Computability and Completeness in Logics of Programs
Preliminary Report

D. Harel, A. R. Meyer and V. R. Pratt

Tt st
o/
I

. Massachusetts Institute of Technology
Cambridge, Mass. 02139

Abstract

Dynamic logic is a generalization of first order logic
in which quantifiers of the form "for all X.." are replaced
by phrases of the form "after executing program a..”. This
logic subsumes most existing flirst-order logics of programs
that manipulate their environment, including Floyd's and
Hoare's logics of partial correctness and Manna and
Waldinger's logic of total correctness, yet is more closely
related to classical first-order logic than any other
proposed logic of programs. We consider two issues: how hard
is the validity problem for the [ormulae of dynamic logic, and
how might one axiomatize dynamic logic? We give bounds on the
validity problem for some special cases, including a
Hg-comphleness result for the partial correctness theories
of uninterpreted flowchart programs. We also demonstrate the

completeness of an axiomatization of dynamic logic relative to
arithmetic.

Introduction

In this paper we continue the development of a proof
theory and semantics of a formal logical language for making
assertions about programs. This language, which was
introduced in [13], will be called "dynamic logic” in this
paper. It is based on the language of first order logic, with
the quantifier "for all X ..." generalized to "after executing
the program & ..." Just as "lor all X .." is abbreviated
to "V X..," so shall we abbreviate "after executing « ..." to
“Lal.”. Just as IX is the dual of VX, so is <a> the dual of
Lad, and indeed <adP is equivalent to ~[al-P. Informally, the
truth of LalP in a state (interpretation) 3 amounts to the
claim that, if a is started in state 3, P will be true if and
when a halts, no matter which state a halted in (a may be
non-deterministic). Likewise, the truth of <a)P in a state 3
alfirms that, starting from state 3, some computation of a
leads to a state in which P is true. A formal definition of
Lad and <a> is outlined below in terms of the notion of a
modality in formal logic. Using this language, VX could
equivalently be expressed as [X:=?] where X:=? is a
nondeterministic program which sets X to a random individual.
This is the sense in which Lal generalizes ordinary logical
quantification. (Our notation is motivated by the box and
diamond notations of modal logic [103; in conversation we have
found it convenient to pronounce [al as "box a” and <a> as
“diamond a.")

This research was supported by the
National Science Foundation under
contracts GJ43634X, DCR74-12997 -A0l
and MCS76-18461.

261

Many of the basic assertions one might like to make
about programs are directly expressible as formulae involving
Cal and <a>. For example, to assert that program a never
halts on any input, one can write [alfalse (or LalX#X).
Literally, this asserts that false holds in any final state
reached by a, which of course is only possible if a never
reaches such a final state. Dually, to assert that program a
halts on all inputs, one need only write <a>true. Hoare's
partial correctness assertion P{a}Q [8] may be expressed as
F(PoLalQ), which suggests the analogous F(P2<ad>Q) for a
general termination assertion. Dijkstra's predicate
transformer wp(a,P) B may be expressed as [aIJPA<adP or
equivalently as [alPA<adtrue. Two programs each using a
single variable for output (respectively Y and 7) may be
asserted to be equivalent with VX({<a>Y=X)=(<8>Z=X)), where X
does not appear in & or B. This asserts that if X is a
possible output of the program e, then X is also a possible
output value of 8, and conversely. We may also assert that a
is deterministic by saying that the value it yields in some
computation is the value it yields in every computation, using
YX(<a>Y=X > [alY=X).

For convenience we refer to classical first-order
logic as first-order logic. By loop-free logic we mean
first-order logic augmented with modalities restricted to
programs in the closure, under union and composition, of tests
and assignments. By regular logic we mean loop-free logic
together with transitive closure, denoted by *. By dynamic
logic we permit [al and <a> modalities where a may be any r.e.
program (defined below).

The first part of the paper deals with the problem of
how hard it is to decide validity of formulae of dynamic
logic. Validity is a recursively enumerable predicate on
formulae of first-order logic. It was shown in [13] that
validity is no harder for loop~free logic than for first-order
logic, but harder for regular logic. In this paper we further
widen this gap between loop-free and regular logic; in
particular, we strengthen an incompleteness result obtained in
[13] for the partial correctness theory of a trivial one-loop
program with one instruction in its body. On the other hand,
we show that at least for partial correctness assertions
(formulae PoLalQ for first-order P,Q), the validity problem is
no harder for dynamic logic than it is for regular logic; thus
if one considers enriching one’s programming language with
progressively more powerful control structures, the only
change in the difficulty of the validity problem [or partial
correctness comes at the point where loops are introduced.

The results of the second part of the paper strike a
more positive note by generalizing a relative completeness
theorem of Cook [4], We show that an economical set of
Hoare-like axioms (first described in {131), taken together
with those formulae of logic that are valid in the "natural
number universe," form a complete set of axioms [or the
formulae of regular logic valid in this universe.

Dynamic Logic

To keep this paper self-contained, we now give a brief
account of dynamic logic as developed in [13). The central
concept here is the symhol. We envisage four kinds of
symbols: function symbols, predicate symbols, symbols called
logical connectives, and symbels called modalities, all of
various arities 0 except that modalities are required to be
unary. Modalities fall into two classes, "boxes” and
"diamonds;" the distinction, discussed informally above, is
explained formally in the paragraph below on expressions. We
refer to a set of such symbols as a language; logicians may
prefer the term "similarity type." Although we do not have any
particular set of symbols in mind here, the reader will not go
far astray il he assumes that the symbol set is fixed and
consists of a countable supply of function and predicate
symbols of each arity (including such standard symbols as +,
X, >, and =), all standard unary and binary boolean logical
connectives, and whatever modalities we permit explicitly in
the sequel.

The four concepts dependent on the concept of symbol
are state, universe, expression, and evaluation,

A state (interpretation, world, e\nvironment) of a
language specifies a non-empty domain D (carrier, underlying
set) and assigns a value to every symbol in the language
except the modalities; it assigns as values k-ary functions on
D to k-ary {unction symbols, k-ary predicates on D to k-ary
predicate symbols, and k-ary boolean functions to k-ary
logical connectives. All logical connectives receive their
standard values, as does equality.

A universe (Kripke structure [10]) specifies a set U of
" states having a common domain D, subject to the foregoing
constraint that = and all logical connectives have their
standard values. A universe assigns to every modality in the
language a value which is a binary relation on U. (Note that
modalities differ from the other symbols in that their values
are assigned per universe rather than per state.) A binary
relation & on a universe U determines the net behavior of a
(nondeterministic) program, i.e. a multi-valued function from
start states to final states. For our purposes it is
appropriate to regard programs as being such binary relations
[11. We consider only modalities whose value is "standard”,
in the sense that Tor each modality considered explicitly or
implicitly in this paper and for each universe we have in mind
a specilic value [or that modality in that universe. We shall
write Lal (resp. <a>) to denote a box (resp. diamond) modality
whose value in the universe is determined by a, where a is a

262

syntactic object such as the deterministic assignment
"X:=X+1", the non-deterministic assignment "X:=7", or the test
*X>07?". Informaily, the test P? in the universe U is the
restriction of the identity relation on U to those states of U
that satisly P, while the assignment X:=T in universe U is the
function (i.e. deterministic relation) that maps state 3 of U
to a state differing from 3 only in the value it assigns to

the zeroary function symbel X; this value is that of the term
T in 3. The equation (T) (resp. (A)) of [13] gives the precise
rule for determining the binary relation from the test (resp.
assignment) and the universe. While we do not explicitly
consider array assignment in this paper, the results of [13]
indicate that none of the results. of this paper depend on
whether array assignments. are permitted.

An expression over a language L consists of an ordered
pair whose first component (its operator) is a k-ary symbol of
L and whose second component (its operand) is a k-tuple
consisting of certain expressions (called the arguments of the
expression). (This is equivalent to the definition given in
[131 in terms of trees.) The simplest expressions have a
0-ary operator and the (unique) O-tuple for an operand.
Expressions are classified according to their operators as
either terms (if the operator is a function symbol) or
formulae (the rest). Formulae with predicate-symbol operators
are called atomic while formulae with modal operators are
called modal. The arguments of function and predicate symbols
must be terms; arguments of modal symbels and logical
connectives must be formulae. These remarks suffice to
characterize the expressions of dynamic logic.

Like symbols, expressions are assigned values by
states; the values of terms are individuals in D and the
values of formulae are truth values. Expressions other than
modal formulae are assigned: values, or evaluated, by the
standard Tarskian method CISE the value in state 3 of an
expression is the result of applying the value in 3 of the
operator to the values.in 4 of the arguments. Given a
universe U {which assigns a value to a) and a state $ in U,
the value in 3 of the modal formula CalP is true when.P is
true in every 3 of U satislying a3, and false otherwise. The
value of <adP in 4 is true when P is true in some & of U
satisfying 3ad, and false otherwise.

Qur previous remarks about first-order quantifiers can
now be formalized as follows. Define a k-ary function (resp.
predicate) symbol S to be uninterpreted in U if for every k-ary
function (resp. predicate) V on D and for every state 4 of U, there

is a state 9" in U such that 9" is identical to 3 except that

9 assigns the value V to S. Let X be a zeroary function

symbol uninterpreted in U and let X:=? denote that binary
relation on U that relates pairs of states diflfering at most

in their value of X. (This is an equivalence relation. As we
noted, this program may be regarded as the non-deterministic
assignment statement that assigns an arbitrary element of the
domain D to X; the ? can be taken in the spirit of APL's

symbol for a random number.} Then it should be evident that
we may take YX to be the modality [X:=?] and 3X to be {X:=D.

In [137 attention was focused on loop-free and regular
programs. In the [irst part of this paper, on computability,
we shall consider an even larger class of programs called r.e.
programs, An execution sequence is a string over an alphabet
whose elements denote tests and assignments of the kind
considered in [13]. An execution sequence denotes the
composition of the binary relations on states denoted by
successive elements of the sequence. A set of execution

_sequences denotes the union of the denotations of the elements
of the set. Then the above class of regular programs is just
the class of programs denoted by regular sets (in the sense of
automata theory) of execution sequences. The r.e. programs
are precisely those denoted by recursively enumerable
execution sequence sets. (Note that execution sequence sets
are precisely the level (ii) programs of section 3.1 of [13])

The only modalities we shall consider in this paper
are first-order quantifiers and program modalities (defined by
execution sequence sets, excluding the instruction X:=?).

We classily formulae of dynamic logic into four
successively larger categories according to the kinds of
program modalities which appear:

first-order no program modalities

loop-free loop-free program modalities permitted
regular regular program modalities permitted
dynamic r.e. program modalities permitted

We independently classily [ormulae according to the
kinds of non-zeroary predicate and lunction symbols which
appear:

arithmetic only +,x,=
logic any except +X
augmented arithmetic ino restriction

A formula P is valid in a universe U, or U-valid,
{notation: |=U P) when it is true in every state of U. Pis
valid (notation: F P) when it is valid in every non-empty
universe in which. function and predicate symbols (except =)
are uninterpreted and modalities and logical connectives are
interpreled as described in the above paragraph on universes,
(For first-order formulae this usage coincides with the
standard definition of validity.) The natural number universe
‘N has as domain the natural numbers, and in every state
assigns Lhe standard values Lo + and x (and any other symbols

the reader recognizes as standard symi:ols of arithmetic). P
is N-valid (notation: Fy P) when it is valid in the natural

number universe.

We use the word theory to refer to valid formulae.
Thus the valid [ormulae of dynamic logic constitute
-dynamic theory. The N-valid formulae of [irst-order
first-order augmented arithmetic will be called augmented
number theory. The N-valid formulae of first-order arithmetic
will be called first-order number theory, etc. Deciding
N-validity of augmented arithmetic is known to be much harder

than for first-order arithmetic because predicates not in the
arithmetic hierarchy are implicitly definable in first-order
augmented arithmetic. Similar remarks apply to dynamic
augmented number theory versus dynamic number theory.

Two observations of [13] are relevant to this paper.

(1) The partial correctness theory of X:=FX* (i.e. the set
of valid formulae Po{X:=FX*1IQ where P,Q are formulae of
first-order logic) is not r.e. (This is Theorem 16 of [13],

and was proved in essence by showing that any set in the class
I'l(i is reducible to- this partial correctness theory., We
henceforth use Z; and ﬂi to denote classes of the arithmetic

hierarchy, omitting the usual superscript 0 denoting
first-order logic, cf [141)

(2) The axiom system of section 3.2 [13] for loop-free
theory is sound, complete and effective.

In this paper we improve the Hi reduction in (1) to
ILg, still for the partial correctness theory of the same
simple program. This implies the incompleteness of any axiom
system in which theoremhood is not at least as hard to decide
as membership in H2-complete sets. However, we also show
that the partial correctness theory of all r.e. programs (the
set of valid formulae PolalQ where @ may be any r.e. program)
is in H2, so no r.e. program has a more intractable partial
correctness theory than X:=FXX.

It follows from (1) that a sound, complete, effective
axiom system for the valid formulae of dynamic (or even
regular) logic is impossible. However, as we show in this
paper, by taking all of first-order number theory as axioms,
the extension of the axiom system to handle loops (also given
in £133) is sound and complete for regular number theory. The
result also holds for regular augmented number theory when we
take first-order augmented number theory as axioms. Along
with [6], this is the first time a completeness result has
been obtained for systems that treat termination, let alone
for one with the generality of dynamic logic.

Computability

We can abbreviate the four theorems of this section as
follows. The notation should be sell-explanatory when read in
conjunction with the following expanded statements of the
theorems.

({a} ¢ re)
(regular € {a} ¢ re)
(regular { {a} { re)

({a} » X:=FX*)

(1) {F<e>P} = z
(2) {FladU} = I,
() {FladP} = 11,
{

(4) {F37La3p} 3 ¢(®)
Theorem 1. The valid formulae of dynamic logic of the lorm

<a>P, where a is any r.e. program and P is a formula of
first-order logic, form a complete r.e. set.

Proof. Note that just the valid formulae of first-order logic
already form a complete r.e. set, that is, {FP} 2 Z;. So

to prove the El-completeness of the set of valid formulae of
the more general form <ad>P, we need only prove that this set
of valid Tormulae is r.e.

The validity of <a>P amounts to the validity of an
infinite disjunction of formulae <>P where the B's are the
denotations of the individual execution sequences of a. Each
of these formulae may be expanded by Theorems 3 and 4 of [13]
as formulae of first-order logic. Then the infinite
disjunction is valid if and only if some [inite subset of the
disjunction is valid, by compactness of first-order logic.
Since the disjunction is of an r.e. set of formulae, validity
can be decided by enumerating elements of the disjunction
until sufficiently many elements are present that their
disjunction is valid. B

Theorem 2. The valid formulae of dynamic logic of the form
CalU, where U is any universally quantified formula of
first-order logic, form a compiete co-r.e. set.

Proof. The validity of [allU amounts to the validity of

an infinite conjunction of formulae [A1U, which as in Theorem
1 may be expanded as universally quantilied formulae of
first-order logic. Then to check their validity it suffices

to check the validity of each of the conjuncts, a decidable
question since the conjuncts are universally quantiflied. The
set of conjuncts being r.e., this problem is in Hl

and so the valid formulae form a co-r.e. set.

To see that the set is complete in IT;, it sulfices

to choose U to be false, and allow a to range merely over
regular programs. Lalfalse is valid iff the uninterpreted
flowchart scheme corresponding to & never halts. This

problem [or flowchart schemes is known to be
Il -complete [11]. W

Theorem 3, The valid formulae of dynamic logic of the form
LalP, where & is any r.e. program and P is a formula of
first-order logic, form a ITy-complete set. This result holds

even if the class of programs permitted is taken to be as
small as regular programs; in flact, just the single regular
program X:=Y;X:=FX* will suffice to obtain the result.

Proof. (Sketch). The upper bound is proved exactly as for
Theorem 2, with the remark that the validity of each conjunct
is now only partially decidable since each conjunct is an

arbitrary formula of first-order logic including existential
quantifiers. This boosts the problem from Iy to Iy

For the lower bound, our stralegy will be to reduce
the totality problem for Turing machines whose inputs are
given in unary notation to the validity problem for sentences
[aJ(P>Q) where a is the fixed program X:=Y;X:=FXX, P will
force models of the sentence to represent a computation of the
Turing machine, while Q will assert that the machine halts.

264

Clearly Lal amounts to a universal quantifier "for
all X in the set S = {Y,FY,F(FY),.}," which if thought of as
natural numbers has Y for 0 and F for successor. We then
supply a formula W = VZ(C(F7)=Z A FZ#Y); it should be evident
that in every model of W, S is infinite. This enables us to
reason about Q in [ad(W 2 Q) as though S were always infinite.
Now consider the following more or less standard approach to
showing that the validity problem [or [irst-order logic is
complete in Z;. Let R be a binary predicate symbol. Confine

attention to the values of R on SxS, which we may think of as
the upper quadrant of the two dimensional integer lattice.
Take the rows of the lattice to be Turing machine id.'s
(instantaneous descriptions) coded in binary in some way.

(For definiteness, take R(i,j) to assert that cell (i,j)

contains a 1.) It is tedious but straightforward to give a
formula of first-order logic which forces adjacent rows of the
lattice to describe id.'s the second of which is the result

of running a given Turing machine for one step on the first.
We can also say that a halting state appears on some row.
Similarly we can give a formula that says that the first row
contains just one state symbol {representing the Turing
machine's head) positioned at the beginning of the tape
(perhaps occupying the first hundred or thousand bits of the
tape). And we can say that everywhere outside that head
description, consecutive pairs of bits in the first row have
only the configurations 11, 00 and 10, and furthermore that 10
occurs exactly once, namely at position X. If we could force
X to occur within the S portion of the row, we would then have
forced the row (outside the state descriptor) lo encode a
unary number with an initial finite segment of 1's and then

the rest 0's. This is where [aJ is used; we simply say
Lad(R(Y,X) A = R{Y,FX)). (To avoid “overwriting” the state,
we really need to replace X by F(F(FFX)) in R(Y,X) and
R(Y,FX) for suffliciently many F's.) Let Q denote the
statement that a halting state occurs on some row, and let P
denote all the other statements we discussed (which will be a
function of which Turing machine we had in mind). The [al can
be moved up (since X does not appear outside the original
scope of [ad) to yield the final formula [a3(P > Q). Then we
claim that [a)(P2Q) is valid if and only il the Turing machine
we had in mind halts on all inputs. If it is valid then it is

true in the model in which S exhausts the domain and R
represents a computation of that machine, which implies that
the machine always halts. Now suppose that the machine always
halts. Then there always exists a final state in every model
of P for which X is in S, whence [al(P2Q) is always true, i.e.
valid. R

We regard Theorem 3 as important, since it indicates
the extent of the difficulty of supplying complete
axiomatizalions for the true partial correctness assertions of
the form P{a}Q. (The I, upper bound generalizes to arbitrary

P by the remark that PoLalQ is equivalent to [P?ealQ.)

Theorem 4. The set of valid formulae of dynamic logic of the form
37LalP, where & may simply be the fixed program X:=Y;X:=FX*
and P is any formula of first-order logic, lies outside the
arithmetic hierarchy [141.

(This sudden jump in the complexity of validity is
attributable to being able to implicitly define [14]
arithmelic truth given enough quantifiers.)

Prool. (Sketch). Our strategy in this proof is to reduce to
the given validity problem the problem of deciding whether a
natural number n is the Codel number of an N-valid, i.e.
true, sentence of first-order arithmetic. We use a technique
like that in the previous proof to construct from n a formula
37La)(P>Q), to be valid if and only if n encodes a true
sentence. P will constrain the models of the formula so that
Q, which will simply be T(F(F..FY)) where there are n F's and
T is a predicate symbol implicitly defined by P to test
arithmetic truth, will be true if and only if n encodes a true
sentence (cf [14], p344).

Civen binary lunction symbols A and M, we can in
first-order logic force A and M to behave like addition and
multiplication on S (where $ is as in the previous proof).
Civen a unary predicate symbol T, we can proceed to define T
to act correctly on S, using auxiliary function and predicate
symbols where necessary (mainly in primitive recursive
definitions of functions such as SUB(X, 'VJ(E)') which given

X and the Godel number of YJ(E) yields the Godel number of the

result of substituting a constant equal to the value of X for
Jin E). In these definitions, almost all quantifiers may be
ordinary first-order quantifiers. Only one quantifier

requires care, and- that is the quantifier that must appear in
the definition of T(n) to cope with the case when n equals
'VJ(E). The definition of T at this point will look

something like T('VJ(E)) = VK(T(SUB(K, 'VJ(E)))), which
ought to assert that T applied to the Godel number of YXE)
should be true just when substituting any integer constant for
J in E results in a true formula. Of course the YK guantifies
over the whole domain, including elements on which all our
defined [unctions may break down. This is where the [a]
modality Trom the previous proof comes to the rescue, allowing
us to quantify over just those elements on which we know our
defined functions and predicates give the intended results.
Thus the right hand side of the above equivalence could be
phrased LaX(T(SUB(X, 'VJ(E)'))). This would complete the
proof (modulo many details) except for the lact that [al is
more deeply embedded in our final formula than we would like.
The technique for moving it out is to revert to the use of
ordinary quantification (VK) for simulating "V J", but at the
“top level” a statement is made that if T(SUB(X,Z)) holds for
all X in S, then it holds for all K. Now let us account for

the quantifiers. Let R denote the definitions of F, A, M, T,
etc, and let Q denote T(F(F.FY)) with n F's. Then the final
formula is

(YZ(La)(T(SUB(X,Z))) = YK(T(SUB(K,Z)) A R) 2 Q.

This is logically equivalent to 3ZLal(P>Q) where P,Q
are first-order formulae. [

Note that <Z:=Y;Z:=FZ*> can be used in place of 3Z in
the above proof, so that we may also conclude

{FLalP}) plw) (regular € {a},{8)).

265

Completeness

In this section we prove that an axiomatization of
regular number theory (that is, an axiom system whose theorems
are among the N-valid formulae of dynamic logic with no
non-zeroary function or predicate symbols save +, x, and =,
and restricted to modalities with regular programs) that was
given in [13] can be made complete simply by taking the
formulae of number theory as further axioms. The same proof
shows that the same axiom system completely axiomatizes
regular augmented number theory (permitting other function and
predicate symbols besides +, x and =) provided the formulae of
augmented number theory are taken as axioms.

Cook [4] has used the notion of expressiveness to
prove the completeness of a good approximation to Hoare's
axiom system, and not surprisingly our prool does so too, We
say that a language L is as U-expressive as a language M when
for every formula P of M there exists a formula Q of L such
that ':U (P=Q). We argue briefly here that (augmented) number
theory is as N-expressive as regular (augmented) number
theory. (We could of course replace "regular” by “r.e.”, or
even more, but since we only exhibit axioms [or regular
programs there is little point in our so doing.) For the
purposes of this section, we take aN to be the program that
maps state § to the states that aoao..oa would map 4 to,
where the number of a's is given by the value of N in 3 and N
is not changed by a, nor does a depend on N. The main point
is that from Cook's expressiveness proofl we can infer that if
P is N-expressible in (augmented) arithmetic and a is a
regular program then [aN]P is N-expressible in (augmented)
arithmetic, say as Q. Hence YNQ N-expresses La*IP provided
N does not occur free in P. Further, if Q' N-expresses <al>p
then ANQ' N-expresses <a*>P,

We reproduce here the axiom system that appears in
section 3.2 of [131 and refer to it hencelorth as P. It is of
interest inasmuch as it is the appropriate generalization of
conventional axiom systems for pure first-order logic.

Logical Axioms

All tautologies of Propositional Caleulus.
[al(P2Q) = ([adP 2 [1Q) .

Logical Inference Rules
P,PoQFQ.

PF [alP (subsumes P I VxP).

Non-logical Axioms
VXP o P)E any formula t
P 2 VXP (P has no free occ. of X)

V Performance Axiom.
Y Invariance Axiom.

[PIQ = PoQ

CF(S):=TIP = P* (See [131 for details)
LalBIP = LalP A (FIP

Laof1P = [ad(81P

Test Axiom.
Assignment Axiom.
Union Axiom.
Composition Axiom.

PoLalP F PolaXIP
PaLacarp Pa¢a*>Py

Rule of Invariance.
Rule of Convergence.

A detailed discussion of these axioms appears in [131.
Here it suffices to observe that the first six axioms and
rules, down to P o VXP, constitute a complete axiom system for
classical pure predicate calculus. Together with the next
four equivalences, they constitute a complete axiomatization
of loop-free theory. Our objective now is Lo show that the
whole system above, together with all the N-valid formulae of
arithmelic as axioms, is a complete axiom system lor regular
number theoty. The same proof will serve to show that when
the N-valid formulae of augmented arithmetic are taken as
axioms, the axiom system is complete for regular augmented
number theory. We will not further consider the augmented
case; however we note here that the augmented case falls much
higher in the hierarchy of degrees of unsolvability and so it
is interesting that the same prool applies.

The main result of this section is proved by a variant
of the Star Interpolation Theorem (Theorem 24 of C131). That
theorem stated in essence that [a*IP and <a* >P (where for
a program 8, B is the converse relation: 983 = 3679) were
both invariants of a, which is obvious when one writes
[a*IP>Lalla*IP, and (not guite so obviously)

5 [aXa ><a*)P
> {aKa*">P

<a*HP

We prove another Star Interpolation Theorem in this paper
which interpolates, not invariants, but rather what we call
convergents, which are to termination-(and-in the case of
deterministic programs, to total correctness) what invariants
are to partial correctness.

In the [ollowing we redeline some concepts from [13]
in such a way as to make clear the relationship between-Cook’s
completeness result for partial correctness alone and our
completeness result for regular number theory, of which
partial completeness and termination assertions are very
special cases.

Duality Lemma PA<adQ and <a >PAQ are equally satisfiable.

Proof. 393(3kP A 3ad A 3EQ) asserts the satisfiability of each
of the two formulae. B

Duality Principle. F(PvIalQ) = E(La”IPVQ) .

Proof. Take the Boolean dual of satisfiability, A, and <ad
in the duality lemma. B

Corollary. F(PolalQ) = F(Ka™>P2Q).
Corollary. F(P 2 [aJ<a >P) (as remarked earlier).

Note that F(PoEalQ) expresses the same thing as
Hoare's P{a}Q , whence so does F(<a™ >P2Q). Whenever Pl{a}Q
holds, we may call P a box antecedent of Q via &, and Q a
box consequent of P via a. Since F(LalQ > [alQ) and
E(<a™>P23<¢a>P), it follows that [a]Q must be the weakest box

266

antecedent of Q via a (since for any antecedent P, PoLalQ is
valid) and similarly <a™>P must be the strongest box
consequent of P via a.

Analogous to the partial correctness assertion PolalQ
is the formula Po<a>Q, which-asserts that if P holds & can
terminate and satisfy Q (if a is deterministic, i.e. is a
function, this asserts the total correctness of a). We can
call <a>Q a weakest diamond antecedent of Q via &, which leads
us to ask for a strongest diamond consequent. Unfortumately
the Duality Principle does not hold for <a> in place of Cal,
as can be checked with P = ~Q = true, & = ¢ (the emply
program), for which E(truev<#>false) holds but
E(<¢ > truevialse) does not. That is, [a"IP is not even a
diamond consequent of P via a (since the above is a
counterexample to P2<adla™1P), let alone a strongest diamond
consequent. The conclusion is thal termination is not exactly
the dual of partial correctness: weakest diamond antecedents
are given by <a>Q but strongest diamond consequents are not
given by [a"1P.

We defline an invariant of & to be any formula P such
that PolalP is N-valid.

Weakest Invariant Lemma. [a®IP (the weakest box antecedent of
P via &) is the weakest invariant of & that implies P.

Proof. Since aca*ca*, [a*IPolalla*IP is valid, so [a*IP
is an invariant of a. Further, since IcaX, [a*1P2P (lis

the identity relation) so it implies P. Finally, suppose

Q>olalQ and QoP. Then Q>la*1Q2L[a*IP, so [a*JP is the
weakest such. B

Strongest Invariant Lemma. <a* >P (the strongest box
consequent of P via a¥) is the strongest invariant of &
implied by P.

Proof. (Dual of the previous proof.) Since a oa* ca*™,
<a~><a* T IPoCa* 7P is valid, so <a*>PoLala*"OP by the
Duality Principle, so <a*~>P is an invariant of & . Further,
Po<a*7)P. Finally, if Q2lalQ and P2Q then Qola¥1Q , so
<a*">Q>Q, so <a* >P3¢a*>Q2Q. 1B

Note that weakest and strongest invariants are
constructed analogously to weakest box antecedents and
strongest box consequents, the only dilference being the
use of * for invariants.

We say that an invariant Q of a is an invariant
interpolate of two formulae P and R via &, when P2Q>R is
valid.

Invariant Interpolation Lemma. if Po2la*IR then La®IR and
<a*7>P are both invariant interpolates of P and R via a.

Proof. Both are invariants of & by the above lemmas. Further,
PoCa*1R (hypothesis), La*IR2R (Ica¥), Po<a*">P (Ica*) and
<a*">PoR (dual of hypothesis).

Just as the diamond antecedent was the analogue of the
box antecedent, so do we have an analogue of the notion of
invariant. We call Q a convergent of a when Q'2<a>Q is
valid, (where Q' is QNNd, which substitutes N+1 [or all

free occurrences of N in Q) and say that the convergent Q of a
is a convergent interpolate of P and R when P2IAN(Q) and

Q%DR. The interest in convergents is that they allow us to

prove that a loop can eventually terminate with the right
answer, just as invariants allow us to prove that a
terminating loop always yields the right answer. In the case
of deterministic programs, convergents subsume invariants,
since for deterministic a, Ca>P>lalP. Note that convergents
and convergent interpolates are defined differently from
invariants and invariant interpolates to permit the lollowing
lemmas, though when Q has no free occurrences of N these
differences vanish except for the use of <> for [1.

Convergent Lemma. (aN)P is a convergent of a.
Proof. <a™N*13p 5 ¢ar<al>p. B

Convergent Interpolation Lemma. If P><a*>R then <aMRis 5
convergent interpolate of P and R.

Proof. P > AN<a™>R and <aH>R > R. 8

We now prove that the axiom system P for regular
number theory given at the beginning of this section is sound
and complete when number theory is taken as additional axioms.
We leave to the reader the task of showing that P is sound.
The following three theorems deal with the completeness of P.
They depend on our notion of expressiveness discussed at the
beginning of this section.

Write P without the Rule of Invariance as P<), and
without the Rule of Convergence as PL1.

Box Completeness Theorem. For any first-order formulae P and

R, and for any a, I=N PolalR iff '-P[] PoLalR.

Proof. The result follows by induction on the number of *'s in
a together with the fact that for & = 8%, [B*IR is an
invariant interpolate of P and R via § (by the Invariant
Interpolation Lemma), which implies that the Rule of
Invariance can be applied. Also in this case PoIS*IR and
[A*IR>R are formulae of arithmetic, by the expressiveness of
arithmetic, and therefore il valid are axioms of P. B

Diamond Completeness Theorem. For any [irst-order formulae P
and R, and for any a, FN Po<adR il FP() Po<adR.

Proof. Again induction may be used on the number of ¥'s in &
together with the fact that for a = 8%, <ﬂN>R is a convergent
interpolate of P and R via B (by the Convergent Interpolation
Lemma), which implies that the Rule of Convergence can be
applied. Also, in this case PD]N(ﬂN>R and (ﬂO)RDR are
formulae of arithmetic, by the expressiveness of arithmetic,
and therefore if valid are axioms of P. B

267

Main Completeness Theorem. For any formula P of regular
number theory, I'P P.

Prool. Again we appeal to the expressiveness of arithmetic,
this time with respect to formulae of dynamic logic by a
trivial argument on the depth of nesting of modalities. This
implies that {or any formula P there exists a formula L(P) of
arithmetic such that FN P = L(P). We say that Pis in

conjunctive normal form when the argument of each - is an
atomic formula and the arguments of each Vv are not conjuncts.
Appealing to the evident completeness of our system for
Propositional Calculus, we may assume that P is given in
conjunctive normal form with n modalities, such that #N P.

We proceed by induction on the number n of modalities in P.
The case n = 1 can easily be seen to follow from the previous
two theorems. Now assume the theorem holds for any formula
with n-1 or less modalities. Observing that if |=N PI/\P2
then ':N Pl and FN P2, we can restrict our discussion to a

single disjunction. Without loss of generality we can assume
P to be of the form Plvm(a)Pz where m(a) is [al or <ad. We

have FN PIVm(a)PQ and therefore FN -«L(Pl)Dm(a)L(Pz).
Applying the appropriate of the two previous theorems we
obtain I-P ﬂL(Pl)Dm(a)L(Pz). Obviously by the definition
of L(P) we have l=~ -PID-'L(PI) and ':N L(P2)9P2. Both
these last formula have less than n modalities, hence by the
inductive hypothesis I'P ﬂPl:)-vL(Pl) and I'P L(P2):_>P2.
Applying the rule PF{alP we obtain }'P [a](L(Pz)DPz).

We now apply modus ponens and either the axiom [al(PoQ) o
(CalP=LalQ) or the theorem Lal(P5Q) 2 (KadP3<adQ) to obtain
I-P m(a)L(P2):>m(a)P2. Easy applications of modus ponens now
give ’-P Py 2m(a)Py or equivalently }'P Plvm(a)Pz.]

The Diamond Completeness Theorem can be regarded as
establishing the completeness of a system for proving total
correctness of programs, if a is restricted to be
deterministic. This provides a completeness proof for the
Burstall-Manna-Waldinger technique [3,11], which essentially
is an informal description of the method of proving Po<¢adR,
which is incorporated in P. Basu and Yeh [2] have the same
notion for convergents; however they do not envisage the
application for it that we have presented here. In a future
paper, we hope to clarily in more detail the relationships
between these and other techniques for proving total
correctness ol programs.

Acknowledgments

J. Schwarz pointed out the absence of any induction
axioms in an earlier axiomatization of regular augmented
number theory, prompting the inclusion of the Rule of
Convergence, without which half of this paper would not have
been written. S. Purcell supplied us with the formula
C(FX)=XAFX#Y for Theorems 3 and 4. We benefited from
discussions of dynamic logic with R. Burstall, S.

Litvintchouk, R. Milner, G. Plotkin, M. Fischer, R. Ladner and
R. Rivest.

References

[11 de Bakker, J.W.,, and W.P. de Roever. A calculus for
recursive program schemes. in Automata, Languages and
Programming (ed. Nivat), 161-196. North Holland, 1972.

[21 Basy, S. K. and R. T. Yeh. Strong Verification of
Programs. 1EEE Trans. Soltware Engineering, SE-1, 3, 339-345.
Sept. 7S..

[33 Burstall, RM. Program Proving as Hand Simulation with a
Little Induction. IFIP 1974, Stockholm.

[41 Cook, S.A. Axiomatic and Interpretive Semantics for an
Algol Fragment, TR-79, Toronto, Feb. 1975.

[S1 Dijkstra, E. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J. 1976.

£6] Harel, D., A. Pnueli and J. Stavi. A complete

axiomatic system lor proving deductions about recursive
programs. Proc. Ninth Ann. ACM Symp. on Theory of Computing,
Boulder, Col., May 1977,

£71 Hitcheock, P. and D. Park. Induction Rules and
Termination Prools. In Automata, Languages and Programming (ed.
Nivat, M.), IRIA. North-Holfand, 1973.

{81 Hoare, C.A.R. An Axiomatic Basis for Computer
Programming. CACM 12, 576-580, 1969.

[93 Hughes, C.E. and M.). Cresswell. An Introduction to
Modal Logic. London: Methuen and Co Ltd. 1972

[10] Kripke, S. Semantical considerations on Modal Logie.
Acta Philosophica Fennica, 83-94, 1963.

[113 Luckham, D., D. Park and M. Paterson. On Formalized
Computer Programs. J.CSS 3, 2, 119-127. May 1970.

[121 Manna, 7. and R. Waldinger. Is "sometime” sometimes
better than "always"? Intermittent assertions in proving
program correctness. Proc. 2nd Int. Conf. on Software
Engineering, Oct. 1976.

[131 Pratt, V.R. Semantical Considerations on Floyd-Hoare

Logic. 17th IEEE Symposium on Foundations of Computer Science,
QOct. 1976.

[14]1 Rogers, H. Theory of Recursive Functions and Elfective
Computability. McCraw-Hill, 1967

[15] Tarski, A. The semantic conception of truth and the
foundations of semantics. Philos. ind Phenom. Res, 4, 341-376,
1944,

268

