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Abstract. The paper proposes an extension RPL of the process logic PL of Harel, Kozen and
Parikh (1980). The PL formula operators f and suf are replaced by the operators chop and slice,
corresponding to Kleene’s regular operators - and *, thus enabling formulas to express regular
sets of paths. The main result is that, in expressive power, PL<RPL, the hard part being in
showing that PL<RPL. It is argued that this version of PL comes closer to the desired goal of
a natural and powerful (yet decidable) logic for reasoning about the ongoing behavior of programs.

1. Introduction

Ever since the work of Engeler [5], researchers have tried to provide formalized
logical tools to enable reasoning about programs. The idea is to incorporate such
proof methods as those of Floyd [6] into formal logics which can assert many
properties of interest. Following the ‘input/output’ school of thought cultivated by
Floyd [6], Hoare [13], Manna [15] and others, the Warsaw-based system of algorith-
mic logic (see (2, 22]) and the similar USA-based system of dynamic logic (see [20,
9]) emerged. In particular, the propositional version of dynamic logic, PDL (see
[7]) seems to have become recognized as an appropriate propositional-level tool for
the input/output mode of reasoning about sequential programs. Moreover, PDL
has a decidable validity problem and a simple complete axiomatization [14]. It was
clear, however, that to reason about concurrent or nonterminating programs, or
even to reason conveniently about some aspects of the ongoing behaviour of
sequential programs, it would be necessary to extend PDL (and with it perhaps the
first-order versions too) to make assertions about the activity during computations
and not only at their start or end.
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Some initial work in this direction appears in [21], where the connectives ‘during’
and ‘throughout’ were added to PDL, in [10], where PDL was shown to be unable
to express such connectives, and in [17], where a powerful logic for reasoning about
states and paths and their properties was shown decidable. Independently, the
temporal logic approach to reasoning about concurrent and nonterminating programs
was being developed (see [19, 8]). A fundamental difference in the approaches
between dynamic and temporal logics is the explicit naming of programs in the
former (as in [a KX B)Y; read “after any execution of program « it is possible to
execute B making Y true upon termination’), and the presence of a single implicit
program to which the entire formula refers in the latter (as in 00 © Y'; read “after
executing any number of steps of the program it is possible to execute some more
and satisfy Y”’).

In [16] it was first suggested to combine both approaches, and to allow, say, the
formula (a) 1 Y, read “it is possible to execute « such that Y is true after any
number of steps, i.e., throughout that execution”. It became clear that, for such a
suggestion to work, the mode of thought would have to undergo a transition from
the input/output approach, captured by binary relations on states, to the ‘ongoing’
approach captured by paths, i.e., sequences of states. Furthermore, to be acceptable,
the propositional version of any such proposed logic should be decidable, should
be at least as powerful as those proposed as first approximations in [21, 17, 16],
and, above all, should be in some sense the ‘right’ logic for talking about paths.
This last property means that, on the one hand, it should be built up using natural
and tractable path connectives but, on the other, should be able to express as large
a class of path formulas as is reasonably possible.

In response to this need, a logic, called process logic (or PL) following Pratt [21],
was proposed in [12]. It was indeed a combination of PDL and the propositional
temporal logic TL, was as powerful as any previously suggested version, and was
also shown to be decidable and to possess a finite complete axiomatization. In a
certain sense, the last requirement above was also satisfied: in [8], TL was shown
to be precisely as powerful as the first-order theory of linear order, a fact taken to
be evidence that TL was ‘right’. In PL, it was this ‘expressively complete’ version
of TL which was combined with the PDL apparatus and thus, in the same sense,
PL was ‘right’ too.

Nevertheless, the path operators of PL are not all that natural. The central path
operator, X suf Y, deriving from the X until Y of TL, is true in a path p if there is
a suffix g of p which satisfies Y, and all suffixes of p of which g is a suffix satisfy
X. This is clearly a complicated and asymmetric operator. In addition there is the
construct fX, true in p if X is true in the first state of p regarded as a path of length
0. Moreover, Wolper [26] showed that there are natural path properties not express-
ible in TL, and suggested adding to TL operators corresponding to right linear
grammars, in effect enabling one to say “X is true in the regular set of paths S”.

In this paper we make another step towards defining the ‘right’ process logic, by
extending PL in a way similar to that adopted by Wolper for TL. We define RPL,
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for Regular Process Logic, in which the operators f and suf are replaced by chop
and slice, corresponding essentially to Kleene’s regular operations of concatenation
and star. Thus, e.g., X chop Y is true in path p if p consists of the fusion of ¢ and
r (i.e., concatenation with an overlapping common state), X is true in g and Y in
r. In this way, the regular operations on programs, a U 8, af, a*, have natural
counterparts on formulas: X v Y, X chep Y and slice X. This has the immediate
advantage of enabling one to use any operator which is expressible by regular
means, for example the ‘shuffie’ operator X || Y, which shuffles the paths satisfying
X and Y and is of importance in reasoning about concurrently executing processes.

Our main technical result, whose proof takes up most of the paper, is that in the
presence of these regular operators on formulas, the old ones, f and suf are redundant.
In other words, PL < RPL. Since an argument similar to Wolper’s [26] can be used
to show that regular operators can actually say more, we obtain PL < RPL.

RPL is shown to be decidable (but nonelementary), and it is argued that the
regular operators could perhaps yield an easier completeness proof than that of
[12]. Furthermore, in the interest of arguing that RPL is closer to being ‘right’ than
previously proposed logics, we observe that a slight extension of RPL results in a
highly undecidable validity problem.

The approach is taken one step further in Section 5. There it is shown that since
in RPL the operators on both programs and formulas are the regular ones (in
addition to -, which is complementation relative to the set of all paths), and since
both programs and formulas are interpreted over paths, one can combine both of
these and define a two-sorted logic R, uniformly closed under the PDL diamond
operator (X)Y, regular operations and path complementation. The one sort corre-
sponds to atomic properties of states, and the other to atomic (i.e., binary) transitions
between states. We show that while naively doing this results in an undecidable
language by [4], if one disallows complementation inside the ( ), this unified language
is decidable and is strictly stronger than the restriction of RPL to binary atomic
programs., )

2. Definitions

Process Logic, PL, is interpreted over path models, in which one may talk about
(finite or infinite) paths of states. All formulas of PL are path formulas, i.e., a
formula X is either true or false in path p. We assume familiarity with the basic
notions from [12] but provide a brief description for self-containment.

The following are basic notions regarding paths. The first and last state of a path
p are denoted first(p) and last(p), respectively. If p and q are two paths such that
last(p) =first(q), then p©O g denotes the fusion of p and g. If last(p) # first(q), then
p©gq is not defined. p- q denotes the concatenation of p and g, which is always
defined. For example, if p=s,s, and g = s,s;, then POG=515,83, q* p=5,555,,
and gOp is not defined. For sets of paths G, H, define GOH and G- H in the
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usual way, and also define G'=G-... - G, i times; G? is the same with O,
G*=J", G, and G®=J2, G®. The same notation will be used for words and
languages.

Syntax

The basic elements of PL are a set AF of atomic formulas (denoted by P, Q,...)
and a set AP of atomic programs (denoted by a, b, ...). For programs a, 8 and
formulas X, Y, auB, a- B, and a®* are also programs, and X v Y, "X, (@)X, fX
and X suf Y are formulas.

Semantics

A path model is a triple M = (S, =, p) where S is a set of states, = is a satisfiability
relation for primitive propositions, and p is an assignment of sets of paths to primitive
programs. A path satisfies primitive proposition P iff its first state does. We write
p = P if path p satisfies primitive proposition P, and p € p, if p is a member of the
set of paths assigned to primitive program a.

The relations = and p are extended to compound propositions and programs
according to the following rules:

Pap = Pa O pg,
pauﬁ =Pa VY pB;
Paor*= Ui PS) s
pEXvY ift p=eXorpEY,
pEX iff notpkE X,
pE(a)X iff there is a path g€ g, such that pOgqE X,
pEfX ift first(p) F X,
pE Xsuf Y iff there is g such that
(i) q is a proper suffix of p and gFE Y, and

(ii) for each proper suffix r of p, if q is a proper suffix of 7,
then r E X.

Define the operator L, by: p = L, iff p is of length 0. L, is definable in PL by
Lo, =—1(0 suf 1). Here 1 and 0 stand for true and false. Now, define the two additional
connectives chop and slice as follows:

pEXchopY iff there are paths g, r suchthat p=qOr, g X,andr= Y.

p = slice X iff there are q,..., g, for some n=1 such that
p=¢,0-+-0Og,, and, forall 1si<n, g X
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Let PL" be defined just like PL but with these additional operators added, and
let RPL be defined just like PL* but without f or suf, though with L.

We need some notions regarding languages and regular sets. First, we define an
analog of suf for languages." Given two languages L,, L,, L, suf L, will denote
{x|there is some proper suffix y of x such that ye L,, and for each proper suffix z
of x, if y is a proper suffix of z, then ze L,}.

Next, we define some classes of regular sets of finite and infinite words. The class
of A-free regular expressions over 3, R, (), is defined exactly as are standard regular
expressions, except that + is used instead of *. The set L{R,(X)) of languages
defined by expressions in R,(2X) is clearly closed under union, intersection,
concatenation, +, complementation with respect to =™, suf, fusion, and @.

We now turn to deal with infinite words. £ will denote the set of infinite words
of order type w over 3. For a set Lc 3* L“ denotes the set of all words xe X¢
which are an infinite concatenation of nonempty words in L. A set L is w-regular
if it is a finite union of sets of the form U- V*, where U and V are regular sets.
The collection of all w-regular sets is denoted by LR, (X). It is known (cf. [3]) that
LR,(Z) is equivalent to the class of all sets definable by McNaughton automata.

We shall need yet another system of regular sets of infinite words, more suitable
for our purposes. Define the collection of ~-regular expressions (denoted R_(X))
as follows: (1) e R_(Z2); (2) if Ue R,(Z) and A, Be R_(ZX), then AU B, U- A,
~Ae€ R_(2)(where ~A denotes 3 — A). Itis known[25]that L(R_(X))= LR,(3),
and therefore that L(R_(2)) is closed under union, intersection, complementation
with respect to X, suf, and fusion on the left with A-free regular sets.

3. Results

Theorem 3.1. PL<PL".

Proof. The proof is similar to that of Wolper [26] for TL. Let even =slice(L,) e PL".
Here L, (definable in PL* as O suf (0 suf L,) is true precisely in paths of length 2
(i.e., consisting of three states). The formula even says that a path is of even length.
We show that this property cannot be expressed in PL, by constructing a model M
with only one state s, and empty assignments of p, and =P for all ac AP, Pe AF.
For a formula X € PL, define nest(X) as the maximal depth of nesting of the suf
operator in X. The following two claims are easy to prove and yield the result.

Claim 3.1.1. p & even iff p=(s>""") for some n=1.
Claim 3.1.2. Let X € PL. For every i>nest(X), (s"YE X if s"")YEX. O

The remedy, proposed by Wolper for the similar lack of expressiveness in TL,
was defining a family of extended operators, each corresponding to some right linear



312 D. Harel, D. Peleg

grammar. His extended TL, ETL, is thus equivalent in expressive power to program-
free RPL.
Our main theorem, whose proof is sketched in the next section, is the following.

Theorem 3.2. PL" = RPL.
Corollary 3.2.1. PL<RPL.

We note the following theorem, to be contrasted with the following facts: (i) for
the weaker but more succint PL the result is not known to hold, and (ii) for TL the
problem is Pspace-complete [23].

Theorem 3.3. The validity problem for RPL is decidable but is non-elementry even for
program-free formulas.

Proof. Decidability is obtained by an easy extension of the reduction of PL to SnS
in [12] (see [18]). That there is no elementary-time decision procedure even for
program-free formulas follows from a straightforward linear time reduction from
the emptiness problem for regular expressions with complementation (see [1]). O

Slight extensions of RPL are highly undecidable. For example, let the operator
{X be defined by p = (X iff all subpaths g of p obtained by deleting from p an
equal number of states from either end, satisfy X. This is depicted by the following
diagram.

X

~ 7
<
~
—

X

Theorem 3.4. The validity problem for RPL with the additional operator { on formulas
is I1}-complete.

Proof. Let X, be defined as
Ly v (slice((L A P)chop L,))chop(slice (L, chop(L,» —P))),

for some Pe AF, and where L, (definable in RPL) is true precisely in paths of
length 1. The formula {X,, can be seen to hold in all paths of even length for which
P is true along the first half, and false along the last half (its value in the middle
state is immaterial). This set {P'Ly(T1P)’|i=0} and its dual obtained by switching
the roles of P and =P in X,, can serve to reduce to this extension of RPL a
recurring-dominoes problem, as is done in [11, Theorem 4.10]. ]

4. Proof of Theorem 3.2

We show in this section that PL" <RPL, and hence establish PL* = RPL, and
PL<RPL.
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Define the abbreviation sX =Ly X. We regard sX as a ‘local appearance’ of X.
The following immediate lemma shows that the connective f is redundant in PL™*,

Lemma 4.1. For any X e PL™, fX = (s X) chop 1.

Unfortunately, no such uniform translation is known for suf. The proof that suf
is nevertheless eliminable goes along the following lines. First, a minor change is
made in both PL" and RPL, with no effect on expressiveness. The semantic rule
for atomic formula P is rephrased to read: p = P iff 3s(p =(s) and s k= P). Clearly,
the ‘old’ P can still be expressed (as P chop 1), while the ‘new’ P is expressed in
the original version by sP,

Next, a sublanguage of RPL, named loc PL, is defined. A formula of the form
(@)X may appear in loc PL only in local form, i.e., in subformulas of the form
s({a)X). The operators chop and slice do not appear in loc PL at all. Instead, two
new connectives are used, namely, rchop and rslice. These are definable using the
former, and are related to them (by the semantic rules) precisely as concatenation
(+) relates to fusion (©). All this enables us to use conjunctions of literals (i.e.,
atomic formulas or their negations) called atoms (see [14, 24]) as the letters of an
alphabet 3, and to establish a natural correspondence between R, (X), R_(Z) and
sublanguages of program-free-loc PL. This will yield the closure of program-free-
loc PL under chop, slice, and suf, and hence will imply program-free-PL* <
program-free-loc PL.

The presence of programs complicates the situation, since PL* may in general
use programs non-locally (i.e., outside the s-connective). Nevertheless, we exhibit,
for each & and X, a formula of leoc PL equivalent to (a)X. The heart of the proof
is a rather complex case analysis showing that any formula in loc PL can be
decomposed into a collection of pairs of formulas which exhaust all possible ways
of satisfying X by compound paths.

Definition of loc PL

First, define the following abbreviations:

X rchop Y abbreviates (X chop L,) chop Y,
rslice X abbreviates X v (slice (X chop L,)) chop X,

The language loc PL is taken to be the sublanguage of RPL, defined by the
following rules:

(1) AF<loc PL.

(2) If « is a program and X € loc PL, then s({a)X), s([a]X) € loc PL.

(3) If X, YelocPL, then =X, X v Y, X rchop Y, rslice X < loc PL.

Let I'={P,,..., P.}< AF. An atom for I is a formula e =s(A, A - - A A,) Where
A;e{P, 1 P}. Denote by 3 the set of atoms for I,
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For any model M = (S, =, p), let h:(ZFU 2¥)>25"~5" be defined by
h(o)={P|PE o} foroe 3,
h(0'10'2...)=h(0'1)h(02)... fora',,0'2,...€2:p.'

Note that, for each pe h(o), |p|=0. The function h induces a partition on the set
257YS* of paths in M, since if w# w’, then h(w) N h(w')=0.

Over 3, we have the set of A-free regular expressions, R,(2r), and the set of
infinite regular expressions, R_(2). Define functions I, F as follows:

I:R_(3r)~>1locPL
1(9)=0,
.For A;, A,e R_(3;) and Ue R,(3r):
I(A,UA)=I(A) Vv I(Ay),
I(U- A))=F(U) rchop I(A,),
I(~A,)=(—I(A,))vinf;
F:R,(Zr)~>locPL
F(@)=0,
F(o)=0o forevery o€,
for U, Uye R\(2r):
F(U,u Uy)=F(Uy)v F(U,),
F(U, - U,)=F(U,) rchop F(U,),
F(U7)=rslice F(U,).
Here, fin abbreviates Lo v (1 rchop L) and it is true precisely in all finite paths, while

inf is its negation, holding precisely in infinite paths.
Now define the following sublanguages of loc PL:

inf PL={X|3r={P,,..., P} AF,3Ac R_(3r), (X =I(A))},
fin PL={X|3I'={P,,..., B} AF,3U e R,(3r), (X = F(U))}.

Note that I and F are 1—1 and onto inf PL and fin PL respectively. The idea is
that p = X for X € inf PL (respectively fin PL) only if p is infinite (respectively finite).
The following lemma can easily be proved by induction on X.

Lemma 4.2. For every path p, and every X €loc PL,
(1) if XefinPL, then p= X & h™'(p)e L(F'(X)), and
(2) if X einf PL, then p = X &h™'(p) e LUIT{(X)).
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Lemma 4.3. For every program-free formula X € loc PL there are formulas Xy € fin PL
and X; € inf PL such that X = Xp v X|.

Proof. The claim will be shown by induction on the structure of X, relative to the
set I'={P;| P,€ AF, P, appears in X}.

Case (X = P;e AF): Take Xr =V (4|p, appears positively in o} 7> and X; =0.

In all composite cases assume (by the inductive hypothesis) the existence of
appropriate Zz, W e fin PL and Z,, W, ciinf PL for subformulas Z, W of X.

Case (X=Zv W): Take Xp=Zrv Wr and X, =2, v W,.

Case (X =—1Z): R,(2r) is closed under A-free complementation, and therefore
there exists a A-free regular expression U such that L(U) = 37— L(F~Y(Z¢)). Take
Xr=F(U) and X; =Z; ainf.

Case (X = Z rchop W): Take Xy = Zp rchop Wi and X; = Z rchop W,.

Case (X =rslice Z): Take X =rslice Zr and X; = Z; v (rslice Z¢) rchop Z;.

In all cases, the proof that Xg € fin PL, X; cinf PL, and X = X v X| is straight-
forward. O

Lemma 4.4. Program-free-loc PL is closed under suf, chop, and slice.

Proof. Let X and Y be program-free-loc PL formulas, with their I and F portions
as in Lemma 4.3, and let

I'={P;| P, € AF, P, appears in Xf, X;, Yg, or Y;}.

By the closure properties of R. and R,, there are regular expressions U,, U,,
U;e R,(2r) and A,, A,, A;€ R_(Zr) such that

L(A) = LUI(X;) suf I"'(Y7)),

L(A) = L(F (X)) OI(Y))),

L(A3) = LU '(X) v ((F(X))OT (X)),
L(Uy) = L(F~'(X£) suf F~'(Y¥)),

L(Uy)= L(F"(Xp) OF (YE)),

L(U3) = L(F ™ (Xe)®).

Now take the final formulas to be F(U;) v I(A;) for i =1, 2, 3, and the result follows
from Lemma 4.2. O

Lemma 4.5. Program-free-PL" < program-free-loc PL.

Proof. The proof immediately follows from Lemma 4.4. (]
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We now proceed to deal with the presence of programs. First define some new
operators:

I:0= ——|L0,
XAY=(0XvY),
X drchop Y = (X rchop 1Y),

drslice X = —(rslice 1.X).

In the sequel we refer to these as the duals of Ly, v, rchop, and rslice, respectively,
and vice versa. Clearly,
pEL & [p|>0,
pPEXAY & pEXandpkEY,
pEXdrchop Y & Vg, r(p=q-r=>(qg=XorrkEY)),
pEdrslice X © Vn=l,q,...,¢.(p=q1"..." ¢.=3],
(1sisnand g F X)).
A formula will be called local if it is either in AF or is of the form sX. In this
sense, every appearance of (a)X (or [a]X) in loc PL is in local form.
For formulas in loc PL we now eliminate negations occurring non-locally (except

in Ly and L,) according to Table 1, in which X and X are, respectively, equivalent
to X and 01X

Table 1. Elimination of negations.

For X = let X = and X =

P P s(OP)vL,

YopZ v op V4 Y dual Z for ope {v, A, rchop, drchop}
opZ ' op2 dual Z for op & {rslice, drslice}
s(@)Y) s(e)¥) Lovs((e]D)

s([a]Y) s([a]¥) Lovs((e) ¥)

Y Y 12

Let X €loc PL. A finite set of pairs of formulas
Dy ={(X!, X}|1<i<mx}<locPL
is called a proper decomposition of X if for all paths g and r,

g-re=X & forsomeil<ismy, qF X!andrkE X7
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The following lemma contains the main technical fact needed in the sequel. Its
proof is rather tedious and appears in Appendix A.

Lemma 4.6. Every formula X of loc PL admits a proper decomposition.

Using Lemma 4.6 it is now not too hard to finish off the proof of Theorem 3.2.
As mentioned we need a loc PL equivalent of {a)X.

Lemma 4.7. Given a formula X €loc PL, let Dy ={(X}, X?)|1< i< my} be a proper
decomposition of X, and let X* =s((a)X) Vv Vi<izmy (X rchop (s({@)X?))). Then
X*={(a)X.

Proof. (&<): For a path p, let p;, for i <|p|, denote the ith state on p, and let iDj»
for i<j<|p|, denote (p,, ..., p;). Assume p = (a)X, i.c., there is some g in p, such
that pOg = X. If |p| =0, then p = s({a)X), and therefore p = X Otherwise, we
have p,-.F X| and p,OqF X7, hence p, k= s((a)X?). Therefore, p=
1Pipl-1° Pip F X rchop (s({(a)X?)), and again we have p k= X°,

(=): Assume p E X If p = s({a)X), then clearly p = (a)X. Otherwise, there is
some 1 <i<my for which p = X rchop (s({a)X?)). Therefore, | p| >0, ,p -, = X!
and p, = (@)X ;. The latter means that there is some ¢ in P such that first(t) = last(p)
and t = X?. Since Dy is a proper decomposition, from 1Plp-1FE Xiand tE= X? we
obtain pOt=,p ,_, - tF= X, and hence p=(a)X. O

For the following lemma, denote by X | the formula obtained from X by replacing
every occurrence of Y with Z. The lemma completes the proof that PL* <loc PL.

Lemma 4.8. For every formula X € PL" there is a formula X' € loc PL so that X'= X,

Proof. The proof follows by induction on the structure of X,

Case (atomic P): Take X'=P.

Case (YvZ,Y): Set (YvZ)Y=Y'vZ and (OY)="Y"

Case ({a)Y): By Lemmas 4.6 and 4.7, and since Y’ =Y from the inductive
hypothesis, there is a formula- (Y’)® in loc PL equivalent to (a)Y”, and hence to
(@)Y too. X' is taken to be (Y’)".

Case (slice Y): Assume Y’ from the inductive hypothesis contains k appearances
of () on the highest level (i.e., not nested within other (a)Z). Let these be
s{@)Zy),...,s({ax)Z;). Let Qy,..., Qx be symbols in AF appearing nowhere in
X, and denote

Yo = (slice Y')| 02|, |0z,

Y, is program-free, and so by Lemma 4.5 there is an equivalent Xo €loc PL, with
Xo=Y,. Now take X' to be

X0|3<’a1>zl)| e lgfauzk)'
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It is easy to see that

X'=YolStanz| - - - |22,y = Slice Y =slice Y =X
Case (Y suf Z, Y chop Z): These cases are similar to slice. []

Finally, from Lemma 4.8 we obtain RPL<PL"* <loc PL<RPL thus completing
the proof of Theorem 3.2.

5. The unified language R

R has two sets of atomic letters: state formulas, ASF, and transition formulas,
ATF. It has a single set of operators, which yield the formulas 71X, Xv Y, XQY,
X ® and (X)Y. The semantic rules of R are the usual. In particular,

pE X onlyif peS for X € ASF,
pE X onlyif pe SXS for X e ATF,
pE(X)Y iff 3q(gF X and pOgE Y).

Here, too, we have to include the formula L, as in RPL.

This definition of R causes, again, undecidability of the validity problem, as is
shown in [4]. In order to retain decidability, we require that, in formulas of the
form (X)Y, X contains no occurrences of .

Let binary-RPL be RPL with the interpretations p, for atomic a restricted so that
P S SXS.

Theorem 5.1. binary-RPL<R.

Proof. Clearly, binary-RPL is contained in R. On the other hand, the simple formula
a € ATF cannot be expressed in RPL, as can be easily demonstrated (see [18]). O

Theorem 5.2. The validity problem for R is decidable but nonelementary.

Proof. The proof is a modification of the decidability proof of [12] (see [18]). The
nonelementariness is shown just as in Theorem 3.3 above. (O

Appendix A. Proof of Lemma 4.6

By the construction of Table 1 we need only consider formulas of loc PL including
the four operators, their duals, and with negation appearing only locally. We use
induction on the structure of X, with L, and local formulas taken as the basis of
the induction.

Forlocal X, take my =0and Dx =0.Since g- r # X forall g and r, the claim holds.
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q r
O—0O0—0—0—0
(1) pi=g(orp,=r)
f 41 P2
—_f- = .t
(2) 3,p,=t-rlorg=p,-1) o =
3, t =t
(3 pi=q-t(orr=t-p,) - o

Fig. A.1. Dividing g r into p, and p,.

For X =L,, take Dy ={(1, 1)}. Clearly, for all paths g, r, g- r=L, and g 1,
r &1 hold.

In all composite cases we assume (by inductive hypothe31s) the existence of
decompositions Dy ={(Y}, Y})|1<i<my} and D, ={(Z!,Z)|1<i<m,} for Y
and Z.

Case (X =Y v Z): Take Dx to be Dy u D;. That Dy behaves right is trivial.

Case (X = Y rchop Z): Take Dy to be

LY, Z)}u{(Y}, Yirchop Z)|1<i<=my}U{(Y rchop Z!, Z)|1< i< m,}.

To see that Dy is a proper decomposition, consider paths g and r.

(&<): Assume q- r k= Y rchop Z. Then there are paths p,, p,suchthatq- r=p, - p,
and p, E Y, p,k= Z There are three basic possibilities, illustrated in Fig. A.1.

(1) p1 = q. Inthis case, the pair (Y, Z) meets the condition, since = Yand r= Z

(2) There is a path ¢ such that p,=t-r (or g=p, - t). Hence, t- r= Z, and by
the inductive hypothesis there exists some 1< i< m; such that t = Z! and r = Z7.
Since p, F Y, we get g=p, * t = Y rchop Z} ; hence, the pair (Y rchop Z}, Z?) satis-
fies the requirement.

(3) There is a path ¢ such that py=q- ¢ (or r=t¢- p,). The analysis is similar to
possibility (2).

(=): Assume g = X| and rE= X? for some 1<i<my. There are three cases,
corresponding to the definition of Dy.

(1) The decomposition is (Y, Z), in which case ¢ r = X is immediate.

(2) For some 1<j<myz, (X|,X?)=(Y rchop Z}, Z}). In this case, g can be
divided into g=1t, - t, so that , = Y and t,= Z}. By the inductive hypothesis on
Z, t,- r= Z, and, therefore, g- r=t, - (t, - r) = Y rchop Z.

(3) For some 1<j<my, (X{, X7)=(Y], Y7 rchop Z). Similar to case (2).

Case (X =rslice Y): Take Dy to be

{(rslice Y, rslice Y)}
V{(Y], Y)|1<ismy}
U {((rslice Y) rchop Y}, YH|1<i<my}
U{(Y1, Y7 rchop (rslice Y))|1<i< my}
U {((rslice Y) rchop Y!, Y7 rchop (rslice Y))|1<i<my}.
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The five sets in this union cover the five ways of dividing a path q- r into n
sections p,, ..., p,, €ach of which satisfies Y (see Fig. A.2). That this is a proper
decomposition is proved similarly to the previous case, and is left to the reader.

q r
o—O0—0—0—0—0—0—00
(1) n>1,3k1<k<n
(q o JRETRS ) R p") Py Py Prs1""Pn
2) n=1
) 41
(3) n>1,3t(p,=t-r) PR s
4) n>1,3t(p=q-1) — e
2, Py Pn
(5) n>2,3k1<k<n3Iy,t,
(=t t,9=p; ... Py 1y, Py P Pe Presr P

F=1" Pryr - Pr)

Fig. A.2. Dividing the path gq- r into n sections 1;1, cevs Pn-

Case (X = Y/(Z): Take
Dx={YirnZ],YirZD|I<sismy,1<j<m,}.

For the two remaining cases, we use some additional notation. Let Dy =
(X}, XH|1<i<my}. Let {gX}, 1<i<2™x be an enumeration of the subsets of
{1,..., mx}. We now define notations for conjuncts and disjuncts of subsets of
formulas X', X% Let CX! and DX! denote A keg X and V. x X}, respectively,
and let SX; 1 denote CX A Ageg X!. Here X is as defined in Table 1, and is
equivalent to = X. CX?, DX7, and SX; are defined analogously. Now let {f},
1<j<2% enumerate the subsets of {1,...,2™}, We define the formulas

all SX! = (drslice X) drchop( vV SX,L) A A_ ((rslice X) rchop SX})
kef kef¥

and

all DX!= A DXL}.
kef¥

Now, for the two remaining cases:
Case (X = Y drchop Z): Take Dy to be

{(SYi A Y A(Y drchop DZ}), (DY? drchop Z) A SZ3)|
1sis2™,1sj=s2™7}
U{(SY{ A (Y drchop DZ}), (DY drchop Z) A Z 1 SZ3)|

1<is2™, 1sj=s2™z},
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Case (X =drslice Y): Take Dy to be
{(drslice Y A SY; aall SY}, DY? A (DY? drchop (drslice Y)) aall DY A
(all DY drchop (drslice Y)))|1<i=<2™, 1=<j=<2@™)}
U{(SY;nall SY;, drslice Y A DY} A
(DY? drchop (drslice Y)) rall DY? A
(all DY drchop (drslice Y)))|1<i<2™, 1=<;=<2%™)},

Showing that these are proper decompositions is a tedious but straightforward
application of the definitions above and the inductive hypothesis. O
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