ISRAEL JOURNAL OF MATHEMATICS 76 (1891), 317-336

HAMILTONIAN PATHS IN INFINITE GRAPHS*

BY

DaviD HAREL

Department of Applied Mathematics and Computer Science
The Weizmann Institute of Science, Rehovot, Israel
harel@wisdom.weizmann.ac.IL

ABSTRACT
A tight connection is exhibited between infinite paths in recursive trees
and Hamiltonian paths in recursive graphs. A corollary is that determining
Hamiltonicity in recursive graphs is highly undecidable, viz, T}-complete.
This is shown to hold even for highly recursive graphs with degree bounded
by 3. Hamiltonicity is thus an example of an interesting graph problem
that is outside the arithmetic hierarchy in the infinite case.

1. Introduction

Computer scientists are interested predominantly in finite objects. Insofar as they
are interested in infinite objects, these must be computable, i.e., recursive, thus
admitting an effective finite representation. In fact, insight into finite objects can
often be gleaned from results about (infinite) recursive variants thereof. Given the
central place that finite graphs occupy in theoretical computer science, and the
many results and open questions surrounding them, it would seem appropriate to
investigate recursive graphs too. Indeed, a significant amount of work has been
carried out recently regarding the complexity of problems on recursive graphs.
Some of the first papers were written by Manaster and Rosenstein [10] and Bean
[2, 3. Since then, a variety of problems have been considered, including ones
that are NP-complete for finite graphs, such as k-colorability and Hamiltonicity

* Parts of this research were carried out during a visit to IBM T.J. Watson Research
Center, Hawthorne, NY, in the Summer of 1990. The author holds the William

Sussman Professorial Chair in Mathematics.
Received March 26, 1991 and in revised form October 10, 1991

317

318 D. HAREL Isr. J. Math.

(1, 3, 5, 6, 7, 10], and ones that are in P in the finite case, such as Eulerian paths
(3, 4].

In most cases (including the above examples) the problems have turned out
to be undecidable. This is true even for highly recursive graphs [2], i.e., ones for
which node degree is finite (but not necessarily bounded) and the set of neighbors
of a node is computable. Beigel and Gasarch [4] and Gasarch and Lockwood
[7] have investigated the precise level of undecidablity of many such problems,
and have shown that they reside on low levels of the arithmetic hierarchy. For
example, it is shown in [4] that detecting the existence of an Eulerian path is
I13-complete for recursive graphs and II3-complete for highly recursive graphs.

The case of Hamiltonian paths seems to have hitherto defied satisfactory clas-
sification. Bean showed in [3] that the problem is undecidable (even for planar
graphs), but the precise characterization was not known. In this paper we prove
that Hamiltonicity is in fact highly undecidable, viz, $}-complete. In Section 2
the result is proved for recursive graphs, and in Section 4 it is shown to hold
even for highly recursive graphs with degree bounded by 3.! Hamiltonicity thus
becomes an example of an interesting graph problem that becomes highly unde-
cidable in the infinite case. Another example can be found in the (independent)
work of Aharoni, Magidor and Shore [1], from which it follows that perfect match-
ing in recursive graphs is also L1-complete.

These two results give rise to the far more general question of trying to charac-
terize graph problems whose infinite version is outside the arithmetic hierarchy.

In Section 3 we provide a more subtle version of the construction of Section
2, obtaining a stronger connection between infinite paths in recursive trees and
Hamiltonian paths in recursive graphs: When transforming a tree T into a graph
G, or vice versa, the mappings between infinite paths in T and Hamiltonian paths
in G are not only recursive, but yield a tight synchronization; making progress
in one path depends only on fixed portions of the other.

2. Recursive Graphs

A recursive directed graph is a pair G = (V, E), where V is recursively iso-
morphic to the set of natural numbers A, and E C V x V is recursive. G is
undirected if E is symmetric. A one-way (respectively, two-way) Hamilto-

1 Using a different reduction, T. Hirst has recently managed to strengthen this
result, showing that it holds even for planar graphs.

Vol. 76, 1991 HAMILTONIAN PATHS 319

nian path in G is a 1-1 mapping p of N (respectively, Z) onto V, such that
(p(z),p(z + 1)) € E for all z.

Bean [3] has shown that determining Hamiltonicity in highly recursive graphs
is undecidable. It is worth sketching the proof here.? The reduction is from non-
well-foundedness of recursive trees with finite outdegree. Given such a tree T, a
graph G is constructed, such that infinite paths in T map to Hamiltonian paths
in G. The idea is that as a path in T moves down the tree, the Hamiltonian path
in G cycles through all nodes of T' that reside at the current level, ending the
cycle at a point from which the process of moving down T can be resumed. See
Fig. 1.

Fig. 1. Bean’s reduction [3] from finitely branching trees (for directed graphs).
In simulating an infinite path in the tree (thick lines), the Hamiltonian path
cycles through all nodes on each level.

A fact that is crucial to this construction is the finiteness of T’s outdegree,

2 Actually, Bean’s paper contains two proofs of undecidability, of which this is the
second.

320 D. HAREL Isr. J. Math.

so that the proof does not generalize to trees with infinite outdegree. In fact,
the proofs in [3] only establish that Hamiltonicity is hard for I}, or co-r.e. In
showing in this paper that the problem is actually ©}-complete, we exhibit a
reduction from non-well-foundedness of recursive trees with possibly infinite out-
degree, which is well-known to be a X}-complete problem [12, Thm. 16.XX]. In
this section, we establish the result for recursive graphs. The stronger version,

for highly recursive graphs with bounded degree, is obtained in Section 4.

THEOREM 1: Detecting (one-way or two-way) Hamiltonicity in a (directed or
undirected) recursive graph is £1-complete.

Proof: In T} is easy: With the 3f quantifying over total functions from N to

N, we write

3f V= Wy 3z ((f(2), flz + 1)) € EA(z #y = f(2) # (W) A f(2) = 2).

This covers the case of one-way paths. The two-way case is similar.

To show Tl-hardness, assume a recursive tree T is given, whose set of nodes
isN =0,1,2,3,..., whose root is 0, and whose parent-of function is recursive.
Recall that T' can be of infinite outdegree. We construct an undirected graph
G4, such that G; has a one-way Hamiltonian path iff T has an infinite path.

For each element n € N, the graph G; has five internal nodes, n*,n?,n",n
and n®", standing, respectively, for up, down, right, left and up-right. Here

1

are G1’s edges (see Fig. 2):

nﬂ
(nur
nt
n'
n‘
Cond S(n)
n

Fig. 2. The construction of G;.

Vol. 76, 1991 HAMILTONIAN PATHS 321

¢ For each such cluster, G; has five internal edges:

nl__nd__nu_nur__nr_nl

e For each edge n — m of the tree T, n® — m* is an edge of G1.

e For each node n in T, let S(n) be n’s distance from the root in T (its level).
Since S(n) € N, we may view S(n) as a node in T. In fact, in G1 we will think
of S(n) as being n’s shadow node, and the two are connected as follows:?

n" — S(n)" and S(n)! — n'

e To complete the construction, there is one additional root node g in G1, with
an edge g — 0*.
Since T is a recursive tree and S, as a function, is recursive in T, it is obvious

that G, is a recursive graph.
LEMMA 1: T has an infinite path from 0 iff Gy has a Hamiltonian path.

Proof (Only-if): Suppose T has an infinite path p. A Hamiltonian path p'
in G, starts at the root g, and moves down G’s versions of the nodes in p,
taking detours to the right to visit n’s shadow node S(n) whenever S(n) ¢ p. To
move down without visiting S(n), p' covers n’s five internal nodes in the order
n*, n*", n", n!, né. When it does visit S(n), the order is as follows (see Fig.
3):

n*, n*", a7, S(n)", S(n)*", S(n)", S(n)¢, S(n)!, nl, nt.

Since p is infinite, we will eventually reach a node of any desired level in T,
so that any n ¢ p will eventually show up as a shadow of some node along p
and will be visited in due time. In this way, p' will have clearly covered all five
internal nodes of each element of A, and will have done so exactly once. Hence,
p' is Hamiltonian.

(If) Suppose G; has a Hamiltonian path p. It helps to view the path p as
containing not only the nodes, but also the edges connecting them. Thus, with
the exception of the root g, each node in G; must contribute to p exactly two

incident edges, one incoming and one outgoing.

3 Clearly, given T, the function §: N — A is not necessarily one-one. In fact,
Fig. 2 is somewhat misleading, since there may be infinitely many nodes with
the same shadow, so that the degree of both up-nodes and down-nodes can be
infinite. Moreover, S(n) itself is a node somewhere else in the tree, and hence
has its own T-edges, perhaps infinitely many of them.

322 D. HAREL Isr. J. Math.

CraiM: For any n, if p contains the T-edge incident to the up-node n*, or,

when n = 0, if it contains the edge between g and 0%, then it must also contain

a T-edge incident to the down node ndt

Fig. 3. A Hamiltonian path in G;. Here, S(no), S(n3) and S(ns) are in p, and

are therefore not visited as shadows.

Proof: (Refer to Fig. 2.) Assume p contains the T-edge incident to n®. Consider
n®". It has exactly two incident edges, both of which must therefore be in p. But
since one of them connects it to n*, we already have in p the two required edges
for n*, so that the one between n* and n? cannot be in p. Note now that the
only remaining edges incident to n? are the internal one connecting it to n!, and
its T-edges, if any. However, since p must contain exactly two edges incident to

nd, one of them must be one of the T-edges. |

This completes the proof for the undirected case with one-way paths. Directed

4 In particular, this means that there is indeed some such T-edge, so that n cannot
be a leaf of T'.

Vol. 76, 1991 HAMILTONIAN PATHS 323

graphs are treated easily by replacing each edge with two directed ones, and
two-way paths are treated by simply adding new nodes —1,-2,-3,... backward-
chained to the root g of the graph. |

We could have adopted a slightly different strategy in the proof of Theorem 1.
It is possible to prove the hardness direction for directed graphs using only two
internal nodes, n* and n4, and then to show how to go from directed graphs to
undirected ones by a generic transformation. The present approach was preferred

for expository reasons.

3. A Closer Connection

To prove X}-hardness in the previous section, all we needed was to transform
a recursive tree T into a graph G, such that T has an infinite path iff G has a
Hamiltonian path. No kind of connection was required between the corresponding
paths. In this section, after showing that the transformation from T to G in
Section 2 actually yields paths that are recursive in each other, we modify the
construction, obtaining an even stronger connection.

Recall that we define a one-way infinite path p in a graph as a function from
N to the set of vertices, such that, for each n, the pair (p(n), p(n+1)) is an edge.
Accordingly, we say that a path p is recursive in a path p' if there is a Turing
machine M, which, given n, computes p(n) using an oracle for the function p.
Also, if A and B are sets of paths,® we say that a function F : A — B is

recursive-yielding, if for all p € A, F(p) is recursive in p.

PROPOSITION 1: The transformations between paths exhibited in the two parts

of the proof of Lemma 1 are recursive-yielding.

Proof: For the most part, this is easy, and we leave it to the reader. However,
one point needs clarification.

Assume we are given an oracle for an infinite path p in T. Consider the
corresponding Hamiltonian path p' in Gy from the proof of Lemma 1. To show

that p' is recursive in p, we have to convince ourselves, among other things, that

5 Here, A and B need not be recursive themselves, nor need their elements. In fact,
as shown in [3], a recursive graph can be Hamiltonian but contain no recursive
Hamiltonian path — a fact that is not true for Eulerian paths. Moreover, deciding
whether a recursive graph has a recursive Hamiltonian path is easily seen to be
arithmetical; it is actually X3-complete [8].

324 D. HAREL Isr. J. Math.

whenever we reach a node n” in p' we can indeed decide whether we take a trip to
visit n’s shadow S(n) or not. Now, such a trip is taken iff S(n), when considered
as a node of T, is not in the path p; i.e., iff there is no i such that p(i) = S(n).
Despite the unbounded, existential nature of this formulation, we can make such
a decision by advancing along p, using the oracle and the recursiveness of T to
test, for increasing i, whether p(z) is on the path from S(n) to 0, the root of T
Since S(n) must appear somewhere in T, and since p is infinite, eventually either
p(i) will be on that path or we will find some p(i) to be equal to S(n). |

A disturbing aspect of the point made in this proof is that to decide whether
or not to visit n’s shadow S(n) in the Hamiltonian path p' we might have to pose
an unknown number of queries to the oracle of p, the infinite path in T'. Thus, we
cannot bound the number of queries to p that are required between computing
p'(n) and p'(n +1). Put loosely, the computation of the Hamiltonian path in Gy
does not proceed at a pace which is bounded by the pace of the infinite path in
T.

We now present a more subtle version of the construction of Section 2, which
results in a much tighter connection. We shall set things up so that progress in p’
is tightly synchronized with progress in p. We take this to mean that between
computing p'(n) and p'(n + 1) we shall need at most a fixed number of queries
to p’s oracle. (Actually, in the case just discussed, that is, going from an infinite
path in T to a Hamiltonian path in G;, we shall really need only one query at
most, which is, of course, optimal.)

The idea is to define the shadow of a node differently, shifting all the com-
putation to the phase of constructing the graph. The consequence is that we
completely eliminate the need to choose whether we visit a shadow node or not;
the Hamiltonian path p' in G, the graph we now construct, will simulate moving
down its corresponding infinite path p in T as before, but will regularly visit the
shadow of every n. Thus, progress in p' is linked to progress in p in the strongly
synchronized sense discussed above.

Let A+ denote the set {0,01,1,1+,2,2%,...}, ordered by i < i+ < i+1. Thus
N+ contains “real” integers, interleaved with “dummy” ¥-ed versions. The nodes
of G will represent elements of N'*, not A, and most of the construction is just
as before. The difference is in the definition of shadows. Here, we define a new
S(n) as follows (and connect it to n as before, by the edges n” — S(n)" and
S(n)} — n'). Define S : N = N'* inductively, moving down levels of T. For a

Vol. 76, 1991 HAMILTONIAN PATHS 326

node n in T, S(n) is the first element z of N (that is, first in the above ordering
of N') satisfying:
1. z does not appear on the path from 0, the root of T, to n, inclusive.
(This clause applies only if z € N.)
2. z is not the shadow S(m) of any node m on the path from 0 to =,
exclusive of n, of course. (Only one application of S here; z might, in fact,
be S(S(m)) for some m on that path.)
3. z is not in the subtree rooted at n. (Again, this applies only ifzeN.)

LEMMA 2: S is total recursive.

Proof: That § is total follows from the presence of the +_ed elements: For any n,
the order in N'* implies that every second attempt to assign n its shadow will be
a +-ed element. However, the only reason not to set S(n) = m is requirement
2 above, so that any m larger than n’s level in T can be so assigned.

To see that S is recursive, when given n run through N7 in order, checking
the three requirements; totality of S guarantees eventual success. To check re-
quirements 1 and 2, we need the path from the root 0 to n, and for requirement 3
we need the path from 0 to the candidate z. Both are constructible by the recur-
siveness of T. As to the elements S(m) that are needed for checking requirement

2, we compute them inductively, from 0 down the path to n.]

The following crucial lemma shows that the set of shadows of any infinite path
in T completes the set of nodes of that path to be exactly all of N'*, without

repeats.

LEMMA 3: Let p be any infinite path in T starting at the root 0, and let S(p)
be the set of shadows of the nodes of p; that is, S(p) = {S(n) | n € p}. Then,
(i) if n,m € p, with n # m, then S(n) # S(m).
() pnSkp) =10
(iii) pU S(p) = N*
Proof: Clause (i) states that, while S is not in general 1-1, it becomes so when
restricted to an infinite path p in T rooted at 0. This follows immediately from
requirement 2 in the definition of S.

Clause (ii) follows from requirements 1 and 3 therein.

To establish (iii), we have to show that each element of A’ + — p will eventually

show up as the shadow of some node in p. First consider the t-ed elements. By

326 D. HAREL Isr. J. Math.

the observations made earlier, n* will be eventually assigned to some node along
p at distance at most 2n from the root.

Turning to elements of A" ~ p, note that for any such node n, since it is in the
tree T but not on the path p, there must be some point in p after which n does not
appear in the subtree rooted at any subsequent node of p. Having thus satisfied
requirement 3 of shadows, and noting that such an n always satisfies requirement
1 (since it is not on p at all), the fact that elements of N'* are tried out in order
and never reassigned along p implies that n will eventually be assigned as the

shadow of some node of p. |

A consequence of Lemma 3 is that, if we manage to simulate traveling down a
path in T, visiting each node and paying a visit to its shadow too, then we will
have encountered each element of A't, and we will have done so exactly once.
It is now easy to see that an analog of Lemma 1 holds for G; too, and that the
resulting pairs of paths are tightly synchronized, as described above.

This close connection between infinite paths in trees and Hamiltonian paths
in graphs holds in a reverse transformation too. In Section 2 we showed Hamil-
tonicity to be in ¥} by formulating the property as a £ formula. It follows that
we can transform a recursive graph G into a recursive tree T such that G has
a Hamiltonian path iff T has an infinite path. However, this alone says nothing
about the correspondence between the two kinds of paths. In the present context,
we can construct T from G so that there will be a similarly recursive and tightly
synchronized correspondence between the paths.

The idea is to first construct a recursive marked tree T (see [9]) so that the
n’th offspring of its root corresponds to a certain unwinding of G from its node
n. The unwindings are carried out in such a way that nodes do not repeat along
paths, and with the ¢’th mark on a path signifying that we have already seen
nodes 1 through i along that path. It is then easy to prove the analogue of
Proposition 1, by exhibiting a recursive transformation from Hamiltonian paths
in G to recurrences in T' (i.e., infinite paths, each containing infinitely many
marks), and vice versa. T" is then transformed into an unmarked tree T as in [9],
such that the recurrences of T” correspond recursively to the set of infinite paths
in T. Both transformations can be carried out in such a way that the appropriate
pairs of paths are also tightly synchronized in the sense of this section. We omit
the details.

One more remark is in place. We have concentrated on showing that the appro-

Vol. 76, 1991 HAMILTONIAN PATHS 327

priate pairs of paths are recursive in each other and are tightly synchronized. An
even stronger connection between a tree T and a constructed graph G would be to
show that the set of infinite paths of the former is recursively isomorphic (see
[12]) to the set of Hamiltonian paths of the latter (and that tight synchronization
holds too). For a directed graph version of G2, with the shadow definition of the
present section, this can be easily shown. However, we have not been able to

establish recursive isomorphism for undirected graphs.

4. Highly Recursive Graphs

We now return to the main quest of the paper, namely, proving T1-completeness
of the Hamiltonicity problem, and establish the stronger version.

A highly recursive graph is a recursive graph G = (V, E), for which thereis a
recursive function H from V to finite subsets of V, such that H(v) = {u | (v,u) €

THEOREM 2: Detecting (one-way or two-way) Hamiltonicity in a (directed or
undirected) highly recursive graph is £} -complete, even for graphs with H(v) <3
for all v.

Proof: Clearly, we need only prove £j-hardness, and we may concentrate on
undirected graphs.

We first modify the construction of Gy of Section 2, yielding a graph G3 with
degree 5. Later, we shall address the required recursiveness of a node’s neighbor-
hood, and also reduce the 5 to 3.

Infinite branching arises in two contexts in G;: (i) the branching at n? inherited
by n from the tree T', and (ii) the branching at both n! and n" that is caused by
n’s pre-shadows.®

To deal with the infinite degree of the down-nodes caused by the branching in
T, we add to each cluster of nodes representing an n € N (except for the root 0)
a new node, n**, connected to n®. Rather than branching out of nd to all of n’s
offspring in T, n? leads out to m}* only, where m, is the smallest offspring of n
in the natural order on A. Thereafter, m¥* leads to m}*, where m; is the next
smallest offspring, and so on. See Fig. 4.

This is not quite as simple as it might sound, since we have to retain the

Hamiltonian nature of the graph. To wit, say m; < m; < mj are three T-

6 In this section we return to the original definition of shadows from Section 2.

328 D. HAREL Isr. J. Math.

offspring of n, and m; is n’s successor in p. Then reaching m! from n? as just
described has the effect of visiting m}" but not visiting mg*. Hence, when the
Hamiltonian path derived from p visits m;’s cluster,” it will have to skip over
m}", whereas when it visits my’s cluster it will have to visit m§* too, without
skipping. Consequently, we have to modify the internal cluster of a node n, so
that, if and when it is visited as a shadow by the Hamiltonian path, we should

be able to choose whether we skip over its uu node or not.

Fig. 4. Connecting to T-successors with finite branching. Smaller nodes are
drawn to the left.

As to the branching resulting from the pre-shadow relationship, the idea is
similar. Rather than connecting n with its shadow node S(n) directly, via the
two edges n” — S(n)" and S(n)! — n!, we consider, for each m, the set of
pre-shadows S~1(m), ordered by the natural order on A8 These are doubly-
linked in a linear fashion, using two new nodes for each n, denoted n** and nf*
(standing for to-shadow and from-shadow). The smallest element of S~!(m)
is connected to m directly. See Fig. 5. Here, too, we must construct the cluster
so that a Hamiltonian path can either skip these two new nodes or visit them
both.

Adding to the intricacy of the construction is the need to retain the delicate

7 Since m; ¢ p, this will happen at that node of p which is on level m; in T, at
which point m; will be visited as a shadow.

8 Note that S~!(m) is really just the set of nodes residing at level m of T.

Vol. 76, 1991 HAMILTONIAN PATHS 329

balance that will enable us to prove an analogue of the Claim appearing in Lemma
1. Here, then is the full definition of the graph G3, whose degree is bounded by
5.

Fig. 5. Connecting to shadow nodes with finite branching. Smaller nodes are
drawn higher up.

G5 has ten internal nodes for each element n € . In addition to the ones of
G4, namely, n*,nd n", n! and n", we also have n"",n‘“,n",nf', and n'*. Now
for the edges (see Fig. 6 to help follow the definition):

o For each such cluster, G has the following 13 internal edges:

nl___nd__nu___nua__nur__nrr__nr___nfa___nl’
n® — n% — n**,
n’"T — nta — nr,
nfs — n®.

e Foreachn,if my <mz <ma <...is (the finite or infinite) set of offspring
of the node n in T, then G3 has the following T-edges:

nt — m* — my* — my* — -

330 D. HAREL Isr. J. Math.

e For each n, if m; < mz < ms < ... is (the finite or infinite) set of all nodes
on level n in T (i.e., n = S(m;) for each i), then G3 has the following edges:

nmT—mt —m —my — -
and
n'—mf* —ml—mf —

o The root node g is added, with an edge g — 0"*.

puy

from younger _
sibling

. foolder
sibling

to shadow
;

from shadow

.
P

to pre-shadow

from pre - shadow

to of&spring

Fig. 6. Internal nodes and edges in G3.
Before dealing with the issue of recursiveness, we prove the main lemma:
LEMMA 4: T has an infinite path from 0 iff G3 has a Hamiltonian path.

Proof (Only-if): Given an infinite path p in T, a Hamiltonian path p' in G3 will
simulate moving down p in a manner that follows the discussion above. The path
starts at ¢, and enters 0**. Thereafter, there are two kinds of n: those for which
n € p (including, of course, 0), and those for which n ¢ p.

If n € p, the path p' enters the n-cluster from “above”, i.e., n** will be reached
from n’s younger sibling in T or directly from n’s parent (which is g for the case
n =0). If n ¢ p, then the n-cluster is visited as the shadow of the one node m
along p which is on level n in T (i.e., n = S(m)). Thus, p' moves from m** along
the ts nodes of all smaller pre-shadows of n until it reaches n”, from which it will
cycle through all the internal nodes of n. It will leave n via n!, moving along the

fs nodes of those same pre-shadows, and back to mfs,

Vol. 76, 1991 HAMILTONIAN PATHS 331

Let us now see what kind of tours p' has to carry out within clusters. We first
claim that, for n € p, when n** is entered by p' (and it will be entered from
above), nf* and n** will not have been visited yet. The reason is that they could
only have been visited as part of the process of visiting some shadow node m
with m = S(n). But this would mean that we have already seen some other node
on the path p at the same level in T' as n, which is impossible, since n is the only
node on p at that level. Hence, when an n-cluster is entered from above, we need
not provide p' with the ability to skip nf® and nt*. Tt must only be able to visit
all of n’s ten internal nodes, with or without taking a detour to visit S(n), and

to leave from “below”, via n®. Fig. 7 shows how this is done.

possibly
visit shadow

possibly not
visit shadow

Fig. 7. Visiting a node that is on p in G3. Here we might have to visit S(n) too,

leaving via n*® and returning via nfe.

Turning to n ¢ p, here our path p' enters n from a pre-shadow, via n’, but it
must be able to visit the internal nodes in any of the four combinations resulting
from having to visit or skip the node n®* and the pair of nodes n** and nfs. (We
never have to visit just one of n** or nf*.) Fig. 8 shows all four possibilities.

Given these descriptions, it should be clear that p' is Hamiltonian.

332 D. HAREL Isr. J. Math.

Fig. 8. Four ways of visiting a node as a shadow in Gj.

(If) Let p be a Hamiltonian path in G3. Let n' be n’s parent node in T, and
let pre(n) be ni®, where n; is the largest offspring of n’ that is still smaller than
n, if there is such an offspring, and (n')? if n itself is the smallest offspring of n'.
Also, let post(n) be n3*, where n; is the smallest offspring of n’ which is still

larger than n, and undefined if n itself is the largest offspring of n'.

CLAaM: For any n, if p contains the edge pre(n) — n*¥, then it must also
contain either the edge n** — post(n) or the edge n? — m**, where m is n’s

smallest offspring in 7'.°
Proof: (Refer to Fig. 6 to follow the arguments.) Assume that p contains

9 In words, if n is entered from above, then it is left from below.

Vol. 76, 1991 HAMILTONIAN PATHS 333

pre(n) — n®* but not n** — post(n). We have to show that p contains
nt — m"®,

Since p must contain exactly two edges incident to any node (except the root
g), it must contain one of n** — n* or n** — n*’. We claim that the first
of these must be the case. Here is why: Assume that n** — n®? is in p. Since
n*" has but two incident edges, both have to be in p, including n®*" — n®’.
Hence, we have already accounted for the two incident edges of both n** and
n**; namely, pre(n) — n** — n** — n*". Turning our attention to n®, we
now note that two of n*’s three incident edges have been eliminated as candidates
for p. An impossibility. Thus, n** — n*® cannot be in p, so that n%* — n*
must.

However, this means that n* — n*® must also be in p, because it is one of
the only two remaining edges incident to n*® (the third, n** — n"’, was just
eliminated). We have thus established that the two edges contributed to p by n*
are n** — n* and n* — n"*.

Now consider né. It has three incident edges only: n? — n*, n
n% —— m**, which is the edge required by the Claim.!® The first of these cannot
be in p, because we have just accounted for n*’s two edges in p; hence, the other

d__nl and

two must. [|

To complete the proof of the Lemma, note that p cannot contain an infinite
subpath of the form n? — m}* — m3* — m3"* — .. The reason is that,
since we are talking about a one-way Hamiltonian path, prior to getting “stuc ” in
this infinite sequence of uu nodes, p would have been able to visit at most finitely
many clusters corresponding to nodes of the infinite tree T This, however, would
violate the Hamiltonicity of p. Hence, at some point, p must branch off the infinite
uu path, and enter one of n's offspring, say, m;. However, the Claim now implies
that p will contain the edge leading down from m; to the linked-list representing
its offspring in T. Applying this argument inductively yields an infinite path in
T, as required. |

We must now address the issue of recursiveness of neighborhoods. In way of

illustrating the subtlety of this, consider, for example, the node n*®, for some
n # 0. We must be able to compute its set of neighbors from n, possibly using

10 Actually, if n is a leaf of T it will not have the third of these edges at all. Thus,
the argument establishes that if n is entered from above this cannot be the case,
and n must have offspring in T'.

334 D. HAREL Isr. J. Math.

the Turing machine M7 that represents the parent-of relationship of the tree T
However, there is no way to determine whether n** has a large neighbor, i.e., the
ts node appearing beneath it in Fig. 5, since there might be only finitely many
nodes on the same level as n in the tree T. In fact, owing to this problem (and
also to similar ones involving the fs and uu nodes), G4, as it is defined right now,
can be shown not to be highly recursive, although it is of bounded, not merely
finite, degree.

The simplest way to overcome this problem is to carry out the entire reduction
only from infinite trees T with the following properties: (i) T is of unbounded
depth, (ii) each node of T that is not a leaf has infinitely many direct offspring,
and (iii) both the parent-of relation and the leafhood predicate (i.e., whether
a node is a leaf) are recursive. It can be shown, using the techniques of [12],
that determining whether such a tree has has an infinite path is still £}-hard.
Carrying out the reduction from such trees only, we can show that the graph G3
resulting from the above construction is indeed highly recursive. For example,
the aforementioned problem with n*® disappears, since the fact that there are
infinitely many nodes on each level of T implies that any node will have a large
neighbor, and that neighbor can now be found by running through the nodes
larger than n in ascending order until one is found that resides on the same level.

To complete the proof of Theorem 2, we now reduce the degree of G4 from 5 to
3. To that end, for each n, replace the nodes n**,n",nf* and n** by the clusters
given in Fig. 9. The reader should be able to verify easily that all the ways of
moving through these nodes that are required for the Only-if direction of Lemma
4 are indeed possible (use Figs. 7 and 8 for this), and, moreover, that we can
move through them visiting but once each of the new nodes introduced by the
replacements. As to the If direction, the proof of the Claim therein requires a
slightly longer, but similar, line of reasoning, since the single node n** has been

replaced by four nodes. The details are omitted.]

5. Discussion

A recursive graph can be viewed simply as a computable binary relation on A. In
a similar vein, we may define a recursive model, or a recursive database, simply
as a finite tuple of recursive relations (not necessarily binary) over N'. We thus
obtain a natural generalization of the notion of a finite database. Recursive

models have been the subject of much work in classical model theory (see, e.g.,

Vol. 76, 1991 HAMILTONIAN PATHS 335

the survey [11]). However, no work seems to have been done from the perspective
of databases. This appears to be a fertile area for future research, and raises a
multitude of questions concerning the computability and complexity of queries
and update operations, and the power of appropriate query languages. The
present paper seems to provide evidence that such questions might turn out to

yield interesting results.

uu
younger n older younger older
sibling sibling sibling sibling
nvY nus
nll nlll
pre-shadow n'" pre-shadow n"
n's
nfs n's
n“
shadow-link
shadow-link n's
n' n’
nh
I'\l nis :
nl
shadow-link
shadow-link
shadow-link
; n'
v shadow -link
n' n'
1s :
nfs n
nfs
shadow-link
shadow -link

Fig. 9. Reducing the outdegree of G3 to 3.

336 D. HAREL Isr. J. Math.

ACKNOWLEDGEMENT: Sincere thanks go to Richard Beigel, who introduced
me to the problem. In addition, he and Bill Gasarch also claimed (correctly,
as it turns out) that Hamiltonicity seemed as though it should be Tl.complete.
Richard and Bill were also very helpful in providing background information and

references.

References

1. R. Aharoni, M. Magidor and R. A. Shore, On the strength of Konig's duality
theorem for infinite bipartite graphs, manuscript, 1990.

2. D. R. Bean, Effective coloration, J. Sym. Logic 41 (1976), 469-480.

3. D. R. Bean, Recursive Euler and Hamiltonian paths, Proc. Am. Math. Soc. 55
(1976), 385-394.

4. R. Beigel and W. I. Gasarch, unpublished results, 1986-1990.

5. R. Beigel and W. I. Gasarch, On the complexity of finding the chromatic number
of a recursive graph, Parts I & II, Ann. Pure and Appl. Logic 45 (1989), 1-38,
227-247.

6. S. A. Burr, Some undecidable problems involving the edge-coloring and vertex
coloring of graphs, Disc. Math. 50 (1984), 171-177.

7. W. I. Gasarch and M. Lockwood, The existence of matchings for recursive and
highly recursive bipartite graphs, Technical Report 2029, Univ. of Maryland, May
1988.

8. W. 1. Gasarch, Personal communication, 1991.

9. D. Harel, Effective transformations on infinite trees, with applications to high
undecidability, dominoes and fairness, J. Assoc. Comput. Mach. 33 (1986), 224~
248.

10. A.Manaster and J. Rosenstein, Effective matchmaking (recursion theoretic aspects
of a theorem of Philip Hall), Proc. London Math. Soc. 8 (1972), 615-654.

11. A. Nerode and J. Remmel, A survey of lattices of R. E. substructures, in Recursion
Theory, Proc. Symp. in Pure Math., Vol. 42 (A. Nerode and R. A. Shore, eds.),
Am. Math. Soc., Providence, R. 1., 1985, pp. 323-375.

12. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-
Hill, New York, 1967.

