Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES Vol. 25, No. 2, October 1982
AllPRights Reserved by Academic Press, New York and London Printed in Belgium

Process Logic: Expressiveness, Decidability, Completeness
DavipD HAREL* AND DEXTER KOZEN

IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598

AND
RoHIT PARIKH

Department of Mathematics, Boston University, Boston, Massachusetts 02215
and Laboratory for Computer Science, MI T, Cambridge, Massachusetts 02139

Received May 4, 1981; revised February 24, 1982

A process logic (PL) is defined that subsumes Pratt’s process logic, Parikh’s SOAPL,
Nishimura’s process logic, and Pnueli’s Temporal Logic in expressiveness. The language of
PL is an extension of the language of Propositional Dynamic Logic (PDL). A deductive
system for PL is given which includes the Segerberg axioms for PDL and it is proved that it is
complete. It is also shown that PL is decidable.

1. INTRODUCTION

The introduction of modal logic to program specification and verification has
significantly aided our understanding of the process of reasoning about programs.
Although the trappings vary, Algorithmic Logic, Dynamic Logic, and Temporal
Logic all share common principles rooted in modal logic. These principles are
becoming recognized as the appropriate vehicle for expressing many properties of a
dynamic nature (see, e.g., Meyer [17]).

Dynamic Logic (DL), introduced by Pratt [8,25], its propositional counterpart
PDL, introduced by Fischer and Ladner [5], and Algorithmic Logic (Salwicki
(2, 32]), reflecting their Floyd-Hoare heritage, deal quite successfully with the
before—after behavior-of programs. It is a major limitation, however, that these logics
cannot deal with the progressive behavior of programs; e.g., DL is unsuited for
assertions like, variable x assumes value O at some point during the computation.

Accordingly, various process logics have been developed to handle this more
difficult task, mostly at the propositional level. Pratt [27] suggested using two
process connectives L (during) and _I” (preserves), besides the usual DL connectives.
He presented lists of axioms and rules for these constructs and proved some partial

* Current address: The Weizmann Institute, Rehovot, Israel.
144

0022-0000/82/050144-27$02.00/0

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROCESS LOGIC 145

completeness results. Subsequently, Parikh [22] defined the language SOAPL and
showed that the validity problem for SOAPL was decidable. He also showed that
SOAPL is at least as powerful as the language of Pratt, and Harel [9] later showed
that it is strictly more powerful. The syntax of SOAPL, as defined in [22], was quite
complex, and in particular, did not seem to give rise to a clean set of axioms which
might serve as a basis for a completeness result. Indeed, one goal at that point
seemed to be proving a completeness theorem for a decidable process language with
reasonable expressive power (say, at least as powerful as SOAPL).

Independently, Pnueli [23, 24] was developing the Temporal Logic of Programs
(TL), in which assertions about the progressive behavior of a computation can be
made. In particular, TL can express freedom from deadlock, liveness, and mutual
exclusion (7, 16]. One limitation of TL is that it provides no means for naming
programs: the universe of discourse consists of a single, fixed program (in the
parlance of [23], TL is endogenous). Although TL can discuss the synthesis of
complex programs from simpler ones to some extent using a¢ predicates, it is, in
general, difficult to do so, since the logic is not tailored for this purpose. Recently,
Nishimura [20] suggested combining PDL and TL by attaching a program « to a TL
formula X, the resulting formula asserting that X holds in all computations of a.
Nishimura showed that his language (call it, NL) is at least as powerful as SOAPL.
He also argued that NL is in some sense as powerful as one could reasonably expect,
by the result of Kamp [10] later refined by Gabbay et al. [7], that TL is precisely as
strong in expressive power as the first-order theory of linear order with a first
element. The primitives of Nishimura’s system however, are still too intricate to yield
a complete deductive system. One problem is, like SOAPL, that it has two kinds of
formulas, state and path formulas. While this dichotomy may appear semantically
natural, it leads to problems in constructing an axiom system. In PL, we avoid this
dichotomy, leading to a substantial simplification.

Adopting the basic motivation of Nishimura, we define a process logic PL, which
like NL can also be viewed as a fusion of TL and PDL. PL is simpler than NL in
that all formulas are path formulas. Nevertheless, PL is as expressive as any of the
logics PDL, TL, or NL. Moreover, PL is defined in such a way that it is a direct
extension of PDL, both intuitively and formally. An appealing consequence of this is
that all truths of PDL automatically hold in PL. We give an axiom system for PL,
extending the Segerberg axiomatization of PDL, and prove it complete. The
completeness proof is an extended version of the completeness proof of [15] for PDL.
We also show that PL is dedidable, but we do not know whether it is elementary, in
contrast to PDL, which is known to be decidable in exponential time ([28], see also
[5]).

Section 2 contains the definition of PL and examples of its expressive power. In
particular, PL is at least as powerful as any of the previously mentioned process
logics. In Section 3 it is shown that the validity problem for PL is decidable.
Section 4 contains the definition of a deductive system for PL, and preliminary
technical results in preparation for the completeness theorem, which is proved in
Section 5. Section 6 indicates some directions for further work.

146 HAREL, KOZEN, AND PARIKH

2. DEFINITION OF PL

Basic Concepts

Before defining the syntax and semantics of PL formally, we shall start with a brief
intuitive outline. We assume familiarity with the syntax and semantics of PDL (see,
e.g., [5])

PL is interpreted over path models. Like a Kripke model of PDL, a path model is
built upon a set of states, but in addition we may talk about paths of states. A path is
just a finite or countable sequence of states, repetitions allowed. All formulas in the
language of PL are path formulas; a formula X is either true or false in path p. This
is in contrast to NL, SOAPL, and TL, which have both path and state formulas, and
PDL, which has only state formulas.

States will be denoted s, ¢,..., and paths will be denoted p, g, 7.... A path is of length
k if it consists of k + 1 states. We identify a state with the O-length path consisting of
that state alone. The first and last states of a path p are denoted first(p) and last(p),
respectively (last(p) does not exist for infinite paths). If p, g are two paths such that
last(p) = first(q), then pg denotes the fusion of p and q. For example, if p=s,5,5;
and g = 5,5,5;, then pg = s,5,5,5,55. If last(p) # first(q), then pq is undefined.

A path q is a suffix of p if there exists an r such that p = rq. A suffix of p is proper
if it is not equal to p. If p is not of length O, then it has a longest proper suffix,
denoted next(p). Prefixes and proper prefixes are defined similarly.

Syntax

The language of PL is the language of PDL [5, 15] augmented with two additional
operators f and suf. The operator f is applied to a formula X to yield a new formula
fX, meant to express the condition that X holds in the unique initial prefix of length O.
The binary operator suf corresponds to the U (until) operator of TL. There, if X and
Y are state properties, then XUY expresses the path property that there exists a state §
along the path satisfying Y such that all states occurring on the path before s satisfy
X. The definition of suf in PL will be the same, only amended to account for the fact
that PL has only path formulas and no state formulas. It is known |7, 10] that all
purely temporal connectives are expressible from the U operator of TL, and hence
also from the suf operator of PL.

Formally, PL has two sorts, programs a, ..., and propositions X, Y,.... It has
primitive program letters @, b,..., primitive proposition letters P, 0,..., operators U, ,
and * which operate on programs, and operators V, —, f, and suf which operate on
propositions. Compound propositions and programs are built up from the primitive
letters using these operators according to the following rules:

if a, B are programs, then so are a; f, a'\J B, and a*,
if X, Y are propositions, then so are X V ¥, —X, £X, and X suf Y
if a is a program and X is a proposition, then {a) X is a proposition.

We use the abbreviations af, XAY, X © Y, and X= Y for a; B, —(—=XV =Y),
—XVY,and (X2 Y)A (Y > X), respectively.

PROCESS LOGIC 147

Semantics

A path model is a triple M =(S,F,R), where S is a set of states, = is a
satisfiability relation for primitive propositions, and R is a relation assigning sets of
paths to primitive programs. A path satisfies primitive proposition P iff its first state
does. We write p = P if path p satisfies primitive proposition P, and we write p ER,,
if p is a member of the set of paths assigned by R to primitive program a.

Relations R and k= are extended to compound propositions and programs
according to the following rules:

R,s=R,R;={pg|p€ER,and g € R},
R,3=R,UR;,
R,.= U Ry,
i<w
pEXVY if pEX or pEFEY,
pE—X iffnot pFX,
pPE(a)X iff I3g€R, PgEX,
pEEX iff first(p)F X,
pEXsufY iff dJq such that

(i) q is a proper suffix of p and g = Y, and

(ii) Vr, if r is a proper suffix of p and ¢ is a
proper suffix of r, then r = X.

In the definition of suf, all suffixes under consideration are proper. This allows us to
define an important operator n (for next). The formula nX says that a maximal
proper suffix exists and satisfies X.

DEFINITION 2.1. nX = 0 sufX.

Thus p satisfies nX if there exists a proper suffix g satisfying X and ail intervening
suffixes satisfy O (false), i.e., there are no intervening suffixes; therefore, ¢ must be
next(p). In other words,

pEMX iff next(p)EX.

We now define several other useful operators in terms of the primitives f and suf,
and briefly describe their intended meaning. In the PL formulas below, unary
operators have precedence over binary operators, but otherwise ambiguity is resolved
by parentheses. True and false are denoted 1 and 0. The notation n*X stands for
nn --- n.X with k appearances of n. :

148 HAREL, KOZEN, AND PARIKH

DEFINITION 2.2.

Y = —n—X
L, = ii0
L, =n*n0

someX = X V (1sufX)
allX = —some—X
lastX = some(X A L)
fin = last1
inf = —fin
S(Xgyrs X3 ¥) =Xy AnfX, A o+ A n*EX, An*nY
S(Xypes Xi) = EXo ADEX| A oo A0 X, A n*n0.

The operators il and n are duals. Whereas n says, “there exists a proper suffix, and
the longest one satisfies X,” its dual n says, “if there exists a proper suffix, then the
longest one satisfies X.” Thus n is existential in nature and @ is universal. These
operators are related to the nexttime operator of Temporal Logic.

The operator L, (for length 0) says that if there exists a proper suffix, then it
satisfies O i.e., there does not exist a proper suffix. This says that the path is of length
0. Similarly, L, says that the path is of length k.

The operator some applied to X says that there exists a suffix satisfying X, and
allX says that all suffixes satisfy X. lastX says that there is a last state in the path,
i.e., the path is of finite length, and the last state satisfies X. fin (inf) says that the
path is of finite (infinite) length.

S(Xys-s Xi3 Y) says that the ith of the first k + 1 states of the path satisfies X; and
the remainder of the path satisfies Y. S(X,,..., X;) says that the path is of length k
and the ith state satisfies X;.

The constructs of other process logics can be expressed in PL. For example, Pratt’s
[27] @ L X and a I X are expressed as

|a](someX) and
[a](@ll = X V allX V (=X A ((—=X)suf(allx)))),

respectively. Nishimura’s aX is expressed as f([] X), and [¢] X of PDL as
[a](fin > lastX). Also, using results of [7, 10], program-free formulas of PL are
simply a notational variant of TL [23, 24].

Several properties relevant to real programming systems can be expressed, such as
freedom from deadlock, liveness, and mutual exclusion [7, 16].

PROCESS LOGIC 149
3. THE DECISION PROBLEM FOR PL

In this section we shall prove that the validity problem for PL is decidable. This is
done by encoding PL into SnS, the second order theory of n successors, shown
decidable in Rabin [31]. Parikh used the same technique to show that SOAPL is
decidable [22].

To be slightly more precise, the decidability of PL will follow from a lemma
stating that for any formula X of PL, there is a formula X’ of the language of SnS,
for some appropriate n depending on X, such that X is satisfiable iff X" is true in the
standard model of SnS. The key observation leading to this lemma is that X is
satisfiable iff it is true in a tree-like model in which states do not repeat.

Let X be an arbitrary formula of PL involving primitive programs a,,..., @, and
propositional letters P, ..., P,,. We shall be using the second order language L, , 5 of
n + 3 successor functions a,,..., a,, b, ¢, d, where successor a applied to formula x
will be written xa. The language allows individual variables x, y,..., and set variables
A, B..... Quantification over both types of variables is permitted and the language
includes Boolean connectives and a membership relation x € 4. For the standard
semantics and details the reader is referred to Rabin [31]. The set of sentences of L,
true in the standard semantics is called the second order theory of n successors, and is
denoted SnS.

Our main goal is to construct a formula X' of L, ; which is in S(n + 3) S iff there
is a model M and path p in M such that p = X. The formula X’ will be of the form

3U, B,y By Cy oy Cpp» A(model(U, B ..., B, C oy C,) A path(4) A Dy(4)). ()

Here, U will encode the state space S of M, B, the interpretation in M of primitive
program a;, C; that of proposition letter P;, and 4 the path p. The subformulas model
and path will guarantee this kind of behavior. The formula @,(4) which, in general,
will involve the B’s and C’s, will have a free variable 4 and will be defined by
induction on the structure of X.

Let M = (S, =, R) be a model; without loss of generality we can assume that S is
countable. Let X = {a,,..., a,, b, ¢, d}, where b, ¢, and d are new symbols, used in the
encoding into S(n+3)S. It is possible to find a nonempty set (possibly finite)
T = {sy, §; -} & S such that any s € S is on some path p € R, for some a € Ua)*
and first(p) € T. In other words, every state in S is accessible by programs from
states in T. Without loss of generality, assume that T is minimal with this property.
Certainly, for any s € S there are at most countably many paths in R, starting at s;
assume they are numbered. Now define a partial function §: Z* —» S as follows:

8(b')=s; for i>0 suchthat s, € T (in particular 6(1) = s,)

d(xa;d'c*) = the(k + 1)th state on the jth path of R,
which starts at 6(x); for 1<i<n, j>0, k>0.

150 HAREL, KOZEN, AND PARIKH

In particular, d(xa,d’) = 6(x). We write &(x) | = s if 8(x) is defined and equal to s.
Set S’ = {x|d(x) is defined}. Now define a partial function y:2% > S*U S“ as
follows: y(4) is defined iff A = {x;, X;,...,} (possibly finite), and for all i, x, € §' and
x; < x;,, (where x <y iff x is a proper prefix of y) and for no y € §’ is it the case
that x, < y < x;,,. We then set y(4) = (6(x,), O(x3)yenes)-

EXAMPLE. Let R, = {(So,5,5")}, Ry, = {(5', 8,)}; take T'= {so}. Then 6(4) = s,,
8(a,dc)=s, and d(a,dec) =s’. Also, if x= (a,dcca,dc)’ for any i, then d(x)=s,,
8(xa,dc) = s, and &(xa,dcc)=s'. If A, = {a,dc, a,dcc, a,dcca,de, a,dcca,dca, dc},
then 6(4,) | = (s, s’ o, 8).

Given the model M define sets BY, 1 <i<n and C},1<j<m, encoding the

meanings of a; and P; as follows:
Let BM =) A-{first element of 4}, where the union is over all sets 4 such that

y4)] € R,,, and the first element of 4 is the unique x, such that 4 = {x,, x,,...,} In

the definition of y(4) above.

In the case of A, in the example above we have simply BY =
U, {x, xa,dc, xa,dcc}, for all x = (a,dcca,de), i<O0.

Let C¥ = {x|x€ §’,6(x)F P;}. Before defining the formulas model, path and
®,(A), we establish some abbreviations for concepts definable in L, ;.

(1) x<y (xis an initial segment of y):
VA(x EAAYZ((zEAD N;za,EA AN yeipc.ai2V EA) Dy € 4)).
(2) linor(4) (A is linearly ordered by <):
VxV¥y(x EAAYEA D (x LYV Y<K X))
(3) first(4,x) (x is the first element of linearly ordered 4):
linor(A) AVy(yEADxKy) AN xEA.

(4) suffix(4,B) (the linearly ordered B is a proper suffix of the linearly
ordered 4):

linor(4) A linor(B) A Ix(x € A A —first(4, x)
AVY((x<y Ay €EA)=yE B)).
(5) single(4,x) (4= {x}):
XEAAVY(yEADXx=Y)
(6) pair(d,x,y) (A={x,p}):
xEANYEANVZ(ZEAD (z=xV z=Y))

PROCESS LOGIC 151

(7) eonc(4, B, C) (4, B, and C are linearly ordered, and either 4 is infinite and
C=A, or A is finite and its last element is the first in B and C represents the
concatenation of 4 and B):

linor(A) A linor(B) A linor(C) A Ix(x € 4)
AWx(xEADIW(y2xAYEAN—Y=x)AVx(xEA=x€EC())
-V (@x(x€AAVy(y €A Dy x) A first(B, x)
AVZVp(xEAANYEBDxKY)
AVYz(z€EC=(zEAV z € B)))).

(8) next(4,x,y) (x and y are consecutive in linearly ordered 4):
linor(A)AXxEANYEAAVZZEAD (x£2z AXxK2)=y <K 2Z)).
(9) segment(4,B,x,y) (B is the subset of the linearly ordered 4 enclosed by
x and y):

linor(A)AXEANYEANVZZEB=(zEANXxLZLKY)).

(10) rest(4,B,x) (B is the infinite suffix of the linearly ordered A starting at
x):
linor(A)AXEA, AV (YEADIZZEANZZ2Y N—z=)))
AV (yEANy>x=y€EB)
(11) a-extension(x,y) (for a€ Z,x=ya',i>0):
xZ2y A V.A((xeA AVz(za€EADzEA))DyEA)

Now define

path(4): linor(A) A VxVyVz(x Ky Ay<zAxEAANzEA)
A (y €UV Iw(w= A A b-extension (y,w)) Dy € A))
AVx(x EA D (x € UV Iw(w = A A b-extension(x, w)))),

where w =4 is defined, e.g., by AVx(—w = xa), with the conjunction taken over all
a € X. In words, a path is a dense linearly ordered set 4 with elements either from the
set U described below, or of the form b%, i > 0.

Now define the formula model(U, B,,..., B,, C,,..., C,,) which will assert that the
sets B; encode atomic programs as BY for some model M, and similarly for the C;.
The set U is asserted to include the elements in all the B;. Thus, U together with the
set {b'|i > 0}, can encode the domain S of a model M. Define model as:

152 HAREL, KOZEN, AND PARIKH

U#@AU=UicicnBi
AN ¢jemVx(x € C;D (x € UV Iw(w = A A b-extension(x, w))))

AN cicaVx((xc € B;>x EB;) A (xdd € B; > xd € B))
A (x € B, > 3z(start-state,(x, z)))),

where start-state;(x, z) is defined as:
Yu(u = za,d > Jv(d-extension(v, u) A Vy(y = vc > c-extension(x, y))))
A (z € UV Iw(w = A A b-extension(z, w))).
Thus, B, is asserted to be closed under shorter paths of a; and under less paths, and

each x € B, is asserted to be of the form za,-djc" for some j > 0, k > 0, where z is
either in U or of the form &, j > 0.

Now, by induction on the complexity of the formula X of PL, we define the L, ;
formula @,(4), depending on U and the B; and C;. One clause of the definition
involves an L, , ; formula ¥,(4) for each program a in PL. These formulas are also

defined below.
P, (4) = Vx(first(4, x) > x € C))
PD_y(4)=—Py(4)
D yvr(d) = P(A) V B,(4)
Dy ourr(d) = 3B (suffix(4, B) A ®,(B)
A YC (suffix(4, C) A suffix(C, B) © @,(C)))
P, (4) = VB Vx (single(B, x)

A first(4, x) © DP4(B))

D ,,x(4) = IB(path(B) A ¥,(B) A Vx(first(B,x) > (x € 4
AVYy(yEADy<x))
A YC (conc(4, B, C) o @,(C))).

Now, define ¥,(4) by induction on a for PL programs:
¥,(A4) =3z3B(—z € B Alinor(B) A B B; A Vx(xEA=(x=zVXxEB))
Afirst(4, z) AVx(x EBAxcEB;)DxcEB
A (xc€E BAx € B,)D x € B)),
¥, sd) = ¥, () V ¥y(4),
¥,3(4) =3B 3C (conc(B, C,A) A ¥, (B) A\ ¥4(C)),

PROCESS LOGIC 153

¥ _.(4) =IB(Vx(x E B> x € A) Alinor(B) A Vx Vy (next(B, x,)
> ¥C (segment(4, C x, y) 2 ¥,(C))) A 3x (x € B Afirst(4, x))
AVx(xEAAVy(x<yD—(yEA)>xEB)
AVxVC (rest(4,C,x) A\xXEB
AVy (yEB>y<x)> ¥,(C)).

LEMMA 3.1. Let UC Z*. For each A < U, y(4) is defined iff path(4) is true.
Proof. Immediate. 1

Now let M be given. We can talk about the truth in S(n+ 3)S of formulas
involving U, B;, C; by adopting the convention that they are taken, respectively, to be
UM = (), BY, BY and C¥. With this convention we have Lemmas 3.2 and 3.3 which
are proven tediously but easily by induction on the structure of a and X, respectively.
We provide proofs for one case in each lemma.

LeEMMA 3.2. For every program a, and for every path p in M,

(1) for every A S Z*, if y(A)| =p and ¥,(4) holds, then p ER,,.

(2) if pER,, then for every x such that 8(x)| = first(p), there exists A = Z*
such that y(A)| =p, x € A, and ¥ (A4) holds.

Proof. We prove the lemma for the case af.

(1) Let y(4)] =p and ¥,4(4) hold. Then 3B, C s.t. ¥ (B) and ¥4(C), and
A = BC. By the definition of y we have y(B)| =g and y(C)| = r for some g, r and
gr =p. By the inductive hypothesis, part (1), we obtain ¢ € R, r € R; and hence
p=qrER;.

(2) Let pER,;, so that p=gr with gER, and r € R;. By the inductive
hypothesis on & we have that for every x such that 8(x)| = first(q), there is B X'*
such that y(B)| =¢, x € B, and ¥,(B) holds. Now B must be finite. Let y be the
largest element in B. Clearly, d(y) = last(q) = first(r). Apply the inductive hypothesis
to B with 6(y)| = first(r) and r € R;, to obtain some C < X* such that O =r,
yE C, and ¥4(C) holds. So we have that for every x such that &(x)] = first(q) =
first(p) there is 4 © Z*, namely, the set A =BUC, such that x € A. In order to
show that ¥,,(4) holds all we need to show is that conc(B, C, 4) holds. But this
follows from the facts that y is the largest element in B, y € C, 6(y) = first(r) = last(q)
and y(B)=¢,7(C)=r. §

LeEMMA 3.3. For every X and for every A S Z*, if y(4)| = p for some path p in
M, then p = X iff @ (A) holds.

Proof. We prove the lemma for the case {a) X. Assume)| =p.

154 HAREL, KOZEN, AND PARIKH

(1) Let p={a) X. Then there is ¢ € R, such that pq is defined and pg = X. By
Lemma 3.2(2) for each x such that &(x)| = first(g), there is B < X* such that
y(B)| =g, x € B, and ¥_(B) holds. By Lemma 3.1 we also have that path(B) holds.
By the inductive hypothesis, from pg = X we may infer that for any C such that
y(C)| = pq, we have @,(C) holding. In particular, for any C such that conc(4, B, C)
holds, we would have @,(C) holding too. Now choose x to be the largest element in
A, hence J(x) = last(p) = first(q). The B existing by Lemma 3.2 is that chosen to
satisfy @ ,,x(4).

(2) Let @,,,(4) hold. Then there is B < X* such that y(B)] =g for some g,
¥_(B) holds, and pg is defined. Furthermore, C=A4 U B satisfies @,(C). By
Lemma 3.2(1) we have g€ R,. Since y(C)| =pg, we conclude by the inductive
hypothesis that pg = X. Hence p=(a)X. 1

LEMMA 3.4. Let X be any formula of PL involving atomic programs JSrom among
{@yss @,_,} and atomic propositions from among {P,,..., P, }. Then X is satisfiable
iff formula (%) is in S(n + 3) S.

Proof. Note that a, does not appear in X.

Only if: Let M’, p=X. Consider the model M obtained from M’ by letting
R, = {p}. This ensures the existence of some 4 with 7(4)| = p. Clearly, since X does

an

not refer to a,, we have M, p=X. If U, B; and C; are taken to be respectively, UM,
BY, and C}' as defined earlier, and 4 is taken to be some set such that y(4)| =p,
then by Lemma 3.1, path(4) holds, by Lemma 3.3, @,(4) holds, and the formula
model holds by the construction of U, BY, and C}'.

If: Let (%) be a true sentence of L,,;, and let U’ BY, C}, and 4 be the sets
asserted in (*) to exist. Define the model M = (S, =, R) by:

S=U"U {b'|i >0}
ukEP; iff uecC,
R,,= {(z, za,dcc,...,)| all elements in path are in B; except possibly z,
z € S, and the sequence is either infinite or maximal
finite satisfying the conditions}.

It is easy to see that the formula model forces B} and C; to be B} and C}. By
Lemma 3.3 we obtain that M, pE= X for p = y(4).
By Rabin’s [31] result that SnS is decidable, we conclude:

THEOREM 3.1. The validity problem for PL is decidable.

We do not know of an elementary bound on the complexity of deciding validity of
PL. In fact, it is possible that Meyer’s [17] result on the complexity of the first order
theory of linear order could be used to show that PL is nonelementary.

PROCESS LOGIC 155
4. A DEDUCTIVE SYSTEM FOR PL

The following proof system is purely equational. Some of the axiom schemas below
are given in the form X O Y, but this is equivalent to the equation (X A Y) = X. There
is one rule of inference, namely substitution of equals for equals. We write X=Y if
XaY and X< Y if —X>DY, where - denotes provability in this system. A
formula X is consistent if not X =0.

DEFINITION 4.1.

(1) All axioms of PDL (see [5, 15, 21}), including propositional logic.
2) fXVY)=fxXVf£y.
3) X=X
4) (XsufY)V (XsufZ) = Xsuf(Y V Z).
(5) (XsufY) A (ZsufW) = (X A Z) suf(Y A W)V X AZ)suf X AN WA
(XsufY)) V (X A Z) suf(Y A Z A (ZsufW)).
(6) —(XsufY) = —(IsufY) V (=) suf(=X A =Y).
(7) XsufY ~nYV n(X A (XsufY)).
(8) Xsuf(X A (XsufY)) = n(X A (XsufY)).
(9) Xsuf(X A (XsufY)) = Xsuf(X A nY).
(10) fnl=0.
(11) —-XAfX>nl.
(12) P = fP for primitive propositions P.
(13) X AN {a)Y ={a)fAY).
(14) nla) X=nl A (a) nX.
(15) <(a)1>fin.
(16) (nX > X)sufX S nX.

Axiom 4.1(16) is called the path induction axiom. It is not hard to see that all the
above axioms hold in all path models, therefore the system is sound.

The following are some elementary theorems of PL which follow easily from the
axioms of Definition 4.1. After each one we indicate in parentheses the axioms and
previous parts of the theorem used in the proof.

THEOREM 4.2,
(1) =0, flxl,fXAY)REXAFY (4.1(2), 3)).
(2) (XsufZ)V (YsufZ)> (X V Y) sufZ (4.1(4), (5)).
(3) (XsufZ) A (YsufZ) = (X A\ Y) sufZ (4.1(4), (5)).
(4) 1sufO0= 0 (4.1(6)).

156

)

(6)

(7)

®)

®
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
21)
(22)
(23)
(24)

HAREL, KOZEN, AND PARIKH

Xsuf0 ~ 0,n0 = 0 (4.2(2), (4)).

n(XV Y)xnXVnY 4.1(4)).

n(X AY)x=nX A nY (4.1(5)).

n—X znl A —nX (4.2(5)-(7)).

Xsuf(X A nY) = n(X A (XsufY)) (4.1(8), (9)).
1suf(nX) ~ n(1sufX) (4.2(9)).

L, o (X =fX) (4.1(3), (11)).

£X ~ f(L, A X) (4.1(2), (10); 4.2(1)).
(@)L, > Ly (4.1(1), (14); 4.2(5)).

fEX ~ £X (4.2(11), (12)).

XsufX ~ nX (4.1(7); 4.2(6)).

(—X) sufX = 1sufX (4.1(6); 4.2(5)).

XsufY = (X A—Y) sufY(4.2(2), (3), (16)).

(a)(Ly AX)= Ly AX A {a)L, (4.1(1), (13); 4.2(11), (13)).

(@a*YLyx L, (4.1(1); 4.2(13)).

n({a) X) =~ nl Ala)nX (4.1(1), (14); 4.2(8), (13)).

L, Aa*)nX = Ly A {a) n{a*) X (4.1(1); 4.2(19), (20)).
S(Xgsees Xps Xy 190000 X3 Y) B S(Xgpeees Xps S(X 100000 X3 V) (4.2(7)).
L, A {a) n*Y S n*((a) Y) (4.2(7), (20)).

(@)L > VoiaiLs (4:2(18), (20)).

The extended Fischer—Ladner Closure

The extended Fischer—Ladner closure of a formula W, denoted EFL(W) or just
EFL if W is understood, is the set of formulas that are relevant to the semantics of
W. EFL(W) is analogous to the Fischer-Ladner closure FL(W) used in
[5, 15,21, 26,] for PDL. Formally, FL(W) (or just FL) is defined to be the smallest
set of formulas containing W and closed under the following rules:

if XV Y€EFL, then
if —X€FL, then
if (@) X € FL, then
if (@UB)XEFL, then
if (aff) X € FL, then
if (e*) X € FL, then

XeFL and Y€FL,
X€EFL,

X€EFL,

(@)X € FLand () X € FL,
(a){B) X € FL,

{a) X € FL and {a){a*) X € FL.

Then FL(W) is finite [5], and is in fact linear in the size of W. The completeness of
PDL was established in [15] by constructing, for a given consistent W, a model
whose states were atoms of FL(W) (i.e., consistent conjunctions of elements of FL

PROCESS LOGIC 157

such that each X € FL or its negation appears in the conjunction). In order to obtain
the completeness of PL we need to extend the concept of Fischer—Ladner closure. Let
X(x) be a formula with one free occurrence of variable x ranging over formulas of
PL. Now X(Y) denotes X(x) with variabie x replaced by formula Y. Then X(Y) is a
formula of PL. Define the relation — by: W — W’ if there is a formula X(x) such that
W=X(Y), W =X(Y"), and Y’ is a Boolean combination of subformulas of Y. -»*
denotes the reflexive closure of —.

DEeFINITION 4.3. The extended Fischer—Ladner closure of W, denoted EFL(W),
is the smallest set of formulas containing FL(W), nl, and fin, and closed under —.

Although EFL(W) contains infinitely many formulas, we prove below that it is
finite up to equivalence modulo =, although the number of equivalence classes can be
nonelementary in the size of W.

Define L(X) = {Y|X->* Y}. If L is a set of formulas of PL, define BC(L) to be the
set of Boolean combinations of elements of L. Let @& be any operator symbol in the
language of PL, including the modal operators {a). Operator @ can be of any arity
(including 0), but for simplicity of notation we shall write @ as a binary operator.

LEMMA 4.4. L(@XY)=BCL(X)UL(Y)U {®ZW|Z € L(X), W E L()}).

Proof (2). Since @XY-X, we have that L(X)<L(®XY). Similarly
L(Y)< (@XY). Since XY »* @ZW whenever X »* Z and Y -* W, we have that

{®ZW|Z € L(X), W E L(Y)} € L(®XY).

Thus it remains to show L(@XY) is closed under BC. But any set L(Z) is closed
under BC, since if B(Y,,..., Y,) is any Boolean combination of the formulas Y;, where
Z-*Y,, then Z— B(Z,..., Z)>* B(Y,,.... Y,).

(€). Certainly

@XY € BC(L(X)U L(Y)U {®ZW| Z € L(X), W € L(Y)}),

and any application of — to a Boolean combination of members of L(X), L(Y), and
{®ZW|Z € L(X), W € L(Y)} results in a formula of the same form. Since L(®XY)
is the least set containing @XY and closed under —, the result follows. [

LEMMA 4.5. Up to equivalence modulo =, EFL(W) is finite.

Proof. 1t suffices to show that L(X) is finite modulo =, where X is some formula
containing all elements of FL(W), fin, and L, as subformulas. We do this by
induction on the structure of X. For primitive P, all elements of L(P) are
propositionally equivalent to P, —P, 0, or 1. For X of the form @YZ, by induction
hypothesis L(Y) and L(Z) are finite modulo =, so by Lemma 4.4 and the fact that a
finitely generated Boolean algebra is finite, L(®YZ) is finite as well. [}

158 HAREL, KOZEN, AND PARIKH

Let W be a consistent formula. An atom of EFL(W) is any <-minimal consistent
element of EFL(W). The symbols 4, B, C, 4,,..., will always be used to denote atoms
of some EFL(W). By the previous lemma, any EFL(#¥) has only finitely many atoms
up to =-equivalence. Because EFL(W is closed under Boolean combinations, for any
X € EFL(W) and atom A, either 4 <X or A<—X, and any X in EFL(W) is
equivalent to the join of all 4 < X. This says that there is at least one atom ALW,
since W is consistent.

5. COMPLETENESS OF PL

In this section we prove the completeness of the axiom system for PL given in the
last section. We first assume the axiom fin and restrict our interpretations to paths of
finite length only, and later indicate how to extend the result to the general case. We
define a special form for formulas and show that each formula X is equivalent to
infinitely many formulas in special form, called the refinements of X, and show that
X=Y iff X and Y have a common refinement (Lemma 5.7). This part is purely
syntactic. Next we show that (under the axiom fin)

X= VS A S@gss Ax) < X, k > 0}

for any X, where the 4, are atoms of EFL(X) and S(4,,..., 4,) is the formula defined
in Definition 2.2, and V denotes the infinite join or least upper bound with respect to
the relation <. This is done by proving that

1sufX = V,n*X
(@)X A 1sufY) =V, (a)(X A n*Y).
Finally, the technique of [15] is applied. A path model is built with states
{4,|4,; A Ly is consistent}, and it is shown that the path (4,,..., 44) satisfies X in this
model iff S(4g,..., 4} < X.

A partition is a finite set = of consistent but pairwise inconsistent formulas with
Vr= 1. If 7 and p are partitions, then so is their coarsest common refinement

aAp={XAY|X€En YEp, X AY consistent}.
For any subset o of a partition, define
(@) 0= (Nyes@)) A [2](V 4e04)-

The formula (a) ¢ says that program « enables every 4 € g, but no 4 ¢ o. Note that
(@)@ = [@] 0 and that if 7 is a partition, then so is the set {(a)o|o = }.

PROCESS LOGIC 159

Now we define by mutual recursion the four concepts:
(i) (n, L)-partition,
(i) (), P)-partition,
(iii) Lg-special form, and
(iv) special form.

Special forms are like normal forms in that they give a subset of formulas obeying
certain syntactic restrictions, but nevertheless represent all formulas up to provable
equivalence. We hesitate to use the term normal form because the representation is
not unique. L-special forms are meaningful because they represent the result of
attempting to show how the satisfiability of a formula in a path depends on the

satisfiability of a set of other formulas in states of that path. The other formulas in
that set are L,-special forms.

(i) An (m,L)-partition is a partition of the form {nX,,..., nX,, L,}.

(i) A partition 7 is a ((), P)-partition if there exist (m, L)-partitions x,,..., 7,,
distinct primitive program letters a,,..., a,, and distinct primitive proposition letters
P,...., P, such that 7 is the set of all consistent terms of the form

(@)o, A A@)o, ANQ A - A Q.

where each Q; is either P; or —P; and each o, is a subset of ;.

(iii) An L-special form is a term of the form L, A Vo, where ¢ is a subset of a
((), P)-partition.

(iv) A special form is a term of the form

VX, AfY)V (L, A Z),

where {nX,,.., nX;, Ly} is an (n, L)-partition and all Y, and Z are in L,-special form.
For example, the primitive proposition P is equivalent to the special form (n1 A fP) V
(LyAP), and 1 is equivalent to the special form (nl Af1)V (L, A 1). (Strictly
speaking, the fP and fl in the above examples should really be f(L, A P) and
f(Ly A 1), but we omit the L, in light of Theorem 4.2(12). This abuse, and others like
it that may appear in the sequel, are for notational convenience and should-cause no
misunderstanding.)

Let o be a subset of an (m, L)-partition. By Theorem 4.2(18), if L, € o, then
nl A (@) o is inconsistent; otherwise, by Theorem 4.2(20),

nl A (e) o =n(a)o!,

where

¢'={4|nd € s}.

160 HAREL, KOZEN, AND PARIKH

The coarsest common refinement 7 A p of any two (n, L)-partitions 7 and p can be
made into an (n,L)-partition using Theorem 4.2(7). This partition is denoted by
7 A p. Similarly, any two ({), P)-partitions 7 and p have a common refinement 7 A p
that is a ({), P)-partition and is coarsest among all such refinements, obtained by
forming 7 A p, taking the coarsest common refinements of the (, L)-partitions in the
definitions of 7 and p, and using the PDL axioms. By a refinement of an (n, L)- or
((), P)-partition = we shall mean any partition 7 A p, where p is a partition of the
same type. ’

If the L,-special form X is defined in terms of the ({), P)-partition 7, and ifpisa
refinement of x, then there is an L,-special form Y equivalent to X and defined in
terms of p, obtained by replacing Ve with V1, where 7 is the unique subset of p such
that Vo = V1. Such a Y is called a refinement of X. Similarly, a refinement of special
form X is an equivalent special form Y such that the L,-special forms and (n,L)-
partition appearing in the definition of Y are refinements of those in the definition of
X. Any L,-special form or special form is equivalent to all its refinements.

Now we associate with each X a special form X’ equivalent to X. This is done by
induction on term structure. A special form P’ for primitive P has been given above,
and below we give special forms for X A Y, —X, XsufY, £X, and {a)X, provided X
and Y are already in special form. Note that X’ is uniquely defined relative to given
special form representations of all the maximal proper subformulas of X, but in
general there are infinitely many special form representations for the subformulas of
X and hence infinitely many possible X'. In the process of defining the following
special forms, we shall simultaneously be proving by induction on formula structure
that X = X', and if X’ = V,(nX;AfY;) V (L, A Z), then the X;, Y;, and any W that
occurs in Z in the form (a) nW are equivalent to formulas in EFL(X).

First we define (X A Y)’, where X and Y are the special forms

VX, AfY)VZ, VU AfV)VW.

Now X A Y is equivalent to

Vi m@XAUYANEY,AV)V(ZAW),

obtained by converting to disjunctive normal form, using Theorem 4.2(1), (7), and
deleting inconsistent terms. Now Z A W can be put into L-special form by taking the
coarsest common refinements of the ({), P)-partitions defining Z and W and using
the PDL axioms to combine terms of the form (@) o and (@) 7. The same holds for the
Y; A V;. This process uses Theorem 4.2(7) and the PDL axioms. We take (X A Y)' to
be the resulting formula.

If X is the special form V,(nX,AfY)V (L, A Z), where Y=L, A Vo, and
Z =L, A Va,, each g, S n, where the 7; where the 7, are ((), P)-partitions, then take
~a; to be the complement of o, in 7, and take

(=X) = V,mX, AL, AV ~a)V Ly AV ~0y).

PROCESS LOGIC 161

To show —X = (—X)’, note that since {nX,,..,nX,, L,} is a partition,
—X =—(V,nX, AfY)) V (L, A Z)) =V, (nX; A —fY) V (L, A —Z)
by purely propositional reasoning. Then
Y, =f(L,A—Vo), LyA=Z=L,A=Va,

by Axiom 4.1(3) and Theorem 4.2(12); finally, ﬁ\/o,. =V~ o; by the PDL axioms.
This gives (—=X)'.

(XsufY)’ is definedtobe (nX, A fl)V (nX, A f1)
V (nX; A f0) V (L, A 0),

where X, =Y, X, =X A (XsufY), and X, = n(—X, A —X,). This uses Axiom 4.1(7).
We leave the definition of (f£X)’ as an exercise. This case uses Theo-
rem 4.2(11), (12).
The hardest case is ((¢) X)". If X = V,(nX,; A fY;) V (L, A Z), then

(@) X =V (((@) nX) AfY) V (a)(Ly A Z)
=V (({a)nX,) A nl A fY)
V Vi (({e)nX,) ALy AfY) V {a)(L, A Vo), (5.1)

where Z=Ly A Vo. By Theorem 4.2(18), {(a)(L, A Vo)=L, A Vo A {a)L,. But
(a)L, can be reduced to a positive Boolean combination of formulas of the form
(a)L,, where the a are primitive programs that occur in a, using Theorem 4.2(18)
and the PDL axioms. Thus the third term in (5.1) is equivalent to a term of the form
L, A V(/\{a) Ly A). Now each (a) L, is incorporated into ¢. If ¢ contains a term
of the form (a)7 and 7 does not contain L,, then the result is inconsistent. If o
contains (a) 7 and L, is in 7, then the result is (@) 7. If o does not contain any term of
the form (@) 7, then a refinement has to be taken.

The second term of (5.1) is equivalent to V,L, A Y, A (@) nX; by Theorem 4.2(11).
The Y, are already in L-special form. The a in the term (a)nX; is now broken up
using the PDL axioms. (U y) nX; becomes (§) nX;V (y) nX,. (8y) nX, becomes

BYLo A pynX)V BYnl A (yynX,). (5.2)

The first term of (5.2) is equivalent to (8) L, A (y) nX; using Theorem 4.2(18). The
(B) L, is decomposed as above and the process is applied recursively to decompose
the y. By Theorem 4.2(20), the second term of (5.2) is equivalent to {8) n(y) X;, and
the process is applied recursively to decompose 8. Finally, if a is of the form f#*, by
Theorem 4.2(21), the LyA (f*) nX; appearing in the second term of (5.1) can be
replaced by L, A (8)n{f*) X,, and the procedure can be applied recursively. This
process continues until all ¢ appearing outside the scope of an n are primitive, Then

162 HAREL, KOZEN, AND PARIKH

the second and third term of (5.1) together form a Boolean combination of L, and
terms of the form {(a)nX and (a)L,. Each (a) nX is replaced by

V{(a)o|o S 7, nX € o},
where 7 = {nX, n —X, L,}, and each {(a) L, is replaced by
V{(@)o|o< {Ly,nl}, L, € o}

and the A-meet of all these partitions is taken. This results in an equivalent L-special
form. Finally, by Theorem 4.2(20), the first term in the expression (5.1) is equivalent
to

V,(n(a)X,. AfY)).

The set {n{a)X,,....n{a)X,,L,} is not necessarily an (n, L)-partition, but we can
make it so by taking the A-meet of all the (n, L)-partitions {n{a) X;, n—{a) X;, L,}.
The resulting formula is in special form and is taken to be ({a) X)'.

We shall write X—" Y iff Y is a refinement of some X', where X’ is defined
according to the above construction. We have already proved in the above
construction

LEMMA 5.3. IfX->"Y, then X=7Y.

LEMMA 5.4. If X=Y is an instance of an axiom, then there is a special form Z
such that X ->"Z and Y -" Z.

Proof. This is quite straightforward to check for almost all the axioms, but lack
of a good notaton makes some cases tedious, especially the PDL axioms. We argue
the case of the PDL axiom

(@) X=XV (aa*) X.
If X=V,(nX,AfY,)V (L, A Z), then in the process of deriving ({a*) X)', (a*) X
reduces to
\/,-(n(a*)X,. AfY)V \/,-(Lo Ala)yn{a*Y X;AY)V (Lo A Z). (5.5)
Similarly X V {aa*) X reduces to
VX, AfY)V (Lo A Z)V V (n(aa*) X; AfY))
VVLoAdaa*)nX, AY)V (LyAZ A{aa*)Ly). (5.6)

The first term of (5.5) is equivalent to the join of the first and third terms of (5.6), by
the PDL axiom above and Theorem 4.2(6). Thus the first term of (5.5) and the join
of the first and third terms of (5.6) will produce the same result if we refine (5.5) and
(5.6) by the (m, L)-partitions {nX;,n—X;,Ly} and {n{aa*)X;, n—{(aa*)X;, Ly}

PROCESS LOGIC 163

We can discard the fifth term of (5.6) since it is covered by the second term. But the
second term of (5.6) is identical to the third term of (5.5). Finally, the second term of
(5.5) and the fourth term of (5.6) can be shown to have a common refinement using
Theorem 4.2(18), (20), (21). 1§

LEMMA 5.7. If X=, then there exists a Z such that X »" Z and Y -»" Z.

Proof. If X=Y is an instance of an axiom, then the result follows from
Lemma 5.4. If @WZ = @YZ by virtue of the fact that X = Y, then by induction on
term structure there exists a W such that X—»" W and Y —>" W. Since W is a special
form representation of both X and Y, @XZ " (®WZ) and @YZ->" (®@WZ)'.
Finally, if X = Z by virtue of the fact that there is a ¥ such that X= Y = Z, then by
induction there are U, V such that X->" U, Y->" U, Y>"V, and Z -" V. Then X ="
(UaV)and Z-"(UAYV). 1

As an immediate corollary of this result, we have

LEMMA 5.8. (i) If nX and fY are both consistent, then nX A fY is;

(ii) if nX is consistent, then Ly A (@) nX is;

(iii) if X is consistent, then nX is.

Proof. (i) If nX AfY =0, then by the previous lemma, there exists a Z such

that nX AfY—-»"Z and 0— " Z. But by definition of —» ", 05" Z iff Z=0, and
nX A fY =" 0 iff either nX —»" 0 or fY »" 0. Cases (ii) and (iii) are similar. 1

In the following, W is a consistent formula of PL and A4, B, C,..., denote atoms of

EFL(W).

LEMMA 5.9. (i) Iffd AnB A C is consistent, then f4 A nB < C;

(i) if SAgs.-., A,) A C is consistent, then S(4,,....A,) < C;

(iii) if S(Agss A3 B) A C is consistent, then S(4,,...,A,; B) < C.

Proof. (i) Let X € EFL(W) such that C < X. Using the representation X',
fA A nB is consistent with some subformula fZ A nW occurring in X', where Z and
W are in EFL(X) < EFL(W). Since A and B are atoms, 4 < Z and B < W, thus

fA A nB fZ A nW £ X. Since C is the meet of all such X, f4 A nB C. Cases (ii)
and (iii) follow from (i). W

Lemma 5.9 implies that CAL,=V S(4,,.,4,), where the join is over all
sequences (4g,..., 4;) such that S(4,,...,4,) A C is consistent.

LeEmMA 5.10. (i) For any formula Y,

some Y=V, n*Y

164 HAREL, KOZEN, AND PARIKH

in the sense that for any Z, Z A some Y is consistent iff Z A n*Y is consistent for
some k > 0.

(i) For any Y, {a)(X A some Y) =V (a)X A n*Y).

Proof. (i) The direction > is immediate from the axioms. For the direction <,
let Z be any formula of PL such that W = Z A some Y is consistent. Form EFL(W)
with atoms A, B,.... Let

U=V {C € EFL(W),3kC A n*Y consistent}.

Then Y € U, and we claim also that nU < U, for if —U A nU were consistent, then
A A nC would be consistent for some 4 < —U and C < U, and then fB A nC would
be consistent for some £B A nC < 4, by Lemma 5.9. But C A n*Y is consistent since
C<U, so fB An(C An*Y) is by Lemma 5.8, and fB A n(C A n*Y) <4 An**'Y,
thus the latter is consistent, which contradicts the fact that A < —U. Then

Z Asome Y £ YV (1sufY),
LUV ((nU > U) sufU),
LUVnnU by the path induction axiom

< U

Then there is an atom C < Z A U, therefore Z A n*Y is consistent for some k. The
proof of (ii) is similar. [

Using Lemmas 5.9 and 5.10 we get

LemMa 5.11. (i) fin=V,,,L, and {a)fin= Visol@) Ly
(i) XAfin=VSU,,.,A4,) and {a)X A fin) = V(a) S(4,,..., A;), where the join
is over all S(A,..., A;) consistent with X.

It is interesting to note that the proof of Lemma 5.10 gives a bound on the least &
such that Z A n*Y is consistent: k <|EFL(Z A some Y).

The remainder of the proof mimics the completeness proof for PDL given in [15].
We first prove the result in the absence of infinte paths, and indicate later how to
extend the result to the general case. Accordingly, we assume the axiom fin and
restrict interpretations to path models with only finite paths.

Let W be a consistent formula of PL and let A, B, C, A,,..., denote atoms of
EFL(W). We shall construct a path model M and a finite path p in M with p= W.
The states of M will be the atoms 4 of EFL(W) such that 4 <L,. Paths in this
model consist of sequences of states (4,..., 4;). The reader should bear in mind that,
as in the proof in [15], the atoms A4 play two roles: formulas in the language of PL
and states in the model M. The particular role is to be determined from context. The
interpretation of the primitive formulas is given by:

(A)=P iff ALP.

PROCESS LOGIC 165

The interpretation of primitive programs is given by:
(4. 4)ER, iff Ly A<{a)S(gy,..,A4,) is consistent.
The following three lemmas are analogous to [15, Lemmas 1-3].

LEMMA 5.12. Let a be any program. If Ly A {a) S(4,,..., A,) is consistent, then
(Agss AL)ER,,.

Proof. The proof is by structural induction on a. The basis is by definition and
the case a =f Uy is trivial. For the case a = fy, suppose L, A (By) S(Agy.., 4;) .is
consistent. Then L, A {#)({y) S(4,,..., 4,)) is consistent. But

BYY) S(Agss 4))) = v0<i<k<ﬂ>(S(A0""’ A) Ny S(Agsees A1),

therefore, (B)(S(4¢,...4;) A (y) S(dy,.,4,)) is consistent for some 0<i<k.
Thus L, A (B)S(4,,...,4;) and S(dg,....,A;) N {y) S(Ag,., A,), and therefore,
L, A (y) S(4,,...,A;), are consistent. The result for this case then follows from two
applications of the induction hypothesis.

For the case a =f*, suppose L, A (8*) S(4,,...,4,) is consistent. The induction
axiom of PDL says

B*) S(A g A) K S(Ag ey) V B*H—S (A5 A)
A () S(Ages 4,))

and Theorem 4.2(20) and elementary manipulations yield
S Ao AV BFHV g cicxS@gss A) A (B) S(Agrnns 4,)).
If k=0, then (4,) € R;. and we are done. Otherwise,
Lo A B*Y(Vocick SWAgons A) A (B) S(Agren 4,))

is consistent, so there must be an i<k such that Ly A {8*)S(4,,..,4,) and
S(Agss A;) A {B) S(44,..., A,), and hence L, A (8) S(4,;,...,A,), are consistent. By
the induction hypothesis, (4;,..., 4,) € R, and then we repeat the process in order to
break up L, A (8*) S(4,,..., 4,). In this fashion we obtain a finite list p,,..., p,, of
elements of R, such that p, p, --- p,, = (g5 4,). |

LEMMA 5.13. Let {a) X € EFL(W). Then S(A,,..,A;) <{a) X iff there exist
Ay 1o Ay Such that (Ay,...,A,) ER, and S(Ays.., Aysn 4,,) < X.

Proof. (-).
SdpsA) < (@)X
- S(4g,..., A)N {a)B is consistent for some B<X
-8y AN (@) S(Ayys Ay ;3 C) consistent

166 HAREL, KOZEN, AND PARIKH

and S(44,..., A4_;; C) < B, by Lemma 5.9
- S(A4,) A {a)C consistent,
-3y, o Ay A,)ER, and S(A,,nd,)<C

by Lemmas 5.9, 5.11, and 5.12,
- (4 A4,)ER, and S,,...4A;sn d,,)
=8Sgser Ag_ 13 S(Agss 4,))
<SAgn A, 15 C)K X

(<) This is by induction on the structure of a. We argue the case a = f*. If
SAoses Agses A,) <X and (4y,..., 4,,) € Ry., then (4,,..,4,,) E R, for some n.
Then there exist k =k, < --- <k, =m with (4, ,.., 4,) € Ry. Since

S(Agrs Agy s A) SX<PF*)X and (A, A,) E Ry,

by the induction hypothesis
Sl Ay,) < BYEF) X< (B¥) X.

Proceeding backward through all k; in this fashion, we get S(4,,... 4,) € 8*> X. |

LEMMA 5.14. Let X € EFL(W). Then
SAgs A)< X iff (4,,..., A)FX.
Progf. The proof is by induction on the structure of X, using Lemma 5.13 for the
case X = (a) Y. We argue the case X = Y sufZ.
Sy, A) L YsufZ iff S(4,,...,4,) A YsufZ is consistent, by Lemma 5.9,

iff S(4,,...,4,) An‘Z isconsistent for some 1<i<k
and S(4,,..,4,) An’Y is consistent for all 1<j<i,

iff S(4;,...,4,)<Z and S(4;,...,4,)< Y forall 1<j<i
iff (4., A)EZ and (4;,..,4,)=Y forall 1<j<i,
iff (Agy.,Ay) = YsufZ, |l

THEOREM 5.15. The axiom system PL + fin is complete.

Proof. Since W Afin is consistent, by Lemma 5.11 there is a consistent
Sy,....,4,) < W. By Lemma 5.14, (4,,...,4,) = W in the model M. |

Now we indicate how to extend the proof of completeness to encompass infinite
paths. Discard the axiom fin and suppose W A inf is consistent. If X is any formula
such that X Ainf is consistent, then there is an atom B, of EFL(W) such that
X ANinf A B, is consistent. By Lemma 5.9, there are atoms 4, and B, such that

PROCESS LOGIC 167

fA4,AnB, < B, and X Ainf A f4, AnB, is consistent, i.e., X Ainf A S(4,,B,) is
consistent. Continuining in this fashion we can construct a countably infinite
sequence
By>S(A4,:B,)>S(Ay,4,;B,)> -
of formulas such that each X Ainf A S(4,,..,A4,; B,,,) is consistent. In order to
satisfy W A inf, our first instinct is to construct this sequence for X = W and use the
infinite path (4,,4,....). This path can fail to satisfy W, however. For example, if
W = Psuf — P, then this construction can yield the infinite path (P, P, P,...).
Let us call an infinite sequence

By > S(4y3B,) > S(Ay, 4,3 B3) > -
of consistent formulas standard if whenever XsufY € EFL(W) and B, < XsufY,

there exists a k> 1 such that B, Y. This definition excludes the counterexample
above.

LEMMA 5.16. If X Ainf is consistent, then there exists a standard sequence o
such that X A S is consistent for all S € o.

Proof. Assume without loss of generality that X inf. Let B, A X be consistent
and let X;sufY,, 1<im, be the set of all X,sufY,c EFL(W) such that
By < X;sufY,. Since ByAXAA (¢, XsufY; is consistent, m applications of
Lemma 5.10 yield k..., k,, such that By AX AN\, ,.,n"Y, is consistent. Now do
the construction of .

By> S(A¢;B,)> S(49,4,3By) > -+
as above, with ByAX A A, <i<m 1Y, in place of X. The resulting sequence o is
standard, since B, < ¥;. 1

Now let the definition of M be modified to allow a to contain infinite paths. If ¢ is
the sequence
By>S(4,:B,)>S(Ag,4,;B,)> -,
let p, denote the path (4,,4,,...,) in M. Lemmas 5.13 and 5.14 are augmented with
the following extra cases to handle the infinite paths:

LEMMA 5.17. Let {a) X € EFL, Xinf. Then S(Ay...,A,) < {a)X iff there
exists a standard o such that p,= (A;,....)ER, and S(Ay,..,A;_,;S)< X for all
S€Eo.

LemMa 5.18. Let X € EFL(W) and let o be a standard sequence. Then S < X
Jorall S€o iff p, = X.

The proofs of these lemmas are straightforward modifications of the proofs of
Lemmas 5.13 and 5.14, Thus we have

THEOREM 5.19. The axiom system PL is complete.

168 HAREL, KOZEN, AND PARIKH
6. DIRECTIONS FOR FURTHER WORK

The Axiom P =fP

The axiom P =fP makes the completeness and decidability proofs go through,
since it allows the special form representation X’. This restriction is undesirable,
however, since we would like to be able to substitute any path formula for the
primitive P, not just those satisfying P=fP. We would like to see a construction
leading to Lemma 5.10 which bypasses this restriction.

. The Test and Reverse Operators

We have not accounted for tests (?) or the reverse operator () of DL. These
operators in some cases make arguments simpler. Contrary to first thoughts, the
reverse operator does make sense in the presence of infinite paths, if we define

pE{a X iff 3g € R_ (3r(p=rq and r =X)).

This semantics is quite different from the semantics of ~ in PDL, where ~ is a unary
operator on programs. Here it is not an operator on programs, and a~ only makes
sense in the context of a PL formula {¢”) X Thus a better notation than (o) X is
needed. Nevertheless, under this semantics, the two PDL axioms for ~ are satisfied.

Expressive Completeness

In the presence of the axiom P =fP, every path formula ultimately expresses
poperties of states and how they interact, as with TL or NL. In |7, 10] it was proved
that TL, and hence PL, is expressively complete for all such formulas, in the sense
that any reasonable formula of states (meaning anything in the first order theory of
linear order) can be expressed. In the absence of the axiom P = fP, however, PL is
unable to express all reasonable path formulas. For example, without P =fP, the
operators f and suf are not sufficient to express the property chop defined by:
pE=chop(X, Y) if there exist q,r with p=gr and g=X, r=Y. (This is because
program-free PL can be encoded in deterministic PDL, which is elementary [3], while
program-free PL with chop is nonelementary.) Is there a good definition of
reasonable path formula, and if so, what primitives in addition to f and suf are
needed to make the system expressively complete?

Complexity of PL

As shown above, PL is no harder to decide than SnsS, but it is not known whether
PL is elementary. It is known that PL with chop is nonelementary, and PL with chop
and without P=fP is undecidable [4]. This question could be answered in the
negative if an efficient encoding of weak S1S§ or the first order theory of linear order
with first element into PL could be found. PL does encode the first order theory of
linear order with first element {7, 10] but the only known encoding is nonelementary
[1]. We thank Karl Abrahamson for pointing this out to us.

-PROCESS LOGIC 169

Algebraic and Topological Interpretation of PL

Reasoning in an algebraic context is often cleaner than in the framework of pure
logic, since irrelevant syntactic details are suppressed. For example, Boolean algebra
captures the essence of propositional logic at a better level of abstraction. The
algebraic structure of PDL has been studied in the form of dynamic algebra
[11-14, 29, 30] and has been found to aid insight and in some cases simplify proofs.
Many of the results of this paper have natural algebraic and topological inter-
pretations:

Let L be the Boolean algebra of formulas of PL modulo the PL axioms of
Section 4, and let

nL={nX|XE€L}, fL={X|XEL)}

In Theorem 4.2(6)—(8) it is stated that nL is a Boolean subring of L with top element
nl and that the map n: L —» nL is a homomorphism, and in Lemma 5.8(iii), that it is
an isomorphism; in Definition 4.1(2), (3) that fL is a Boolean subalgebra of L and
that f is a homomorphism; in Theorem 4.2(14), that f is a projection L - fL and in
Definition 4.1(10) and Theorem 4.2(11) that f is the Boolean ideal generated by Im n,
and in Theorem 4.2(5) that L = nL. By the construction of X’ and Lemma 5.8(i), L is
isomorphic to the direct sum of nL and fL. Results involving joins and meets, such as
Lemmas 5.10 and 5.17, have a natural topological interpretation involving density.

ACKNOWLEDGMENTS

We are grateful to J. Stavi and D. Peleg for correcting errors in an early version of Section 3.

REFERENCES

—

. K. Abrahamson, correspondence.

2. L. BANACHOWSKI, A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA AND A. SALWICKI, “An introduction
to Algorithmic Logic,” in “Mathematical Foundation of Computer Science,” (Mazurkiewicz and
Pawlak, Eds.), Banach Center Publications, Warsaw, 1977.

3. M. BEN-AR1, J. HALPERN, AND A. PNUELL, Finite models of deterministic propositional dynamic
logic, in “Proc. 8th Collog. on Automata, Languages, and Programming,” Springer Lecture Notes
in Comp. Sci., 1981.

4. A.K. CHANDRA, J. HALPERN, A. MEYER AND R. PARrIkH, Equations between regular terms and an
application to Process Logic, in “Proc. 13th ACM Symp. on Theory of Computing,” May 1981.

5. M.J. FiscHER AND R. E. LADNER, Propositional dynamic logic of regular programs, J. Comput.
System Sci. 18 (2) (1979), 194-211.

6. D. GaBBAY, Axiomatizations of Logics of Programs, manuscript, November 1977.

7. D. GaBBAY, A. PNUELL S. SHELAH AND J. StAvi, On the temporal analysis of fairness, in “Proc.
7th ACM Symp. on Principles of Programming Languages,” January 1980, pp. 163—-173.

8. D. HAREL, First-Order Dynamic logic, “Lecture Notes in Computer Science 68” (Goos and

Hartlmanis. Ed.), Springer-Verlag, Berlin, 1979.

170 HAREL, KOZEN, AND PARIKH

10.
11.

12.

15.

16.

17.

19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

29,

30.

31

32

33.

. D. HAREL, Two results on process logic, Inform. Process. Lett. 8 (4) (1979), 195-198.

H. W. Kawmp, Tense logics and the theory of linear order, PhD. Thesis, UCLA, California, 1968.
D. KozeN, A representation theorem for models of *-free PDL, in “Proc. 7th Int. Collog. on
Automata, Languages, and Programming, Lecture Notes in Computer Science Vol. 85, (1980),
pp. 351-362, Springer—Verlag, New York/Berlin.

D. KozeN, “On the Duality of Dynamic Algebras and Kripke Models, ” Report RC7893, IBM
Research, Yorktown Heights, New York, October 1979.

. D.KozEN, “On the Representation of Dynamic Algebras,” Report RC7898. IBM Research,

Yorktown Heights, New York,October 1979.

. D.KozeN, “On the Representation of Dynamic Algebras II,” Report RC8290, IBM Research,

Yorktown Heights, New York, May 1980.

D. KozeN AND R. PARIKH, An elementary proof of the completeness of PDL, Theoret. Comput. Sci.
14 (1) (1981), 113-118.

Z.MANNA AND A. PNuUELL, The modal logic of programs, in “Proc. 6th ICALP,” Lecture Notes in
Computer Sci., Vol. 74, 1979, pp. 385—409, Springer-Verlag, New York/Berlin.

A.R.MEYER, Weak monadic second order theory of successor is not elementary recursive, in
“Proc. Logic Colloquium,” Lecture Notes in Mathematics, Vol. 453, pp. 132-151, Springer—Verlag,
New York/Berlin, (1975)

. A.R.MEYER, Ten thousand and one logics of programming, Bull. European Assoc. Theoret.
Comput. Sci. 10 (1980), 11-29.

A. R. MEYER AND R. PARIKH, Definability in dynamic logic, in “Proc. 12th ACM Symp. on Theory
of Computing,” April 1980, pp. 1-7.

H. NisHIMURA, Descriptively complete process logic, Acta Inform. 14 (4) (1980), 359-369.

R. ParixH, A completeness result for PDL, in “Symp. on Math. Found. of Comp. Sci.,” Zakopane,
Warsaw, May 1978, Springer—Verlag, New York/Berlin.

R. PARIKH, A decidability result for second order process logic,” in Proc. 19th FOCS, October
1978, pp. 177-183.

A. PNUELL, The temporal logic of programs, in “Proc. 18th FOCS, October 1977, pp. 46-57.

A. PNuELL, The temporal semantics of concurrent programs, in “Proc. Int. Symp. on Semantics of
Concurrrent Programs,” Evian, France, July 1979.

V.R. PRATT, Semantical considerations on Floyd—Hoare logic, in “Proc. 17th IEEE Symp. on
Foundations of Comp. Sci.,” Oct. 1976, pp. 109-121.

V. R. PRATT, A practical decision method for Propositional Dynamic Logic, in “Proc. 10th ACM
Symp. on Theory of Computing,” May 1978, pp. 326-337.

V. R. PraTT, Process logic, in “Proc. 6th ACM Symp. on Principles of Programming Languages,”
January 1979, pp. 93-100.

V. R. PRATT, A near optimal method for reasoning about action, J. Comput. System Sci. 20 (2)
(1980), 231-254.

V. R. PRATT, Models of program logics, in “Proc. 20th IEEE Symp. on Foundations of Comp.
Sci.,” October 1979, pp. 115-122.

V. R. PRATT, Dynamic algebras and the nature of induction, in “Proc. 12th ACM Symp. on Theory
of Computing,” May 1980, pp. 22-28.

M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer.
Math. Soc. 141 (1969), 1-35.

A. SaLwicki, Formalized algorithmic languages, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys.
18 (5) (1970).

K. SEGERBERG, A completeness theorem in the modal logic of programs, Notices Amer. Math. Soc.
24 (6) (1977), A-552.

. J. TIurYN, “Logic of Effective Definitions,” manuscript, Inst. of Math., Warsaw Univ., July 1979.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Beigium

