Relprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES Vol. 26, No. 2, April 1983
Alf Rights Reserved by Academic Press, New York and London Printed in Belgium

Propositional Dynamic Logic of Nonregular Programs
Davib HAREL,*'T AMIR PNUELL * AND JONATHAN Stavit

*Department of Applied Mathematics, The Weizmann Institute of Science, 76100 Rohovot, Israel and
w‘Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan, Israel

Received January 8, 1982; revised July 1982

The borderline between decidable and undecidable propositional dynamic Logic (PDL) is
sought when iterative programs represented by regular expressions are augmented with
increasingly more complex recursive programs represented by nonregular languages. The
results in this paper indicate that this line is extremely close to the original regular PDL.
Moreover, the versions of PDL which we show to be beyond this borderline are shown to be
actually very highly undecidable. The main results of the paper are: (a) The validity problem
for PDL with the single additional context-free program A%(B) A%, for atomic programs 4, B,
defined as (J ‘->0A";B;A", is IT!-complete. (b) There exists a recursive (but nonregular, and
hence noncontext-free) one-letter program L C A* such that the validity problem for PDL
with the single additional program L is J/Ij-complete. Undecidability and 77-completeness of a
less restricted version of PDL than the one in (a) are proved separately using different
techniques.

1. INTRODUCTION

Propositional dynamic logic (PDL) is a formal logic for reasoning on a
propositional level about programs. PDL was defined by Fischer and Ladner [4],
based upon the first-order dynamic logic of Pratt [12], as a direct extension of the
propositional calculus, in which assertations concerning the in/out (i.e., before/after)
behavior of programs can be made.

Given an alphabet X of atomic programs and tests, the class of programs allowed
in formulas of PDL is taken to be the set RG of regular expressions over X. The
justification of this choice is rooted in the well-known correspondence between
iterative programs over X, as modelled, say, by flowcharts, and regular sets of strings
over Z. See, e.g., |1]. The set of strings defined by a program a € RG is thought of as
the set of possible sequences of atomic programs and tests constituting a. In the
sequel this fixed version of PDL is denoted by PDLgg.-

In [4] it was shown that the validity problem for PDLgg is decidable. In fact, it is
decidable in deterministic exponential time [13], and to within a polynomial this
upper bound is the best possible [4].

Consider the set CF of context-free grammars over X. There is an analogous
correspondence (see [1]) between recursive programs over X and context-free sets of
strings over X, justifying the study of PDL(g. Unfortunately, the equivalence and

222

0022-0000/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROPOSITIONAL DYNAMIC LOGIC 223

inclusion problems for context-free grammars, which are undecidable, can easily be
reduced to the validity problem for PDL, rendering the latter undecidable too. This
was pointed out in 1977 by R. Ladner.

One question arising here concerns the degree of undecidability of PDLg. Since
the equivalence problem for CF is co-r.e., the aforementioned observation cannot be
used to show that PDL is any harder than IT°. However, of even greater interest is
the problem of locating the precise point between RG and CF at which PDL becomes
undecidable. This question gains some momentum upon observing that there are
interesting classes of context-free grammars for which inclusion and equivalence are
known to be decidable, and others for which some of these, and similar problems, are
open. See, e.g., {5,7,8, 15]. In many of these cases, the restrictions which admit a
context-free grammer into the class in question correspond to reasonable syntactic
restrictions on the corresponding recursive program.

In this paper it is shown that the borderline between decidable and undecidable
PDL is extremely close to RG, and, furthermore, that the transition is rather striking:
from decidable in exponential time for PDLy to IT}-completeness for our extensions.

In Section 2 we define a general class K of programs which contains RG and the
additional context-free programs (a?(8)y*) for a,f,y € RG. The new program is
defined to contain all computations of a'; f; y', for all i>0. We observe that the
inclusion and equivalence problems for the subsets of X used later in the paper to
obtain undecidability of certain versions of PDL are decidable, so that these versions
cannot be shown undecidable by Ladner’s observation. We also show that these
subsets lack the finite model property, so that they cannot be shown decidable by the
finite model method of [4].

In Section 3 we use a reduction of the Post correspondence problem to show the
undecidability of PDL,.

In Section4 we prove that PDL, is actually IT I-complete by reducing to
satisfiability in PDL, the truth of formulas of the form 3fV¥YxP, where P is a
diophantine relation. That these formulas are universal X ! (see [14]) follows from
Matijasevic’s theorem [9]. We also show how to improve this proof method obtaining
a somewhat stronger version of the result,

The strongest version of this ‘result is obtained in Section 5, where a direct
encoding of certain infinite computations of nondeterministic Turing machines is used
to yield the ITj-completeness of PDL with the single additional program A%(B)AA
for atomic A and B. The proof can be slightly modified to yield /T {-completeness of
PDL with either the single additional program L = {ww® |w € {4, B}*}, or both of
A%B% and B%4%. Here, e.g., A*B* abbreviates A% (skip) B*.

In Section 6 we consider one-letter programs L S A* (which, in order to be
nonregular have to also be noncontext-free). We exhibit a particular such program L
and show that the addition to PDL of L results in a IT}-complete validity problem.
Section 7 contains open problems.

These results constitute a full answer to the first question posed, and a partial
answer to the second. First, since PDL; is easily seen to be in [7;, our results
establish its IT}-completeness. Second, the results show that some extremely conser-

224 HAREL, PNUELI, AND STAVI

- vative additions to RG result in a highly undecidable PDL, to be contrasted with
exponential time decidability in their absence.

In response to a question in a preliminary version of this paper [6], a proof has
been sketched in [11] that PDL with the single additional program A%B2 is
decidable. Given this background, a comprehensive characterization of the classes of
programs for which PDL is decidable remains an intriguing topic for future research.

We remark that the results of Sections 3 and 4 are subsumed by the main result of
Section 5. Nevertheless, we present the proofs therein because of the simplicity of the
first and the application of [9] in the second. Both might prove useful in obtaining
future negative results for similar logics.

2. DEFINITIONS AND PRELIMINARY OBSERVATIONS

Let IT be a set of atomic programs, with @ € IT (the empty program), and let @ be
a set of atomic propositions.

Let Z=1ITU {P?|P€E &} U {~P?|PE ®}. Let C be a given set of expressions,
called programs, such that each program a is associated with some subset L.(a) of
Z*_ or just L(c) when the context is clear. Throughout we assume L(6) =@.

The formulas of the propositional dynamic logic of C, denoted PDL, are defined
as

(1) &< PDL,,

(2) if p,q€ PDL, then ~p,pV g € PDL_, and

(3) if p€PDL. and a € C, then (a)p € PDL.
We use true, false, A, D, and = as abbreviations in the standard way. In addition, we
abbreviate ~(a) ~ p to [a] p.

A structure (or model) is a triple S = (W*, n°, p*), where W* is a nonempty set, the
elements of which are called states, m* is a satisfiability relation on @, ie.,
7%: @ - 2%, and p*: IT- 2%*" provides a binary relation on W as the meaning of
each atomic program in II. Most often we will omit the superscript of the components
of S.

We extend p to words over X

(1) p(A)= {(u, u)|u € W} (A is the empty string),

(2) p(P)={(n,u)|uEn(P)}, PE D,

(3) p(~P?)= {(u, u)| u & n(P)}, and

@) p(xp)=p(x)op(y), x,y € L* (o is the composition operator on binary
relations).

Given a structure S, the satisfiability relation is defined for all formulas of PDL
as

(1) u=P iff u€ n(P), for PE P,

PROPOSITIONAL DYNAMIC LOGIC 225

(2) uE=~piff not uFp,
(3) ukEpV qiff either u=p or u=g, and
4) uE{(a)piff Ix € L(a); Iv € W; (u,v) € p(x) and v = P.

Although we allow only atomic tests and their negations in PDL, since our
results are all negative, they hold also for the more general case of tests p? for any
formula p € PDL,.

Let RG be the set of regular expressions over X. The reader can easily check that
PDL, coincides with PDL, as defined, say, in [4], with the above restriction on
tests.

In particular, since L(a*)= (L(a))* = U, L(a’), with o’ =1 and
have u = (a*) p iff 3i, u= (a’) p.

A formula p € PDL,. is valid, denoted =p, if for every structure S and for every
u € WS, uk=p; it is satisfiable if ~p is not valid. Hence p is satisfiable if there is a
structure S and state u € W° such that u=p. The latter is sometimes written
S,ukE=p.

The inclusion (resp. equivalence) problem for C is the problem of deciding, given
a, B € C whether or not L(a) < L(B) (resp. L(a)=L(B)). The validity problem for
PDL,. is the problem of deciding, given p € PDL, whether or not F=p.

Fischer and Ladner [4] have shown that every satisfiable formula p of PDLyg is
satisfied in a structure in which the number of states is finite and exponential in the
size of p. This fact, termed the small model property, is used in [4] to show that the
validity problem for PDL; is decidable.

Let CF, (resp. CF) be the set of context-free grammars over terminals 7 (resp. X)
and some fixed set of nonterminals. It is well known that the equivalence (and hence
also the inclusion) problem for CF, is undecidable [2]. This fact can be used to show
that the validity problem for PDL , and hence also for PDLy, is undecidable.

i+1 =qa; al, we

ProposITION 2.1 (due to R. Ladner). For any a,fE€CF,, PE®, F({a)P>D
(B) P) iff L(a) < L(B).
Proof. if. Immediate from the definition of {(a) P.

only if. Let x € L(a), where x=4,,..,4,, and the 4, are (not necessarily
distinct) elements of II. Define the structure S, = ({uy,.., %}, 7, p) such that
n(P) = {u,}, and such that for any 4 € II,

(u;, u;) € p4) iff j=i+1 and A=4,.

S, is illustrated in Fig. 1. Clearly S,, u,= (@) P and hence by assumption also S,
u, = (B) P. But this implies that x € L(8). |

Yo Yy vz u3z Ug-| Uk
. .- —e
A Az A3 Ay
~p WP P NP ~P P

FIGURE 1|

226 ' HAREL, PNUELI, AND STAVI

COROLLARY 2.2. The validity problems for PDLy and PDLc are undecidable.

We now define our set of programs K. It will become clear that RG < X < CF,
where C1 < C2 whenever {L.,(a)|a € Cl} & {L,(a)|a € C2}.

K=RGU {(e*(8))| a, B,y E RG}.

When there is no ambiguity we will drop the additional parentheses. Sets of strings
over £* are associated with programs in K by

(1) Lg(x)= {x}, for x€ X — {6}, Lx(6)=2,
(2) Ly(aUp)=Lx(a) Lc(B)
(3) Lyla; B)=Lg(a) L(B) = {xy| x € Ly(a), y € L(B)},
(4) Lg(a*)= (Lgla))* = Ui>o Lg(a'), and
(5) Lx(@* @B v*)= Uiz Lela's B5 7).
We shall abbreviate (a(8*) y2) to (ay®).

We would have liked to be able to state here that the inclusion and equivalence
problems for K are decidable and thus that PDL, cannot be proved undecidable by
Proposition 2.1. However, an attempt to prove this has revealed some subtle problems
with applying the appropriate results from, e.g., [5, 7, 8, 15] to K. All we can state
here at this point is the following informal observation which can be proved by

showing that all languages involved are simple-deterministic stack uniform, and then
apply the results from [8].

ProrosiTioN 2.3. For all subsets K' of K used in the undecidability proofs in this
paper, the inclusion and equivalence problems are decidable.

It follows that none of our results, not even the. mere undecidability of the versions
of PDL involved, can be proved by Proposition 2.1.

We prove now that PDL, cannot be shown decidable by the Fischer—Ladner
method, since it lacks the small model property. Let force be the following formula of
PDL,:

(P A [A*]{4; B*) P) A [(AUB)*; B; 4] false
A [A*;4; A%BA) ~ P A |4°B%; B| false.

PROPOSITION 2.4. Force is satisfiable but has no finite model.

Proof. Let S, be the structure illustrated in Fig. 2, in which the only states
satisfying P are those marked ®. It is easy to see that .S, u = force. Assume now that
S, u &= force, where | W°| < oo, u € W*. S can be thought of as a finite directed graph
with atomic programs labeling edges and sets of atomic propositions labeling nodes.
An (A, B) path is one in which each edge is labeled 4 or B. Associating paths in S
with the sequences of labels along their edges. Let U< {4, B}* be the set of words
labeling (A4, B) paths connecting u with states satisfying P. Since S is finite, this is

PROPOSITIONAL DYNAMIC LOGIC 227

FIGURE 2

exactly the definition of a set of words recognized by a finite transition graph, hence
u is regular. On the other hand, the second conjunct of force eliminates from U paths
which contain B followed by A4, forcing U to be contained in A*B*. Moreover, the
third and fourth conjuncts force U to be a subset of {4'B'|i > 0}. Finally, the first
conjunct of force states that for each /> 0, A'B' is in U.

Hence U= {A"Bi |i>0}, and so cannot be regular, contradicting the assumed
finiteness of S. 1

3. PDL, 1s UNDECIDABLE

In this section we reduce the solvability of Post correspondence problems (PCPs)
to the satisfiability of formulas of PDL,. Since the former is undecidable, in fact r.e.,
so is the latter, rendering the dual validity problem II%-hard.

Specifically, let H = {(x;, Y1) (X,,,)} be a PCP, where x;,y; € {a, b}*, for
1 i< n. A solution to H is a sequence (i, 5o+ ix), Where 1 < i; < nfor 1 £Jj <k, such
that, denoting the reverse of a word x € {a, b}* by x*, we have x; .., x;, =YF s Vi
Note that if w=x;,..., X, then w® = Yiper Viye It is easy to relate the classical
formulation of PCP to our slightly modified version. We shall construct a formula
reduce, € PDL, such that reduce,, is satisfiable iff H has a solution.

Let H be given. The formula reduce, involves the two atomic programs A and B
and atomic propositions P, @, R,,..., R,. The letters a and b will be encoded as the
programs 4; ~Q? and A4; Q?, respectively, or similarly with B replacing 4, so that
words over {a, b}* can be identified with sequences of truth values of Q along paths
of A’ or B’s. R,,..., R, will be used to encode indices between 1 and n. (Actually,
log n atomic propositions suffice here.)

The idea is to force models of reduce, to contain a block of A’s followed by a
block of B’s of equal length, encoding, respectively, w and w® for some word
w € {a, b}*, and such that w consists of a sequence of words from among the x’s, w*
of a sequence of words from among the y’s, with the same number of words and the
same total length and such that indices of words in both blocks correspond.

For each 1< i< n define R to be the program ~R, ?; ~R,%;...; ~R,,? with ~R;?
replaced by R,?. For any z € {a, b}* define the program C*(z) inductively by

C*(a)=4; 07, CA(b)=4;~0?, C*(z,2,) = C*(z,) C*(z,)-

C?(z) is defined in the same way with B replacing A throughout.

228 HAREL, PNUELI, AND STAVI

~p P
PRV o} PR
AAA AA'B B BB B
L I 3 — Jt ’ —_—
Xi Xin i Yig Yip Yiy
FIGURE 3

Define
L= U ®R"cix)) L= (U (Cy):R™)

1<ign 1€ign

Now, let reduce,, be the conjunction of the formulas

exist-path: ~PA(LYLSY P
indices-correspond: [L};R"? L4L3)1 R,
, same-length: [4;4°B3; B]| P A [A*;A; A°B*| ~ P
A [(A U B)*; P?; (A U B)] false,
same-word: [4*;4;0? A%B%;B] Q

A[A*;4;~Q7 A%B4; B] ~ Q.

LEMMA 3.1. For any H= {(x,,y)., (x,,¥,)}, H has a solution iff reduce,, is
satisfiable.

Proof. if. Assume S, u = reducey. By exist-path there is a nonempty path p in
S, starting at u, which encodes in order the words Xy pees X, for some £ > 0 and some
Iyyey iy, using A4, followed by Vj ¥y, for some j,...,j,, encoded using B.
Furthermore, by same-length we know (resp. in the order of its conjuncts) that any
path of the form 42B* ends with P holding, that P holds at the end of no path 4'B’
with j <i, and that P holds at most once along any (4, B) path. Consequently, p
consists precisely of two blocks of A’s and B’s of equal lengths. In other words,
[X 5 x| =1 Yjos Yy |- By indices-correspond considered along path p, we have
iy=j,. Finally, by same-word considered along p we conclude that Xj geres Xj, =
(i i)8 = Vi ons Ve

only if. Let (i,..,i,) be a solution to H. Construct the structure S of Fig. 3,
where the words x; and y;, are encoded using Q as described above. The reader can
easily verify that S, u = reduce,. 1

COROLLARY 3.2. The validity problem for PDL, is undecidable.

4. PDL, 1s /1,-COMPLETE

In this section we reduce to satisfiability in PDL, the truth of formulas F(m) of the
form 3f(f(0)=1A VxP), where P(m,f(x),f(x+ 1)) is a diophantine relation
involving m and the two values of f: f(x) and f(x + 1).

PROPOSITIONAL DYNAMIC LOGIC 229

In the Appendix it is shown that 3f(f (0)=1AVxR) is a universal X 1-formula,
where R is a (primitive) recursive relation of m, f(x), and f(x + 1). Replacing R by a
diophantine relation P follows from Matijasevic’s theorem [3, 9]. Moreover, the
relation P can be transformed into a conjunction ¢ of equalities of the form ¢, =0,
t,=1,t;+t;=1t, and t;t; =1, where the £'s are from among m, f(x), f(x + 1), and
new variables y, ..., ¥, which are existentially quantified, i.e., P = 3yp. Here ! depends
on the equation P.

In the sequel @(xgs.., X;4,) Will denote a conjunction of such equalities over
Xgsees X142 Consequently, in order to show that the validity problem for PDL, is I -
hard, or equivalently that the satisfiability problem is Z{-hard, it suffices to find, for
each such ¢ a formula reduce, of PDLyg, effectively depending on m, which is
satisfiable iff I/ (f(0) =1 A ¥x3y ..., 39,0(M, Y155 Vi f (), f(x + 1)) is true.

First we show how to simulate the conjunction @(Xqs.., X, ,2) by a PDL, formula
on particularly well-behaved structures.

Let /7= (114, N;4,) bE an arbitrary tuple of natural numbers. A nice structure Sor
7 is any structure S=(W,m,p) such that there exists p > max,(n;) and
{Ugsns U} E W, (> u;,1) | 0K i < py S p(A), p(4) is functional (ie., 4 is deter-
ministic in S) u; € n(P)) iff i=n;, and 4, € n(S,) iff i = an, for some a > 0. In other
words, the “A4-part” of S (termed the 4 cut of S from u, in [10]) contains an initial
segment of the natural numbers large enough to contain all squares of the n;. P;
encodes n; by being true precisely at distance n; from the start u,, and S; encodes
similarly all multiples of n; which fall within the segment. Given ¢, define the formula
simulate,, inductively on the structure of ¢ as

simulate,,, = simulate, \ simulate,,. ,

simulate, ., =P,

simulate, ., = 1P;,

simulate, ., _ . = (48P, 2; A% P;7) A4 P, A (48P, 4%; P, 7) A% Py,
simulate, . ., = ((P;VP)D Py

A [A;AA(Pi?;A*;Pj?)((A;~Sj?)*;A;Sj?)A]Pk
A (A3 AS(P, 2 A% POY((A; ~S)% 43 §,)%] P

LEMMA 4.1. For any fi= (Mgss N142), S, o = simulate,, for all nice structures S
Sor A, iff o(7) is true.

Proof. only if. Let S be nice for 7, and let S, u, = simulate,. We show that ¢(#)
is true by induction on the structure of ¢. The cases ¢ A ¢' and x; =0 are trivial. For
the case x;=1, we have S, u,F [4] P;, which implies S,u,F P;, or u, € n(P)),
which in turn, implies n,= 1.

For the case where ¢ is of the form x; + x; = x, the formula simulate, , . _, can
be seen to state that when n, < n; (i.e., P; becomes true before P; when traversing the
u branch of the structure S starting from u,) we have in fact n; + (n;—n) +ny=n
and that when n; < ny, 1+ (n;— 1)) + 1, =Ny In either case n; + n;=n,. Figure 4
illustrates this case.

230 HAREL, PNUELI, AND STAVI

A _* A
/"—-\\\3 /// \\\7/”_~\\ 10
pa LV} LV —-
u, Py Pj Py
FIGURE 4

For the case where ¢ is of the form x,x;=x,, the formula simulate, ., states
that if one of n; or n; is 0, then so is n,, and if 0 <n,<n;, then 1 +(n,— 1)+
nj—n)+(m;—n;=n,, and if 0<nm<n, then 1+4+(n,—1)+(n,—n)+
(n;— 1) n;=n,. In either case n;n;=n,. Figure 5 illustrates this case. The structure
has to be long enough to encode all multiples of the n; so that the clauses for + and -
should not be vacuously true.

if. Assume ¢(77) is true. Let S; be any nice structure for 7, and consider u,. By
induction on the structure of ¢ one shows that S;, u, = simulate,,. We argue the case
X;+ x;=x, and leave the rest to the reader. If n, + n;=n, and n; < n;, then the first
conjuct of simulate, +x=x, IS true in u, since it states that n; + (n, —n;) + n; = n,.
The second conjunct is vacuously true by virtue of the structure containing no path
upon which P; becomes true no earlier than P;. Similarly, if n; < n;, then the first
conjunct is vacuously true and the second follows from n;+ n;=n,. Finally, if
n; = n;, both conjuncts state that n, + n,=n; +n;=n,. 1

We now turn to the construction of reduce;. The idea is to force models of
reduce, to contain an infinite (possibly cyclic) sequence of blocks separated by a
single execution of atomic program B. Each block looks basically like a nice
structure for some 7 = (n,,..., n;,,); i.e., it consists of a large enough finite path of
executions of atomic program A, upon which the n; and their multiples are encoded
with the aid of the P; and S, as above. Furthermore, P, encodes m on each block, and
P,,, and P, , are forced to encode the values of f(a) and f(a + 1) for some function
J, where the block considered is the ath from the start, beginning with a = 0. Finally,
simulate,, is asserted to hold at the beginning state of each block.

Define the program block in RG as

block: () (A% P, %A% P, 0P, A% B),

Igeeeesipyn

where the union is taken over all permutations (i,.,..., i, ,) of {0, 1,...,/ + 2}. For each

A
A » -7 T~
A e~ 3 =5 - =~ |
:1-1")L/)1 4 -t \\ ° -
Uy P; P, Pk
Sj Sj S S

FIGURE 5

PROPOSITIONAL DYNAMIC LOGIC 231

1< i< 1+2, define the formulas P-behaves and S,-behaves as follows, where A*
abbreviates 4*; 4:

P behaves = [A*; P, A%] ~ P,
S behaves = S, A ([4*; P,?] S, A [44(P, 3 4%; 5,1) 4°] S)
A(AT; S, A" ~P A [AA(~S, 5 4%; S, D) 4% ~ 5)).

P behaves prevents P; from holding more than once on any A path. If n; is the

distance between the start and the single state on some A path which satisfies P;, then

S -behaves forces S, (resp. by its conjuncts in order) to hold at the start, to hold at all

reachable distances an, for a > 1, and to hold at no reachable distances an; + b, for

a>0,0<b< n,. That is, S;-behaves forces S; to encode reachable multiples of 7;.
The formula reduce™ is now defined to be

[A] P, A [block*]((block) true
1+2
AN (A% 48P (A5 ~S,)%; 45 5)%5 (43 ~S,1)*; B false
i=0
142
A /\ (P, -behaves A S -behaves)
i=0
AA™] Py
A [AA(P1+2?§A*;B)AA]P1+1

A simulate,,).

LEMMA 4.2. For any m, reduce’s is satisfiable iff the formula
Hf(f(O) =1 AVxIysess yl(p(m,yl""’ yhf(x)’f(x + 1))

is true.

Proof. if. Let fbe a function satisfying f(0) = 1 A Vx3jp. Construct the model
S partly illustrated in Fig. 6. If we number the blocks of 4’s BL,, BL,...., each P;,
0<i<1+2, is taken to hold at precisely one point on each block BL,, and thus
encodes a distance n¢ from the beginning of that block. On each block BL, we
choose né =m, nf,, =f(a), ni,,=Sf(a+ 1), and for 1< i< ! the value of nf will be
the value of y, guaranteed to exist for x=a by the truth of Vx3jp. Furthermore,
n?, , =1, thus capturing f(0)=1. On each block BL,, §; will hold at precisely all

x= 0 xsl x=2 xs3
3

v 4
) ot
3 T

u
o4
L]

-]

1
A" B A 8 A B A*

232 HAREL, PNUELI, AND STAVI

x2q x=as+!
A * 8 [
T T~ . —_
--- +—k e = S —f—---
8 Pl.2 8 Pret 8
FIGURE 7

distances which are multiples of n¢ and which are still within the block. It is now
easy to see that all but possibly the simulate,, conjuncts appearing in the definition of
reduceg are true in the state u, of S. In particular, [44(P,,,?; 4 *;B)A*]| P,, , holds
at the beginning of each block by virtue of n¢, , = nit; =f(a+ 1) holding. See
Fig. 7. Also, the second conjunct in the parentheses prevents a block from ending
before n}. Now, since simulate,, contains no reference to B, and since any A4 block in
S can be regarded as a nice structure for 7= (15, 1, 5), it follows from the if
direction of Lemma 4.1 that simulate,, also holds at the start state of any such block.
Hence S, u, = reduce,’;'.

only if. Let S,uyt=reduce?. By [block*|(block)true there is an infinite
(possibly cyclic) path p in § of the form 4*BA*B .-+, and each P, is true at least
once on any maximal 4 block of p. Furthermore, the next clause forces each such
block to be at least as long as is required from a nice structure for the appropriate 7.
Let u, denote the start state of the ath block of A’s on the path p. See Fig. 6. By
virtue of P-behaves holding at all states u,, P, cannot be true more than once in any
block, thus we can denote by n? the distance between u, and the unique state
satisfying P; on the ath block of p. By virtue of [4™] P, being true at each u, we
know that n§=m for all g, and by [A%(P,,2;4%; B)A%] P,,, we know that
nia=nifl.

We now define the function f with f(a) = ni,, for all a, and are guaranteed by the
previous remark that n{,, = f(a + 1). The reader can also verify that the truth of §-
behaves at each u, guarantees that S, holds precisely at all multiples of n{ within the
ath block of 4’s on p. Thus each such block can be regarded as a nice model for
= (m,ni,..,n{, f(a).f(a+1)).

By the only if direction of Lemma 4.1, the truth of simulate,, at each u, guarantees
the truth of ¢(m, n3,..., n¢, f(a),f(a + 1)). Thus, observing that the truth of [4] P,
at u, implies that f(0)=1, we conclude that FA0)=1AVxy,,..,

119(M, Yy ¥, f(x + 1)) is true.

COROLLARY 4.3. The validity problem for PDL, is IT}-hard.

It is a standard exercise to verify that the problem is in IT 1. (For some details of
such an exercise see Lemma 6.3.) We thus obtain

THEOREM 4.4. The validity problem Jor PDL, is IT}-complete.

It is possible to push this proof technique further. One can simplify the programs
of the form a*(8)y* used in the above proof by suitably refining and complicating

PROPOSITIONAL DYNAMIC LOGIC 233

the block models constructed and the corresponding formula reduce]. We briefly
indicate how this can be done.

In general a, B, and y in programs of the form a®(f) y* appearing in reduce], are
not atomic. Although a is always the atomic 4, B is invariably of the form
Q7; A*; X, where X is either a test or B, and 7, when not atomic, expresses execution
of a maximal block of A;~S,?. These two complex forms of § and y can be
simplified as follows: For each i define the new atomic formula V; to hold precisely
at the first n, distances which are multiples of n,— 1. In this way, if n;n;=n, and
i<j, ¥, will hold at distance n,—n;, and S; will hold (as will P,) at distance n,.
This construction makes possible the replacement of the appropriate part of
simulate, , _, by [4°(P;2;A%; P;2; 4%; V,7)4%](S; > P,). A similar replacement is
possible in the second conjunct under [block*].

An additional formula, V,-behaves, forcing ¥V, to behave as decribed above, can be
constructed using only atomic a and y.

As far as making f atomic is concerned, one introduces, for each i, a new atomic
formula Q, holding at distance |n;/2]. With the aid of Q; (easily forced to behave
properly with an additional formula Q; behaves), one replaces, e.g.,
[43(P,2; A%, P,7) A%] P, with [A*;P;2;4%(Q,?)A%] P; or [A*; P, A%(Q M)
A*; A] P;, depending upon the (easily tested) parity of n,.

A similar device, involving a new atomic formula Q, true halfway through each
block, can be used in conjunction with a clause which “copies” n,,, of each block at
the end of the previous block with, say, R, to reduce [4*(P, 2 A% B)A%| P, 1O
the form [4*; P,,,?; A%(Q?) A*] R.

These observations can be formalized to yield

PROPOSITION 4.5. If K' is the set of programs of K in which a*(B) y* is allowed
only in the form A%(X)A*, where X is either B or some atomic test P?, then the
validity problem for PDLy, is II}-complete.

We see no way of obtaining the stronger version given in Section 5, using the
present proof technique.

Finally, we should remark that the nondeterminism present in the a* and a?(B) y*
constructs of K is not essential for obtaining the results. The reader will notice that
all uses of the * and A4 constructs involve tests (or an application of B) to determine
the number of iterations. It is possible to formalize this observation to yield

PROPOSITION 4.6. If K' is the set of programs of K in which x is allowed only in
the deterministic form (P?;a)*;~P? and A only in the deterministic form
(~P?; a)2(P?; B) y2, then the validity problem for PDLy. is IT;-complete.

We close by remarking that the possible nondeterminism of the atomic programs A
and B is of no help in the proofs, and appropriate versions of Theorem 4.4 and
Propositions 4.5 and 4.6, where atomic programs are deterministic, trivially follow
from the proofs of the original versions.

234 HAREL, PNUELI, AND STAVI
5. PDLyg , (4444 1S 1T;-COMPLETE

First we show that the existence of certain infinite computations for nondeter-
ministic Turing machines is a X'}-complete problem. We then reduce this problem to
the satisfiability of formulas in PDLyg . (4a@mas)- Let {T,}, m EN, be an effective
enumeration of the (nondeterministic) Turing machines.

PROPOSITION 5.1. The set G={m|T,, starting on an empty tape, has an infinite
computation which repeats its start state infinitely often} is X}-complete.

Sketch of Proof (in X!). Given m, consider the Xi-formula ¢,: If(0)=
CAVxy g (»,f(x),f(x+ 1)), where C encodes the initial empty-tape
configuration of T,,, and g,(y, v, w) is the (recursive) predicate true if y encodes a
legal segment of computation of T, starting at the configuration encoded by v and
ending in that encoded by w, and, moreover, the states in both v and w are the start
state of T,,. Clearly, ¢,, is true iff m€ G.

Complete in X!. Consider formulas of the form ¢:3f(f(0)=1AVx
g(f(x),f(x + 1))), for recursive g. That these are universal Xi-formulas follows from
Claim 1 in the Appendix.

For any such ¢ construct a nondeterministic Turing machine which, starting on
the empty tape, initially writes down x =0 and f(x) = 1, and then keeps indefinitely
augmenting x and looking nondeterministically for a new value for f(x + 1) satisfying
g. Whenever it finds such f(x + 1) it signals by reentering its start state. Clearly, ¢ is
true iff m € G, where T,, is the Turing machine just constructed. [

Given a nondeterministic Turing machine T we shall now construct a formula
reduce; in PDLgg ., sama4s and show that T has the property described in
Proposition 5.1 iff reduce, is satisfiable; hence satisfiability (resp. validity) in
PDLgg (4am4a) is Z1-complete (resp. IT}-complete).

Let the tape alphabet X of T include the blank symbol b, and let ¥ be the set of
states, with g, the start state. (We hope the use of the symbol X in this section will
not cause the reader to confuse it with its different use in the definitions of Section 2.)
Denote £, =X U V. A configuration of T can be represented by the nonblank
portion of the tape surrounded on either side by at least one b, and with the current
state inserted just prior to the symbol being read. The initial configuration can thus
be represented by Bg,B. The transition table is given by a yield function
0: X X VX X - 2% guch that a configuration ¢ = xoqrz, for x,z € X*, 0,7 € X and
gEV, can result in a configuration xy®z for each y€d(o,q,7). Let
8o, q,7)= X3 — 8(0, g, 7). Clearly, for every triple g, g, 7, both 8(g, g, 7) and &(o, g,)
are finite.

Our formula reduce, will involve atomic programs A and B, and atomic
propositions P, for each ¢ € £ and P, for each g € V. We let C(0) stand for the
program A; P_?, and similarly for C(g). C is extended to strings over 2, and to sets
of such strings by C(xy) = C(x); C(y) and C(W) =) e C(W).

The idea of the reduction is to force models of reduce; to contain an encoding of

PROPOSITIONAL DYNAMIC LOGIC 235

-+

Config, Contig} Config, Config, Config,

FIGURE 8

the infinite computation of T sought for, in the form of an infinite (possibly cyclic)
sequence of executions of 4 and B of the form p=A*BA*BA ---. The odd numbered
blocks of 4’s in p encode successive configurations of the computation, and the even
blocks encode the reflections around B of their respective previous blocks. The new
program A4(B) A2 is used to force p to contain correct transitions between successive
configurations, correct reflections between reflected configurations, and also to ensure
a length increase in the blocks of A’s to make possible extension of the nonblank
portion of the tape. See Fig. 8.
Define the program config to be

C(B); C(X)*; C(V); C(2)*; C(b); B.

The program good-config is defined in the same way but with C(g,) replacing c(M).
The formula reduce, is taken to be the conjunction of the following formulas:

Jcomputation:

single letter:

start:

lengthen:

reflection:

transition:

[config* |{config*; good-config) true

[(AUB)*;A](V (P,,/\ A ~Pb>)

aeXuVv bez LV
b+#a

A\ [4%; C(a)] false

aeIUV
aé(b,qol

[config*] ([A*; A; A*(B) A*; 4; B] false
A [A3(B) A%; 4; A] false
A [4%(B) A%; 4] Py)

A [(config; config)*; A*; C(a); A*(B) 4%; 4] P,

aeIuy

/\ [(config; config)*; config; A*;

0,7,0'€X

C(ota’); A2(B)A%;4; 4] P,

A -\ [(config; config)*; config; A*;

o,T€X
qevV

C(ogr); A 4 B)4 4 C(S(O’, g, 7)) false

236 HAREL, PNUELI, AND STAVI

LEMMA 5.2. The formula reduce, is satisfiable iff there exists an infinite
computation of T, starting on the empty tape, which repeats the start state q, infinitely
often.

Proof. if. Let c;,c,,.., be a representation of the successive configurations of
such a computation of 7. Without loss of generality assume that for each i, |c;, | =
[c;| + 2, and that the two extra elements in c;, , represent an added b on either side of
c;. Let ¢} be ckb. Then clearly, ¢, , = Bc/ b, where c{ is a direct outcome of ¢; by the
transition table of 7. Construct the model S such that its only executions of 4 and B
are given by an infinite sequence, starting at some state u, of the form
AleB4lel+1B4le B ... upon which ¢, ¢}, ¢;, C},..., are encoded exclusively by the
appropriate atomic propositions. For example, if ¢, = Bg, b, then we might view the
initial part of the model as an execution of 4; P,?; 4; qu?; A; Py B; A; PyY; A,
qu?; A; Py A; Py; B.... We leave the reader to check that all conjuncts of reduce;
are true in S at state . In particular, since g, repeats infinitely often, good-config can
be executed infinitely often in the model, contributing to the truth at u of
Jcomputation. Hence S, u &= reduce..

only if. Let S, u reduce,. By Icomputation there is an infinite (possibly cyclic)
sequence of executions of 4 and B, starting at u, of the form p =A"BA"B By
lengthen we have i;,, =i;+ 1 for all j. By single-letter there is an element of XUV
associated with each execution of 4 along p, enabling us to think of p as representing
a sequence ¢, ¢}, C,, C} 5., of words over U V. Consequently, by 3computation and
the structure of config, each such word contains exactly one state in ¥ and hence
actually encodes a configuration of T. By start, the word ¢, must be of the form
Bb*q,B*b, which represents a start configuration. By reflection we have ci=chb.
Now, the first conjunct of transition ensures retainment of those parts of the tape of T
untouched by a transition from ¢, to c;, ;, and the second conjunct ensures that this
transition is indeed according to the yield function . Finally, 3computation ensures
the occurrence of “good” configurations infinitely often along p, and hence that g,
repeats infinitely often during the computation c¢,, ¢;,....

Following immediately from Proposition 5.1 and Lemma 5.2, observing the
obvious containment in IT], we have

THEOREM 5.3. The validity problem for PDLyg , 4a)4s) iS I1i-complete.

It is quite straightforward to modify the proof of Theorem 5.3 in such a way that
rather than a sequence of executions of the form 4''B4'*1'*'B4'“2B ..., we have a
sequence of the form A't'Bleil+igleaipled+l ... with the configurations encoded
using the 4’s and their reflections encoded using the B’s. All ocurrences A%(B) A® are
replaced by the appropriate ones of A2B* or B®4*. Further easy modifications of
lengthen are required. In this way one obtains

PROPOSITION 5.4. The validity problem for PDLy , (4apa.5s44) is IT}-complete.

PROPOSITIONAL DYNAMIC LOGIC 237

By replacing a single B in the proof of Theorem 5.3 with a double B; B, it is
possible to obtain the same result for the additional program L=
{w; wR | w € {4, B}*}. Each 4%(B)A4* is simply replaced by L, and along the path
A..-ABBA -.- ABBA --- of interest, computations of L coincide with those of -

AA(B;B)A%. Various other linear context-free grammars give rise to simple
programs whose addition to RG results in /7, lcompleteness. In particular, one can
define infinite classes of such programs each of which has the above IT! property. For
example, C={L|L is of the form {4'BA*|i>0, fixed k}}. In each case the
aforementioned proof goes through slightly modified.

6. I1)-COMPLETENESS OVER ONE ATOMIC PROGRAM

In this section we consider the decision problem for validity in PDL., where the
set C of programs consists of RG(4) (the regular expressions over the single letter 4)
together with finitely many additional programs denoted by the symbols I',,..., I';,
which are interpreted by (not necessarily regular) subsets of 4*. Thus, the semantics
of PDL,. is determined by a list §,,..., S, of subsets of w (w=10, 1, 2,..}) which
serve to interpret the programs I'; as follows: L(I';) ={4" |n € S,}. Satisfaction of
formulas by states in a given PDL-structure is now defined as in Section 2. To obtain
undecidability results we shall assume that the language of PDL. has as many
atomic propositions as are needed for the proofs presented below. They will be
denoted by P, P,, P,, P,,..., €icC

Note that the sets S,,..., S, are only needed for specifying the semantics of PDL
and do not figure in the syntax. Nevertheless, we shall write A5 instead of I'; to
emphasize that the interpretation L(I;) = {4" |n € §;} is being used.

For S € w, we denote S = w — S (the complement of S). For §,, S, S w, we write
S, <, S,, and say that S, is many-one reducible to S,, if there is a total recursive

function f} w — w such that
Yn(n€ S, < f(n) € S,).

Note that if S, <, S,, then clearly, S, is recursive in S,, that is, membership in S, is
decidable using a Turing machine with an oracle from membership in S,. Sometimes
one of the sets S,, S, is a set of strings over some finite alphabet (e.g., formulas of
some language) and is identified with the set of Gddel numbers of its members, so
that the notation S, <,, S, still makes sense.

Given S,,..., S, € w we denote by vld(S,,..., S;) the set of all logically valid PDL.
formulas, where C=RG(4)U {45,..,45}, as described above. Similarly
stl(S,,..., ;) is the set of all satisfiable PDL formulas. Clearly, a PDL. formula Q
is valid iff ~Q is unsatisfiable, hence each of the above two sets of formulas is
recursive in the other. We shall study the complexity of vld(S,,..., ;) and especially
of vid(S) (the case k = 1) for a given complexity of S,,..., S, or of S.

The main results (some of which are trivial observations) are summarized in
Lemmas 6.1-6.3 and Theorem 6.4.

238 HAREL, PNUELI, AND STAVI

LEMMA 6.1. Forany S,,..,S,Cwand 1<i<k, S;<, vld(S;) <,V1d(S,,..., Sp).
Hence, if v1d(S,,..., S;) is decidable, then each set S, is recursive.

LEMMA 6.2. Let S,,..S,Sw, k>1andlet S={kn—i|1<i<k, 1<n€ES,}
Then v1d(S,,..., S;) <,, v1d(S).

LEmMMA 6.3. If S,,.., S, are recursive (or even merely A)) subsets of w, then
vid(S,,..., S;) is a I} set.

THEOREM 6.4. There exists a primitive recursive set S < w such that vid(S) is a
complete IT; set.

Note that Theorem 6.4 shows that for recursive S vld(S) may sometimes be as
complex as is allowed for by Lemma 6.3.

Proof of Lemma 6.1. Note that n € S, iff the formula
[4S]| P> [4"] P
is valid, hence S; <,, vld(S;). The rest of the lemma is obvious. [

Proof of Lemma 6.2. It will suffice to prove that stl(S,,..., S;) <,, stI(S), in view
of the connection between validity and satisfiability mentioned earlier. Observe now
that if 0€ S; and we let S;=S,— {0}, then [45] =p A [45]p and (AS)p=
pV(A5)p are valid for any formula p, hence PDLyg 4y asi.... asi.....as IS trans-
latable to PDLyg 4y asi,... 4s1,....4515 and hence sti(S,..., S;) <, SU(S ey S7ees).
Thus, by successive applications of this process, we see that stl(S,,....S;) <,
stl(S, — {0},..., S, — {0}) and since the set § in Lemma 6.2 depends only on the
nonzero numbers of §,,..., S, there is no loss of generality in assuming that 0 & S,
(for i = 1,..., k) from the start.

Suppose now that a formula Q@ of PDLyg 4y ysi,... sy 1S given. We want to
associate with Q, in an effective way, a formula Q of PDLyg 15 SO that Q is
satisfiable iff is satisfiable. To make J more intelligible we write it as a formula of
PDLgggyups;- The idea is that the role of 4 in Q will be played by B*in Q.

Q is the conjunction of the following formulas, where P,,..., P,_, are new atomic
propositions (not occurring in Q):

(1) Py,

() [B*](POV"'VPk—l)’

(3) [B*] /\0<i<i<k~ (P; APy,

4) [B*] Aocick Pi> [B]P;,,) (for i=k—1 P, is taken to be P,), and
() Q.

Here Q, is obtained from Q by the following replacements: Substitute B* for 4
everywhere in Q. Also, wherever 4% occurs in Q replace it by P,?; BS; B; P,.
Thus, [45] is replaced by [P,?][B®][B'; P,?] and (45/) is replaced similarly. (The

PROPOSITIONAL DYNAMIC LOGIC 239

idea is that to perform B* n times for some n € S; we perform B m + i times for some
m€E S such that m+i=0 (mod k). And indeed by the definition of S and the
assumption that 0 € S; we have: {kn|n€ S} ={m+i|meS, m+i=0 (mod k)}.)

It is easy to see that Q is satisfiable iff (is satisfiable. For if 0 is satisfied by a
state #, in some PDL-structure we obtain a model of Q by restricting attention to the
states satisfying P, and interpreting 4 by p(4) = p(B)*. Conversely, if Q is satisfied
by a state u, in some PDL structure we obtain a model of Q, by adding new states,
replacing each edge u —* v in the graph corresponding to the original structure by a
chain u—2o0-%... 50o-%p involving k— 1 new states satisfying P,,..., P,_,,
respectively (all the old states shall satisfy P,). This completes the proof that
StU(S | s0ees i) K, StI(S), hence vId(S,..., S;) <, VIA(S). |

Proof of Lemma 6.3. Let S,,..., S, be 4] subsets of w. If suffices to show that
stl(S|,..., S;) is a Z] set. First note that every satisfiable formula is satisfiable in a
countable structure, as is seen by a standard Lowenheim—Skolem argument. Thus,
Q € stl(S,,.... 5,) iff there exists a set X < w (the set of states) and certain subsets of
X (the interpretations of the atomic propositions) and a relation over S (the inter-
pretation of the program A) which together constitute a PDL structure in which Q is
satisfied. It is a routine exercise to write this as a X'| predicate about Q (see Rogers
[14] for the requisite background on the analytical hierarchy). M

Proof of Theorem 6.4. Let E < w be any complete X} set (so that E is X} and if
D is any X set, then D ,, E). We will construct a primitive recursive set S € w such
that E <, stl(S) Then stl(S) will be a complete X} set (1t is Z| by Lemma 6.3) and
hence vld(S) will be a complete 7} set.

We shall make use of the following normal form for X} sets: If EC w is X}, then
there exists a primitive recursive relation R < w? such that for all m € w

(A) mEE<«IX,(Yx,yEX,))|[x <y=R(m,x,y)]

Here (and throughout this proof) the variables X, X,,..., range over infinite subsets
of w only. The existence of this normal form is proved in the Appendix.

Now let §;,={2"|nE€ w} and let §,={2"—2*—2"|m < x <y and R(m, x,y)},
where R is chosen to correspond to the particular set E with which we start. Then we
have

B) mMEE <« IX,[(YnEX)Y)NnE S, An>2™)A (Vn,, n, € X,))(n, < n, =
n, —n, — 2" € §,)]

Indeed, if m € E and X, is a set as in the rhs of (A) let X, = {2 |xEX, A x> m}.
Then X, will clearly satisfy the rhs of (B). Conversely, if X, satisfies the rhs of (B) let
X, = {log, n| n € X,}. Then X, is infinite and if x, y € X, x <y, then m < x < y and
2*, 2’ € X, and so 2¥ — 2* — 2™ € §,. But the triple (m, x, y) is uniquely determined
by the number 2> — 2* — 2™, given that m < x < y. Hence, if 2¥ — 2* — 2™ € §,, then
R(m, x, y) holds (by definition of S,). Thus X, satisfies the rhs of (A) and it follows
that m € E. This proves (B).

We can now effectively associate with every m€w a formula Q, of

240 HAREL, PNUELI, AND STAVI

PDLg g 4)uia51,45y SO that m € E iff Q,, is satisfiable. Roughly speaking Q,, describes
the rhs of (B) with the atomic proposition P being true at those states whose
“distance from the origin” is a member of X,. Q,, is the conjunction of the formulas

(1) [A*|(4;4*)P (“X, is infinite”),
Q) [A%]~P (X, =8,")
(3) AX, [4']~P “(VrE X,) n > 2™), and

(4) [A* P A AS)~P (“if n,E X, and z € §,, then n, + 2™ + z & X,”).
Note that if m € E, then Q,, is satisfied at the root (0) of the “linear” model

o-4L0-4L0-4L0— ...,
0 1 2 3

where P is declared true at n iff n € X,, given a set X, as on the rhs of (B).
Conversely, given any PDL-structure in which some state u, satisfies Q,, the conjunct
(1) of Q,, guarantees the existence of a sequence of (not necessarily distinct) states

o-“4Lo04040— ...
Up uy uy us

starting from u, on which P is true infinitely many times. Letting X, = {n|u, =P},
conjuncts (2)-(4) imply that X, satisfies the rhs of (B), hence m € E.

We have thus established that E <,, stl(S,, S,), hence by Lemma 6.2 E <, sti(S),
where S={2n—1|]1<n€ 8§} U{2n—2|]1<n € §,}. A look at the definitions of
S, and S, shows that they are primitive recursive (note that if
n=2"-2*-2m"¢S,, then n> 32%, hence y <log,2n so a bound on m,x,y in
terms of n is available) hence so is S. This completes the proof of Theorem 6.4. 1

7. OPEN QUESTIONS

The overall open direction for research is the classification of nonregular programs
in terms of their effect on the validity of PDL. This paper contains negative results
only. In [11] a sketch is presented of a proof that PDLg, ,4p4, is decidable. If
correct, this (and its variants) is the only known positive result.

The proof in [11] uses “pushdown models,” making heavy use of the fact that
A2B* and languages obtained from it and elements of RG are context-free. However,
we cannot even rule out the possibility that certain noncontext-free languages do not
destroy the decidability of PDL. For example, is PDLy . (4a5acs decidable? None of
the methods for showing undecidability introduced in the present paper seem to work,
as there are no atomic programs “playing two roles” as in 42(B) A% or in 44B4
combined with B444.

As far as one-letter programs are concerned we have no positive results. Is there
some recursive but nonregular L £ A* such that PDLg,, is decidable? Some

PROPOSITIONAL DYNAMIC LOGIC 241

particular languages such as L=1{4"|n>0} and {4"’|n>0} are particularly
intriguing. We conjecture that their addition ruins the decidability of PDL, but do not
have a proof.

APPENDIX: NorMAL FORMS FOR X! SETS
We prove Claims 1 and 2, which have been used in the paper.

CLamM 1. If E is a X| subset of w, then there exists a primitive recursive relation
R, S w® such that for all m € w: m€ E iff IF[£(0)=1 A VxR, (m,f(x),f(x + 1)].

CLamM 2. If E is a X| subset of w, then there exists a primitive recursive relation
R, < w® such that for all m € w: m € E iff 3X,(Vx,y € X))[x <y=R,(m, x,y)].

In Claim 1 “f™ ranges over functions from w into @ and Claim 2 “X ,”’ ranges over
infinite subsets of w. It should be clear that the converses of the two claims are also
true (even if R,, R, are merely assumed to be 4] rather than primitive recursive) so
that we actually have here general normal forms for Z! sets. We assume elementary
knowledge of the analytical hierarchy (Rogers [14, Sect. 16.1] should suffice for this
appendix).

To prove both claims we start from the following well-known normal form of a I -
set E (cf. [14, Sect. 16.1, Corollary V]):

(1) m€ E < 3f, VxR(m, fi(x)).

Here R is a primitive-recursive relation (depending on E) and f, is the “history
function” of f;, i.e., for each x, fi(x) is a number coding the finite sequence
(f1(0),..., fi(x — 1)). To be definite we choose the following method of coding finite
sequences of numbers by numbers, which differs from that of [14]):

(xlw'a xn) = <x1 yores x,,) =2"pJr... D

where (3=)p, <p, < -+ are the primes >2 in increasing order. In particular, the
empty sequence is coded by ()=2°= 1. Let seq(x) mean that x codes some finite
sequence and let x < y mean that seq(x) and seq(y) and the sequence coded by x is a
proper initial segment of the one coded by y. Finally let lh(x) be the length of the
sequence coded by x if seq(x), lh(x) = 0, otherwise. Note that seq and < are prim-rec
relations and Ih is a prim-rec function. Also note that x < y = x < y.

Proof of Claim 1. Given a X| set E choose a prim-rec R < w? so that (1) holds
for all m € w. It clearly follows from (1) that

m € E < 3f [f=f, for some f, and VYxR(m, f(x))].

But in order for f'to be the “history function” of some f; it is necessary and sufficient
that Vx[seq(f(x) A Ih(f{x))=x] and moreover f(x)<f(x+1) for each x.

242 HAREL, PNUELI, AND STAVI

Equivalently, the condition is that f(0)= (y=1 and Vx[f(x)<f(x+ 1)A
(h(f(x + 1)) =1h(f(x)) + 1)]. Define R,cw’® by R, (m,u,v)< R(mu)Au<
v A lh(v) =1h(x) + 1. Then R, is prim-rec and m € E < 3f[f(0) =1 A VxR (m, f(x),
f(x + 1))}, as required. 1

Proof of Claim 2. Start again from the normal form (1) of E. Define R, € w* by
R,(myu,v) = u <vAVz(z <v=R(m, z)). Thus R,(m, u, v) says that v codes some
sequence v = (V;,..,0;) u is of the form (v,,.,v,) for some k<! and
R(m, {v,..., v;)) holds for every i < I. Note that R, is prim-rec. We claim that

(2) mEE<3X,(Vx,y EX))[x <y=R,(m, x,y)]

Suppose that m € E and let f, be as on the rhs of (1). Let X, = {f,(n)|n € w}.
Then X, is infinite. If x,y€ X, and x <y, then x={f;(0),....fi(k—1)),
y={f1(0),...,fi(I — 1)), where k < [and R,(m, x, y) clearly holds.

Conversely, suppose that X, is an infinite set satisfying the rhs of (2). Then for all
x,y€ X,, x <y=x <y, hence there exists a unique function f;: w — w such that
X, < {fi(n)| n € w}. For any k€ w we can find n, > n, > k such that fi(n,) € X,
and fl(n) € X,, so that R,(m,f,(n,),f,(n,)) holds, so the number z = f,(k) satisfies
z < fi(n,) and hence R(m, z) (by the definition of R,). Thus Yk R(m, f,(k)) so that f,
satisfies the rhs of (1), whence m € E.

This proves (2) and thereby proves Claim 2. |

ACKNOWLEDGMENTS

We are grateful to A. Yehudai for his help concerning the formal-languages part of the paper; namely,
Proposition 2.3 and {5, 8, 15]. Y. Feldman and J. Halpern pointed out errors in a previous version.

REFERENCES

1. J. W. DEBAKKER AND L. G. L. T. MEERTENS, On the completeness of the inductive assertion
method, J. Comput. Sys. Sci. 11 (1975), 323-357.

2. Y. BArR-HiLLEL, M. PERLES, AND E. SHAMIR, On formal properties of simple phrase structure
grammars, Z. Phonetik, Sprach. Kommunikation. 14 (1961), 143-172.

3. M. Davis, Y. MATUASEVIC, AND J. ROBINSON, Hilbert’s tenth problem. Diophantine equations:
Positive aspects of a negative solution, in “Proc. Symp. Pure Math.,” Springer-Verlag Lecture Notes
in Math., No. 28, pp. 323-378, 1976.

4. M. J. FiscHER AND R. E. LADNER, Propositional dynamic logic of regular programs, J. Comput.
Sys. Sci. 18 (1979), 194-211.

5. S. GREIBACH AND E. FRIEDMAN, Super deterministic PDA’s: A subcase with a decidable
equivalence problem, J. Assoc. Comput. Mach. 27 (1980), 675-700.

6. D. HAREL, A. PNUELI, AND J. STAv], Further results on propositional dynamlc logic of nonregular
programs, in “Proc. Workshop on Logics of Programs” (D. Kozen, Ed.), Springer-Verlag Lecture
Notes in Computer Science, Berlin/New York No. 131, 1981.

7. M. HARRISON, “Introduction to Formal Language Theory,” Addison—Wesley, Reading, Mass.,
1978.

11.

PROPOSITIONAL DYNAMIC LOGIC 243

. M. LINNA, Two decidability results for deterministic pushdown automata, J. Comput. Sys. Sci. 18

(1979), 92-107.

- Y. MATUASEvIC, Enumerable sets are diophantine, Soviet Math. Dokl, 11 (1970), 354-357.
. A. R. MEYER, R. S. STREETT, AND G. MIRKOWSKA, The deducibility problem in propositional

dynamic logic, in “Proc. 8th Int. Collog. on Autom. Lang. Prog.,” Springer-Verlag Lecture Notes in
Computer Science, Berlin/New York, 1981.

T. OLSHANSKY AND A. PNUELL, “There Exist Decidable Context-Free Propositional Dynamic
Logics,” manuscript.

12. V. R. PRATT, Semantical considerations on Floyd-Hoare logic, in “Proc. 17th IEEE Symp. on Foun-

13.

14,

15.

dations of Computer Science,” pp. 109-112, 1976.

V. R. PRATT, A near optimal method for reasoning about action, J. Comput. Sys. Sci. 20 (1980),
231-254.

H. ROGERs, JRr., “Theory of Recursive Functions and Effective Computability,” McGraw—Hill, New
York, 1967.

A. YEHUDAI, The decidability of equivalence for a family of linear grammars, Inform. and Control
47 (2) (1981), 122-136.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

