A High School
Program in
Computer Science

Judith Gal-Ezer
Open University of Israel

Catriel Beeri
Hebrew University

David Harel
Weizmann Institute of Science

Amiram Yehudai
Tel-Aviv University

A team of researchers and
educators introduces a
computer science curricuium
into Israeli high schools.

This curriculum combines con-
ceptual and practical issues in

a zipper-like fashion.

0018-9162/95/$4.00 © 1995 IEEE

omputers are undoubtedly the most important invention of the

twentieth century, having dramatically and irrevocably changed

the way we live and work—mostly for the better. One implication
is that educated people should be computer literate. This, in turn, cre-
ates the need for introducing computers into high school curricula.

Computing as a scientific discipline, now called computer science (CS),
predates the invention of computers. The first decades of this century saw
a crystallization of the discipline’s fundamental concepts accompanied by
surprising discoveries regarding the inherent limitations of computation.
More recently, fueled by the invention of computers and their widespread
use, the study of computing has bloomed, and CS is now recognized as an
autonomous scientific discipline. Its scope includes the study and analysis
of algorithmic processes, their power and limitations (sometimes called
algorithmics*?), and computing systems’ design and implementation. CS
concepts are influencing work in other scientific disciplines, and CS central
notions and thought styles are becoming widely assimilated. Clearly, a
modern high school curriculum should reflect this growing importance.

Most high school activity in computing has centered around courses in
computer literacy or on the use of computers as teaching aids in other dis-
ciplines. When computing has been taught in high school as an
autonomous subject, the emphasis has been most often on the technical-
ities of a programming language; at best, students learned to “code.”
However, coding is only one side of the coin. Our interest is far more foun-
dational and addresses the need to establish CS as an accepted scientific
subject on the high school level of education, to be taught on a par with
other sciences, such as biology, physics, and chemistry.

As with any scientific subject, a key criterion for defining the core of the
subject is longevity. To a large extent, computer technology changes far
more rapidly than the basic ideas of the science of computing, which cen-
ter on the notion of an algorithm and its use in computing systems. Based
on the sixty years or so since the pioneering days of CS, these ideas have
lasting and fundamental value. Thus, although a proposed high school
program should enhance a student’s ability to exploit computers benefi-
cially, its backbone must be based on science. The program should pro-
vide insight, knowledge, and skills independent of specific computers and
programming languages. Moreover, since high school is the only time
many students are exposed to CS, a good curriculum must also aim at
breadth and versatility.

This article describes such a curriculum. Its emphasis is on the basics of
algorithmics, and it teaches programming as a way to get a computer to
execute an algorithm. It has been proposed by a committee formed in
1990 by the Israel Ministry of Education.

October 1995

BACKGROUND

CS is a relatively young discipline, and CS education is
even younger. But it is not only our field’s tender age that
causes problems for the educator. The nature of the field
itself is a factor as well. On the one hand, with its formal
methods and abstract thinking, CS resembles mathe-
matics, but on the other hand, it is very much an engi-
neering discipline, requiring concrete, down-to-earth

skills. This has caused lengthy, often tedious controver- .

sies.’ 5 For example, what is CS? What is its relationship
with other fields? How do its subfields relate to one
another? What characterizes a well-educated computer
scientist?

Considerable activity has surrounded CS curricula at
all levels. Particularly relevant is the high school curricu-
lum designed by an ACM special task force, whose report
contains references to some of this activity. Our work has
a similar basic philosophy. However, the goals and scope
of the two programs are quite different. ACM’s program
amounts to a one-year, 120-hour CS-orientation course,
whereas ours can reach 450 hours, taught over three years,
constituting an extensive study of the subject at the high
school level. Moreover, having been appointed by the min-
istry directly responsible for Israel’s educational policy and
implementation, we are heavily involved in supervising
the many additional activities required to turn a skeleton
curriculum into a widely used working program. These
include preparing detailed course material, designing
teacher-training courses, delegating the task of following
an initial field test, and so on.

Our program was designed to fit Israel's particular edu-
cational needs but can be applied elsewhere. To under-
stand the context of our work, see the sidebar, “Israel’s
education system.” Computer science has been a subject in
Israel’s high school curricula since the mid-1970s but has
not yet become a fully accepted scientific subject like
physics, biology, or chemistry. Instead of the usual 3-and
5-unit programs geared toward matriculation exams, CS

was tatight in 2- and 4-unit programs (where each unit
consists of 90 hours of study). Moreover, many high
schools in Israel didn’t even offer CS or offered only the 2-
unit program. Partly because of this, Israel’s university
administrators have never taken CS as seriously as other
sciences that students may have taken in high school. In
the overall evaluation of a university candidate, high
school units in CS are not worth as much as units in the
other sciences.

The curriculum developed by a Ministry of Education
committee in the 1970s included a solid, detailed course
in Basic programming. In addition, it called for several
electives. If this curriculum had been fully implemented,
by now, we might have only needed to update it to reflect
changes in the field and a better understanding of therel-
evant educational issues. However, course material (study
books, teacher’s guides, and so on) was not always avail-
able for the electives in the 1970s program. So, although
students learned to program in Basic, they were not always
exposed to the entire planned curriculum. That commit-
tee did consider algorithms, but the emphasis was on using
a programming language. In addition, some teachers did
not know enough about the subject matter and taught the
material as they saw fit.

Indeed, the “teacher issue,” visible from the start, has
been very problematic. While well-defined requirements
exist to qualify teachers in most high school subjects, the
situation in CS is quite different. Unlike teachers of physics
or mathematics, CS teachers in many countries are self-
taught or have only a high school education. It was only
in 1992 that the US organization NCATE (National Council
for Accreditation for Teacher Education) adopted stan-
dards for US teacher preparation programs, which were
to take effect in 1994.7

Getting back to the development of curricula in Israel,
various new units based on Logo and an electronic spread-
sheet language were developed in the 1980s (among other
things, to meet the growing demand for teaching com-

Israel’s education system

The Israeli education system is basically centralized. The
Ministry of Education sets educational policy on all levels
and implements it with help from specialized committees,
work teams, and professional supervisors.

Students go through ten years of mandatory education,
usually divided into elementary school (grades 1 through
6), mid-level school (grades 7 through 9), and one year in

> high school (grade 10). Two additional high school years
. (grades 11 and 12) are optional. These three high school
! years culminate in an extensive set of matriculation exams

SN,

L study units, although most students earn more.~ "~

WA R .y e . .
| OGRS R T N IR TR TS MR SO LI 0, DA A EREREEES

(called bagrut in Hebrew), which are crucial for admission

into Israeli universities. The exams are based on a core of
required subjects and several additional electives. Subjects

. are taught in “study units,” each denoting three hours per .
- week for ayear, or approximately 90 hours. To get past the -
* matriculation hurdle, a student must successfully pass the k
“'exams in at least six subjects, accumulating at least 20 total - plac
studer "+ work can therefore be applied to other countries as well.

!

Computer

< om el

Many subjects can be studied at various levels, the most
common being 3-unit and 5-unit programs that differ sig-
nificantly in material quantity and conceptual depth. A 5-
unit program would typically require studying the subject
for 5 weekly hours throughout the three years of high
school.

Required courses include Hebrew (language and litera-
ture), English, Bible studies, mathematics, and history.
Electives include Talmud studies, geography, the sciences
(physics, biology, and chemistry), and several other courses.
In addition, some schools have a technological track, where
students study some technical subject intensively to prepare
for specialization during their future studies.

* Obviously, no two educational systems are quite the same.
But high school studies in most countries contain a scien-

" tific component that is comparable to—although in some

places not as extensive as—that of the Israeli system. Our

e o

puter literacy). Some schools adopted these in place of
part or all of the curriculum, which sometimes entailed
moving even further away from true computer science.

Our committee was formed in 1990. It includes a
researcher specializing in the educational aspects of math-
ematics and CS (Gal-Ezer), three computer scientists inter-
ested in educational issues (Beeri, Harel, and Yehudai),
two experienced high school teachers of computer science,
and four education professionals from the Ministry of
Education, including the head of the computers and com-
puter science section.

We started out by reviewing the existing situation, and
concluded that the whole issue must be readdressed and
a new and carefully thought-out CS program must be
developed for high school (grades 10 through 12). (In
Israel, grades 1 through 10 are mandatory, while grades
11 and 12 are optional.) We were convinced that the com-
mittee should not only decide on the general topics and
principles, but should also prepare detailed and rigorous
syllabi for all units in the program; it should help form and
supervise the teams that prepare the course material, pro-
viding them with continuous technical feedback; it should
be involved in teacher training activities; and it should
guide and follow a small-scale initial implementation of
its recommendations.

THE NEW PROGRAM

Underlying principles

Before getting into a more detailed description of the
new program, it is helpful to pinpoint the principles we
have used to guide our work, some of which recapitulate
issues discussed above. In reading them, it helps to keep in
mind that the program must introduce a new subject; stu-
dents are not exposed to any computer science before
embarking on this program. This is one of the main dif-
ferences between computer science and other high school
subjects.

The zipper principle

COMPUTER SCIENCE IS A FULL-FLEDGED SCIENTIFIC
SUBJECT. It should be taught in high school on a par with
other scientific subjects.

THE PROGRAM SHOULD CONCENTRATE ON THE KEY
CONCEPTS AND FOUNDATIONS OF THE FIELD. The main
notion to be emphasized throughout the program is that
of an algorithmic problem and an algorithm as a solution
thereof. To some extent, the more general notion of a sys-
tem and the accompanying principles of modularization
and abstraction should also be discussed. Other topics are
to be viewed as building upon these.

TWO DIFFERENT PROGRAMS ARE NEEDED, ONE FOR 3
UNITS AND ONE FOR 5. The first is for students with only
a general interest in CS, and the second, which should be
deeper and broader, is for those with more specific inter-
est in CS. However, the design of the 3-unit program
should take into account that for many students this might
be the only exposure to computer science, so some attempt
at comprehensive coverage should be made.

EACH OF THE TWO PROGRAMS SHOULD HAVE REQUIRED
UNITS AND ELECTIVES. While the entire program should
consist of central and important topics, some of these are
less crucial than others and can be made elective. Moreover,
variance and flexibility are important for their own sake.

CONCEPTUAL AND EXPERIMENTAL ISSUES SHOULD BE
INTERWOVEN THROUGHOUT THE PROGRAM. The word
“conceptual” here does not mean “impractical.” It refers
to subjects that are taught in the classroom rather than in
the laboratory. This two-track approach, which we dubbed
the zipper principle, is one of the salient points of our pro-
gram (see the sidebar “The zipper principle”).

TWO QUITE DIFFERENT PROGRAMMIN:: PARADIGMS
SHOULD IDEALLY BE TAUGHT. It is highly recommended

A major principle in our program’s design, and a crucial
guideline for teaching it, concerns the interweaving of con-
ceptual and experimental issues. We call this the zipper
approach—a little of this followed by a llttle of that, com-
bining to form a unified whole.

- This “zippering” is most visible in the Fundamentals mod-
ule and the Software Design module. In fact, these two
modules constitute a two-track effort; one is conceptual and

:,tatlons with a real programming Ianguage
: Progress along the two tracks:is”made’
?Instructors flrst drscuss each new concept m the classroom

oA

e morerfundamental th.
o s 7 v-wy’@,",

the other recasts concepts and ideas in practrcal |mp|emen-
AR ment), and students apply and practice their knowledge by
., using it. Thus, we don’t teach the while statement asan’.

particular language. Students will become acutely aware of
this when exposed to an additional programming para-
digm, but we want to drive the idea home from the start.
For example, we recommend that the notion of repeti-
tion in algorithms be illustrated with informal, natural lan-
guage descriptions (such as “capitalize all words in the input
list”) before any programming language renditions of this
concept are introduced. Instructors present a specific pro-
gramming construct (for repetition, the while or. for state-

entity in its own right, but rather as one of many possrble .
forms that a repetmve construct can assume ina program—' :
mir Ianguage Nevertheless we don't spend too much
time dlscusslng abstract notlons, smce most hlgh school stu- :

October 1995

that a student learn a “mother tongue” first, but then, on
amore humble scale, be introduced to another language,
of a radically different nature, that suggests alternative
ways of algorithmic thinking. This emphasizes the fact
that algorithmics is the central subject of study.

A WELL-EQUIPPED AND WELL-MAINTAINED COMPUTER
LABORATORY IS MANDATORY. This is the responsibility of
the school system and entails setting things up to support
laboratory sessions and adequate individual “screen time”
for students.

NEW COURSE MATERIAL MUST BE WRITTEN FOR ALL
PARTS OF THE PROGRAM. The teams that are to prepare
the course material must have “real” computer scientists
on board, as well as CS high school teachers and
researchers in computer science education.

TEACHERS CERTIFIED TO TEACH THE SUBJECT MUST
HAVE ADEQUATE FORMAL CS EDUCATION. An under-
graduate degree in computer science is a mandatory
requirement, as is formal teacher training.

In summary, the program should focus on the most
basic, lasting concepts of CS. It must challenge students
by relating these concepts to the practical side of comput-
ing. And it should train students to handle intellectually
demanding tasks.

Structure and content

The 3-unit version of the program consists of 270 hours
of study; the 5-unit version, 450. All hours are absolute.
The way they are distributed over days and weeks is deter-
mined by the schools. The programs are constructed from
the following five modules:

o Fundamentals 1 and 2 (2 units, 180 hours). This
2-unit module provides the foundation for the entire
program. It introduces most of the central concepts
and teaches how to apply them in a procedural pro-
gramming language.

» Software Design (1 unit, 90 hours). This module is
actually a continuation of Fundamentals. It concen-
trates on data structures, introducing abstract data
types in the process. It also takes a step beyond stand-
alone algorithms and discusses the design of com-
plete systems.

» Second Paradigm (1 unit, 90 hours). In this module,
the student is introduced to a second programming
paradigm that is conceptually different from the pro-
cedural approach adopted in the first two modules.
Logic programming and system-level programming
units are currently approved; other possibilities
include object-oriented, functional, or concurrent
programming.

+ Applications (1 unit, 90 hours). This module concen-
trates on one particular kind of application, teaching
both principles and practice. Currently approved
alternatives include computer graphics and man-
agement information systems.

* Theory (1 unit, 90 hours). This module is intended to
expose the student to selected topics in theoretical

Computer

computer science. Two alternatives are currently
approved: a full unit on models of computation
(mainly automata) and a two-part unit consisting of
models of computation and numerical analysis.

The two Fundamentals units are mandatory for both
program versions. The third unit in the 3-unit version
can be satisfied by either the Second Paradigm or
Applications. In the 5-unit version, Software Design is
mandatory and the fourth and fifth units are chosen from
among Second Paradigm, Applications, and Theory. Since
Second Paradigm and Applications can also be taken as
part of the 3-unit alternative, we expect somewhat deeper
versions of these modules to eventually be developed for
the 5-unit alternative. The modules are now described in
more detail.

FUNDAMENTALS 1. This unit is taught in 10th grade and
can also serve as a stand-alone minicourse for students
who will not study any more computer science. It covers the
basic concepts of an algo-
rithmic problem and its
solution, the algorithm. It
also discusses functions as
a refinement mechanism
and introduces the notions
of algorithmic correctness
, and efficiency. (See side-
' o bar, “The Fundamentals 1
E i € ‘ module.”)

GBI The sidebar on the zip-

per principle explains the

underlying pedagogical approach taken in this and other

modules. Basically, each subject is introduced first on a

conceptual level, including manual exercising, and is then

recast in practical form and implemented in a program-
ming language.

Much has been said about the significance of the first
programming language, the “mother tongue.”* Many
good arguments have been made for adopting nonproce-
dural styles of programming in the first course—notably,
functional languages such as Scheme. " Since thisisstill a
controversial issue, we have decided that a high school
curriculum should remain in the mainstream; hence, we
have adopted a “vanilla” procedural (imperative) style of
programming. As of now, we support development ofa
Pascal version of the material. However, the program itself
does not impose a specific language, and teams can
develop course material that uses other languages. In fact,
most of the curriculum is language independent.

: he program
. itself does not
" impose a specific -

{ language. Most of -
H . .

¥

i

FUNDAMENTALS 2. This second part of the basic mate-
rial is taught in 11th grade. Some of the topics covered in
the 10th grade are revisited and expanded upon in order to
deepen the student’s understanding of that material. A
number of new facets of algorithmic analysis and design
are emphasized, such as stepwise refinement and top-down
and bottom-up techniques. In addition, the following top-
ics are taught: recursion (only for 5-unit learners), proce-
dures, and two-dimensional arrays. Time efficiency is
treated in more detail, and a special section is devoted to
more advanced problems, such as searching and sorting.

SOFTWARE DESIGN. At universities, the course that fol-
lows introductory computer science is usually devoted to
data structures and data types. However, we had more gen-
eral goals in mind—namely, to endow each student witha
basic understanding of larger systems and their organiza-
tion principles. Instructors introduce new data structures,
such as stacks and binary trees. In the Fundamentals mod-
ule, procedures and functions were the main structuring
tools; in this module, abstract data types are added to help
students handle larger systems. This module also touches
on dynamic memory allocation and involves the imple-
mentation of one or two small systems.

SECOND PARADIGM. A logic programming version is
currently available, and another version based on assem-
bly language is in preparation. The former introduces basic
logic notions and discusses knowledge representation
through facts and clausal rules. Programming is done in
Prolog, with recursion, lists, and trees taking a prominent
place in the material. The assembly language version pre-
sents a computer system’s conceptual structure and intro-
duces programming in assembly language. We hope to see
additional alternatives developed for this unit—for exam-
ple, units based on functional or object-oriented pro-
gramming or concurrency.

APPLICATIONS. Although this unit can be taken by any
student, its content caters to the needs of students on the
technological track. The unit should help them apply com-
puters in the profession they pursue. The most relevant
non-CS specializations in this track revolve around infor-
mation systems (for example, in hotel administration) or
graphical aspects of computation (for example, in archi-
tectural design). Accordingly, two alternatives for the
module are being developed: One introduces manage-
ment information systems, discussing logical file and data

The Fundamentals 1 module

organization, a system’s life cycle, and basic systems mod-
eling and analysis. The other introduces computer graph-
ics, presenting the basics of representing and manipulating
graphic objects and discussing their use in problem solv-
ing. In both versions, the student uses a ready-made
software package, such as a database system or a com-
puter-aided design (CAD) package, and must complete a
final project. Here, too, we hope to see addmonal alter-
natives developed.

THEORY. This unit exposes the student to topics in
theoretical computer science. Two alternatives for the
module are under development: one in models of com-
putation, the other in numerical analysis. The first intro-
duces finite automata, pushdown automata, and Turing
machines, elaborating on their relative power. It also pre-
sents the Church-Turing thesis and briefly discusses com-
puter limitations. The second alternative concentrates on
two main topics: iterations for root extraction and solu-
tions of linear systems of equations. Issues discussed
include round-off errors, absolute and relative errors,
approximate solutions with error control, and ill-condi-
tioned problems. Two versions of models of computation
are being developed: one of 90 hours, which covers the
full unit, and the other an abridged version of 45 hours,
which is taken together with the 45-hour numerical
analysis module.

GETTING THE PROGRANM UNDER WAY
Successful program implementation involves two steps:
developing the material and teaching it correctly.

Developing the material

When we had the first version of the curriculum planned
out, we proceeded by appointing professional teams to
prepare detailed syllabi. After the committee’s approval

The Fundamentals 1 module is taught in the 10th grade.
Besides constituting the basis of both the 3-unit and 5-unit
programs, it is intended as a stand-alone minicourse for stu-
dents who choose not to continue with computer science.

The following list of its main topics reflects three years of
experimentation and might still undergo some minor
changes. We list them in linear order, with their recom-
mended hours, to show when and how extensively they are

* first introduced, but most of the topics are not simply taught
. and then set aside. They are actually “wall to wall” topics,
: consistently accompanying the material of the entire mod-

ule (as well as that of Fundamentals 2 and Software Design).

5 ,WIth varymg mtensuty
b
)

- problems, and the execution process (5 hours).

. lntroductory notlons such as algorlthms algonthmlc-

-~ e Introduction to the basic computation model of data .
:-variables, and input/output; emphasis is on viewing a - --
isample program as-a sequence of value—changmg o

pler ones (3 hours).

Conditional execution; Boolean conditions with And

and Or connectives (9 hours).

An initial discussion of algorithm correctness, includ-

ing valid inputs, correctness with respect to an algo-

rithmic problem, and testing the algorithm with sample

inputs (4 hours).

Repetitive execution of various kinds: counters, accu-
mulators, exit condltlons, nontermination (12 to 15

hours).

Aninitial discussion of algorithms’ time efficiency, includ-

ing running time as a function of input, running time

comparisons, and worst-case time behavior (3 hours).

Functions, emphasizing the use of a function to solve a

‘subproblem and vnewmg a functlon caII asanew bas:c
. instruction (8 hours). .
e One-dimensional arrays (12 hours) Lo
« A section that concludes the 10th grade material and
. includes more complex examples of algorithms and
-,y - programs, the nesting of control structures, nd more
: (16to 19 hours) ;

[737 5 5 e fiva ;..am:...‘b.n.huu».-\..a. _-JJI—‘N&M i m..?.ui,.... a2

BTN AT Oh sotidind ki

October 1995

vttt e B

of the syllabi, course material was to be developed, possi-
bly by different teams.

Atypical development team comes from a science teach-
ing department of an Israeli university and has three to
four members. We insisted that the team contain at least
one computer scientist, one academic researcher with
experience in CS education, and one high school CS
teacher. We tried to distribute the choice of teams so that
as many academic institutions as possible would take part
in the effort. This helps ensure program versatility, as dif-
ferent scientific and didactic approaches are represented.

Preparing the syllabi for the various modules was quite
alengthy process, despite the fact that many of the topics
are taught at the university level, where we could draw
upon accumulated experience. Indeed, several syllabi ver-
sions were often needed before we gave final approval. In
addition, syllabi were often changed further during the
period of course material preparation and even during the
field test. Nevertheless, preparing the syllabi was straight-
forward compared with preparing the course material
itself.

One of the first difficul-
ties that we faced in devel-

oping the program, which tudents who

became more acute in writ- don’t study CS
ing the course material, beyond the 10th
involved student popula- - grade will still

~ havea well-
- rounded, albeit’ . -

tion. Ideally, we would have
preferred to develop sepa-
rate course material forthe - simple, view of .

3- and 5-unit versions, re- | the subject’s - ..~ -
flecting the significant dif- } e
ference inrequired breadth
and depth. In reality,
Israel’s educational struc-
ture does not encourage this. Students are not required to
make decisions on program alternatives inary subject until
just before the 11th grade. In fact, by the 10th grade, when
our program starts, many students aren't sure whether they
will even be taking computer science for matriculation. In
the 10th grade, a typical science-oriented study group takes
all the main scientific subjects available in high school—
that is, physics, chemistry, biology, and in some cases com-
puter science. Because students don’t make their actual
choice of matriculation subjects until just before the 11th
grade, we had to plan so that part of the material in our
program would be accessible to a heterogeneous collection
of students, from future 5-unit learners to those who will
not even complete the 3-unit program.

The 10th-grade computer science studies typically
involve 3 weekly hours, yielding 90 hours for the year.
Therefore, our program’s first 90 hours of study, the
Fundamentals 1 module, had to not only be sufficiently
elementary but also capable of standing alone. In this way,
students who don’t study CS beyond the 10th grade will
still have a well-rounded, albeit simple, view of the sub-
ject’s important aspects.

Another problematic aspect of the development of
course material was our own rather severe underestima-
tion of the effort. On the one hand, as a collection of indi-
viduals, our committee has extensive experience both in
high school and university teaching and in writing CS text-

i Computer

books and course material. On the other hand, we should
have known that projects like this always take longer, and
are more painful and tedious, than one plans. Anyway, we
decided to start the development of a core program, con-
sisting of the mandatory modules and a small number of
electives. Our rationale was that the availability of good
core material would motivate the Ministry of Education
to adopt our program as the official high school CS pro-
gram, which many schools would implement. This would
generate sufficient support to drive the development of
additional modules as needed.

In retrospect, the decision to develop only a core pro-
gram first was fully justified—among other reasons,
because our optimism was greatly exaggerated. Now, four
years later, we have satisfactory syllabi for most of these
modules. Improvements are still needed, of course, since
we cannot claim to have final versions until the material is
thoroughly class-tested and possibly rewritten. But the
course material for several modules is satisfactory or at
least good enough to get us through the initial period.

Course material preparation on such a large scale
requires a significant budget. However, in Israel, commit-
tees such as ours do not have operating budgets but can
only make recommendations to the Ministry of Education.
This means that the success of the proposed program
Jargely depends on our ability to continually convince
Ministry personnel of the value of their investment.

Teaching the material

In the fall of 1991, we started a limited field test for parts
of the new program. It initially involved eight study groups
in five schools, and by the 1994/1995 academic year had
grown to around 40 groups in 9 schools. These small num-
bers reflect the difficulties both of convincing schools to
participate in a new, embryonic program and of finding
qualified teachers.

In fact, the teacher issue is one of the main difficulties
in implementing the program. The anomaly is that most
CS teachers do not have a university degree in computer
science. This is unacceptable, and one of the committee’s
decisions has been to require such a degree from any
teacher seeking a permit to teach CS in high school. The
Ministry of Education’s official regulations, rarely adhered
to, are that a teacher is required tohave a second degree—
MSc or equivalent—to teach a full scientific program in
the 11th and 12th grades of high school. However, inview
of the job market situation, we have tried to be more real-
istic. Specifically, we require aBSc or jts equivalent in CS,
or an appropriate BEd in CS education.

While we are confident that this policy can gradually
improve the overall quality of CS teaching, it does not solve
our present problems. Many teachers have been teaching
programming and CS in high schools for years without
such formal training. Some of these might quit when the
new program becomes fully operational, but the majority
will probably want to continue. Hence, we have outlined
a special crash course, consisting of about six basic sub-
jects that are taught in university CS departments. Current
teachers without CS degrees will be required to complete
these courses to teach the new program.

Nevertheless, even the best teachers will need some
training to teach the new program’s modules. For exam-

ple, not every CS graduate is familiar with logic program-
ming or information systems, and even those who are can
use help in the didactic aspects of teaching such topics in
high school. The few teachers chosen for the field test,
although better trained than others, still had to spend con-
siderable time in ad hoc teacher training, which the course
material developers usually provided in accordance with
the committee’s guidelines. This was necessary, in part,
to dispel some beliefs and habits of the participating teach-
ers. In the field test’s initial phases, many teachers were
more confident teaching what they knew well—for exam-
ple, the technicalities of the programming language.
Moreover, some teachers did not approve of the empha-
sis changes. For example, we de-emphasized traditional
flowcharts, and they felt deprived of an important tech-
nical device; we emphasized pseudocode in algorithm
design (as opposed to direct coding), and they thought
this new medium was too vague. :

Although the ad hoc training greatly helped the initial
group of teachers, within a few years we will likely need a
massive instructional pro-
gram for teachers inter-
ested in the new program.

This is one of the most chal- he schools
lenging problems that the have initiated
committee faces. a three-fold

Other difficultiesbesides . increase inthe .~
the teacher problem have | number of study . -

surfaced in this initial im- | groups joining the -
plementation. One is the | field testsince its’
incredibly diverse student | inception. - :
backgrounds. On the one hisiiuinig
hand, the program must

cater to students with no familiarity with computers
(except possibly computer games). On the other hand,
many students have extensive programming experience.
What makes the problem particularly acute is that most
of these are self-taught and have developed habits that
may severely hinder the orderly study of algorithmics.
Another problem is that some schools are short of com-
puters and cannot provide students with the necessary
laboratory time; in fact, many labs are inadequately main-
tained. There is still a long way to go before schools treat
their computer labs with the same respect they confer on
their physics and chemistry labs. Finally, another objec-
tive difficulty arises because Israeli universities do not yet
give incoming students the same bonus points for high
school CS as they do for other sciences. Until this happens,
many students will hesitate to choose CS.

As to the field test itself, the jury is not yet in. Thus far,
though, we think it has been quite successful. Judging
from teachers’ reports and the student exam results, the
main goals are apparently being met. In fact, the schools
have initiated a three-fold increase in the number of study
groups joining the field test since its inception.

WE HOPE THAT WITHIN TWO YEARS OUR PROGRAM will be
adopted throughout the Israeli high school system. But
much work remains. Some parts of the course material are
not yet ready, and even those parts that are will need to be
rewritten in a few years to reflect experience gained in wide-

scale application. In addition, we've mentioned the need to
develop two versions of Fundamentals and new alterna-
tives for the Second Paradigm and Applications modules.
We must also devise effective teacher-training courses.

Our work provides a basic, no-frills program for CS
study in high schools. But we envision more specialized
variants, perhaps based on different didactic approaches,
developed to handle heterogeneous students or project-
oriented study. Finally, we strongly believe that the pro-
gram should evolve to use specialized educational
software (see Barwise?? for an example) and state-of-the-
art technology such as interactive TV. |

Acknowledgments

This work reflects the efforts of many people. First and
foremost are the members of the committee itself, which is
chaired by Amiram Yehudai. Besides ourselves, it includes
Ben-Zion Barta (who heads the computer and CS section
in the Ministry of Education), Roni Dayan, Ephraim Engel,
Meir Komar, David Levant, and David Sela. We also owe a
great debt to the members of the various development
teams, too numerous to list individually, whose work and
dedication permeate the entire effort.

References

1. D.E. Knuth, “Computer Science and its Relation to Mathe-

matics,” American Mathematical Monthly, Vol. 81, No. 4, Apr.
1974, pp. 323-343.

2. D. Harel, Algorithmics: The Spirit of Computing, 2nd ed.,
Addison-Wesley, Reading, Mass., 1992.

3. E.W. Dijkstra, “On the Cruelty of Really Teaching Computing
Science,” Comm. ACM, Vol. 32, 1989, pp. 1,398-1,414.

4. D.L. Parnas, “Education for Computer Professionals,” Com-
puter, Vol. 23, No. 1, Jan. 1990, pp. 17-22.

5. A.W.Biermann, “Computer Science for the Many,” Computer,
Vol. 27, No. 2, Feb. 1994, pp. 62-73.

6. S.Merritet. al, ACM Model High School Computer Science Cur-
riculum, ACM, New York, 1994. -

7. H.G. Taylor, L.G. Thomas, and D.G. Kneze, “The Develop-
ment and Validation of NCATE-Approved Standards for Com-
puter Science Teacher Preparation Programs,” J. Technology
and Teacher Education, Vol. 1, No. 4, Dec. 1993, pp. 319-333.

8. R.I. Wexelblat, “The Consequences of One’s First Program-
ming Language,” Software—Practice and Experience, Vol. 14,
No. 7, July 1981, pp. 733-740.

9. M.C.C. Baranauskas, “Observational Studies About Novices’
Interactions in a Prolog Environment Based on Tools,” Proc.
Seventh Int’l PEG Conf., Moray House Inst. of Education, Edin-
burgh, Scotland, 1993, pp. 537-549.

10. A.Lee and N. Pennington, “The Effects of Paradigm on Cog-
nitive Activities in Design,” Int’lJ. Human-Computer Studies,
Vol. 40, No. 4, Apr. 1994, pp. 577-601.

11. H. Abelson and G.J. Sussman, Structure and Interpretation of
Computer Programs, MIT Press, Cambridge, Mass., 1985.

12. J. Barwise and J. Etchemendy, Turing’s World, CSLI Publica-
tion, Stanford, Calif., 1993.

Judith Gal-Ezer is a computer science faculty member at
the Open University of Israel, Tel-Aviv, and served as its direc-
tor of development, responsible for course development inall

October 1995

subjects. She has also designed undergraduate and gradu-
ate study programs in computer science. Her research inter-
ests include the educational aspects of mathematics and
computer science. Gal-Ezer received BSc, MSc, and PhD
degrees in applied mathematics from Tel-Aviv University in
1968, 1971, and 1978, respectively. She is a member of the
ACM and the IEEE Computer Society.

Catriel Beeri is a computer science professor at the Hebrew
University, Jerusalem, where he served as chair of the Depart-
ment of Computer Science. His research interests include
database management systems, with emphasis on theoreti-
cal aspects. Beeri received BSc, MSc, and PhD degrees in
mathematics from the Hebrew University in 1967, 1969, and
1975, respectively. He has spent two years doing postdoctoral
work at the University of Toronto and Princeton University.
He has served on the program committees of numerous con-
ferences and workshops related to databases. He is a member
of the ACM.

David Harel is the William Sussman professor of mathe-
matics at the Weizmann Institute of Science, Rehovot, Israel,
and served as chair of its Department of Applied Mathemat-
ics and Computer Science. He is also a cofounder of i-Logix
Inc. His research interests include computability and com-

plexity theory, logics of program, database theory, systems
engineering, and visual languages. Harel received a BSc
degree from Bar-Ilan University in 1974, an MSc degree from
Tel-Aviv University in 1976, and a PhD degree from MIT in
1978. He iss the recipient of ACM’s 1992 Karlstrom Outstand-
ing Educator Award and is a fellow of the ACM and the IEEE.

Amiram Yehudai is an associate professor of computer
science at Tel-Aviv University and served as chair of its
Department of Computer Science. His research interests
include software engineering and programming languages.
Yehudai received a BSc degree in electrical engineering from
the Technion in 1973 and MSc and PhD degrees in computer
science from the University of California, Berkeley, in 1974
and 1977, respectively. He is a member of the ACM and the
IEEE Computer Society.

Readers can contact Gal-Ezer at the Department of Computer
Science, Open University of Israel, 16 Klausner St., Tel-Aviv,
Israel 61392; e-mail galezer@cs.openu.ac.il.

Kathleen Swigger, formerly Computer’s Cybersquare area
editor, coordinated the review of this article and recom-
mended it for publication. Her e-mail address is kathy@
ponder.csci.unt.edu.

' IEEE

EXCELLENCE
AWARD

omputerGraphics

Enter the 1995 Industry
Excellence Awards

AND B APPLICATIONS

@)\IEEE Computer Society

IEEE CG&A'’s Industry Excellence Award recognizes the top computer
graphics products introduced over the past year (November 1994 through
November 1995). The winning products will be selected by CG&A's
editorial board, a group of acknowledged experts in graphics, imaging,
and other disciplines that contribute to computer graphics. CG&A's Industry
Excellence Award not only recognizes your company’s achievements but
also promotes industry recognition and customer respect for your products.
For applications, contact

IEEE Computer Graphics and Applications
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314
(714) 821-8380, fax (714) 821-4010

Computer

