Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES
All Rights Reserved by Academic Press, New York and London

Vol. 52, No. 3, June 1996
Printed in Belgium

Completeness Results for Recursive Data Bases

TirzA HirST AND DAvVID HAREL*

Department of Applied Mathematics & Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

Received November 20, 1995

We consider infinite recursive (i.e., computablie) relational data bases.
Since the set of computable queries on such data bases is not closed
under even simple relational operations, one must either make do with
a very modest class of queries or considerably restrict the class of
allowed data bases. We define two query languages, one for each of
these possibilities, and prove their completeness. The first is the
language of quantifier-free first-order logic, which is shown to be com-
plete for the non-restricted case. The second is an appropriately
modified version of Chandra and Harel’s language QL, which is proved
complete for the case of “highly symmetric” data bases, i.e., ones
whose set of automorphisms is of finite index for each tuple width. We
also address the related notion of BP-completeness. © 1996 Academic

Press, Inc.

1. INTRODUCTION

Computer scientists are interested predominantly in finite
objects. In so far as they are interested in infinite objects,
these must be countable and computable, ie., recursive
thus admitting an effective finite representation. Recursive
graphs have been studied quite extensively in the past. They
can be viewed simply as recursive binary relations over the
natural numbers (here 4" serves, without loss of generality,
as the set of nodes). Many properties of recursive graphs
have been investigated and have been shown to be undeci-
dable; see, e.g., [Bel, Be2, BG]. We are also gaining some
understanding as to their precise level of undecidability; see
[BG, H, HH1].

Viewing graphs as binary relations immediately suggests
a generalization. We may define a recursive model, or a
recursive relational data base, simply as a finite tuple of
recursive relations (not necessarily binary) over some coun-
table domain. We thus obtain a natural generalization of the
notion of a finite relational data base.! Recursive models

* Part of this author’s work was carried out during a sabbatical at the
Dept. of Computer Science, Cornell University, Ithaca, NY, and was par-
tially supported by Grants AF F49620-94-1-0198 (to F. Schneider), NFS
CCR-9223183 (to B. Bloom), NSF CDA-9024600 (to K. Birman), and
ARO DAAL03-91-C-0027 (to A. Nerode). E-mail addresses: {tirza, harel} @
wisdom.weizmann.ac.IL.

! Clearly this idea can also be applied to more elaborate versions of the
relational model, including, e.g., attributes and multiple domains, as well to
non-relational models of data.

0022-0000/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

have been the subject of much work in classical model
theory (see, e.g., the survey [NR]), but none, it seems, from
the perspective of data bases. The idea of considering
infinite, recursive data bases is not without justification:
Values for the trigonometric functions, for example, can be
viewed as a recursive data base, since we might be interested
in the sines or cosines of infinitely many angles. Instead of
keeping them all in a table, which is impossible, we keep
rules for computing the values from the angles, and vice
versa. This really just means that we have an effective way
of telling whether an edge is present between nodes i and j
in an infinite graph—which is precisely the notion of a
recursive graph.

Recursive data bases appear to constitute a fertile area for
research, raising theoretical and practical questions con-
cerning the computability and complexity of queries and
update operations, and the power and flexibility of appro-
priate query languages. In this paper, we propose to initiate
such research by addressing the problem of capturing the
class of computable queries over recursive data bases, the
motivation being borrowed from [CH].

It is easy to see that recursive relations are not closed
under some of the simplest accepted relational operators.
For example, if we define the primitive recursive relation R,
such that R(x, y, z) holds for a 3-tuple of natural numbers
iff the y th Turing machine halts on input z after x steps,
then R|, the projection of R on the second and third
columns, is the nonrecursive halting predicate. Thus, even
very simple queries do not preserve computability when
applied to general recursive relations. This difficulty can be
overcome in essentially two ways. The first is to accept the
situation as is; that is, to resign ourselves to the fact that on
recursive data bases the class of computable queries will
necessarily be very modest, and then to try to capture that
class in a (correspondingly modest) complete query language.
The second is to restrict the data bases, so that the standard
kind of queries will preserve computability, and then to
try to establish a reasonable completeness result for these
restricted inputs. The first case will give rise to a rich class
of data bases but a poor class of queries, and in the second
these will be reversed. In both cases, of course, in addition
to being Turing computable, the queries will also have to

522

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

satisfy the consistency criterion of [CH], more recently
termed genericity [HY], whereby queries must preserve
isomorphisms.

In the interest of pursuing both of these approaches, we
prove two results, In Section 2 we consider recursive data
bases and computable queries, and prove that the language
of quantifier-free first-order relational calculus is complete.
This shows that the class of computable queries on general
recursive data bases is indeed extremely restricted. At the
heart of the proof is a notion we call local isomorphism,
which is defined over pairs (B,) where Bis a data base and
u is a tuple over B’s domain. We show that for each tuple-
width, the equivalence relation corresponding to this
isomorphism is of finite index, and that the results of apply-
ing a computable query constitute a union of some of the
equivalence classes.

In Section 3 we consider highly symmetric data bases,
which have very rich sets of automorphisms. Technically,
the restriction prescribes that for each tuple-width the equi-
valence relation that identifies tuples that are interchange-
able by some automorphism of B is recursive and of finite
index. We also require that a (finitely branching) tree of
representatives of all equivalence classes for all tuple widths
is recursive. For such data bases, represented by such a tree,
we prove that a slightly modified version of the query
language QL of [CH] is complete. The proof follows the
general lines of the proof in [CH] but is rather more
complicated.

The two results lie on the extremities of the spectrum of
possibilities for interesting classes of computable queries
over interesting classes of recursive data bases. The results
could lead to work on other, less extreme possibilities.
Moreover, it now appears to be feasible to investigate the
complexity of queries on recursive data bases and their
implementation.

Sections 4 and 5 discuss variations of the completeness
result for highly symmetric data bases. In the former we
consider the special case of finite—co-finite relations, proving
completeness for corresponding variants of QL, and in the
latter we prove completeness for an appropriately modified
version of the generic machine language GM of [AV].

Finally, Section 6 addresses the notion of BP-complete-
ness, based on the work of Bancilhon [B] and Paredaens
[P]. Under this notion, which involves expressing relations,
not queries (see [CH]), we show that no effective complete
language for the full class of recursive data bases is possible.
On the other hand, for highly symmetric data bases, first-
order logic is complete, as in the finite case.

It is of interest to note that highly symmetric data bases
give rise to the same complete languages as finite data bases,
for both query completeness and BP-completeness. This is
due to the fact that they can be effectively represented
by finite relations that consist of representatives of the
aforementioned equivalence classes.

523

2. COMPLETENESS FOR RECURSIVE DATA BASES

A recursive relation is a recursive set of tuples over a recur-
sive countably infinite domain. For example, the following
relation is recursive:

{(x,y,z)lx,y,zeﬂ,z,':x*y}.

A recursive relation R can be represented by a Turing
machine, which on input « decides whether the tuple « is in
R. We denote by |u| the rank of a tuple u.

DErFINITION 2.1. Let D be a countably infinite recursive
set, and let R,, .., R,, k>0, be relations, such that for all
1<i<k, R,cD% We say that B=(D, R, .., R;) is a
recursive relational data base of type a = (a,, ..., a;) (an r-db
for short) if each R, is a recursive relation. We often use
D(B) to denote D, the domain of B.

We actually think of an r-db as a sequence of Turing
machines that accept the appropriate relations.

DeFINITION 2.2. Let B, =(Dy,R,,..,R;) and B,=
(D,, R}, .., R}) be two r-db’s of type a = (a,, ..., a;) and let
ue D] and ve D3. Then

1. B, and B, are isomorphic by isomorphism #h, if
h: D, - D, is a bijection, and A(R,) = R} for each 1 <i<k.

2. (B, u) and (B,, v) are isomorphic, written (B, u) =
(B,,v), if B, and B, are isomorphic by an isomorphism
taking u to v.

3. (B,,u) and (B,,v) are locally isomorphic, written
(B,, u) =, (B,, v), if the restriction of B, to the elements
of u and the restriction of B, to the elements of v are
isomorphic by an isomorphism taking u to v.

Isomorphism implies local isomorphism, but not vice versa.
For example, let R,={(a, a),(a,b)} and R,={(c, c)}.
Here, (R, (@) =, (R;, (c)), but (Ry(a)) #(R,, (c)).

An important difference between local isomorphism and
isomorphism is that the former is decidable for r-db’s,
whereas the second is not. In fact, we have:

ProPOSITION 2.1 [M]. The isomorphism problem for r-db’s
is X\ -complete.

Note that deciding (B, u) = (B,, v) is also X'} -complete,
since B, and B, are isomorphic iff (B, ())=(B,,()),
where () is the tuple of rank 0.

PrOPOSITION 2.2, The relation =, is recursive.

Proof. Given r-db’s B,=(D;,R,..,R;) and B,=
(D5, Ry,..,R,) and tuples u=(uy,.,u,) and v=
(vy, ..., U,,,). In order to determine whether (B,, u) =, (B, v),
we have to verify the following, all of which are readily
seen to be computable: (i) |u| =|v|; (ii) for every i and j,

524

1<i, j<n, u;=u; iff v,;=v;; and (iii) for every 7, 1<igk,
and for each choice of ji, ..., j,, between 1 and n, we have
(), ons ”ja,.) e R;iff (v, ..,v;,)eR;. 1

It is easy to see that if we fix the type 4, then for tuples of
rank n, =, is an equivalence relation of finite index; its
equivalence classes are pairs of the form (B, u), where B is
an r-db of type a and u is a tuple of rank n. We denote these
equivalence classes by C"={C7, .., C},}.

ExampLe. For type a = (2, 1), there are 2% +2%.2° =68
equivalence classes of =, of rank 2. One of them is:

C2={(B, (x,) | x#y n(x,y)¢ R,

Ay, x)eRy A(x,x)eR,
A3 Y)ER AXERy AYERS).

DEFINITION 2.3. An r-db query of type a (or an r-query
for short) is a partial function Q, which, for each r-db B of
type a, yields an output (if any) that is a recursive relation
over D(B). We let O denote the set {(B, u) | ue Q(B)}.

We now want to define recursive queries over r-db’s.
There are various possibilities for this. One is to require the
existence of a Turing machine, which, on an input contain-
ing (codes for) the Turing machines of the relations in the
input data base, produces as output the (code of the) Turing
machine for the output relation. We prefer the following
oracle-based definition.

DerINITION 2.4. An r-query Q is recursive if there is an
oracle Turing machine which, given a tuple u, uses oracles
for the relations of the input data base B to decide whether
ue Q(B). If Q(B) is undefined, the machine does not halt on
any input tuple.

We denote a Turing machine M that uses oracles for the
relations of B by M”.

The two approaches differ in that, if the Turing machine
computing Q can relate to the actual codes for the input
Turing machines, it can violate genericity (see below). If the
Turing machine is allowed to access the input machines
only in order to ask questions of the form “is u € R”, then the
two definitions can be shown to be equivalent.?

DEFINITION 2.5. An r-query Q is called generic if it
preserves isomorphisms; ie., for all B,, B, u, and v, if
(B,, u) = (B,, v), then Q(B,) is defined iff Q(B,) is defined,
and ue Q(B,) iff ve Q(B,). It is called Jocally generic if it
preserves local isomorphisms; i.e., for all By, B,, u, and v, if
(B,, u) =,(B,, v), then Q(B,) is defined iff Q(B,) is defined,
and ue Q(B,) iff ve Q(B,).

2 The first approach has the additional problem of multiple codes for the
output relation, and we would like the Turing machine computing an
r-query to return a unique code, say, the smallest one. However, deciding
equality of codes for Turing machines is non-computable. Hence, we prefer
the second definition.

HIRST AND HAREL

Unions, intersections, and complementations, for
instance, are both generic and locally generic. The query
that gives “the first tuple in R” or “all tuples containing the
constant @” are neither generic nor locally generic. Indeed,
every locally generic query is also generic, but the converse
is not true. For example, the query Q defined by:

{x|3y (x#y A (x,y)€R)}

is clearly generic but is not locally generic, since if we let
Rl = {(a’ a)’ (a9 b)} and R2= {(C9 C)}’ then Q(Rl) = {(a)}
and Q(R,) = & but (R, (@)) =/ (Rs, (¢))-

PROPOSITION 2.3. Any locally generic r-query Q satisfies
the following:

1. either Q is defined for all B or Q is undefined for all B;

2. if (B, u)=,(B,,v), then (B, u)e Q iff (B;, v) € 0;
3. if(B,u)eQand (B, v)e O, then |u| = |v|.

Proof. Parts | and 2 follow immediately from the defini-
tion. (For Part 1 note that for all B, and B,, (B;, ())=,
(B2, (1))

To prove Part 3, let B,=(D,R,, .., R,) and B,=
(D,, R}, .., R}) be two r-db’s of type a = (a,, .., a;), and let
u=(uy, ..., u,) and v=(v,, .., v,,) be tuples with ue Q(B,)
and ve Q(B,). Assume, without loss of generality, that
D, and D, are disjoint. We construct a new r-db,
B,=(D;, S, .., S;), whose domain contains uy, .., U,,
vy, .., v, and additional new elements to make it infinite.
For each i, S, is defined as follows: z € S, iff z is a tuple over
{uy, .., u,} and ze R;, or z is a tuple over {vy, ... U,y and
zeR!. Now, (B,, u) =, (B3, u) and (B,, v) =, (B3, v). Since
Q is a locally generic, and u € Q(B,) and v € Q(B,), we have
ue Q(B,) and ve Q(B,). Since Q(Bs) is a relation, u and v
must have the same rank. |1

Proposition 2.3 states that a locally generic r-query Q is
either nowhere defined, or is everywhere-defined but does
not split any equivalence class of =;. Actually, 0 is the
union of some equivalence classes of =, of a common rank
n. By the notation introduced above, if Q is a locally generic
r-query, Q = Uj=s c for some C}, ..., C7 e C™. Conversely,
it is easy to see that each subset of C” defines a locally
generic r-query Q, such that 0 is the union of its elements.
Hence, we have the following characterization:

ProPOSITION 2.4. Q is a locally generic r-query iff Q =
i_1 C} for some C7, ..., Ci € cn

j=1 I

So much for locally generic r-queries. Now, while generic
r-queries are not the same in general, they are the same
when the queries are restricted to being recursive:

PROPOSITION 2.5. If Q is a recursive r-query, then Q is
generic iff Q is locally generic.

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

Proof. Let Q be a recursive r-query of type a.

Let B,=(D,,R,,..,R,) and B,=(D,, R}, ..., R;) be
two r-db’s of type a = (a;, ..., ;) and let v and v be n-tuples.
If (B, u)=(B,,v), then (B,, u)=,(B,,v). Thus the “if”
direction is clear. For the “only-if” direction, assume that Q
is generic but not locally generic. Therefore, there are B, =
(D,,R,, ..., R,), B,=(D,, R}, ..., Ry), u=(uy, .., u,), and
v=(v,, .., U,), such that (B, u) =, (B,, v) but either Q(B;)
is defined and Q(B,) is undefined or both are defined but
uc Q(B,) and v¢ O(B,). Let M be an oracle Turing
machine that computes Q, and let ¢, and o, be the com-
putation paths of M?(u) and M ™(v), respectively. Note
that if Q(B,) is undefined o, is infinite. Let d,, ..., d,, be all
the elements from D, that do not appear in » but which,
during the computation g, appear in tuples participating in
questions of M to the oracles for B,. Similarly, let E=
{e}, .. e€,,..} be the set of all the elements from D, that do
not appear in v but which, during the computation a,,
appear in tuples participating in questions of M to the
oracles for B,. E might be infinite if o, is infinite.

We now construct new data bases By =(D;, S|, ..., Si)
and B, =(D,, S}, .., Sk), as follows. D; contains uy, ..., 4y,
d,,..,d,, and new elements e, .., €}, ... corresponding to
ey, .., e,, ... If Eis finite, we add elements in order to make
D, infinite. The relations of B are defined such that the
answers to questions of M to the oracles of B, and to the
oracles of B, will be identical. For each i, | <i<k, define S,
as follows: xe S, iff x is over {u,, .., u,,d,, .., d,} and
x€R,, or x is over {uy,..,u,, €, e, ..} and x'eR;,
where x' is x, except that each u, is replaced by v;, and each
e, is replaced by e;. B, is defined similarly, using d', .., d,,
corresponding to d;, ..., d,,,.

Now, the following permutation:

u1u2...undldz...dme’le'z...e’r...
Ulv2"'vnd’1d/2"'d;nelez"'er"'

is an isomorphism between B, and B,, taking u to v. Hence,
(B;, u) = (B4, v). On the other hand, the computation paths
of MB(u) and M?4(v) are identical to those of M*(u) and
M5(v), respectively. This means that in the first case, when
Q(B,) is defined but Q(B,) is undefined, Q(B;) will be
defined but Q(B,) will be undefined, and in the second case,
when ue Q(B,) and v¢ Q(B,), then also ue Q(B;) and
v¢ Q(B,). This contradicts the genericity of 0. |

DEFINITION 2.6. An r-query is called computable if it is
recursive and generic. A query language is r-complete if it
expresses precisely the computable r-queries.

Denote by %~ the language of first-order logic without
quantifiers, considered as a query language with queries of
the form:

{1, s X)) | (X 1,5 s X,y Ry, s Ry}

525

Here, ¢ is a quantifier free formula, R, .., R, denote the
relations of the input r-db, and x,,..,x, are ¢’s free
variables. The allowed atomic formulas are x,=x;, for
1<i, j<n, and (x;, .., x,—ui)eRi, for 1 <j,, s Ja» <n and
1 <i<k, where g, is the rank of R,. In particular, if R
is of rank 0, then ()€ R is a legal atomic formula. In addi-
tion, %~ contains a special expression, undefined, in order

to express everywhere-undefined queries.

THEOREM 2.1. &~ is r-complete.

Proof. Clearly, every query expressible in £~ is recur-
sive and generic when applied to r-db’s. For the other direc-
tion, let Q be a computable r-query. By Proposition 2.5,
Q is locally generic. If Q is undefined for all B, then it is
expressed by the special expression undefined. Otherwise,
O is always defined, and by Proposition 24, for the
appropriate n, 0 = szl s for some choice of i;’s. In addi-
tion, every equivalence class C” is expressible by some ¢;, in
such a way that (B, u)l=¢, iff (B, u)e C}. The formula ¢,
describes the containment or non-containment of the pro-
jections on in the relations of B. Thus, ¢, v --- v ¢,isa
formula in %~ that expresses Q. 1

To illustrate this, the ¢, corresponding to C7 (see the
example given earlier) is:

x#y A(x,y)¢R, A(y, x)eR; A(x,X)€ER,
AP, V)ER Ax¢R, AYeER,.

It is not to hard to show that ¥~ (or an appropriate
generalization) is complete for certain special cases of r-db’s.
Here are some examples.

PROPOSITION 2.6. %~ is complete for unary r-db’s.

One way of viewing this, without loss of generality, is that
quantifier-free first order predicate logic with equality, when
applied to recursive sets over 4" (i.e., apart from equality
the predicates are unary) expresses precisely the generic
computable functions that yield recursive relations over A"

Denote by ., the language ¥~ applied to data bases
with domain 4 and restricted to have results only in
{1, .., n}. Specifically, we may assume that it allows only
expressions of the form: {(x,, .., x,,) | #(x1, s Xp, B) A
X1,y o Xm €41, .., n} }, where ¢ is quantifier free.

%7 yields non-generic queries. For example, assume that
Q(B) is non-empty. Let B’ be isomorphic to B, such that
1,..,n are replaced, respectively, with n+1, ..., 2n. Then
Q(B') = ¥, and thus Q(B’) is not isomorphic to Q(B). Here
we require genericity only for tuples over {1, .., n};ie., if B,
and B, are isomorphic, then for every u,ve{l, .., n}",
ue Q(B,) iff ve Q(B,).

PROPOSITION 2.7. Forany n, &, expresses precisely the
recursive functions that yield relations over {1, .., n} whose
isomorphisms are preserved only for tuples over {1, ..., n}.

526

Proof. %, is clearly recursive and preserves isomor-
phisms for tuples over {1, .., n}. Let Q be a recursive query
yielding, for each r-db over 4" of type a =(a,, .., a;) and a
given integer n, a relation over {1, ..,n} whose isomor-
phisms are preserved for tuples over {1, .., n}. Q is locally
generic for tuples over {1, .., n}. Otherwise, as in the proof
of Proposition 2.5, we could construct isomorphic r-db’s B
and B, with tuples u and v over {l,..n}, such that
(B, u) = (B,, v) but Q contains only (B, u). In addition, as
in the general case, Q yields for all r-db’s relations of some
common rank. Since there are finitely many equivalence
classes of =, for each rank that contain only tuples over
{1, ...n}, we can express Q in & ~ restricted to {1, ., n}. |

3. COMPLETENESS IN THE HIGHLY
SYMMETRIC CASE

3.1. Highly Symmetric Data Bases

DEerNITION 3.1. Let B be a fixed r-db. For each u, ve
D(B)". n>0, we say that u and v are B-equivalent (or just
equivalent if B is understood), written u= v, if (B, u) =
(B, v).

In words, v and v are B-equivalent if there is an
automorphism of B taking u to v.

DEFINITION 3.2. B is highly symmetric if, for each n >0,
the relation =~ induces only a finite number of equivalence
classes of rank n.

Let B=(D,R,,..,R,). Term an r-db of the form
(D, Ry, ... R, {(d))}, ..., {(d,)}), for some m=>0 and
dy, ..,d, €D, a stretching of Bby d,, .., d,,.

ProprosITION 3.1. B is highly symmetric iff for each
stretching B' of B the relation =y induces only a finite
number of equivalence classes of rank 1.

Proof. If a stretching B’ of B by d,, .., d, contains
infinitely many elements a,, a,, ... that are pairwise non-equi-
valent in B', then the infinitely many tuples {(d,, ..., d,,, a1),
(dy, ..., d,,, a5), ...} are pairwise non-equivalent in B.

For the converse, assume that B is not highly symmetric.
Let m be the maximal rank for which there is only a finite
number of equivalence classes of = . Let U be a set of
representatives of all of the equivalence classes of rank m,
and let S be a set containing infinitely many tuples of rank
m + 1 that are pairwise non-equivalent. Since U is finite and
S is infinite, there exists some u=(d,, .., d,,)€ U and an
infinite subset S’ .S, such that each v = (v, .., Vs Uy s 1) ES’
satisfies (v}, ..., U,,) =5 (dy, o dpy)-

Now, let B’ be the stretching of Bby d,, ..., d,,. If = con-
tains only a finite number of equivalence classes of rank 1,
there must be infinitely many elements from among the
(m + 1)th components of the tuples of S’ (i.e., from among

HIRST AND HAREL

the v, ,’s above) that are in the same equivalence class of
~ .. But this means that infinitely many tuples in S’ are
actually equivalent in B, which is a contradiction. ||

This characterization of highly symmetric r-db’s yields a
simple technique for showing that an r-db is not highly sym-
metric. It suffices to mark (or color) some elements of the
domain, and then show that infinitely many elements are
pairwise non-equivalent, where the coloring is taken to be
part of the structure. For example, the following graph is
not highly symmetric, since after coloring some node, there
would be infinitely many nodes at different distances from
the colored one:?

Without the coloring, the =, of this example induces a
single equivalence class of rank 1 tuples, since all the nodes
are equivalent. For n = 2, however, there are infinitely many
non-equivalent pairs, since for each pair of distinct nodes i
and j we have (1, 2i) 25 (1, 2j).

For the case of rank 2 relations, i.e., graphs, high symme-
tricity is somewhat easier to elucidate. A highly symmetric
graph consists of a finite or infinite number of connected
components, where each component is, inductively, highly
symmetric, and there are only finitely many pairwise non-
isomorphic components. In a highly symmetric graph, the
finite degrees, the distances between points, and the lengths
of the induced paths are all bounded. A grid, for instance, is
not highly symmetric, since it has an infinite path as an
induced subgraph, and hence it would contain infinitely
many pairs that are pairwise non-equivalent.* On the other
hand, the full infinite clique is highly symmetric.

Here is an example of another highly symmetric graph:

NN

A particularly interesting example of highly symmetric
data bases are the (not necessarily recursive) countable ran-
dom structures. These constitute a natural generalization of
the Rado graph (cf. [Ra, Fa]). They are characterized by an
infinite set of extension axioms, which say that for each finite
set X of points in the domain, and for each possible way that
a point not in X can be related to X in terms of atomic

3 In the figure, a line between i and j represents the two edges (i, j) and
(J,).

4 An induced subgraph of G is a subgraph obtained by restricting G to
some of its nodes, omitting only edges connected to deleted nodes.

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

formulas, there is indeed such a point y. The axioms are
indexed by the size of the set X. For example, the following
is a 2-extension axiom for type a =(2), i.e., for data bases
consisting of a single binary relation symbol R:

(y’ xl)ER
A (X1,)¢ R A (3, %) € R A (x5,) €R)).

Vx,Vx,(x; #xy =3Iy (¥ #Xx AYF X A

PropoSITION 3.2. For each type a, any countable random
data base over a is highly symmetric.

Proof. Let A be a countable random data base over 4.
We show that tuples are equivalent in A iff they are locally
isomorphic. Since for each n, =, induces only a finite num-
ber of equivalence classes of rank », the same is true for = ,,
which means that A4 is highly symmetric.

Let u=(u,, .., u,) and v=(vy, .., v,) be tuples that are
locally isomorphic in 4. In order to show that u=, v, we
construct an automorphism on D(A), taking u to v. For the
purpose of the proof, let us assume that D(4) is ordered (an
order always exists, though not necessarily a recursive one).

Let a, be the first element in D(A4) not appearing in u.
By some n-extension axiom, there must be an element b,
not appearing in v, such that (4, ua,)=,(4, vb 1).> Now,
let b, be the first element in D(A) not appearing in vb,.
By some (n+ 1)-extension axiom, there is an element
a, ¢ {uy, .., u,, a;} such that (4, ua,a,)=, (4, vbby).
Continuing this back and forth argument yields the required
automorphism. |

We now discuss the way we require highly symmetric
data bases to be represented.

DEFINITION 3.3. A characteristic tree T g for a relational
data base B=(D, R, .., R;) is any tree that satisfies the
following. T,’s vertices are labeled with elements of D (with
the exception of the root, which has no label), such that the
tuple of labels along any path from the root to a node con-
stitutes a representative of some equivalence class of =,
A node in T, is identified with the tuple leading to it. The
tree covers representatives of all equivalence classes, and no
two paths form representatives of the same class. 7" denotes
the set of paths of length » from the root of T, and T5(x)
denotes the set of labels of the immediate offspring of node x.

Clearly, B is highly symmetric iff 7'y is finitely branching.
As an example, the following figure describes a highly sym-
metric graph G, and a characteristic tree for it. Arrows
denote directed edges and lines denote pairs of directed
edges. The marked nodes, (1, 3) and (2, 4), are the repre-
sentatives of the equivalence classes constituting G; that is,
(i, /) is an edge in G iff it is equivalent to (1, 3) or (2, 4).

5 We write ua, as shorthand for (uy, ..., #,, @), and similarly for other
tuple extensions.

527

2 6 10 1 7
¢ b A A
4 8 12 3 59 1

Té

/I\

/%\\

1®7 24 2@6 8 1 2681
2146837

3.2. On Tuple Equivalence

Before we define the kinds of recursive data bases we will
be dealing with here, and then proceed to exhibit a complete
language, we need to establish some preliminary results. In
the following, let B be a fixed infinitely countable data base.
We will often write 2, v instead of (B, u) =, (B, v), and D
instead of D(B).

ProrosITION 3.3. For every u, ve D",

U gD iff Ya,3b,Vb,3a, - (uayay - =,0b1by).

(See [CK pp. 114-1157.)

Proof. The “only-if” direction follows from the existence
of an automorphism on D taking u to v. For the “if” direc-
tion, assume that

Ya, 3b, Vb, 3a, ---(ua,a, --- =, 0b,by).

Let a, be the first element of D not appearing in . By the
assumption, there is some element b,, such that ua, =, vb,.
Now, let b, be the first element from D not appearing in vb, .
By the assumption, there is some a,, such that ua,a, =,
vb,b,. Continuing this back and forth construction for all
the elements in D yields a full permutation taking u to v,
thus implyingu=gv. |

DerFINITION 3.4, For u, ve D", we write u =, v whenever
(B, u)=,(B, v), and u=,, , v whenever both Ya 3b.ua =, vb
and Vb Ja.ua =, vbh.

Another way of stating the requirement for u=,v in
this definition is that, in the structure B, the tuples u=
(uy, ..., u,) and v = (vy, .., v,) must satisfy precisely the same

528

first-order formulas with up to r quantifiers and » free
variables. An additional well known characterization is
that u =, v iff the duplicator has a winning strategy in the
r-round first-order Ehrenfeucht-Fraisse Game (r-game, for
short) played on (B, u) and (B, v) [E, Fr].

It is easy to see that it suffices to have the quantifiers
range over nodes in T, since T 5 contains representatives of
all the equivalence classes:

PROPOSITION 3.4. Letu,veD"and u',v' € T", such that
uzpgu andv=zv'. Then, for all r,

iff VaeTW')3IbeT(W')ua=,v'b

U=,410

and YbeT(v')3JaeT(w')v'a=,0v'b.

In particular, if u,ve T" then

iff VaeT(u)3beT(v)ua=,vb

U=,V

and YbeT(v)Jae T(u)ua=, vbh.

We now take advantage of the fact that highly symmetric
data bases have finitely branching characteristic trees:

PROPOSITION 3.5. If B is highly symmetric, then for every
u, ve D",

iff Yru=s,v.

U

Proof. Letu, ve D". The “only-if” direction is clear. For
the “if” direction, assume that Vr u=, v. Let o', v’ € T" such
that u >, u’ and v =z v'". Hence, in order to establish u =z v,
it suffices to prove u' =z v'".

According to Proposition 3.4, Vr u =, v implies

YuVa, 3b, Vb, 3a, ---VcAd(W'a,a, ---a, =, v'b, b, -+ b,),

where, if 7 is odd, ¢ = a, and d = b,, and otherwise ¢ = b, and
d=a,, and where, for all 1<i<r, q,eT(W'a,a,---a;_;)
and b, e T(v'b, b, --- b,_).

In order to show ' =, v/, we construct a permutation on
D, which is an automorphism that takes ' to v', as follows:
Let d, be the first element from D not appearing in «'. Let
a, € T(w') such that u'd, =gu'a,. By the assumption for
this a,, for each r there is some b, € T(v') such that
Vb, 3a, ---VYe3d (Waya,---a, =,v'b b, ---b,), and where
b,, a,, .., ¢, d are as described above. In particular, v'a; =,
v'b,. Since Ty’s outdegree is finite, there are infinitely many
r's for which the same b; can be used. Denote the set of all

HIRST AND HAREL

such P’s by M,. We have u'd, =z u'a; =, v'b,. Now, let e, be
the first element from D not appearing in v'b;, and let b, €

T(v'b,), such that v'b, b, =, v'b,e,. By the assumption, for
each re M, there exists a, € T(#'a,) such that Vas 3b; ---

Veld(wa,a, - a, =,v'b,b, ---b,), where as, bs, .., ¢, dare
as described above. In particular, v'a,a, =, v'b, b,. Again,
by the finiteness of T(1/a,), there is an infinite subset M, of
M, such that a single common element a, € 71 (v'a,) can be
used for each re M,. Let & be the automorphism on D
taking w'a, to w'd;, and let a5 be h(a,). So far we have
Wdyay =gu'a a, =, v'b b, =5 v'b e,. Continuing this back
and forth construction for all members of the domain D
yields the desired automorphism on D that takes u’ to v'. ||

Proposition 3.5 is stronger than Proposition 3.3, as it
requires only finite formulas to establish an isomorphism
between u and v. Indeed, Proposition 3.3 holds for every
countable data base, but Proposition 3.5 does not. For
example, consider the following graph, G, which is not
highly symmetric:

a

AN\

d

Here, (a, ¢) Z¢ (b, d), but one can use Ehrenfeucht-Fraisse
games to show that (a, ¢) and (b, d) cannot be distinguished
by any first-order formula, so that Vr(a, ¢) =, (b, d). Actually,
we can strengthen Proposition 3.5:

PROPOSITION 3.6. If B is highly symmetric then there is a
fixed r such that for every u, ve D",

Uu=pgo

iff u=s,v.

Proof. The “only-if” direction is clear. We have to show
that
(%)

IrVu, ve D” (if u=, v then u =z v).

First, take the contra-positive of one direction of Proposi-
tion 3.5, and restrict the ¥ and v to come from 7™

Yu, ve T (if u g v then Ir u#, v).

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

Now, T is finite. Hence, we may denote by r, the maximum
of the r’s that exist according to this fact, taken over the
pairs u and v. But since u #, vimplies u %, vforall v’ = r, we
obtain:
Yu, veT” (if uZgvthen u#, v).

Actually, this r, works for all u, v € D", since the same r can
be used to distinguish both between u and v and between the
elements of some non-equivalent pair u', v’ € T", where
uzyu and v =5 v'. We thus obtain (x). |1

An interesting corollary of this concerns elementary equi-
valence. Recall that two structures are elementarily equiva-
lent if they satisfy precisely the same first-order sentences.
Since any finite structure is definable by a first-order sen-
tence, finite structures are elementarily equivalent iff they
are isomorphic. However, it is easy to see that there exist
non-isomorphic recursive structures (i.e., r-db’s) that are
elementarily equivalent. For example:

and

However, in terms of elementary equivalence, highly sym-
metric structures are like finite ones:

COROLLARY 3.1. Highly symmetric data bases of the
same type are isomorphic iff they are elementarily equivalent.

Proof. LetB,=(D;,Ry,..,R;)and B,= (D, . Rk)
be highly symmetric data bases. The “only-if” dlrectlon 18
clear. For the “if” direction, assume that B, and B, are ele-
mentarily equivalent, and without loss of generality assume
that D, and D, are disjoint, and that a, b¢ (D, uD,).
Define B to be (D5, S, ..., Sy, E), where (1) D;=D, v
D, u{a, b}, (il) S;=R, uR’ for all 1 €i<k, and (iii) E=
{(a,x) | xeD,} u{ (b, x) | xe D,}. Note that B is also
highly symmetric and that az b iff B, @ B,

Now, according to Proposition 3.5, a=~,b iff a=, b for
each r. Hence, in order to show that B, = B,, it suffices to
show that for each r the duplicator has a winning strategy
in the r-game over (B, a) and (B, b).

Let r > 0. Since B, and B, are elementarily equivalent, the
duplicator has a winning strategy in the r-game over B, and
B,. In each step of the r-game over (B, a), (B, b), if the
spoiler chooses an element d, € D, (respectively, d, € D,),
the duplicator chooses that element from D, (resp. D;)
that he/she would have chosen in the r-game over B, and
B,. (If the spoiler chooses a then the duplicator chooses b,

529

and vice versa.) Let aj, .., a, be the elements that were
chosen from D,, and let b, ..., b, be the elements that were
chosen from D, . Since the game is conducted in a way that
simulates the r-game over B, and B, and the duplicator
wins that game, B, restricted to a,,..a, must be
isomorphic to B, restricted to b, .., b,. But therefore also
B restricted to g, a,, .., a,, by, .., b, is isomorphic to B
restricted to b, by, .., b,, a, .., a,. This means that the
duplicator wins the r-game over (B, a), (B, b). |

DEeFINITION 3.5. Denote by V” the partition of 7” into
the equivalence classes of =,. Similarly, denote by V" the
partition of 7" into the equivalence classes of =,

Thus, V" is a set of sets, and in fact each of its elements
is a singleton. Now, by Proposition 3.6 we have

COROLLARY 3.2. For highly symmetric B, there is an r
such that V" =V".

DEerINITION 3.6. For V= T", we let VI=
DuaeVy, and if VI={Vy,.,V,}, we let
{ Vil, . Vi l}.

Note that the | operator yields a set, so that ¥] might
have less than k elements.

PROPOSITION 3.7. V7+'[=¥"_ .

Proof. Let V”*‘ ={V,,.., V,}. In order to prove
(v, 1,.,V,1}=v", |, we show that for all u,veT",
u$,+1 vlffforsome 1<i<lueV,], butv¢ V; 1.

Let u, ve T" and let i be such that ue V, | but v¢ v, 1.
There must exist ae T(u) with uae V,, but there is no
b e T(v) with vb € V,. By Definition 3.5, ua #, vb. By Defini-
tion 3.4, it follows that u %, | v.

For the converse, assume that « #, | v. By Definition 3.4,
and without loss of generality, there is a € T{(u) such that for
all be T(v) we have ua %, vh. Let Ve V" *! be the set con-
taining ua. By Definition 3.5, vh ¢ V for all b € T(v). Hence,
V'] contains u, but notv. |

{u | Jae
a=

If we take " to stand for] - -] with r occurrences of 1,

we have:

COROLLARY 3.3. Vit"] =p"

3.3. Completeness of QL,,

In order to be able to discuss query languages for highly
symmetric data bases, we have to decide on their represen-
tation. The convention will be to represent a data base B by
a tuple of the form

CB = (T39 ;Ba Cl’ (5] Ck)a
where T, is some characteristic tree for B, = is the tuple

equivalence relation, and each C, for 1 <i<k, is the set of
representatives of the equivalence classes constituting R,

530

that appear in T'. (Note that since =, takes into account
the existence and non-existence of tuples in the relations of
B, each R, must indeed be a union of whole equivalence
classes.)

For a general infinite data base, the C;’s might be infinite,
and the very components of C might not be computable.
We restrict ourselves here to highly symmetric r-db’s for
which Cj is computable, and this alleviates both problems.

DEFINITION 3.7. B is a highly symmetric recursive data
base (or an hs-r-db, for short) if B can be represented by
some Cp=(Tz, =z, Cy, .., Cy), such that Tp is highly
recursive and = is a recursive predicate.®

Note that, given C=(T, =, Cy, .., C;) satisfying the
conditions in Definition 3.7, one can compute the data base
B for which C = Cj, since for each i, u € R, iff u = v for some
ve C,, and the C, must be finite. On the other hand, given
an r-db B that happens to be highly symmetric, Cp is not
necessarily computable from B, since T 5 contains additional
information about B that might not be computable. It fol-
lows that each hs-r-db is a highly symmetric r-db, but not
every r-db that is highly symmetric is indeed an hs-r-db.

EXAMPLE. We can show that for each a there is a count-
able random structure that is an hs-r-db of type a. Here is
how: In [HH2 7], we show that there exists a recursive count-
able random structure 4. By the proof of Proposition 3.2,
tuples are equivalent in A iff they are locally isomorphic,
which means that for 4, =, and = are the same. Since by
Proposition 2.2, =, is recursive, so is = ,. In addition, T, is
highly recursive, since for any x appearing in T ,;, the num-
ber of immediate offspring of x is the same as the number
of equivalence classes of =, containing tuples of the form
xa. This number is finite and can be computed. Hence, in
order to compute T ,(x) it suffices to find sufficiently many
non-equivalent tuples of the form xa, using the recursive
predicate = ,.

DEFINITION 3.8. An hs-r-query of type a (or an hs-r-query
for short) is a partial function Q, which, for each hs-r-db B
of type a, yields an output (if any) that is a relation over
D(B).

DEFINITION 3.9. An hs-r-query Q is recursive if there is
a Turing machine with oracles for Tz and = 5,/ which, on
input C,, .., C, does not halt if Q(B) is undefined and
otherwise outputs the representatives from Tz of the equiv-
alence classes constituting the relation Q(B).

Genericity of hs-r-queries is defined as in Definition 2.5.

5 A recursive tree T is called highly recursive if it is finitely branching and
the function T(x) that yields the finitely many immediate offspring of a
given node is recursive too.

7 The oracle for T yields Tz(x) when applied to a node x, and the oracle
for = decides, given tuples u and v, whether u= 5 v.

HIRST AND HAREL

DEFINITION 3.10. An hs-r-query is computable if it recur-
sive and generic.

DErFINITION 3.11. Let Q be an hs-r-query of type a. An
expression E in a query language expresses Q if for every hs-
r-db B of type a, and each Cjp representing B, either E(Cyp)
and Q(Cj) are both undefined, or they are both defined and
yield sets of representatives of the same equivalence classes.
A query language is his-r-complete if it expresses precisely the
computable hs-r-queries.

We now define our query language for hs-r-db’s, QL,,. It
is a slight variation of the QL language for finite data bases,
proposed by Chandra and Harel [CH]. We provide a brief
description of the syntax and semantics of QL,, here, but
the reader is referred to [CH] for a more gradual exposition
of the finitary version. QL,, is a programming language
with relational variables of dynamically changing ranks.
Queries are expressed by programs.

Syntax

Y,, Y,, ... are variables in QL,,. The set of terms of QL
is defined inductively as follows:

1. Eis aterm, and for i > 1, Rel; and Y, are terms.
2. For any terms e and f,

(enf), (Te)(el),(el) and (e™)

are terms.

The set of programs of QL,, is defined inductively as
follows:

1. Y, < eisaprogram, for atermeandi>l.

1

2. For programs P and P’
(P; P')

is a program.
3. For a variable Y, and a program P,

while | Y;|=0do P
and
while |Y;|=1do P

are programs.®

8 QL employed the emptiness test |Y;| =07 only. Indeed, in the finite
case, | Y| = 17 is definable in QL, via the definable relation perm(D), which
consists of all permutations on the n elements of D. In our case, however,
perm(D) is of infinite rank, and we were not able to see how to define
| Y] =17 using the rest of QL,, with an emptiness test. Hence we have
added |Y| =17

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

The rank of a term is defined in the usual way; see [CH].

Semantics

Let B=(D,R,,..,R;) be an hs-r-db of type a=
(a,, ..., ay), represented by Cp=(Tp, =p, Ci, ..., Cp).

1. Terms take on as values finite sets of representatives
of the equivalence classes of =, of some common rank, but
those labeling paths in Ts. In other words, at any point
during the computation of a program each term contains
the labels along some paths in 7, for some .

2. Variables are initialized to the empty set.

3. Thefixed term Eis T> n {(a, a) | ae D}, and Rel,, for
1 < i<k, contains the input relation C,.

4. Let e and f be terms of rank n.

o enfis defined in the usual way.

e TeisT"—e.

o et ={ud|ucE andudeT""'}.

« e contains those tuples from 7"~ ' that are equiv-

alent by 2, to tuples obtained by projecting out the first
coordinate from the tuples in e.

« e~ contains those tuples from 7" that are equiv-
alent to tuples obtained by exchanging the two rightmost
coordinates of the tuples in e.

5. The tests |Y;|=0? and |Y;|=1? used in the while
statement are true iff Y, is empty or contains a single repre-
sentative, respectively.

The programs of QL,, thus really act on the representa-
tion Cp. As in [CH], the result of applying a program P to
Cpis undefined if P does not halt; otherwise it is taken to be
the contents of some fixed variable, say Y.

THEOREM 3.1. QL is hs-r-complete.

Proof. First, note that QL,, programs are computable
when applied to hs-r-db’s. To see this, recall that B is repre-
sented by C,, where T is highly recursive (in particular, it
is finitely branching), = is recursive, and the terms are finite
sets of representatives that appear in T 5. The operations N,
—, 1, and E are carried out using the relevant terms and
T». For example, to compute e, we find the direct off-
spring in T'p of the tuples in e. To carry out | and ~, =g
is also needed. For example, e | is computed by finding all
the paths in T’ of length rank(e) — 1 that are equivalent to
some tuple in {(a,, .., a,) | (a,, a1, .., a,) € e}. Finally, the
QL,, test | Y] =17 is also recursive.

Second, QL,, does not violate genericity, since its opera-
tions are a subset of the generic operations of the relational
algebra (but are carried out directly on the representatives
of equivalence classes instead of using the whole relations),
and the test | Y] =17 cannot distinguish between non-iso-
morphic relations. Hence QL expresses computable queries
only.

531

For the other direction, we follow closely the complete-
ness proof for QL from [CH]. First, note that QL,, can be
thought of as having counters: E| | plays the role of 0, and
if e plays the role of the natural number 7, then e and e |
play the role of i + 1 and i — 1, respectively. Testing whether
e is “equal” to 0 is accomplished by testing e | for emptiness.
This gives QL the power of general counter machines (and
hence of Turing machines), with numbers represented by
the ranks of the relations in the variables.

In addition, the conventional operators on relations
appearing in [CH], such as if Y then P else P, rank(e),
Cartesian product, etc., can be programmed in QL preci-
sely as is done in [CH] for QL. The reason for this is that
the meanings of QL,, operations (except for the new test
| Y,| = 1?) are just as in QL, the only difference being that
here the resulting relations are represented by the equiv-
alence classes. The test |Y]=1? is not needed for these
operations; it is needed later, however.

Let Q be a recursive generic hs-r-query of type
a=(a,, .., a.). We exhibit a program P,eQL, that
computes Q. Given Cj of type a, the computation of P,
proceeds according to the following main steps, which are
analogous to those given in the proof in [CH]:

1. Compute a tuple d, such that C,,.., C, can be
obtained by projections on d; ie., there are finite sets
X, ... X, of tuples over .#" such that for each j, 1 <j <k, we
have U, .1 39t i3 = G-

2. Compute a particular X = (X, .., X;) satisfying the
condition appearing in step 1 using d, by guessing X;’s and
checking equality to the C;’s. Note that this X can be
thought of as representing an hs-r-db B over the domain
A, which is isomorphic to the input data base B.

3. Compute Q(By) (which is actually Q applied to the

(X,, ... X;) representation of B,) using the recursiveness
of Q.
4. Compute Q(Cp) from Q(X) using d-
Q(CB) = U d[i1. e im]
(1, v i) € QLX)

Steps 2 and 4 can be programmed in QL just as in
[CH], but using the computed 4 (from Step 1) instead of
the entire equivalence class of d, which was called CGJ
in [CH].

As for Step 3, its computation is based on cooperation
between the Turing machine capability of QL and oracles
for T, and =,. Since Q is recursive, there is a Turing
machine M that computes Q. To compute Q(By), our
program P, follows the computation of M on By. When-
ever M(B,y) asks for T, (x), P, projects d on x to yield
d; .y, computes dy . T, and then encodes back to the appro-
priate tuples over 4. If the tuple x contains constants that are
larger than the length of d (and this could happen, because

532

d was computed in Step 1 only to encode C,, .., Cy), and
thus 4 is not sufficient for expressing the necessary repre-
sentatives, P, computes a larger d as it did for the original
one in Step 1. Whenever M(By) asks whether x =5 v, Py
checks if d .y =d .

We now show how to compute d in Step 1, based on
Corollaries 3.2 and 3.3. Our goal is to compute ¥, which
contains one representative for each equivalence class of =,
of rank n, and somehow isolate from it a single representa-
tive to be the required d, which is to be a tuple of distinct
elements that satisfies the condition appearing in Step 1.

First, note that | can be easily programmed in QL ,,. Now,
P, stores a partition V= {Vi,.., V;} by the Cartesian
product ¥, x --- x V,. It can then isolate each V; by project-
ing out the unnecessary coordinates. In order to find a
suitable d, P, computes the V" successively, forn=1, 2, ..., as
shown below, and checks if there is a Ve V” that represents
a “good” d. There must be some V" that contains a suitable
d. (Actually, n will be the number of distinct elements from D
appearing in C, .., C;.) Thus the process is always finite.

To compute V" for a given n, P, computes, in order, Vg,
V7, V74, .. as shown below, until it finds V7= {V,, .., V}}
for which |V,;| =1 for each i. This V7 is an adequate V"
While Corollary 3.2 asserts the existence of such a V7, it
does not provide the ». Hence our need to test |V,;|=1 in
order to verify that the partition V7 is fine enough to be a V™.

To compute V" for a given »n and r, note that, by
Corollary 33, Vi=V5t" 1. Accordingly, P, computes
Vn+r as shown below, and then performs V| for each
VeVp*r.

Finally, ¥2*" is computed as follows: P, starts with
Ve (E| |)1"*", which is actually T"*". It then refines V'
by checking the containment or non-containment of all
possible projections of the appropriate tuples in the rela-
tions of B. At each step, some component from the partition
V is removed, and is split into two nonempty components,
denoted 4 and B, one containing the tuples u that satisfy
Uy, .1 €R;, for some m, j, iy, .., i,, and the other con-
taining all the others. It then adds 4 and B to V' by V'«
V' x A x B where V" is the previous V with the component
AU B removed. The refinement is completed when it is
impossible to perform any more nontrivial splits. In this case,
each component contains tuples that are locally equivalent,
and different components contain non-locally-equivalent
tuples; i.e., Vis an adequate V3*". |

4. FINITE AND CO-FINITE RELATIONS

It turns out that QL,,, or variants thereof, are complete
in some additional cases. We present one here.

DEerINITION 4.1. B is a finite/co-finite r-db (or an fcf-
r-db for short) if Bis an r-db whose relations are finite or co-
finite, such that the finite relations are represented by their

HIRST AND HAREL

finite set of tuples, and the co-finite ones are represented by
their finite complement and a special indicator.

Note that an r-db that happens to contain only finite and
co-finite relations is not necessarily an fcf-r-db. An fcf-r-db
contains the additional indication of the finiteness of the
relations, which is not recursive in general.

We denote by D, the set of all constants from D(B)
appearing in the finite parts of the relations.

PROPOSITION 4.1; B is an fcf-r-db if and only if B is an
hs-r-db whose relations are finite or co-finite.

Proof. If Bis an fcf-r-db, it contains only finitely many
equivalence classes of each rank, since the elements appear-
ing only in the infinite parts of the relations (ie., the
elements in D(B) — D,) are all equivalent. In addition, T’ is
a highly recursive tree and = is recursive, since they can be
computed from the finite parts of the relations. Thus, B is
actually an hs-r-db.

Let B be an hs-r-db whose relations are finite or co-finite,
that is, represented by Cp. Note that it suffices to compute
D, since the required representation of an fcf-r-db is easily
computed from D,and Cp.

Let d=(d,, .., d,) be the shortest tuple in T satisfying
the following: (i) for every i and j with 1 <i+#j<n, we have
d, #d;; (ii) T(d) contains only one tuple (d,, ... d,,d,. 1)
such that d,, ; #d;forall 1 <i<n.

We claim that {d,, .., d,} is indeed D,. First, note that
each tuple x=(x,, .., x,,) in Ty not containing all the
elements in D, must have at least two immediate offspring in
T, satisfying condition (ii)}—one for representing the addi-
tion of an element from D/, and the other for representing
the addition of an element from D(B) — D,. Hence, a d that
satisfies condition (ii) must contain all the elements in D,.
Also, d cannot contain elements from D(B) — D, otherwise
there would be a shortest tuple satisfying the conditions,
consisting of the elements in D ,only in some order. Since T'p
is highly recursive, d is computable. |
QL,, is complete for fcf-r-db’s.

What kind of output relations may we expect to obtain
using programs in QL,; applying to fcf-r-db’s? Clearly,
unions, complementations, and ~’s preserve the property
of being finite or co-finite. It is also clear that projections on
finite relations yield finite relations. As for projections on
co-finite relations, we have:

ProPOSITION 4.2. If R< D" for nz1, is co-finite,
then R} =D"~!, which is finite for n=1 and is otherwise
co-finite.

COROLLARY 4.1.

Proof. Let Rc D", for n > 1, be a co-finite relation, and
let R=D"— R. We have:

ﬂ: {(x25 oy x,) | Ix (X1, ..y X,) ER}
R| ={(X2, ... x,)) | ¥xy(xy, ..., X,) € R}.

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

Note that R | = (&, since if there would be some (x,, ..., X,,)
for which for all x;, (x;, .., X,,) € R, then R would be infinite.
But R is co-finite. Hence R| =D""'. If n=1, then R is
finite, since D°={()}. |

In contrast to this, T does not preserve finiteness or co-
finiteness: For example, if R is a finite relation, R 1 is neither
finite nor co-finite. Hence QL yields output relations that
need not necessarily be finite or co-finite.

To remedy this, we present a version of the finitary QL of
[CH], denoted QL,, , that expresses precisely the com-
putable and generic queries that yield only finite or co-finite
relations as output when applied to fcf-r-db’s. The syntax of
QL,, is like that of QL, with the following addition: For a
variable Y and a program P,

while | Y| < o0 do P

is a program. The semantics of QL , is the same as that of
QL [CH], except for the following:

1. A term takes on as value a finite set of tuples consist-
ing of the relation itself in case of a finite relation, or the
complement of the relation and a special indicator, in case
of a co-finite one.

2. Two changes in the definition of the operations are:

o e =ex Dy, and is defined only if ¢ is finite.
e E={(a,a)|aeD}.

The rest of the operations are defined in the usual way, but
are carried out using only the finite parts of the relations
and the special indicator. For example, —e is computed by
simply flipping the indicator from present to absent and vice
versa. Also, if e is finite and f co-finite, then e N f is com-
puted as e — (—f); i.e., by removing from e the finitely many
tuples in —f.

3. |Y] < oo is true iff ¥ contains a finite relation.’

The result of applying a program P to B is undefined if P
does not halt; otherwise, some fixed variable, say Y, con-
tains the finite part of the answer, and some other variable,
say Y,, contains {()} if the answer is co-finite, and is
otherwise empty.

ProPOSITION 4.3. QL,, expresses precisely the com-
putable queries that yield only fcf-relations when applied to
fef-r-db’s.

Proof. Clearly, QL. expresses only recursive and generic
queries, and these yield only fcf-relations.

9 Note that here we do not need a special term for capturing the finitary
elements of the domain, since we have “hard-wired” it into the semantics:
D, can be obtained by E|.

533

For the converse, let Q be such a query. We construct a
program P, € QL. , based on the program constructed in
[CH] for the finitary completeness of QL. Note that the
isomorphisms of a fcf-r-db can be computed by using only
the finite parts of the relations, since constants that appear
in infinite parts only are all equivalent:

P, consists of the following main steps:

1. Prepare Z=(D;, Z,, .., Z;) to be the data base con-
sisting of the finite parts of R, ..., Ry.
2. Compute the set of automorphisms of Z.

3. Compute an internal “model” data base Z over A/,
isomorphic to Z.

4. Compute Y=(Y, .., Y;), where
y—{{(”} if |R;| <o
o)) if R =
5. Compute Q(Z,Y) using the Turing machine
capability.

6. Compute the finite part of Q(B) from Q(Z, Y) using
the set of automorphisms,

7. Compute the special indicator that marks the finite-
ness of the answer, from Q(Z, Y).

Step 1 can be carried out easily using the test for finite-
ness, and Z is then just a finite data base over D, This
means that Step 2 can be carried out exactly as in [CH],
but with the operations computed with respect to D, (which
is E|), instead of the whole D. Thus, =X will be =1X
(E])", where n=rank(X), and X1 willbe XxE|. 1

5. COMPLETENESS OF GENERIC MACHINES

In [AV], a somewhat different approach to designing a
complete language for finite data bases was taken, resulting
in generic machines (GMs). Here is a rephrasing of excerpts
from [AV]:

A GM consists of a TM interacting with a relational
store. The store contains relations over a finite set, which are
represented as fixed-arity predicates. Some of these are
designated as input or output predicates. GM allows trans-
ferring tuples between the relational store and the tape.
Loading a relation with » tuples to the tape has the effect of
spawning n copies of the machine, with one tuple appended
to the tape of each copy. Each individual copy is called a
unit-GM. The unit-GM’s, which proliferate as a result of
load operations, then compute synchronously in parallel,
with each having its own finite state control, tape, and rela-
tional store. Initially, the GM consists of a single unit-GM
in the start state, working in an empty tape, and with the
input relations in the relational store. If several unit-GM’s

534

simultaneously reach the same state and identical tape con-
tents, they collapse automatically into a single unit-GM,
whose relational store is the union of their relational stores.
At the end of the computation, there must be a single
machine in a halting state with an empty tape.

We turn GM’s into an hs-r-complete language GM,,;, as
follows:

Given an hs-r-db B represented by Cp=(Tp, =g,
Cy, ..., Cy), the relational store of the GM,, will contain
Cy, .., C, as finite relations, and the GM,, will use the
oracles for Tz and =~ in its calculations.

The tape cells hold constants from two alphabets. The
first is the Turing machine alphabet, which is used only by
the finite state control. The second is the domain of B. Sym-
bols denoting elements from D(B) can be loaded on the tape
from the store or from the oracle for T, and can also be
placed in the store. The finite state control may refer to these
symbols in testing for equality of symbols (see Test 3 below)
and in checking the equivalence of tuples {Test 4 below).
The GM,, has two heads, and in the descriptions below
when only one head is needed the first head is intended.

In each GM,,, transitions depend on:

1. the current state;

2. the contents of the current tape cell, when it contains
a symbol from the Turing machine alphabet;

3. equality or non-equality of the contents of the current
tape cell and another tape cell pointed to by the second
head, when the tape cells contain symbols from D(B);

4. the answer to the question “Is u =5 v?”, where u and
v are pointed to by the two heads.
Transitions involve the following actions:

(i) move the heads right or left on the tape;
(i1) overwrite current tape cell with some tape symbol;
(ii1) change state;
(iv) load the representatives of some relation from the
relational store onto the tape;

(v) load the offspring of the current tuple from T onto
the tape (the current tuple consists of the symbols between
the two heads);

(vi) store a tuple from 75 that is equivalent to the
current tuple in the relational store.

The loading in operations (iv) and (v) are carried out by
spawning copies of the machine, with one tuple appended to
the tape of each copy.

THEOREM 5.1. GM,, is hs-r-complete.

Proof. The programs in GM,,, when applied to hs-r-
db’s, are clearly recursive. Also, they compute generic
queries, due to the machines “splitting” parallelism and the
fact that the only operations allowed concerning elements

HIRST AND HAREL

from the domain are comparisons of type 3 and 4 above and
storing representatives from 7T'5.

For the other direction, let Q be a computable hs-r-query.
The program P, that computes Q first loads onto the tape
the C,, ..., C, relations and the finite tree 7", where n is the
maximum rank of the C’s. This involves many single load
operations, and results in many unit-GM,,. Too many, in
fact, since identical tuples appear in most of the spawned
machines; P, then discontinues the ones that loaded identi-
cal tuples. After all this, each unit-GM ,, contains the tuples
of all of the C,; and the three 7" in a different order.

Here is a somewhat more detailed description of the loading
process. To load relation C;, repeated “load C,” operations
are carried out. After each of them, every newly spawned
unit-GM,,, has to decide whether the loaded tuple is identi-
cal to some former tuple that was already loaded or is new.
If the loaded tuple is old, it erases the tape and enters the
halting state. If the loaded tuple is new, the unit-GM,, has
to decide whether its tape already contains all the tuples of
C; or to keep loading additional tuples. This decision is
made as follows: The unit-GM,, carries out an additional
“load C,”, resulting in new unit-GM,,’s, each containing an
additional tuple from C;. Call these machines U, ..., U,,.
Now, each U, checks if the loaded tuple is new or old. If it
is old, U, erases this tuple from the tape, and enters a specific
state, g. If the tuple is new, U, stores this tuple in the rela-
tional store, eases it from the tape, and enters the state gq.
After all the U;’s do this, they collapse, since their tapes are
identical and they are in the same state. The new relational
store will contain the union of the previous stores. Now, if
the appropriate store in the collapsed machine is empty,
then the present unit-GM,, already contains the whole of
C;, and hence it can stop its loading; otherwise, there are
more tuples in C,, so that additional “load C,” operations
are needed.

After the loading, each unit-GM,,, encodes Cy, ..., C; and
T" by tuples of integers, by guessing tuples of integers and
checking if equal elements from D(B) correspond to equal
integers, and different elements correspond to different
integers. Now, the Turing machine M that computes Q can
be applied to the integer version of the input B. Whenever
M requires a new integer as part of the data base, P, loads
more levels from T onto the tape, and encodes them, until
it obtains that integer. Whenever M asks “Is u =, v?”, P,
decodes u and v into tuples over constants from the input,
and performs a test of type 4.

At the end of M’s computation, P, decodes the output
into tuples over the input constants and stores them in the
relational store. Finally, P, erases the tapes of all the unit-
GM,,’s, and enters the halting state. Now, all the unit-
GM,’s collapse into a single unit-GM,, whose relational
store is the union of their stores. Since M is generic, the rela-
tional stores of all the unit-GM,, are the same, and hence
the computation is completed successfully. ||

COMPLETENESS RESULTS FOR RECURSIVE DATA BASES

6. BP-COMPLETENESS

In this section, we discuss BP-completeness over recur-
sive data bases. The term, taken from [CH], was first
studied by Bancilhon [B] and Paredaens [P] for finite data
bases. Instead of referring to the ability of a language to
express functions, it refers to its ability to define the rela-
tions that preserve the automorphisms of B, for any fixed B.

DEFINITION 6.1 A relation R preserves the automor-
phisms of B if, for all u, v, whenever u = ; v we have u€ R iff
veR

We first address the case of the full class of recursive data
bases.

DEFINITION 6.2. A language is BP-r-complete if for each
r-db B it expresses precisely the relations that are recursive
and preserve the automorphisms of B.

THEOREM 6.1. There is no effective BP-r-complete

language.'®

Proof. By Proposition 2.1, the isomorphism problem
for recursive graphs is X}-hard. If an effective BP-r-com-
plete language L would exist, this problem would be co-r.e.,
as follows.'! Given two recursive graphs G, = (D, E;) and
G,=(D,, E,), consider the r-db B=(D, R, R,), where
D=D,uD,ul{ab,c}, Ri={a} and R,=E, VE,u
{(a,b), (a,0)} u{(bv)|veD}u{(c,u)|ueD,}. We
assume that D, and D, are disjoint and a, b, c¢ D, U D,.
Actually, R, is the following graph:

(a)
ViGN

(WD

G
1 G,

where b and ¢ are connected to every point in G, and G,
respectively.

Now, b and c are equivalent in B (i.e., b = ¢) if and only-
if G; and G, are isomorphic. In addition, there are no
candidate elements for being equivalent to & besides ¢, due
to the element a (which is the only element in R, and is
connected only to b and ¢ in R,). Hence, b %5 ¢ iff there
exists a recursive relation that preserves the automorphisms
of B and contains b but not ¢. For example, {b} is such a

10 A language is effective if its set of expressions is recursive, and evaluat-
ing an expression on a given recursive data base is computable.

! The Z!-hardness result of [M] is not needed here, and it suffices to use
a weaker result, which happens to be simpler to prove, to the effect that the
isomorphism problem for recursive graphs is I75-hard.

535

relation. If a BP-complete language L were to exist, there
would be an expression that expresses this relation over B.
Thus, in order to determine whether G, and G, are not
isomorphic, it would suffice to check that there exists an
expression in L which, when applied to B, expresses some
relation that contains b but not c. Since L is effective, this
checkisre. |l

It is possible to modify this proof to show that there is no
effective BP-complete language even for the case where the
output relations are restricted to {1, .., n}, for some n.
Simply, take a=1, b=2, and ¢=3, and make the other
constants of B be the rest of the integers. Now consider
expressions in L restricted to outputs over {1, 2, 3} only.

We are better off in the case of unary data bases (in which
case completeness captures computability over recursive
sets):

PROPOSITION 6.1. If B is an unary r-db, then u=pgv iff

u=,v.

Proof. The “only-if” direction is clear. For the “iff”
direction take u = (u,, .., u,) and v=(vy, .., v,) to be such
that u=,v, and let {d,,d,, ..} be the other constants of
D(B). Here is an automorphism that takes u to v:

<u1 Cu, ”'vndle"'> I

Uy U, U ...undldz...

THEOREM 6.2. %~ is BP-complete for unary r-db’s.

Proof. Let B be a unary r-db, and let R be a recursive
relation that preserves the automorphisms of B. By Proposi-
tion 6.1, R also preserves local automorphisms. Hence it
consists of the union of some equivalence classes of =,.
These can be expressed in %, as we have shown in
Theorem 2.1. |

Now to the case of highly recursive data bases.

DEFINITION 6.3. A language is BP-hs-r-complete if for
each hs-r-db B it expresses precisely the relations that are
recursive, highly symmetric, and preserve the automor-
phisms of B.

Actually, we need not explicitly say that the output rela-
tion is highly symmetric, since if it preserves automorphisms
of B the number of equivalence classes of =, cannot be
larger than that of .

THEOREM 6.3. The first-order relational calculus & is

BP-hs-r-complete.

Proof. For the first direction, note that the expressions
in & clearly preserve the automorphisms of B. As noted,
this also shows that the output relation is highly symmetric.
We have to show that the relations expressible in & are

536

recursive. Consider, for example, determining whether
ue R, for a relation R defined in &£ by

R={(x1, ., X,) | Y1 Yy, - Pyye
B(X1s oy Xy V15 o Yies B)}

It suffices to first find in T the representative v that is equiv-
alent to », and then to evaluate the quantifiers only over the
finitely many elements from T"+* Tt is not necessary to
evaluate the quantifiers over all of D, since each of the other
elements is equivalent to one of the representatives, and
hence would produce the same answers. The tuple v can be
found using the given recursive =p.

For the other direction, let B be an hs-r-db, and let R be
some recursive relation of rank » that preserves the
automorphisms of B. The equivalence classes contained in R
are coarser than those of B, and they must therefore be
represented by some elements in 7. According to the dis-
cussion in Section 3, there representatives from T can be
isolated by operating only on the representatives from
T"+", for some r = 0 (see Proposition 3.6). Since B is fixed,
r is a specific fixed constant, and hence the isolated repre-
sentatives are expressible in .. The required expression con-
sists of a disjunction of the subexpressions corresponding to
the appropriate isolated representatives. |

& is trivially BP-complete also for fcf-r-db’s when the
answers are not required to be finite or co-finite, since
fcf-r-db’s are special cases of hs-r-db’s. When considering
fef-r-db’s whose output relations are required to be finite or
co-finite, it is possible to show that .# restricted to D ,is BP-
complete. The same is true for a relational algebra contain-
ing operations that yield only finite/co-finite relations, such
as the operations of QL . Any finite/co-finite relation that
preserves the automorphisms of the fcf-r-db can be
expressed by applying operations only to the finite parts of
the relations with respect to D,. At the end, if the output
relation has to be co-finite, a complementation symbol is
applied to the finite part of the answer.

ACKNOWLEDGMENTS

We thank the referees for their helpful comments.

HIRST AND HAREL

REFERENCES

S. Abiteboul and V. Vianu, Generic computation and its com-
plexity, in “Proc. 23rd ACM Symposium on Theory of Com-
puting,” pp. 209-219, ACM Press, New York, 1991.

F. Bancilhon, On the completeness of query languages for
relational data bases, in “Proc. 7th Symposium on Math. Foun-
dations of Computer Science, Zakophane, Poland,” Lecture
Notes in Computer Science, Springer-Verlag, Berlin/New York/
Heidelberg, 1978.

D. R. Bean, Effective coloration, J. Symbolic Logic 41 (1976),
469-480.

D. R. Bean, Recursive Euler and Hamiltonian paths, Proc. Amer.
Math. Soc. 55 (1976), 385-394.

R. Beigel and W. I. Gasarch, On the complexity of finding the
chromatic number of a recursive graph, I & II, Ann. Pure Appl.
Logic 45 (1989), 1-38, 227-247.

A. K. Candra and D. Harel, Computable queries for relational
data bases, J. Comput. Systems Sci. 21 (1980), 156-178.

C. C. Chang and H. J. Keisler, “Model Theory,” 3rd ed., North-
Holland, Amsterdam, 1990.

A. Ehrenfeucht, An application of games to the completeness
problem for formalized theories, Fund. Math. 49 (1961), 129~
141.

R. Fagin, Probabilities on finite models, J. Symbolic Logic 41
(1976), 50-58.

R. Fraisse, “Cours de Logique Mathématique,” Gauthier-Villars/
Nauwelaerts, 1967.

D. Harel, Hamiltonian paths in infinite graphs, Israel J. Math. 76
(1991), 317-336; also, in “Proc. 23rd ACM Symposium on Theory
of Computing, New Orleans,” pp. 220-229, ACM, New York,
1991.

T. Hirst and D. Harel, Taking it to the limit: On infinite variants
of NP-complete problems, J. Comput. System Sci., to appear; also
in “Proc. 8th IEEE Conference on Structure in Complexity
Theory,” IEEE Press, New York, 1993.

T. Hirst and D. Harel, More about recursive structures: Descrip-
tive complexity and zero-one laws, in “Proceedings, 11th Sympos.
on Logic in Computer Science,” IEEE Press, New York, to
appear.

R. Hull and C. K. Yap, The format model: A theory of database
organization, J. Assoc. Comput. Machin. 31 (1984), 518-537.

A. S. Morozov, Functional trees and automorphisms of models,
Algebra and Logic 32 (1993), 28-38.

A Nerode and J. Remmel, A survey of lattices of R. E. substruc-
tures, in “Recursion Theory” (A. Nerode and R. A. Shore, Eds.),
Proc. Symposa in Pure Math., Vol. 42, pp. 323-375, Amer. Math.
Soc., Providence, RI, 1985.

J. Paredaens, On the expressive power of the relational algebra,
Inform. Process. Lett. 7 (1978), 107-111.

R. Rado, Universal graphs and universal functions, Acta Arith. 9
(1964), 331-340.

[AV]

[B]

[Bel]
[Be2]

[BG]

[CH]
[CK]

[E]

[Fa]

[Fr]

(H]

[HHI1]

{HH2]

[HY]

[M]

[NR]

[P]

[Ra]

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

