimensional simple Lie superalgebra [3].

Good Z-gradings of simple finite-dimensional Lie algebras where classified by A. Elashvili and V.G. Kac in
2005 [4]. K. Baur and N. Wallach classified nice parabolic subalgebras of reductive Lie algebras in [1], which
correspond to good even Z-gradings by [4, Theorem 2.1]. J. Brundan and S. Goodwin classified good R-gradings
for semisimple finite-dimensional Lie algebras using certain polytopes, and proved that two finite W -algebras
defined by the same nilpotent element e ∈ g are isomorphic [2]. This often allows one to reduce to the case that
the good Z-grading is even.

Here we discuss the classification of good Z-gradings of basic Lie superalgebras [5]. In the case that g is
gl(m|n) or osp(m|2n) the good Z-gradings are parameterized by “good” pyramids, generalizing the definition
of [4]. Whereas, for the exceptional Lie superalgebras, all good Z-gradings are shown to be Dynkin. Using
this classification one can determine which nilpotent elements have a good even Z-grading. For example, every
nilpotent even element of gl(m|n) has a good even Z-grading.

2 Basic Lie superalgebras
Finite-dimensional simple Lie superalgebras were classified by V.G. Kac in [7]. These can be separated into three
types: basic, strange and Cartan. A finite-dimensional simple Lie superalgebra g = g0̄ ⊕ g1̄ is called basic if g0̄

is a reductive Lie algebra and g has an even nondegenerate invariant bilinear form (·, ·). This form is necessarily
supersymmetric. The basic Lie superalgebras are the following: sl(m|n) : m 6= n, psl(n|n) := sl(n|n)/〈I2n〉,
osp(m|2n), D(2, 1, α), F (4), G(3), and finite dimensional simple Lie algebras.

Fix a Cartan subalgebra h. Then g has a root space decomposition g = h⊕
⊕

α∈∆ gα. The Z/2Z-grading of g
determines a decomposition of ∆ into the disjoint union of the even roots ∆0̄ and the odd roots ∆1̄. Corresponding
to a set of simple roots Π = {α1, . . . , αn} ⊂ ∆ of g, we have the triangular decomposition g = n− ⊕ h⊕ n+.

Most basic Lie superalgebras have more than one distinct Dynkin diagram. This is due to the fact that the
Weyl group does not act simply transitively on the set of bases. However, we can extend the Weyl group to a
Weyl groupoid by including “odd reflections”, which allow us to move between the different bases. In particular, if
αk ∈ Π is a simple isotropic root, then we can define the odd reflection at αk to obtain a new set of simple roots
Π′ for ∆ [9].

3 Good Z-gradings
A Z-grading g = ⊕j∈Zg(j) is called good if there exists e ∈ g0̄(2) such that the map ad e : g(j) → g(j + 2) is
injective for j ≤ −1 and surjective for j ≥ −1. If a Z-grading of g is defined by a semisimple element h ∈ g0̄, then
this condition is equivalent to all of the eigenvalues of ad(h) on the centralizer ge of e in g being non-negative.

An example of a good Z-grading for a nilpotent element e ∈ g0̄ is the Dynkin grading. By the Jacobson-
Morosov Theorem, e belongs to an sl2-triple s = {e, f, h} ⊂ g0̄, where [e, f ] = h, [h, e] = 2e and [h, f ] = −2f . By
sl2 theory, the grading of g defined by ad h is a good Z-grading for e.
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For each nilpotent even element x ∈ g (up to conjugacy) we describe all Z-gradings for which this element is
good. For the exceptional Lie superalgebras, we have the following

Theorem 3.1 (Hoyt [5]). All good Z-gradings of the exceptional Lie superalgebras, F (4), G(3), and D(2, 1, α),
are Dynkin gradings.

To describe the good Z-gradings of gl(m|n) we generalize the definition of a pyramid given in [2, 4]. A pyramid
P is a finite collection of boxes of size 2 × 2 in the upper half plane which are centered at integer coordinates,
such that for each j = 1, . . . , N , the second coordinates of the jth row equal 2j − 1 and the first coordinates of
the jth row form an arithmetic progression fj , fj + 2, . . . , lj with difference 2, such that the first row is centered
at (0, 0), i.e. f1 = −l1, and

fj ≤ fj+1 ≤ lj+1 ≤ lj for all j. (1)

Each box of P has even or odd parity. We say that P has size (m|n) if P has exactly m even boxes and n odd
boxes.

Fix m,n ∈ Z+ and let (p, q) be a partition of (m|n). Let r = ψ(p, q) ∈ Par(m + n) be the total ordering of
the partitions p and q which satisfies: if pi = qj for some i, j then ψ(pi) < ψ(qj). We define Pyr(p, q) to be the
set of pyramids which satisfy the following two conditions: (1) the jth row of a pyramid P ∈ Pyr(p, q) has length
rj ; (2) if ψ−1(rj) ∈ p (resp. ψ−1(rj) ∈ q) then all boxes in the jth row have even (resp. odd parity) and we mark
these boxes with a “+” (resp. “−” sign).

Corresponding to each pyramid P ∈ Pyr(p, q) we define a nilpotent element e(P ) ∈ g0̄ and semisimple element
h(P ) ∈ g0̄, as follows. Recall gl(m|n) = End(V0 ⊕ V1). Fix a basis {v1, . . . , vm} of V0 and {vm+1, . . . , vm+n} of
V1. Label the even (resp. odd) boxes of P by the basis vectors of V0 (resp. V1). Define an endomorphism e(P ) of
V0 ⊕ V1 as acting along the rows of the pyramid, i.e. by sending a basis vector vi to the basis vector which labels
the box to the right of the box labeled by vi or to zero if it has no right neighbor. Then e(P ) is nilpotent and
corresponds to the partition (p, q). Since e(P ) does not depend the choice of P in Pyr(p, q), we may denote it by
ep,q. Moreover, ep,q ∈ g0̄ because boxes in the same row have the same parity.

Define h(P ) to be the (m+ n)-diagonal matrix where the ith diagonal entry is the first coordinate of the box
labeled by the basis vector vi. Then h(P ) defines a Z-grading of g for which ep,q ∈ g(2). Let Pp,q denote the
symmetric pyramid from Pyr(p, q). Then h(Pp,q) defines a Dynkin grading for ep,q, and Pp,q is called the Dynkin
pyramid for the partition (p|q).

Theorem 3.2 (Hoyt [5]). Let g = gl(m|n), and let (p, q) be a partition of (m|n). If P is a pyramid from
Pyr(p, q), then the pair (h(P ), ep,q) is good. Moreover, every good grading for ep,q is of the form (h(P ), ep,q) for
some pyramid P ∈ Pyr(p, q).

This theorem is proven by studying the centralizer of a nilpotent element and of an sl2 triple in gl(m|n). In a
similar manner, we classify the good Z-gradings for the Lie superalgebra osp(m|2n).

A good Z-grading of the Lie superalgebra g for a nilpotent element e ∈ g0̄ restricts to a good Z-grading for
the Lie algebra g0̄. So it is natural to ask which good Z-gradings of g0̄ extend to a good Z-grading of g, and to
what extent is an extension unique.

Example 3.3. Let g = gl(4|6) and consider the partitions p = (3, 1) and q = (4, 2). The Dynkin grading of
g0̄ = gl(4)× gl(6) for the partition (p, q) corresponds to the following symmetric pyramids.

+ + +
+

− − − −
− −

There are pyramids in Pyr(p, q) for which the induced grading of g0̄ is the one given above, and these corre-
spond to good Z-gradings. They are represented by the following pyramids:

+ +

+

+
− − − −

− −
+ + +

+

− − − −

− −
+ + +

+

− − − −

− −

Example 3.4. Let g = gl(4|6) and consider the partitions p = (3, 1) and q = (4, 2). The following pyramids
represent a good Z-grading of g0̄ for which there is no good Z-grading of g with this induced good Z-grading of g0̄.

+ + +
+

− − − −
− −

For the classification of good Z-gradings of osp(m|2n) see [5].



4 Centralizers of sl2-triples
The centralizers of sl2-triples in gl(m|n) and osp(m|2n) can be described following the ideas of [6] for the Lie
algebras gl(m), so(m) and sp(2n). There is a one-to-one correspondence between G-orbits of nilpotent even
elements in gl(m|n) and partitions of (m|n). Let p = (rm1

1 , . . . , rmN

N ) be a partition of m and q = (rn1
1 , . . . , rnN

N )
a partition of n, that is ri has multiplicity mi in p and multiplicity ni in q. We note that mi or ni may be zero.

Theorem 4.1 (Hoyt [5]). Let g = gl(m|n). Let e be a nilpotent even element corresponding to a partition (p, q)
of (m|n),and let s = {e, f, h} ⊂ g′0̄ be an sl2-triple for e. Then we have an isomorphism

gs ∼→ gl(m1, n1)× · · · × gl(mN , nN )

of Lie superalgebras.

A partition is called symplectic (resp. orthogonal) if mpi
is even for odd pi (resp. even pi). We say that a

partition (p, q) of (m|2n) is orthosymplectic if p is an orthogonal partition of m and q is a symplectic partition
of 2n. There is a one-to-one correspondence between G-orbits of nilpotent even elements in osp(m|2n) and
orthosymplectic partitions of (m|2n). Let (p, q) be an orthosymplectic partition of (m|2n), and represent it as
p = (rm1

1 , . . . , rmN

N , s2c1
1 , . . . , s2cT

T ) and q = (r2n1
1 , . . . , r2nN

N , sd11 , . . . , s
dT

T ), where ri are the even parts and si are
the odd parts.

Theorem 4.2 (Hoyt [5]). Let g = osp(m|2n). Let e be a nilpotent even element corresponding to an orthosym-
plectic partition (p, q) of (m|n), and let s = {e, f, h} ⊂ g′0̄ be an sl2-triple for e. Then we have an isomorphism

gs ∼→ osp(m1, 2n1)× · · · × osp(mN , 2nN )× osp(d1, 2c1)× · · · × osp(dT , 2cT )

of Lie superalgebras.

5 Characteristics and the Weyl groupoid
We give an explicit criterion for when two Dynkin diagram characteristics determine the same Z-grading by
using the action of the Weyl groupoid. Given a Z-grading of g, we can choose a Cartan subalgebra h ⊂ g(0).
Then for g 6= psl(2|2), the root space decomposition is compatible with the Z-grading. So we can define a map
Deg : ∆ ∪ {0} → Z by Deg(α) = k if α ∈ ∆k and Deg(0) = 0.

Now for each base Π ⊂ ∆, the degree map of a Z-grading is determined by its restriction to Π, that is, by
D : Π→ Z. A reflection at a simple root of Π yields a new map D′ : Π′ → Z, where Π′ is the reflected base and
D′ is defined on Π′ by linearity. The maps D : Π→ Z and D′ : Π′ → Z define the same grading.

It is natural to ask the following question: when do two maps D1 : Π1 → N and D2 : Π2 → N define the same
Z-grading, i.e. when can they be extended to a linear map Deg : ∆ ∪ {0} → Z?

Theorem 5.1 (Hoyt [5]). Let Π1 = {α1, . . . , αn}, Π2 = {β1, . . . , βn} be two different bases for ∆. If the maps
D1 : Π1 → N and D2 : Π2 → N define the same grading, then there is a sequence of even and odd reflections R at
simple roots of degree zero such that (after reordering) R(αi) = βi and D1(αi) = D2(βi) for i = 1, . . . , n.
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