Stability of the Shannon-Stam Inequality

Dan Mikulincer
Students Probability Day, 2019
Weizmann Institute of Science
Joint work with Ronen Eldan
The central quantity we will deal with is relative entropy:

Definition (Relative Entropy)

Let $X \sim \mu$, $Y \sim \nu$ be random vectors in \mathbb{R}^d, define the entropy of X, relative to Y as

$$
\text{Ent}(X \| Y) = \text{Ent}(\mu \| \nu) := \begin{cases}
\int_{\mathbb{R}^d} \ln \left(\frac{d\mu}{d\nu} \right) d\mu & \text{if } \mu \ll \nu \\
\infty & \text{otherwise}
\end{cases}.
$$
The Shannon-Stam Inequality

In 48’ Shannon noted the following inequality, which was later proved by Stam, in 56’.

Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in \mathbb{R}^d and let $G \sim \mathcal{N}(0, I)$ be a random vector with the law of the standard Gaussian. Then, for any $\lambda \in [0, 1]$

$$\text{Ent}(\sqrt{\lambda}X + \sqrt{1 - \lambda}Y \| G) \leq \lambda \text{Ent}(X \| G) + (1 - \lambda) \text{Ent}(Y \| G).$$

Moreover, equality holds if and only if X and Y are Gaussians with identical covariances.

Remark: Shannon and Stam actually proved an equivalent form of the inequality, called the entropy power inequality. The equivalence was observed by Lieb in 78’.
The Shannon-Stam Inequality

In 48’ Shannon noted the following inequality, which was later proved by Stam, in 56’.

Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in \mathbb{R}^d and let $G \sim \mathcal{N}(0, I)$ be a random vector with the law of the standard Gaussian. Then, for any $\lambda \in [0, 1]$

$$\text{Ent}(\sqrt{\lambda}X + \sqrt{1 - \lambda}Y \| G) \leq \lambda \text{Ent}(X \| G) + (1 - \lambda) \text{Ent}(Y \| G).$$

Moreover, equality holds if and only if X and Y are Gaussians with identical covariances.

Remark: Shannon and Stam actually proved an equivalent form of the inequality, called the entropy power inequality. The equivalence was observed by Lieb in 78’.
Define the deficit

\[\delta_\lambda(X, Y) = \lambda \text{Ent}(X \| G) + (1-\lambda) \text{Ent}(Y \| G) - \text{Ent}(\sqrt{\lambda}X + \sqrt{1-\lambda}Y \| G). \]

The question of stability deals with approximate equality cases.

Question

Suppose that \(\delta_\lambda(X, Y) \) is small, must \(X \) and \(Y \) be 'close' to Gaussian vectors, which are themselves 'close' to each other?

We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive answer to the above question.
Stability

Define the deficit

$$\delta_\lambda(X, Y) = \lambda \text{Ent}(X||G) + (1-\lambda)\text{Ent}(Y||G) - \text{Ent}(\sqrt{\lambda}X + \sqrt{1-\lambda}Y||G).$$

The question of stability deals with approximate equality cases.

Question

Suppose that $\delta_\lambda(X, Y)$ is small, must X and Y be ’close’ to Gaussian vectors, which are themselves ’close’ to each other?

We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive answer to the above question.
Stability

Define the deficit

\[\delta_\lambda(X, Y) = \lambda \text{Ent}(X \| G) + (1 - \lambda) \text{Ent}(Y \| G) - \text{Ent}(\sqrt{\lambda}X + \sqrt{1 - \lambda}Y \| G). \]

The question of stability deals with approximate equality cases.

Question

Suppose that \(\delta_\lambda(X, Y) \) is small, must \(X \) and \(Y \) be ’close’ to Gaussian vectors, which are themselves ’close’ to each other?

We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive answer to the above question.
Föllmer Martingales

We focus on the one dimensional case and $\lambda = \frac{1}{2}$. Let X be centered random variable, and let B_t denote a standard Brownian motion. Föllmer (1984) and then Lehec (2011) have shown that there exists a process Γ^X_t, such that

1. $\int_0^1 \Gamma^X_t dB_t$ has the law of X.

2. $\text{Ent}(X||G) = \frac{1}{2} \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma^X_t)^2 \right]}{1-t} dt$.

3. If H^X_t is another process such that $\int_0^1 H^X_t dB_t$ has the law of X,

$$\int_0^1 \frac{\mathbb{E} \left[(1 - H^X_t)^2 \right]}{1-t} dt \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma^X_t)^2 \right]}{1-t} dt.$$
Föllmer Martingales

We focus on the one dimensional case and $\lambda = \frac{1}{2}$. Let X be centered random variable, and let B_t denote a standard Brownian motion. Föllmer (1984) and then Lehec (2011) have shown that there exists a process Γ^X_t, such that

- $\int_0^1 \Gamma^X_t dB_t$ has the law of X.
- $\text{Ent}(X\|G) = \frac{1}{2} \int_0^1 \mathbb{E}\left[\frac{(1 - \Gamma^X_t)^2}{1 - t}\right] dt$.
- If H^X_t is another process such that $\int_0^1 H^X_t dB_t$ has the law of X, then
 \[
 \int_0^1 \mathbb{E}\left[\frac{(1 - H^X_t)^2}{1 - t}\right] dt \geq \int_0^1 \mathbb{E}\left[\frac{(1 - \Gamma^X_t)^2}{1 - t}\right] dt.
 \]
We focus on the one dimensional case and $\lambda = \frac{1}{2}$.

Let X be centered random variable, and let B_t denote a standard Brownian motion. Föllmer (1984) and then Lehec (2011) have shown that there exists a process Γ^X_t, such that

- $\int_0^1 \Gamma^X_t dB_t$ has the law of X.

- $\text{Ent}(X||G) = \frac{1}{2} \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma^X_t)^2 \right]}{1-t} dt$.

- If H^X_t is another process such that $\int_0^1 H^X_t dB_t$ has the law of X,

$$\int_0^1 \frac{\mathbb{E} \left[(1 - H^X_t)^2 \right]}{1-t} dt \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma^X_t)^2 \right]}{1-t} dt.$$
We focus on the one dimensional case and $\lambda = \frac{1}{2}$. Let X be centered random variable, and let B_t denote a standard Brownian motion. Föllmer (1984) and then Lehec (2011) have shown that there exists a process Γ_t^X, such that

- $\frac{1}{2} \int_0^1 \Gamma_t^X dB_t$ has the law of X.
- $\text{Ent}(X||G) = \frac{1}{2} \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma_t^X)^2 \right]}{1-t} dt$.

- If H_t^X is another process such that $\int_0^1 H_t^X dB_t$ has the law of X, then
 $$\int_0^1 \frac{\mathbb{E} \left[(1 - H_t^X)^2 \right]}{1-t} dt \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma_t^X)^2 \right]}{1-t} dt.$$
Now, for X, Y random variables, take two independent Brownian motions B^X_t, B^Y_t and Γ^X_t, Γ^Y_t as above. Note that if G_1 and G_2 are standard Gaussians, then for any $a, b \in \mathbb{R}$

$$aG_1 + bG_2 \overset{\text{law}}{=} \sqrt{a^2 + b^2}G,$$

where G is another standard Gaussian.

This implies

$$\frac{X + Y}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\int_0^1 \Gamma^X_t dB^X_t + \int_0^1 \Gamma^Y_t dB^Y_t \right) \overset{\text{law}}{=} \int_0^1 \sqrt{\frac{\left(\Gamma^X_t\right)^2 + \left(\Gamma^Y_t\right)^2}{2}} dB_t.$$

for some Brownian motion B_t.

Now, for \(X, Y \) random variables, take two independent Brownian motions \(B^X_t, B^Y_t \) and \(\Gamma^X_t, \Gamma^Y_t \) as above. Note that if \(G_1 \) and \(G_2 \) are standard Gaussians, then for any \(a, b \in \mathbb{R} \)

\[
aG_1 + bG_2 \overset{\text{law}}{=} \sqrt{a^2 + b^2} G,
\]

where \(G \) is another standard Gaussian.

This implies

\[
\frac{X + Y}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\int_0^1 \Gamma^X_t \, dB^X_t + \int_0^1 \Gamma^Y_t \, dB^Y_t \right) \overset{\text{law}}{=} \int_0^1 \sqrt{\frac{(\Gamma^X_t)^2 + (\Gamma^Y_t)^2}{2}} \, dB_t.
\]

for some Brownian motion \(B_t \).
Now, for X, Y random variables, take two independent Brownian motions B^X_t, B^Y_t and Γ^X_t, Γ^Y_t as above. Note that if G_1 and G_2 are standard Gaussians, then for any $a, b \in \mathbb{R}$

$$aG_1 + bG_2 \xrightarrow{\text{law}} \sqrt{a^2 + b^2} G,$$

where G is another standard Gaussian.

This implies

$$\frac{X + Y}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\int_0^1 \Gamma^X_t dB^X_t + \int_0^1 \Gamma^Y_t dB^Y_t \right) \xrightarrow{\text{law}} \int_0^1 \sqrt{\frac{(\Gamma^X_t)^2 + (\Gamma^Y_t)^2}{2}} dB_t.$$

for some Brownian motion B_t.
Bounding the Deficit

If \(H_t = \sqrt{\frac{(\Gamma_t^X)^2 + (\Gamma_t^Y)^2}{2}} \), \(\text{Ent} \left(\frac{X + Y}{\sqrt{2}} \| G \right) \leq \frac{1}{2} \int_0^1 \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} \, dt. \)

Consequently,

\[
2\delta_{\frac{1}{2}}(X, Y) \geq \int_0^1 \left[\frac{\mathbb{E} \left[(1 - \Gamma_t^Y)^2 \right]}{2(1 - t)} + \frac{\mathbb{E} \left[(1 - \Gamma_t^X)^2 \right]}{2(1 - t)} - \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} \right] \, dt
\]

\[
= \int_0^1 \frac{2\mathbb{E}[H_t] - \mathbb{E}[\Gamma_t^X] - \mathbb{E}[\Gamma_t^Y]}{1 - t} \, dt.
\]

Using concavity of the square root then shows

\[
\delta_{\frac{1}{2}}(X, Y) \geq \int_0^1 \mathbb{E} \left[\frac{(\Gamma_t^X - \Gamma_t^Y)^2}{(1 - t)(\Gamma_t^X + \Gamma_t^Y)} \right] \, dt.
\]
Bounding the Deficit

If \(H_t = \sqrt{\frac{(\Gamma_t^X)^2 + (\Gamma_t^Y)^2}{2}} \), \(\text{Ent} \left(\frac{X + Y}{\sqrt{2}} \| G \right) \leq \frac{1}{2} \int_0^1 \mathbb{E} \left[(1 - H_t)^2 \right] \frac{dt}{1 - t}.

Consequently,

\[
2\delta_{\frac{1}{2}}(X, Y) \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma_t^Y)^2 \right]}{2(1 - t)} + \frac{\mathbb{E} \left[(1 - \Gamma_t^X)^2 \right]}{2(1 - t)} - \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} dt
\]

\[
= \int_0^1 \frac{2\mathbb{E}[H_t] - \mathbb{E}[\Gamma_t^X] - \mathbb{E}[\Gamma_t^Y]}{1 - t} dt.
\]

Using concavity of the square root then shows

\[
\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{(\Gamma_t^X - \Gamma_t^Y)^2}{(1 - t)(\Gamma_t^X + \Gamma_t^Y)} \right] dt.
\]
Bounding the Deficit

If \(H_t = \sqrt{\frac{(\Gamma_t^X)^2 + (\Gamma_t^Y)^2}{2}} \), \(\text{Ent} \left(\frac{X + Y}{\sqrt{2}} \| G \right) \leq \frac{1}{2} \int_0^1 \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} dt. \)

Consequently,

\[
2\delta_{\frac{1}{2}}(X, Y) \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma_t^Y)^2 \right]}{2(1 - t)} + \frac{\mathbb{E} \left[(1 - \Gamma_t^X)^2 \right]}{2(1 - t)} - \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} dt
\]

\[
= \int_0^1 \frac{2\mathbb{E}[H_t] - \mathbb{E}[\Gamma_t^X] - \mathbb{E}[\Gamma_t^Y]}{1 - t}.
\]

Using concavity of the square root then shows

\[
\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{(\Gamma_t^X - \Gamma_t^Y)^2}{(1 - t)(\Gamma_t^X + \Gamma_t^Y)} \right] dt.
\]
Bounding the Deficit

If \(H_t = \sqrt{\frac{(\Gamma^X_t)^2 + (\Gamma^Y_t)^2}{2}} \), \(\text{Ent} \left(\frac{X + Y}{\sqrt{2}} \| G \right) \leq \frac{1}{2} \int_0^1 \mathbb{E} \left[(1 - H_t)^2 \right] dt \).

Consequently,

\[
2\delta_1^\frac{1}{2}(X, Y) \geq \int_0^1 \frac{\mathbb{E} \left[(1 - \Gamma^Y_t)^2 \right]}{2(1 - t)} + \frac{\mathbb{E} \left[(1 - \Gamma^X_t)^2 \right]}{2(1 - t)} - \frac{\mathbb{E} \left[(1 - H_t)^2 \right]}{1 - t} dt
\]

\[
= \int_0^1 \frac{2\mathbb{E}[H_t] - \mathbb{E}[\Gamma^X_t] - \mathbb{E}[\Gamma^Y_t]}{1 - t} dt.
\]

Using concavity of the square root then shows

\[
\delta_1^\frac{1}{2}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{(\Gamma^X_t - \Gamma^Y_t)^2}{(1 - t)(\Gamma^X_t + \Gamma^Y_t)} \right] dt.
\]
Log-Concave Measures

We say that X is strongly log-concave if it has a density f such that $-\ln(f)'' \geq 1$.

Fact: if X is strongly log-concave then $\Gamma^X_t \leq 1$ almost surely.

So, if both X and Y are strongly log-concave

$$\delta_{1/2} (X, Y) \geq \int_0^1 \mathbb{E} \left[\frac{(\Gamma^X_t - \Gamma^Y_t)^2}{1-t} \right] dt$$

We use this to derive a quantitative stability bound.
We say that X is strongly log-concave if it has a density f such that $-\ln(f)'' \geq 1$.

Fact: if X is strongly log-concave then $\Gamma_t^X \leq 1$ almost surely.

So, if both X and Y are strongly log-concave

$$
\delta_{1/2}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{\left(\Gamma_t^X - \Gamma_t^Y\right)^2}{1 - t} \right] dt
$$

We use this to derive a quantitative stability bound.
We say that X is strongly log-concave if it has a density f such that $-\ln(f)'' \geq 1$.

Fact: if X is strongly log-concave then $\Gamma^X_t \leq 1$ almost surely.

So, if both X and Y are strongly log-concave

$$\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{(\Gamma^X_t - \Gamma^Y_t)^2}{1 - t} \right] dt$$

We use this to derive a quantitative stability bound.
We say that X is strongly log-concave if it has a density f such that $-\ln(f)'' \geq 1$.

Fact: if X is strongly log-concave then $\Gamma^X_t \leq 1$ almost surely.

So, if both X and Y are strongly log-concave

$$\delta_{1/2}(X, Y) \gtrsim \int_0^1 \mathbb{E} \left[\frac{(\Gamma^X_t - \Gamma^Y_t)^2}{1 - t} \right] dt$$

We use this to derive a quantitative stability bound.
\[
\int_0^1 \mathbb{E} \left[\frac{(\Gamma_t^X - \Gamma_t^Y)^2}{1-t} \right] dt \\
\geq \int_0^1 \text{Var}(\Gamma_t^X) dt + \int_0^1 \text{Var}(\Gamma_t^Y) dt + \int_0^1 \left(\mathbb{E} \left[\Gamma_t^X \right] - \mathbb{E} \left[\Gamma_t^Y \right] \right)^2 dt \\
\geq \mathcal{W}_2^2(X, G_1) + \mathcal{W}_2^2(Y, G_2) + \mathcal{W}_2^2(G_1, G_2).
\]

Here, \(\mathcal{W}_2 \) denotes the Wasserstein distance and
\[
G_1 = \int_0^1 \mathbb{E}[\Gamma_t^X] dB_t^X, \quad G_2 = \int_0^1 \mathbb{E}[\Gamma_t^Y] dB_t^Y
\]
are Gaussians.
\[
\int_0^1 \mathbb{E} \left[\frac{(\Gamma^X_t - \Gamma^Y_t)^2}{1 - t} \right] dt \\
\geq \int_0^1 \text{Var}(\Gamma^X_t) dt + \int_0^1 \text{Var}(\Gamma^Y_t) dt + \int_0^1 \left(\mathbb{E} \left[\Gamma^X_t \right] - \mathbb{E} \left[\Gamma^Y_t \right] \right)^2 dt \\
\geq \mathcal{W}^2_2(X, G_1) + \mathcal{W}^2_2(Y, G_2) + \mathcal{W}^2_2(G_1, G_2).
\]

Here, \(\mathcal{W}_2 \) denotes the Wasserstein distance and \(G_1 = \int_0^1 \mathbb{E}[\Gamma^X_t] dB_t^X \), \(G_2 = \int_0^1 \mathbb{E}[\Gamma^Y_t] dB_t^Y \) are Gaussians.
Thank You