Towards a Theory of Recursive Structures*

David Harel**

Dept. of Applied Mathematics and Computer Science
The Weizmann Institute of Science, Rehovot, Israel
harelQ@wisdom.weizmann.ac.il

Abstract. In computer science, one is interested mainly in finite ob-
jects. Insofar as infinite objects are of interest, they must be computable,
i.e., recursive, thus admitting an effective finite representation. This leads
to the notion of a recursive graph, or, more generally, a recursive struc-
ture, model or data base. This paper summarizes recent work on recursive
structures and data bases, including (i) the high undecidability of many
problems on recursive graphs and structures, (ii) a method for deducing
results on the descriptive complexity of finitary NP optimization prob-
lems from results on the computational complexity (i.e., the degree of
undecidability) of their infinitary analogues, (iii) completeness results for
query languages on recursive data bases, (iv) correspondences between
descriptive and computational complexity over recursive structures, and
(v) zero-one laws for recursive structures.

1 Introduction

This paper provides a summary of work — most of it joint with Tirza Hirst
— on infinite recursive (i.e., computable) structures and data bases, and at-
tempts to put it in perspective. The work itself is contained in four papers
[H,HH1,HH2,HH3], which are summarized, respectively, in Sections 2, 3, 4 and 5.

When computer scientists become interested in an infinite object, they re-
quire it to be computable, i.e., recursive, so that it possesses an effective finite
representation. Given the prominence of finite graphs in computer science, and
the many results and open questions surrounding them, it is very natural to
investigate recursive graphs too. Moreover, insight into finite objects can often
be gleaned from results about infinite recursive variants thereof. An infinite re-
cursive graph can be thought of simply as a recursive binary relation over the
natural numbers. Recursive graphs can be represented by the (finite) algorithms,
or Turing machines, that recognize their edge sets, so that it makes sense to in-
vestigate the complexity of problems concerning them.

* Preliminary versions of this paper appeared in STACS ’94, Proc. 11th Ann. Symp. on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol.
775, Springer-Verlag, Berlin, 1994, pp. 633-645, and in Computer Science Today,
Lecture Notes in Computer Science, Vol. 1000, Springer-Verlag, 1995, pp. 374-391.

** Incumbent of the William Sussman Chair of Mathematics.

Lubo# Prim et al. (Eds.): MFCS’98, LNCS 1450, pp. 36-53, 1998.
© Springer-Verlag Berlin Heidelberg 1998

Towards a Theory of Recursive Structures 37

Indeed, a significant amount of work has been carried out in recent years
regarding the complexity of problems on recursive graphs. Some of the first pa-
pers were written in the 1970s by Manaster and Rosenstein [MR] and Bean
[B1,B2]. Following that, a variety of problems were considered, including ones
that are NP-complete for finite graphs, such as k-colorability and "Tamiltonicity
[Bl,B2,BG2,Bu,GL,MR] and ones that are in P in the finite case, such as Eule-
rian paths [B2,BG1] In most cases (including the above examples) the problems
turned out to be undecidable. This is true even for highly recursive graphs [B1],
i.e., ones for which node degree is finite and the set of neighbors of a node is
computable. Beigel and Gasarch [BG1] and Gasarch and Lockwood [GL| inves-
tigated the precise level of undecidability of many such problems, and showed
that they reside on low levels of the arithmetical hierarchy. For example, detect-
ing the existence of an Eulerian path is IT9-complete for recursive graphs and
I19-complete for highly recursive graphs [BG1].

The case of Hamiltonian paths seemed to be more elusive. In 1976, Bean
[B2] had shown that the problem is undecidable (even for plana ' graphs), but
the precise characterization was not known. In response to this question, posed
by R. Beigel and B. Gasarch, the author was able to show that Hamiltonicity
is in fact highly undecidable, viz, Yl-complete. The result, proved in [H] and
summarized in Section 2, holds even for highly recursive graphs with degree
bounded by 3. (It actually holds for planar graphs too.) Hamiltonicity is thus
an example of an interesting graph problem that becomes highly undecidable in
the infinite case.!

The question then arises as to what makes some NP-complete problems
highly undecidable in the infinite case, while others (e.g., k-colorability) remain
on low levels of the arithmetical hierarchy. This was the starting point of the
joint work with T. Hirst. In [HH1], summarized in Section 3, we provide a gen-
eral definition of infinite recursive versions of NP optimization problems, in such
a way that MAX CLIQUE, for example, becomes the question of whether a re-
cursive graph contains an infinite clique. Two main results are proved in {HH1],
one enables using knowledge about the infinite case to yield implications to the
finite case, and the other enables implications in the other direction. The re-
sults establish a connection between the descriptive complexity of (finitary) NP
optimization problems, particularly the syntactic class Max NP, and the com-
putational complexity of their infinite versions, particularly the class 21, Taken
together, the two results yield many new problems whose infinite versions are
highly undecidable and whose finite versions are outside MAX NP. Examples
include Max CLIQUE, MAX INDEPENDENT SET, MAX SUBGRAPH, and MAX
TILING.

The next paper, [HH2], summarized in Section 4, puts forward the idea of
infinite recursive relational data bases. Such a data base can be defined simply
as a finite tuple of recursive relations (not necessarily binary) over some count-
able domain. We thus obtain a natural generalization of the notion of a finite
relational data base. This is not an entirely wild idea: tables of trigonometric

! Independent work in [AMS] showed that perfect matching is another such problem.

38 David Harel

functions, for example, can be viewed as a recursive data base, since we might
be interested in the sines or cosines of infinitely many angles. Instead of keeping
them all in a table, which is impossible, we keep rules for computing the values
from the angles, and vice versa, which is really just to say that we have an ef-
fective way of telling whether an edge is present between nodes i and j in an
infinite graph, and this is precisely the notion of a recursive graph.

In [HH2], we investigate the class of computable queries over recursive data
bases, the motivation being borrowed from [CH1]. Since the set of computable
queries on such data bases is not closed under even simple relational operations,
one must either make do with a very humble class of queries or considerably
restrict the class of allowed data bases. The main parts of [HH2] are concerned
with the completeness of two query languages, one for each of these possibilities.
The first is quantifier-free first-order logic, which is shown to be complete for
the non-restricted case. The second is an appropriately modified version of the
complete language QL of (CH1], which is proved complete for the case of “highly
symmetric” data bases. These have the property that their set of automorphisms
is of finite index for each tuple-width.

While the previous topic involves languages for computable queries, our fi-
nal paper, [HH3|, summarized in Section 5, deals with languages that express
non-computable queries. In the spirit of results for finite structures by Fagin,
Immerman and others, we sought to connect the computational complexity of
properties of recursive structures with their descriptive complexity, i.e, to cap-
ture levels of undecidability syntactically as the properties expressible in vari-
ous logical formalisms. We consider several formalisms, such as first-order logic,
second-order logic and fixpoint logic. One of our results is analogous to that of
Fagin [F1]; it states that, for any k > 2, the properties of recursive structures
expressible by Xi formulas are exactly the generic properties in the complexity
class X} of the analytical hierarchy.

[HH3] also deals with zero-one laws. It is not too difficult to see that many of
the classical theorems of logic that hold for general structures (e.g., compactness
and completeness) fail not only for finite models but for recursive ones too. Oth-
ers, such as Ehrenfeucht-Fraisse games, hold for finite and recursive structures
too. Zero-one laws, to the effect that certain properties (such as those expressible
in first-order logic) are either almost surely true or almost surely false, are con-
sidered unique to finite model theory, since they require counting the number of
structures of a given finite size. We introduce a way of extending the definition
of these laws to recursive structures, and prove that they hold for first-order
logic, strict £} and strict IT}. We then use this fact to show non-expressibility
of certain properties of recursive structures in these logics.

While recursive structures and models have been investigated quite widely
by logicians (see, e.g., [NR]), the kind of issues that computer scientists are
interested in have not been addressed prior to the work mentioned above. We
feel that that this is a fertile area for research, and raises theoretical and practical
questions concerning the computability and complexity of properties of recursive
structures, and the theory of queries and update operations over recursive data

Towards a Theory of Recursive Structures 39

bases. We hope that the work summarized here will stimulate more research on
these topics.

2 Hamiltonicity in Recursive Graphs

A recursive directed graph is a pair G = (V, E), where V' is recursively isomorphic
to the set of natural numbers N, and ECV x V is recursive. G is undirected if
E is symmetric. A highly recursive graph is a recursive graph for which there is a
recursive function H from V to finite subsets of V, such that H(v) = {u | (v, u) €

A one-way (respectively, two-way) Hamiltonian path in G is a 1-1 mapping p
of N (tespectively, Z) onto V/, such that (p(x), p(z + 1)) € E for all z.

Bean [B2] showed that determining Hamiltonicity in highly recursive graphs
is undecidable. His reduction is from non-well-foundedness of recursive trees with
finite degree, which can be viewed simply as the halting problem for (nondeter-
ministic) Turing machines. Given such a tree T the proof in [B2] constructs a
graph G, such that infinite paths in T map to Hamiltonian paths in G. The idea
is to make the nodes of G correspond to those of T, but with all nodes that are
on the same level being connected in a cyclic fashion. In this way, a Hamiltonian
path in G simulates moving down an infinite path in T, but at each level it also
cycles through all nodes on that level. A fact that is crucial to this construction
is the finiteness of T"s degree, so that the proof does not generalize to trees with
infinite degree, Thus, Bean’s proof only establishes that Hamiltonicity is hard
for IT9, or co-r.e.

In [H] we have been able to show that the problem is actually Xj-complete.
Hardness is proved by a reduction (that is elementary but not straightforward)
from the non-well-foundedness of recursive trees with possibly infinite degree,
which is well-known to be a X}-complete problem [R}:

Theorem: Detecting (one-way or two-way) Hamiltonicity in a (directed or undi-
rected) highly recursive graph is 1-complete, even for graphs with H (v) €3 for
allv.

Proof sketch: In X} is easy: With the 3f quantifying over total functions:
from N to N, we write

3f Yz ¥y 3z ({(f(2), fz + 1) € EA(z #y — f(2) # W) A f(2) = 2).

This covers the case of one-way paths. The two-way case is similar.

We now show Xl-hardness for undirected recursive graphs with one-way
paths. (The other cases require more work, especially in removing the infinite
branching from the graphs we construct in order to obtain the result for highly
recursive graphs. The details can be found in [H].)

Assume a recursive tree T' is given, with nodes N' = 0,1,2,3,..., and root
0, and whose parent-of function is recursive. T' can be of infinite degree. We
construct an undirected graph G, which has a one-way Hamiltonian path iff T
has an infinite path.

40 David Harel

S(n)

Figure 1

d l

For each element n € N, G has a cluster of five internal nodes, n*,n%,n", n
and n%", standing, respectively, for up, down, right, left and up-right. For each
such cluster, G has five internal edges:

4 d l

n ——n*—n—n¥ —n" —n

For each edge n — m of the tree T, n® — m" is an edge of G. For each node
nin T, let S(n) be n’s distance from the root in T' (its level). Since S(n) € N,
we may view S(n) as a node in T'. In fact, in G we will think of S(n) as being
n’s shadow node, and the two are connected as follows (see Fig. 1):2

n" — 8(n)" and S(n)! — n'

To complete the construction, there is one additional root node g in G, with an
edge g — 0*.

Since T is a recursive tree and S, as a function, is recursive in 7', it is easy
to see that G is a recursive graph. To complete the proof, we show that T has
an infinite path from 0 iff G has a Hamiltonian path.

(Only-if) Suppose T has an infinite path p. A Hamiltonian path p’ in G starts
at the root g, and moves down G’s versions of the nodes in p, taking detours
to the right to visit n’s shadow node S(n) whenever S(n) ¢ p. The way this is
done can be seen in Fig. 2. Since p is infinite, we will eventually reach a node of
any desired level in T, so that any n ¢ p will eventually show up as a shadow of
some node along p and will be visited in due time. It is then easy to see that p’
is Hamiltonian.

2 Clearly, given T, the function § : A/ — A is not necessarily one-one. In fact, Fig.
1 is somewhat misleading, since there may be infinitely many nodes with the same
shadow, so that the degree of both up-nodes and down-nodes can be infinite. More-
over, S(n) itself is a node somewhere else in the tree, and hence has its own T-edges,
perhaps infinitely many of them.

Towards a Theory of Recursive Structures 41

i
n S(n,)
n, S(nz)
3
ng S(ny)

ng

\,

Figure 2

(If) Suppose G has a Hamiltonian path p.It helps to view the path p as
containing not only the nodes, but also the edges connecting them. Thus, with
the exception of the root g, each node in G must contribute to p exactly two
incident edges, one incoming and one outgoing.

We now claim that for any n, if p contains the 7-edge incident to the up-node
n*, or, when n = 0, if it contains the edge between g and 0%, then it must also
contain a T-edge incident to the down node n?.

To see why this is true, assume p contains the T-edge incident to n* (this
is the edge leading upwards at the top left of Fig. 1). Consider n*" (the small
black node in the figure). It has exactly two incident edges, both of which must
therefore be in p. But since one of them connects it to n*, we already have in p
the two required edges for n*, so that the one between n* and n? cannot be in
p. Now, the only remaining edges incident to n¢ are the internal one connecting

42 David Harel

it to n!, and its T-edges, if any. However, since p must contain exactly two edges
incident to n%, one of them must be one of the T-edges. A

In fact, Hamiltonicity is Z}-complete even for planar graphs [HH1].

3 From the Finite to the Infinite and Back

Our approach to optimization problems focuses on their descriptive complexity,
an idea that started with Fagin’s [F1] characterization of NP in terms of de-
finability in existential second-order logic on finite structures. Fagin’s theorem
asserts that a collection C of finite structures is NP-computable if and only if
there is a quantifier-free formula ¥(Z, ¥, S), such that for any finite structure A:

AeC e Al 35)(VI) (YT, 7, 5)-

Papadimitriou and Yannakakis [PY] introduced the class MAX NP of maxi-
mization problems that can be defined by

max [{Z: A |= (3)¥(Z,7, S},

for quantifier-free 1». MAX SAT is the canonical example of a problem in MAX NP.
The authors of [PY] also considered the subclass MaX SNP of Max NP, con-
sisting of those maximization problems in which the existential quantifier above
is not needed. (Actually, the classes MAX NP and Max SNP of [PY] contain
also their closures under L-reductions, which preserve polynomial-time approx-
imation schemes. To avoid confusion, we use the names MAX Xy and MAX X,
introduced in [KT], rather than MAX SNP and MAX NP, for the ‘pure’ syntac-
tic classes.)

Kolaitis and Thakur [KT] then examined the class of all maximization prob-
lems whose optimum is definable using first-order formulas, i.e., by

max [{w: A k= 9(T, S)},

where ¥(W, S) is an arbitrary first-order formula. They first showed that this
class coincides with the collection of polynomially-bounded NP-maximization
problems on finite structures, i.e., those problems whose optimum value is boun-
ded by a polynomial in the input size. They then proved that these problems
form a proper hierarchy, with exactly four levels:

MaX Ty ¢ Max X, € Max IT; ¢ Max IT, = U Max II;
i>2

Here, MAX IT; is defined just like MAX X (i.e., MAX NP), but with a universal
quantifier, and MAX II> uses a universal followed by an existential quantifier,
and corresponds to Fagin’s general result stated above. The three containments
are known to be strict. For example, MAX CLIQUE is in MAX II; but not in
Max X.

Towards a Theory of Recursive Structures 43

We now define a little more precisely the class of optimization problems we
deal with3:

Definition: (See [PR]) An NPM problem is a tuple F = (Zr, Sp,mrp), where

— Ip, the set of input instances, consists of finite structures over some vocab-
ulary o, and is recognizable in polynomial time.

— Sp(I) is the space of feasible solutions on input I € Zp. The only require-
ment on Sp is that there exists a polynomial ¢ and a polynomial time
computable predicate p, both depending only on F', such that VI € Ip,
Sr(I) = {S: S| < q(lI]) Ap(I, 5)}-

— mp: Ip X Z* — N, the objective function, is a polynomial time computable
function. mp(I, S) is defined only when S € Sp(I).

— The following decision problem is required to be in NP: Given I €Zp and
an integer k, is there a feasible solution § € § r(I), such that mp (I, S) > k?

This definition (with an additional technical restriction that we omit here;
see [HH1]) is broad enough to encompass most known optimization problems
arising in the theory of NP-completeness.

We now define infinitary versions of NPM problems, by evaluating them over
infinite recursive structures and asking about the existence of an infinite solution:

Definition: For an NpM problem F = (Zp, Sr,mr), let F® = (I, S, m¥)
be defined as follows:

— I is the set of input instances, which are infinite recursive structures over
the vocabulary o.

— S(I*) is the set of feasible solutions on input I*® € Ig.

- m®: I x Sp — N U {oo} is the objective function, satisfying

VI® € IP,¥S € SF(I°) (mg (I, 5) = {z: ¥r(I%, S, E)})-

— The decision problem is: Given I® € T, does there exist S € SF(I*°),
such that m% (I°°,S) = co? Put another way:

Fo(I®°)=TruE iff 3S({Z:¥r(I™,5,3)} =).

Due to the conditions on NPM problems, F'* can be shown not to depend on
the IT-formula representing mg. This is important, since, if some finite problem
F could be defined by two different formulas v, and v, that satisfy the condition
but yield different infinite problems, we could construct a finite structure for
which 1; and v determine different solutions.

Here is the first main result of {HH1]:

Theorem: If F € MAX X then F>® € IIJ.

3 We concentrate here on maximization problems, though the results can be proved
for appropriate minimization ones too.

44 David Harel

A special case of this is:

Corollary: For any NPM problem F, if F*° is X']-hard then F'is not in MAX X,
4

It follows that since the infinite version of Hamiltonicity is X}-complete a_ndj
thus completely outside the arithmetical hierarchy, an appropriately defined fini.
tary version cannot be in MAX X,. Obviously, the corollary is valid not only for : :
such problems but for all problems that are above ITJ in the arithmetical hierar-. k
chy. For example, since detecting the existence of an Eulerlan path in a recursive }
graph is II9-complete [BG1], its finite variant cannot be in MAX X either. ;

In order to be able to state the second main result of [HH1], we define a special -

kind of monotonic reduction between finitary NPM problems, an M-reduction: {

Definition: Let A and B be sets of structures. A function f: A — B is mono- !
tonic if VA, B € A (A< B= f(A) < f(B)). (Here, < denotes the substructure :
relation.) Given two NPM problems: F = (Zr, Sg,mr) and G = (IG,SG,mG)

an M-reduction g from F to G is a tuple g = (t1,£2,%3), such that: ':

—t1:Zr = Ig, t2: IrxSp — Sg, and t3 : Zg x Sg — Sr, are all monotonic, |
polynomial time computable functions.. |
— mr and mg grow monotonically with respect to ¢1,¢2 and t3 (see [HH1] for °
a more precise formulation). :

We denote the existence of an M-reduction from F to G by F s G. The
second main result of [HH1] shows that M-reductions preserve the X]-hardness -
of the corresponding infinitary problems:

Theorem: Let F and G be two NPM problems, with F' o«cps G. If F* is X'}-hard,
then G* is X}-hard too.

The final part of [HH1] applies these two results to many examples of Npm
problems, some of which we now list with their infinitary versions. It is shown in
(HH1] that for each of these the infinitary version is }-complete. Mostly, this is
done by establishing monotonic reductions on the finite level, and applying the
second theorem above. From the first theorem it then follows that the finitary
versions must be outside Max X;.

Here are some of the examples: -

. 1. MAX CLIQUE: [is an undirected graph, G = (V, E).

S(G)={Y:YCV, Vy,zeY y+#2= (y,2) € E}
m(G,Y) = Y|

The maximization version is:

)r;l%l{x TEYAVy,zeY y#2=(y,2) € B}

MAX CLIQUE™: I is a recursive graph G. Does G contain an infinite
clique?

Towards a Theory of Recursive Structures 45

2. MAx IND SET: I is an undirected graph G = (V, E).

SG)={Y:YCV, Vy,2€Y (y,2) € E}
m(G,Y) =Y]|

?S‘él{x zeY AVy,zeY (y,2) € E}

MaX IND SET®: I* is a recursive graph G. Does G contain an infinite
independent set?

3. MAx SET PACKING: [is a collection C of finite sets, represented by pairs
(1,7), where the set ¢ contains j.

S(C)={Y§_C VA BeY A# B=ANB =0}
m(CaY)=|Y|

MAaX SET PACKING®™: I® is a recursive collection of infinite sets C. Does
C contains infinitely many disjoint sets?

4. MAX SUBGRAPH: I is a pair of graphs, G = (V4,E1) and H = (Va, Ez),
with V2 ={wv1,...,v}. ‘

S(G,H)={Y: Y CVi x VWV, V(u,v),(z,y) €Y, u#z
ANv#y A (u,z) € By & (v,y) € Ep}
m((G,H),Y) =k iff v1,...,v; appear in Y,
but vg41 does not appear in Y.

MAX SUBGRAPH®: [is a pair of recursive graphs, H and G. Is H a
subgraph of G?

5. MAX TILING: I is a grid D of size n x n, and a set of tiles T = {¢1,...,tm}.
(We assume the reader is familiar with the rules of tiling problems.)

S(D,T) ={Y: Y is a legal tiling of some portion of Dwith tiles
from T}
m({D,T},Y) =k iff Y contains a tiling of a full k£ x k subgrid of D.

Max TILING™ : I*®® is a recursive set of tiles T'. ‘
Q: Can T tile the positive quadrant of the infinite integer grid?

We thus establish closely related facts about the level of undecidability of
many infinitary problems and the descriptive complexity of their finitary coun-
terparts. More examples appear in [HH1].

Two additional graph problems of interest are mentioned in [HH1], planarity
and graph isomorphism. The problem of detecting whether a recursive graph
is planar can be shown to be co-r.e. Determining whether two recursive graphs

46 David Harel

are isomorphic is arithmetical for graphs that have finite degree and contaiy;
only finitely many connected components. More precisely, this problem is in I19 ;
for highly recursive trees; in IT§ for recursive trees with finite degree; in 2‘2)
for highly recursive graphs; and in X9 for recursive graphs with finite degree,
As to the isomorphism problem for general recursive graphs, Morozov [Mo] has’
recently proved, using different techniques, that the problem is £}-complete,

4 Completeness for Recursive Data Bases

It is easy to see that recursive relations are not closed under some of the simplest’
accepted relational operators. For example, if R(z, y, z) means that the yth Tur
ing machine halts on input z after z steps (a primitive-recursive relation), the
the projection of R on columns 2 and 3 is the nonrecursive halting predicate
This means that even very simple queries, when applied to general recursive
relations, do not preserve computability. Thus, a naive definition of a recursivej
data base as a finite set of recursive relations will cause many extremely simple
queries to be non-computable.

This difficulty can be overcome in essentially two ways (and possibly othe
intermediate ways that we haven’t investigated). The first is to accept the situa.
tion as is; that is, to resign ourselves to the fact that on recursive data bases the "
class of computable queries will necessarily be very humble, and then to try to
capture that class in a (correspondingly humble) complete query language. The
second is to restrict the data bases, so that the standard kinds of queries will
preserve computability, and then to try to establish a reasonable completeness
result for these restricted inputs. The first case will give rise to a rich class of
data bases but a poor class of queries, and the second to a rich class of queries
but a poor class of data bases. In both cases, of course, in addition to being
Turing computable, the queries will also have to satisfy the consistency crite-
rion of [CH1], more recently termed genericity, whereby queries must preserve
isomorphisms.

.
;

The first result of [HH2] shows that the class of computable queries on re-
cursive data bases is indeed extremely poor. First we need some preparation.

Definition: Let. D be a countable set, and let Ry, ..., Rk, for k > 0, be relations,
such that for all 1 < i < k, R; C D*%. B = (D,Ry,...,Ry) is a recursive
relational data base (or an r-db for short) of type a = (a1,...ax), if each R;,
considered as a set of tuples, is recursive.

Definition: Let B; = (D1, Ry,...,Rk) and By = (D2, R},..., R}) be two -
db’s of the same type, and let u € D} and v € D%, for some n. Then (Bj,u)
and (Ba, v) are isomorphic, written (B, u) = (Ba,v), if there is an isomorphism
between B; and Bs taking u to v. (Bj,u) and (Ba,v) are locally isomorphic,
written (Bj,u) = (Bs,v), if the restriction of B; to the elements of u and the
restriction of By to the elements of v are isomorphic.

Definition: An r-query Q (i.e., a partial function yielding, for each r-db B of
type a, an output (if any) which is a recursive relation over D(B)) is generic,

Towards a Theory of Recursive Structures 47

if it preserves isomorphisms; i.e. for all By, Bz, u,v, if (B1,u) = (B2,v) then
u € Q(By) iff v € Q(By). It is locally generic if it preserves local isomorphisms;
i.e., for all By, By, u,v, if (B1,u) = (B2,v) then u € Q(By) iff v € Q(B2).

The following is a key lemma in the first result:
Lemma: If Q is a recursive r-query, then Q is generic iff Q is locally generic.

Definition: A query language is r-complete if it expresses precisely the class of
recursive generic r-queries.

Theorem: The language of first-order logic without quantifiers is r-complete.

We now prepare for the second result of [HH2], which insists on the full set
of computable queries of [CH1], but drasticaily reduces the allowed data bases
in order to achieve completeness.

Definition: Let B = (D, Ry, ..., Ri) be a fixed r-db. For each u,v € D", v and
v are equivalent, written u &g v, if (B, u) = (B,v). B is highly symmetric if for
each n > 0, the relation =g induces only a finite number of equivalence classes
of rank n.

Highly symmetric graphs consist of a finite or infinite number of connected
components, where each component is highly symmetric, and there are only
finitely many pairwise non-isomorphic components. In a highly symmetric graph,
the finite degrees, the distances between points and the lengths of the induced
paths are bounded. A grid or an infinite straight line, for instance, are not
highly symmetric, but the full infinite clique is highly symmetric. Fig. 3 shows
an example of another highly symmetric graph.

NN

Figure 3

A characteristic tree for B is defined as follows. Its root is A, and the rest of
the vertices are labeled with elements from D, such that the labels along each
path from the root form a tuple that is a representative of an equivalence class
of 2p. The whole tree covers representatives of all such classes. No two paths
are allowed to form representatives of the same class. We represent a highly
symmetric data base B by a tuple

Cp = (TB,%'B,Cl,...,Ck),

where T is some characteristic tree for B, and each C; is a finite set of repre-
sentatives of the equivalence classes constituting the relation R;. We also require
that g be recursive, and that Tz be highly recursive (in the sense of Section
2).

48 David Harel

We say that a query Q on a highly symmetric data base is recursive if thi
following version of it, which is applied to the representation Cp rather than 3
the data base B itself, is partial recursive: whenever Q(Cp) is defined, it yield§
a finite set of representatives of the equivalence classes representing the relatiog
Q(B).

We now describe the query language QL. Its syntax is like that of the Q :
language of Chandra and Harel [CH1|, with the following addition: the test in 3
while loop can be for whether a relation has a single representative, and not only3
for a relation’s eriptiness. The semantics of QL; is the same as the semantic
of QL, except for some minor technical adaptations that are omitted here. A ::
in [CH1], the result of applying a program P to Cp is undefined if P does not]
halt; otherwise it is the contents of some fixed variable, say X;.

Definition: A query language is hs-r-complete if it expresses precisely the cla
of recursive generic queries over highly symmetric recursive data bases. :

Theorem: QL; is hs-r-complete.

The proof follows four main steps, which are analogous to those given in the}
completeness proof for QL in {CH1]. The details, however, are more intricate. §
In [HH2] a number of additional issues are considered, including the restric
tion of recursive data bases to finite/co-finite recursive relations, completeness
of the generic machines of [AV], and BP-completeness.

5 Expressibility vs. Complexity, and Zero-One Laws

One part of [HH3] proves results that relate the expressive power of various;
logics over recursive structures to the computational complexity (i.e., the level]
of undecidability) of the properties expressible therein. We summarize some of}
these, without providing all of the relevant definitions. In the previous section, we]
mentioned the result from [HH2] to the effect that the very restricted languagej
of quantifier-free first-order relational calculus is r-complete; i.e., it expresses
precisely the recursive and generic r-queries. Here we deal with languages that
have stronger expressive power, and hence express also non-recursive queries. }

There are many results over finite structures that characterize complexity§
classes in terms of logic. One of the most important of these is Fagin’s theorem}
[F1], mentioned in section 2 above, which establishes that the properties of finite’
structures expressible by X} formulas are exactly the ones that are in NP. This}
kind of correspondence also holds between each level of the quantifier hierarchy
of second-order logic and the properties computable in the corresponding level
of the polynomial-time hierarchy. 3

In order to talk about recursive structures it is convenient to use the following
definition, which we adapt to recursive structures from Vardi [V] :

Definition: The data complezity of a language L is the level of difficulty of
computing the sets Gr(Q.) = {(B,u)|lu € Q(B)} for an expression e in L,
where Q. is the query expressed by e, and B denotes a recursive data basej

Towards a Theory of Recursive Structures 49

(i.e., structure). A language L is data-complete (or D-complete for short) for a
computational class C if for every expression e in L, Gr(Q.) is in C, and there
is an expression ey in L such that Gr(Qe,) is hard for C.

Here we restrict ourselves to the consistent, or generic, queries, which are
the ones that preserve isomorphisms. In fact, we require that they preserve the
isomorphisms of all structures, not only recursive ones, under the assumption
that there exist oracles for their relations. That is, @) is consiedered here to be
generic if for all By, By, if By & By then Q(B,) = Q(B-2), where Q(B) is the
result of applying @ to oracles for the relations in B.

We now provide a very brief description of the main results of this part of
[HH3]:

1. First-order logic expresses generic queries from the entire arithmetical hi-
erarchy, but it does not express all of them. For example, the connectivity
of recursive graphs is arithmetical, but is not expressible by a first-order
formula.

2. The logical formalism E-X1, which consists of existential second-order for-
mulas, is D-complete for the complexity class X1 of the analytical hierarchy,
but there are queries, even arithmetical ones, that are not expressible in
E-X1. However, over ordered structures (that is, if a built-in total order is
added to the vocabulary), all X} properties are expressible in E-X}.

3. For k > 2, a stronger result is proved, analogous to Fagin’s result for fi-
nite structures: the logical formalism E-X} expresses precisely the generic
properties of the complexity class X'i. This means that every generic query
over some vocabulary o that is expressible by a X} formula over interpreted
recursive predicates, is also expressible by an uninterpreted E-Z} formula
over o.4 '

4. Monadic E-X}], where the second-order quantifiers are restricted to range
over unary relations (sets), is D-complete for X}, and strict E-X} is D-
complete for X9.

5. Consider fixpoint logic, which is obtained by adding least fixpoint operators
to first-order formulas [CH2, I, Mos|. Denote by FP; positive fixpoint logic,
in which the least fixpoint operator is restricted to positive formulas, and by
FP the hierarchy obtained by alternating the least fixpoint operator with the
first-order constructs. In finite structures, the FP hierarchy collapses, and a
single fixpoint operator suffices [I}. In contrast, for recursive structures FP;
is D-complete for I}, and hence =FP; (negations of formulas in FP;) is D-
complete for 1. The data complexity of FP is exactly A}, and an example
is shown of a query expressible in FP that is hard for both X} and IT}.

In the direction going from expressibility in E-X: to computability in X%, the second-
order quantifiers are used to define a total order and predicates + and *, which, in
turn, are used to define the needed elementary arithmetic expression. Each subset
of elements must contain a minimum in the defined order, which requires for its
definition a universal second-order quantifier. This explains why the result requires
k>2.

50 David Harel

The second part of [HH3] deals with 01 laws on recursive structures.

If C is a class of finite structures over some vocabulary o and if P is a property
of some structures in C, then the asymptotic probability u(P) on C is the limit
as n — oo of the fraction of the structures in C' with n elements that satisfy 3
P, provided that the limit exists. Fagin [F2] and Glebskii et al. [GKLT] were :
the first to discover the connection between logical definability and asymptotic §
probabilities. They showed that if C is the class of all finite structures over some ¥
relational vocabulary, and if P is any property expressible in first-order logic, §
then u(P) exists and is either 0 or 1. This result, known as the 0-1 law for }
first-order logic, became the starting point of a series of investigations aimed 1
at discovering the relationship between expressibility in a logic and asymptotic 3
probabilities. Several additional logics, such as fixpoint logic, iterative logic and %
strict E-X1, have been shown by various authors to satisfy the 0-1 law too.]

A standard method for establishing 0~1 laws on finite structures, originating }
in Fagin [F2], is to prove that the following transfer theorem holds: there is an §
infinite structure A over o such that for any property P expressible in L: '

AEP iff y(P)=1onC.

It turns out that there is a single countable structure A that satisfies this equiv- §
alence for all the logics mentioned above. Moreover, A is characterized by an :
infinite set of extension azioms, which, intuitively, assert that every type can be |
extended to any other possible type. More specifically, for each finite set X of :
points, and each possible way that a new point y € X could relate to X in terms 3
of atomic formulas over the appropriate vocabulary, there is an extension axiom &
that asserts that there is indeed such a point. For example, here is an extension 3
axiom over a vocabulary containing one binary relation symbol R: ‘

VriVz, (:rl #FTy = Jy(y#z1 A y#zs A

(y:‘rl)ER A ($1,Q)¢R A (y,$2)¢R A (IL‘Q,]./)ER))

Fagin realized that the extension axioms are Televant to the study of probabilities
on finite structures and proved that on the class C of all finite structures of §
vocabulary o, u(r) = 1 for any extension axiom 7. The theory of all extension
axioms, denoted T, is known to be w-categorical (that is, every two countable 4
models are isomorphic), so that A, which is a model for T, is unique up to §
isomorphism. This unique structure is called the random countable structure, §
since it is generated, with probability 1, by a random process in which each i
possible tuple appears with probability 1 /2, independently of the other tuples. 4
The random graph was studied by Rado [Ra], and is sometimes called the Rado]
graph. » 4

Now, since all countable structures are isomorphic to A with probability 1,
the asymptotic probability of each (generic) property P on countable structures 5
is trivially O or 1, since this depends only on whether A satisfies P or not. Hence, }
the subject of 0-1 laws over the class of all countable structures is not interesting. §

Towards a Theory of Recursive Structures 51

As to recursive structures, which are what we are interested in here, one is faced
with the difficulty of defining asymptotic probabilities, since structure size is no

longer applicable.
The heart of this part of [HH3] is a proposal for a definition of 0-1 laws for

recursive structures.

Definition: Let F = {F;}{2; be a sequence of recursive structures over some
vocabulary, and let P be a property defined over the structures in F. Then the
asymptotic probability pr(P) is defined to be
{FE[1<i<n, F [P}

n

uriF) = i,

Definition: Let F = {F;}{2, be a sequence of recursive structures over some
vocabulary 0. We say that F is a T-sequence if ux(7) = 1 for every extension
axiom T over o.

As an example, a sequence of graphs that are all isomorphic to the countable
random graph A is a T-sequence. We shall use U to denote one such sequence.
Here is another example of a T-sequence: take F = {F,}52,, where each F, is
a graph satisfying all the n-extension axioms and is built in stages. First take n
distinct and disconnected points. Then, at each stage add a new point z for every
set {z1,...,Zn} from previous stages and for every possible extension axiom for
it, and connect z accordingly.

Definition: Let P be a property of recursive structures. We say that the 0-1
law holds for P if for every T-sequence F the limit ur(P) exists and is equal
to 0 or 1. The 0-1 law holds for a logic L on recursive structures if it holds for
every property expressible in L.

Here are some of the results proved in [HH3] for this definition of 0-1 laws
over recursive structures.

Theorem: The 0-1 law holds for all properties of recursive structures definable
in first-order logic, sirict E-X} and strict E-IT}. Moreover, if A is the countable
random structure, P is such a property and F is a T-sequence, then A =
Piff ur(P) =1.

However, the property of a graph having an infinite clique, for example, is
shown not to satisfy the 0-1 law, so that the law does not hold in general for
E-Xl-properties.

As a result of the theorem, a property for which the 0-1 law does not hold is
not expressible in first-order logic, strict E-X} or strict E-II}. In fact, we have
the following:

Theorem: Every property on recursive structures that is true in A, but does not
have probability 1 on some T-sequence, is not expressible by an E-IT} sentence
or by a strict E-X'] sentence.

In way of applying the techniques, we show in [HH3| that the following prop-
erties are not expressible by an E-II{ sentence or by a strict E-X} sentence:

52 David Harel

a recursive graph having an infinite clique, a recursive graph having an infinjta
independent set, a recursive graph satisfying all the extension axioms, and a pair
of recursive graphs being isomorphic. 4

Acknowledgements: I would like to thank Richard Beigel, who by asking théf
question addressed in Section 2, introduced me to this area. His work with Bill
Gasarch has been a great inspiration. Very special thanks go to Tirza Hirst,fj
without whom this paper couldn’t have been written. Apart from Section 2, the
results are all joint with her, and form her outstanding PhD thesis. §

References

[AV] S. Abiteboul and V. Vianu, “Generic Computation and Its Complexity”, Proe.}
23rd Ann. ACM Symp. on Theory of Computing, pp. 209-219, ACM Press, New
York, 1991. *
[AMS] R. Aharoni, M. Magidor and R. A. Shore, “On the Strength of Kénig’s Duality
Theorem”, J. of Combinatorial Theory (Series B) 54:2 (1992), 257-290. E

[B1] D.R. Bean, “Effective Coloration”, J. Sym. Logic 41 (1976), 469-480. G
[B2] D.R. Bean, “Recursive Euler and Hamiltonian Paths”, Proc. Amer. Math. Soc.
55 (1976), 385-394. P

[BG1] R. Beigel and W. L. Gasarch, unpublished results, 1986-1990. .
[BG2] R. Beigel and W. L. Gasarch, “On the Complexity of Finding the Chromatic
Number of a Recursive Graph”, Parts I & II, Ann. Pure and Appl. Logic 45
(1989), 1-38, 227-247. ‘
[Bu] S. A. Burr, “Some Undecidable Problems Involving the Edge-Coloring and Ver-
tex Coloring of Graphs”, Disc. Math. 50 (1984), 171-177. ‘
[CH1] A. K. Chandra and D. Harel, “Computable Queries for Relational Data, Bases”,uf
J. Comp. Syst. Sci. 21, (1980), 156-178. '
[CH2] A K. Chandra and D. Harel, “Structure and Complexity of Relational Queries”, 3
J. Comput. Syst. Sci. 25 (1982), 99-128. :
[F1] R. Fagin, “Generalized First-Order Spectra and Polynomial-Time Recognizable
Sets”, In Complezity of Computations (R. Karp, ed.), SIAM-AMS Proceedings,
Vol. 7, 1974, pp. 43-73. .
{F2] R. Fagin, “Probabilities on Finite Models”, J. of Symbolic Logic, 41, (1976), 50 &
-~ 58. :
[GL] W.I. Gasarch and M. Lockwood, “The Existence of Matchings for Recursive and
Highly Recursive Bipartite Graphs”, Technical Report 2029, Univ. of Maryland, §
May 1988. ‘3
[GKLT] Y. V. Glebskii, D. L. Kogan, M. I. Liogonki and V. A. Talanov, “Range and §
Degree of Realizability of Formulas in the Restricted Predicate Calculus”, Cy- §
bernetics 5, (1969), 142-154.
(H] D. Harel, “Hamiltonian Paths in Infinite Graphs”, Israel J. Math. 76:3 (1991),
317-336. (Also, Proc. 29rd Ann. ACM Symp. on Theory of Computing, New §
Orleans, pp. 220-229, 1991.) 2
[HH1} T. Hirst and D. Harel, “Taking it to the Limit: On Infinite Variants of NP- §
Complete Problems”, J. Comput. Syst. Sci., to appear. (Also, Proc. 8th IEEE §
Conf. on Structure in Complezity Theory, IEEE Press, New York, 1993, pp. 1
292-304.) :

(HH2)

(HH3]
m
[KT]

[MR]

[Mo]
[Mos]

INR]

[PR]

(PY]

Towards a Theory of Recursive Structures 53

T. Hirst and D. Harel, “Completeness Results for Recursive Data Bases”, J.
Comput. Syst. Sci., to appear. (Also, 12th ACM Ann. Symp. on Principles of
Database Systems, ACM Press, New York, 1993, 244-252.)

T. Hirst and D. Harel, “More about Recursive Structures: Zero-One Laws and
Expressibility vs. Complexity”, in preparation.

N. Immerman, “Relational Queries Computable in Polynomial Time”, Inf. and
Cont. 68 (1986), 86-104.

P. G. Kolaitis and M. N. Thakur, “Logical definability of NP optimization prob-
lems”, 6th IEEE Conf. on Structure in Complezity Theory, pp. 353-366, 1991
A. Manaster and J. Rosenstein, “Effective Matchmaking (Recursion Theoretic
Aspects of a Theorem of Philip Hall)”, Proc. London Math. Soc. 3 (1972), 615~
654.

A. S. Morozov, “Functional Trees and Automorphisms of Models”, Algebra and
Logic 32 (1993), 28-38.

Y. N. Moschovakis, Elementary Induction on Abstract Structures, North Hol-
land, 1974.

A. Nerode and J. Remmel, “A Survey of Lattices of R. E. Substructures”, In
Recursion Theory, Proc. Symp. in Pure Math. Vol. 42 (A. Nerode and R. A.
Shore, eds.), Amer. Math. Soc., Providence, R. I., 1985, pp. 323-375.

A. Panconesi and D. Ranjan, “Quantifiers and Approximation”, Theor. Comp.
Sci. 107 (1993), 145-163.

C. H. Papadimitriou and M. Yannakakis, “Optimization, Approximation, and
Complexity Classes”, J. Comp. Syst. Sci. 43, (1991), 425-440.

R. Rado, “Universal Graphs and Universal Functions”, Acta Arith., 9, (1964),
331-340.

H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-
Hill, New York, 1967.

M. Y. Vardi, “The Complexity of Relational Query Languages”, Proc. 14th
ACM Ann. Symp. on Theory of Computing, 1982, pp. 137-146.

