Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES Vol. 25, No. 1, August 1982
AllpRights Reserved by Academic Press, New York and London Printed in Belgium

Structure and Complexity of
Relational Queries

ASHOK CHANDRA AND DAviD HAREL

Computer Sciences Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598

Received May 4, 1982

This paper is an attempt at laying the foundations for the classification of queries on
relational data bases according to their structure and their computational complexity. Using
the operations of composition and fixpoints, a ¥ — II hierarchy of height w?, called the
fixpoint query hierarchy, is defined, and its properties investigated. The hierarchy includes
most of the queries considered in the literature including those of Codd and Aho and Ullman.
The hierarchy to level w characterizes the first-order queries, and the levels up to w are shown
to be strict. Sets of queries larger than the fixpoint query hierarchy are obtained by considered
the queries computable in polynomial time, queries computable in polynomial space, etc. It is
shown that classes of queries defined from such complexity classes behave (with respect to
containment) in a manner very similar to the corresponding complexity classes. Also, the set
of second-order queries turns out to be the same as the set of queries defined from the
polynomial-time hierarchy. Finally, these classes of queries are used to analyse a set of
queries defined from language considerations: those expressible in a programming language
with only typed (or ranked) relation variables.

1. INTRODUCTION

In recent years the theory of relational data bases has received a great deal of
attention in computer science research. One of the central topics of research in this
area is that of queries (i.., functions from data bases to relations) and query
languages (i.e., languages for expressing such functions).

Since Codd’s early work on relational data bases [3], many diverse query
languages and associated classes of queries have been suggested. One encounters the
first-order relational calculus and the relational algebra of Codd [4] (see also [15]),
the conjunctive queries of Chandra and Merlin [9] and the tableau queries of Aho et
al. [1]. Zloof [25] has suggested augmenting the first-order queries with a transitive
closure operator, and Aho and Ullman [2] have augmented the relational algebra
with a least fixpoint operator. Some fixpoint queries are also obtained by querying in
Kowalski’s language of logic programs [15, 17, 22]. Chandra and Harel [6] defined
the general class CQ of all computable queries which, in some sense, is the largest
interesting such set. In [6] a query language is defined and is shown to express

99

0022-0000/82/040099-30$02.00/0

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

100 CHANDRA AND HAREL

precisely the queries in CQ. While this query language indeed subsumes all the
aforementioned languages, and hence CQ contains all the queries expressible in such
languages, [6] does not provde a global framework within which these and other
classes of queries can be investigated on common ground. The purpose of this paper
is to lay the foundations for such a framework making possible the classification and
comparison of query languages and their associated classes of queries according to
their structure or the complexity of their computations. Definitions of fundamental
concepts are proposed, accompanied by various results and open problems for future
work.

The paper consists of two parts: algebraic and complexity-theoretic in nature,
respectively. First, the basic set E of existential queries is defined. This set subsumes
the conjunctive [9] and tableau queries [1]. From E, larger sets of queries can be
obtained by using three operations on queries: complementation, composition, and
least fixpoint. These operations, when applied to E, yield a natural hierarchy of sets
of queries which we call the fixpoint query hierarchy, or the fixpoint hierarchy for
short. This is a ~ — IT hierarchy of height w?, in which the first w steps (which we
call the first-order query hierarchy) constitute a structural clasification of the first-
order queries (and hence also of the relational algebra queries) of Codd [4]. We show
the strictness of the first-order query hierarchy and a correspondence with the
polynomial-time hierarchy of Stockmeyer [21]. The suggestions of Zloof {25] and of
Aho and Ullman [2] concerning transitive closure transcend the first-order query
hierarchy, but are easily seen to be embedded in the full hierarchy, as do those of
Kowalski [17] (see also [8]). The full hierarchy to level w?® is then shown to have
natural closure properties. The question of strictness of the higher levels, which was
left open in a preliminary version of this paper [7], has been recently solved by
Immerman [16]. It is shown in [16] that a single fixpoint suffices to obtain the entire
hierarchy. We do, however, define a more refined collection of hierarchies charac-
terized by the rank of the fixpoint relations allowed, and pose some open questions of
strictness and definability concerning them. It is possible, however, to step out of the
fixpoint hierarchy without using the full power of CQ: the fixpoint hierarchy is shown
to be strictly included in the set of queries expressible in second-order predicate
calculus, and the latter is strictly included in CQ.

The second part of the paper deals with sets of higher level queries, such as the
second-order definable queries SO and the set RQ of queries computable using only
ranked relation variables. The approach used in comparing such sets is to study
complexity classes of queries such as QPTIME, QPHIER (queries computable in
polynomial time, in the polynomial-time hierarchy), etc.

First, the problem of enumerating the queries in such classes is discussed and
enumerations are shown to exist for QPHIER, QPSPACE, QEXPTIME, and classes
with greater space or time resources. It is interesting that QPTIME is not known to
have an enumeration. Next, it is shown that (for reasonable complexity classes) the
query classes are ordered in much the same way as their corresponding complexity
classes. As far as the above sets of high level queries are concerned, the main results
are that FP c# QPTIME < QPHIER = SO < CQ and FP < RQ —# QPSPACE.

RELATIONAL QUERIES 101

Also, QPTIME & RQ, but RQ c QPTIME iff PTIME = PSPACE, which is generally
believed to be false, so that RQ is probably incompatable with QPTIME.

In the closing section we suggest areas for further research, and at the end of the
paper is a list of symbols used therein.

2. DATA BASES, QUERIES, AND OPERATIONS ON QUERIES
We first recall some basic definitions, taken essentially from [6].

DEFINITION. Let U be some countable, universal domain. A relational data base,
or data base for short, is a tuple B= (D, R,,..., R,), where D U is finite and for
each 1 <i <k, R, D% for some a; > 0. The integer a; is called the rank of R; and B
is said to be of type @=(a;,..a;). We shall frequently abbreviate the vector
R,,..,R, by R and write B = (D, R).

DEFINITION. A computable query of type @— b is a partial function
Q: {B| B is of type a} —o— 2V

satisfying the following conditions:
(i) if B=(D,R,,...,R,) and Q(B) is defined then Q(B) c D?,
(i) Q is partial recursive,
(i) if B«">B’ (ie, B, B’ are isomorphic: if B=(D,R,,....,Ry), B' =
(D', R},..., R}), then h is a one—one onto function from D to D’, and for all i
R} = h(R,)), then Q(B") = h(Q(B)).

Conditions (i), (i) say that Q is a partial recursive (i.e., computable) function
mapping data bases into relations on the domain of the given data base. Condition
(iii) is called the consistency criterion. It says that the output of a query should not
depend on the internal representation of the data base; rather, it should treat relations
of the data base as sets of tuples, where the representation used for elements of the
tuples is unimportant. The standard queries used in the literture, such as first-order
queries [4], conjunctive queries [9], tableaux queries [1], queries with transitive
closure or fixpoint operators [2, 17, 22], etc. are all computable queries, and |[6]
gives a query language that computes exactly the computable queries. Note that in
[6], queries were typed only by their inputs (i.e., a query was of type @, not a— b);
here, however, it is technically convenient to type with respect to output too.

DErFINITION. Let CQ denote the class of computable queries. In the sequel, we
shall sometimes omit the adjective computable, and simply refer to computable
queries as queries. v

102 CHANDRA AND HAREL

We now define two fundamental operations on queries, together with the
operations on sets of queries which they induce. These will serve as central concepts
for the rest of the paper.

DEFINITION. Let O be a query of type @ — b. The complement of Q is the query
—Q of the same type, defined by,

—Q(D, R)=D® — Q(D, R).

Also, —Q(D, R) is undefined whenever Q(D, R) is undefined. For a set of queries S,
let

—S={-0|0€S}

DEFINITION. Let 0 = (Q, ,..., Q,) be a vector of queries of types @— by,...,a— b,,
where @ = (a, ..., ay). If Q is a query of type b= (b,,..., b,) = ¢, then the composition
Qo Q is a query of type @ — ¢, defined by

(Q > 0)(D, R) = Q(D, Q(D, R)) = Q(D, (D, R)...., 2,(D, R)).

Again, Q o O is undefined whenever one of its components is undefined. If S, and S,
are sets of queries, then

S,08,={0cQ|Q€ES, and if 0 =(Q,,..., 0,), then Q,E S,, 1 i nl.

LEMMA 2.1. For any sets of queries S, S|, S, ...,
(i) ——S=38,
(i) —(Sy08;)==8,085,,
(iii)) (Se Sl) 08,=80(5,08,),
(V) U;j(S508)=(;8))e°S,
(v) U;jSeS)cSo(U;S).

Progf. We prove (ii), the others are similar. For any Q' € —(S, o S,) there are

queries Q € S, and Q = (Qy,.., @,), O, € S,, such that Q'(B) = (—(Q » 0))(B). But
then, if B = (D, R),

Q'(B)=D'—(Q > Q)(B)= D’ — Q(D, Q(B)) = —Q(D, O(B))
=(=Qo Q_)(B) €S 08,
Showing that any Q' € —S, o S, is also in —(S, o S,) is analogous. N

In Lemma 2.1(v), the inequality cannot be changed to an equallty in general.
The proof of Lemma 2.2 is left to the reader.

RELATIONAL QUERIES 103

LEMMA 2.2. The class CQ of all computable queries is closed under complemen-
tation and composition.

The operators — and o are two of the three fundamental operators on queries
which will be considered in this paper. The third, the least fixpoint operator, will be
introduced in Section 4. These operators will serve mainly to enable us to define
classes of queries in a structured, algebraic manner. As a first step in this direction
we now provide an algebraic characterization of the first-order definable queries.

3. THE FIRST-ORDER QUERY HIERARCHY

We have not said anything yet about the languages in which queries are
formulated. Indeed, most of the sets of queries mentioned in the introduction were '
originally defined as the queries expressible in some query language. In this paper we
shall be interested in various sets of queries, but in most cases they will be defined
syntactically, i.e., in the context of some query language. '

DEFINITION. Let L be the first-order language with no function symbols and with
= (equality) and R, R,,... as its predicate symbols. Note that we shall be using R;
both as the formal symbol denoting a relation and as the relation itself; also, the rank
of R, will be implicit from the context, though superscripts could have been used to
be completely formal. Let First be the language consisting of all expressions of the
form

ZR.O,

where @ is a formula of L, X is a vector of distinct variables, containing all and only
the variables appearing free in @, and R is a vector of distinct predicate symbols
containing all those appearing in @.

An expression X.(R,,..,R,).®(X) in First represents a query Q of type
(@5 a;)— b, where |X|=5b and R, has rank a,. The query Q is defined by
O(D, R) = {d € D* | ®(d) is true in (D, R)}. For example, the expression

(%, »)-(Ry, Ry).(32)(R (%, 2) A Rz, ¥)),

represents the query of type (2, 2) — 2 which returns the relational composition of its
two arguments. Similarly the expression

(%, YRy, Ry5 R3).(2)R (%, 2) A Ro(2, ¥))r

where the rank of R, is a, represents the query of type (2,2,a)— 2 returning the
composition of its first two arguments. It may also be noted tht negation in First
corresponds to complementation with respect to the domain D of the input data base.

104 CHANDRA AND HAREL

(If % is the empty vector, then %.R.® is either the set containing the empty vector or
the empty set, depending, respectively, upon whether @ is true or false.)

DEFINITION (First-order queries). For A4 € First let @, denote the query
represented by A, and for I' First let Q= {Q, |4 € I'}. The set Q,,,, is the set of
first-order queries, and is denoted by F.

Of course, F « CQ, but (see [2]) F# CQ.
DEFINITION. For an expression 4 of the form X.R.® in First, define its negation
—A4 to be of the form X.R. — @; and for I' — First, define -/ = (-4 |4 € T}.

The following is easily verified, establishing negation of the representation of a
query as the syntactic analogue of the complementation of that query.

LEmMA 3.1. For any A € First, Q_, =—Q,, and for any I < First, Q_ = Q.

Similarly, we define substitution, the syntactic analogue of composition of queries.

DEFINITION. Let 4 = %.(T,,..., T,)«p where the rank of T, is a;. Let C=
(Cy s Cp), wWhere C;= 7,.(R, e, R).¥;, and | ;| = a;. We write A o C to denote the
expression X.(R ..., R;).®', where @' 1s obtamed by sxmultaneous substitution of the
Y, for the T, in @, matchmg the y, to the arguments of the occurrences of T; by

approprlately renaming variables which become bound or equal (note that Rand T
need not be disjoint).

ExampLE. Let A=x.(R,,R,).(3y)R,(x,y,x)AR,(x,»)), C,=(x,z,y).(R,, T)).
(YWYR,(x,)V=T (W, »,2)), Co=(u,v).(R,, T}).R,(u,u)> (3y) R,(v,y). Then
A4 o (C,C) = x(R;, T).GYUYWR (%, x) V =T (w, x,3)) A (Ry(x,x) > (32)
R,(y,2))).

DEerFINITION. For I',4 < First, define I'ocd=1{40(C,,.,C,)|A€Tl, C;€A4,
1<i<nl).

The following is also easily established.

LemMmA 3.2. For any A,C,,.,C,EFirst, Quuc,...cn=Qa° (Qc Q)
Likewise, for any I', A < First, Qr., = Qr Q,.

DEFINITION. Let Exist be the set of expressions of the form
ZR.Gp) P,

where @ is quantifier-free. Let E = Qg,,,, be the set of existential queries.

RELATIONAL QUERIES 105

We note that the set of conjunctive queries of 9] (and, likewise the set of tableau
queries of [1]) is a subset of E, being representable by the special form

£R.37) \ R, (@),
J
where u; is a vector of variables from X, .

LEMMA 3.3. For any set S of queries,
SU—|SCEOS=E°—|S=E° (SU‘ﬂS).

We are now ready to define a hierarchy of sets of expressions, which induces a
hierarchy of sets of queries, similar in structure to such known hierarchies as the
arithmetical and analytical hierarchies [20], and the polynomial-time hierarchy [21].

DEerINITION. Define the collection of sets of expressions of First (Z, I} s @S
follows:
(i) Z,= {¥.R.®|® quantifier-free},
(i) Z,,,=Existo Il
(i) M, =—X,.
We are interested, not so much in the sets of formulas X,, II;, but rather in the
corresponding sets of queries denoted by X7, mne:

DErNITION. The collection of sets of queries {£2, I1?},.,,, where £? = Oy, and
1% = Qy, is called the first-order query hierarchy.

From Lemmas 3.1-3.3 we have

Lewwa 34, (D) ,=—29 (i) Z%,=EcM?=Eocx?, (i) fUN?c
T NII,.
The next lemma characterizes the classes Z2 (resp. 1I?) as being represented by

first-order queries in prenex normal form with i alternations of quantifiers beginning
with existential (resp. universal) quantifiers.

LEMMA 3.5. Let 3, (=V,) be the set of quantifer:free Sformulae of the first-order
language L, and let 3,,, (resp. V;,) be the set of formulae of the form (3X)® (resp.
(VX)) where ® is in ¥, (resp. 3;) and X free in @. Then:

(i) For @ in 3, (resp. ¥)), %.R.® (where variables in X are not bound in ®) is
in X; (resp. I1)),

(i) Any query in Z9 (resp. 11?) can be represented by an expression of the
form %.R.®, where ® is in 3, (resp. V).

106 CHANDRA AND HAREL

Proof. The proof of (i) is by induction on i. For i=0 it is true by definition. Let
@€ 1,,, be of the form (3%)(VX,) --- (OX;,,) ¥. Let A be the expression %, X,.R.
(VX,) -+- (O%,,,)¥. By the induction hypothesis, 4 is in IT,. Then, let C be the
expression X.T.(3%,) T(%, %,). Then C is in Exist, and C oA is #.R.®, and by the
definition, it is in X,,, (the proof that ¥, formulae yield expressions in [f1; is
analogous).

(iij The proof is again by induction on i, and the case i =0 holds by the
definition. Let Q be a query in X2, represented by C o A;,...A4,), where C is in
Exist and has the form %.R.(3%,) ®(R), and 4, is in II, having the form 7.Z.(Y7;)
(37;.,) -+ (O7;,;) ¥;. Here R = (R,,, R,), and @ and the ¥; are quantifier-free. Then
substituting, for every j, (V¥) - (@7;;) ¥; for R; in @, moving negations to the
right of quantifiers, and converting to prenex normal form (by first moving all leading
existential quantifiers to the front, then all leading universal quantifers, etc.) results in
an expression for Q of the form ZR.®, where @ is in 3,. 1

Trivial consequences of this lemma are that ? =E, and for i > 1, 2¢,, = 29 F,
n% ,=M%-E, and Z¢=EocEocEo --- o E (i times). We could also have defined
the first-order query hierarchy by simply taking projections on the sets defined at the
previous level. Thus, if we let P denote the set of projection queries represented by
expressions of the form

X.R.(AP)R(%, 7),

then we have

LEMMA 3.6. X% =PolIIl

It may be noted that for i > 1, P o £¢ = Z%. Another consequence of Lemma 3.5 is
that the first-order Q-hierarchy describes precisely the set of first-order queries.

THEOREM 3.7. (), Z¢=),1I¢=F.

Since composition can be thought of as a way of executing a query and saving the
answer for future use, any query language which can express the existential queries
and also store the result of queries on the data base has the power to compute any
first-order query. This is, in fact, the way by which Query by Example computes all
first-order queries [24] and is therefore said to be complete in the sense of Codd [4]-

The next result indicates some connection between the first-order query hierarchy
and the polynomial-time hierarchy {Z7, IT?} in complexity theory [21]. Given a data
base, it indicates the complexity of answering a query in X? as a function of the
length of the representation of the query.

DEFINITION. B =(D,R,,...,R,) is trivial if, for each i, either R, is empty, or
R;= D¢ (i.e., R, is full). Otherwise, the data base is nontrivial.

RELATIONAL QUERIES 107

_ THEOREM 3.8. For any i and nontrivial data base B, the set {d,A|A €Z; and
d € Q,(B)} is complete in X7,

Proof. Let C denote {d,A|A € Z; and d € Q,(B)}.

(i) Show C€&€ZXf. As in the proof of Lemma 3.5(ii), any 4 €X; can be
converted into the equivalent form X.R.(3%,,)(VX,,) -+ (O%,,) P(X, X, ,..), where @
is quantifier-free, and this conversion does not increase the number of symbols in 4.
Then (d, 4) € C iff (for some appropriate polynomial poly):

Guy. lu |l < poly(l(d, A))
(Vi |yl < poly(l(d, I)) -+ (On;. | u;]| < poly(i(d, 4)I))
/\ (u; encodes a vector d)A D(d,d, e diy)
j

holds. Here the u;’s are bit strings encoding vectors over the domain D of B, |lull,
(@, A)|| denote the length (in bits) of u;, (d,4). This shows_that C € X7 since the
matrix of the formula is computable in time polynomial in [|(d, 4)|-

(ii) Show C is complete in ¥ by reducing quantified Boolean formulae [21] to
C: let T be a relation (of rank a) in B = (D, R) such that T# { }, and T# D,. Given
a quantified Boolean formula ¥ of the form

@Py1 Pyases Py YYPy s Pay) oo (OP 15y Pr) PPy yseer Pip)s

where the P; /s are propositional symbols, it is not hard to show that ¥ is true iff
((), A4) € C, where 4 has the form (with each X; being a vector of a variables),

ORGF s By s 1) -+ (OF s £y) PTE Do TEs)

(since by Lemma 3.5, 4 € X)). Then the result follows from the completeness for
quantified Boolean formulae. |

It may be noted that for any trivial data base B, and any i, the set {d, 4|4 € X,
and d € Q,(B)} is computable in polynomial time.

We can also show the strictness of the first-order query hierarchy, although it is
not known whether or not the polynomial-time hierarchy is strict.

LEMMA 3.9. For any i, 2% <+ X?,,.
Proof. Let A be the expression
().Start, Move, Win.(3x,)(3x,)(¥x,)(3x;) -+ (Ox;,y)
Start(x,) A Move(x,, x,) A Move(x,, X,) A --- A Move(x;, x;,) > Win{x; . D)

The formula essentially states that the first player in an i 4+ 1 half-move game has a
winning strategy. The domain elements correspond to game positions, Move

108 CHANDRA AND HAREL

corresponds to the next-move relation, and Win determines if the position is a win for
the first player. Now by Lemma 3.5, the corresponding query Q, is in L% ,. We
show by the technique of Ehrenfeucht—Fraissé games [10, 13] that O, & Z¢ by
showing that if the expression

C = ().Start, Move, Win.(37,)(V7,) --- (@'7,)®

represents a query Q. in L%, then there are data bases B, B’ such that Q,(B) = {()},
Q,B')={ |}, but Q.(B)=Q.(B’). Note that {()} =D° and { }=D°—D"+D".
Let k be the maximum number of variables in any y;.

We first consider the case where i is odd. We shall define data bases B; and B;
- inductively as follows. B, = (D,, Start,, Move,, Win,) and Bj = (D, Start,, Move,,

Winj), where D, = {d}, Start,= Win, = {(d)}, Move, = Winj={ }. For any j, let
B;=(D;, Start;, Move;, Win;), B/=(D;, Start;, Move;, Winj), with D;=
{d,,d,,...,d,}, and Start; = {d,}. Then B, , , = (D, ,,, Start;,,, Move;,,, Win,, ,) and
B}, =(Dy,,, Start;,,, Move;,,, Winj,), where D;, ;= {dy, dy,,, dy 35y dy pss
diy1,q} Start, = {d,}, Move;, , = {(dy,d,)| 1 <P <k +1} U, 4,d,,)| 1 <P
< k+ 1, (d,.d,) € Move;), Win,,, = {d, .| d,€ Win}} U {d,,| 2<p < k+1,
d, € Win;}, and Win/, = {d, ,| | <p < k+ 1, d, € Win;}. Now let B be B, ,, and
B’ be B],,. The B;, B] can be thought of as game trees defined inductively as in
Fig. 1, and it is not hard to see that the expression A4 is true for B, (by choosing x,
to be d, ,; recall that i is odd) but false for B/, ,.

We now play an Ehrenfeucht—Fraissé game on B, B’ as follows: The first player
tries to demonstrate that B, B’ are not isomorphic, and the second player tries to
prevent him from doing so. The first player chooses any sequence of k (not
necessarily distinct) elements from the domain of either B or B’ (the domains can be
thought of as being tagged to make them distinct). Let us say he picks k elements
from B. The second player chooses a corresponding sequence of k elements from the
other data base, i.e. from B’. This completes one move. Now the first player chooses
k elements from B’, and the second player chooses some corresponding k elements
from B. This completes the second move. Next, the first player again chooses k
elements from B, and so on for a total of i moves. At that point, let d,, d,,..., d;; be
the elements chosen by the two players from B, and dj, d3,..., d}; the corresponding
elements from B’. Then the second player wins if (d,,..., d;) are isomorphic to
(d},....d}y), ie., if for every p, Win(d,) holds in B iff Win’(d,) holds holds in B’,

13000

likewise for Start, and for every p, g, Move(d,, d,) holds in B iff Move'(d,, d;)holds

FiG. 1. ®, win for first player; O, not a win for first player.

RELATIONAL QUERIES 109

in B’. Otherwise, the first player wins. From (a minor modification of) the
Ehrenfeucht—Fraissé theorem [10, 13], it follows that if the second player has a
winning strategy, then Q(B) = Qc(B’). We shall show that the second player indeed
has a winning strategy. In fact, we shall show that the second player wins even an
i + 1 move game, where the first player must start choosing elements from B’ = B{,,.
The proof is by induction on the number of moves m (then m=i+ 1 gives the
desired result), and the case m =0 is trivial. For an m move game, m > 1, we shall,
for convenience, rename the elements in the domain of B’ from dy, d, 1) dy.n to
dy, d} s di,n- The second player uses the following strategy: Whenever the first
player chooses d, or dj, the second player chooses the other one. Suppose the first
player chooses elements dj, g s...s @y, g, There must be some number < k + 1 which
is not included in p,,..., p,. Without loss of generality, suppose for all i, p;+ 1 (can
be obtained by systematic renaming of the elements in Dy,). The second player then
chooses d, 4 s dp, o> and subsequently, if the first player ever chooses d, , (resp.
d) ,) p > 2, the second player responds with d; , (resp. d,, ;). These choices can never
be used by the first player to show nonisomorphism. Therefore his subsequent moves
may be confined to elements of the form d, ,,d},, starting with the former. The
game is then reduced to an m — 1 move game played on B, _,,B,_,, starting with
the first player choosing from Bj,_,, which, by the induction hypothesis, is a win for
the second player. This completes the induction, and the proof for odd i. ‘
The proof for even i is similar. Data bases B;, B are defined as before, except that
the inductive definition is started with Win, = { }, and Wing = {d}. This is needed to
show that with the definitions B =B,,, and B’ =B/, Q,(B)={()}, 0,B)=1{ }
The Ehrenfeucht—Fraissé game, however, works out identically with the previous

case. I

THEOREM 3.10. For any i > 1, 2%+ IT?,

Proof. For any i>1, if Z¢=1I% then Z& =Poll}=Po 2?9=2¢ (by
Lemma 3.6 and the remark following it), which contradicts Lemma 39. 1

THEOREM 3.11. For any i, E¢ UM c# 2%, NII?, .

Proof. 1t suffices (from Lemma 3.4(iii)) to show “#”. From Theorem 3.10, there
is a query Q in ¢ which is not in IT¢. Say Q is represented by ZR.®. Let Tbe a
new zero-ary predicate symbol, and consider the query Q' represented by
#(R, T).(TA®)V (-TA—&). By using Lemma3.5, Q'€ ne,,, but is not
in Z2U Y, for if say Q' € Xf, represented by %.(R, T).¥(T), then —Q can be
represented by X.R.¥ (false), implying that —Q € X¢; a contradiction. The case
Q' € 1? is similar. 11

Theorems 3.10 and 3.11 establish the strictness of the first-order hierarchy. Keisler
and Walkoe [18] have proved similar looking results establishing that no two quan-
tifier prefixes of the same length have the same power of expression over finite data
bases. The two results are, however, independent, since in [18] the length of the prefix

110 CHANDRA AND HAREL

is of interest and not its type. Thus, that 33¥ = ¥V follows from |18] and not from
the present paper, and that 3V # VVV follows from the present paper and not
from [18].

4. FIXPOINT QUERIES

In this section the first-order hierarchy is extended to include classes £2 and 172
for all @ < w?, rather than just a < w. The idea is to obtain Z2 for a limit ordinal «
by attaching a least fixpoint operator Y to queries in the sets defined for smaller
ordinals, i.e. to 2%, for § < a.

DEFINITION. Let LY be the first-order language L of Section 3, augmented with
the additional formation rule: Let @ be in LY, and let the predicate symbol R of rank
a appear positively in @ (i.e., each free occurrence of R is under an even number of
negations). Then (Z.YR(X)) @ is in LY, where X is an a-tuple of distinct variables and
7 is also an a-tuple of (not necessarily distinct) variables. Let ¥ denote (Z.YR(X))®.
The variables of ¥ are bound in ¥. The free variables of ¥ are the free variables of @
(excluding ¥) in addition to the variables in z. The free predicate symbols of ¥ are
those that are free in @, excluding R (which is bound in ¥). LY is, of course, closed
under the logical connectives A, V, —, and quantifiers 3, V.

DEFINITION. Let ¥ denote (Z.YR(X)) ®(R, X, y) as in the above definition, with y
being a vector (without duplicates) of the free variables in @, other than those in X.
Given meanings for the predicate symbols free in @ (excluding R), and given an
assignment & which assigns 8(u) € D for each variable u free in ¥ (for a vector i =
(4, -,) we shall write 8() for ((u,),..., 8(u,))), define an a-ary relation T as
follows:

(i) For every d, T(d) holds iff ®(T,d, (7)) (or less formally: T= &(T), i.e.,
T is a fixpoint of @), and

(ii) For any a-ary relation T, if for every d, 7'(d) holds iff @(7”,d, 6())
does, then T< T” (i.e., T is the least fixpoint).

Then the formula ¥ is satisfied by the assignment 8 iff T(6(2)) holds.

An equivalent definition of fixpoints could have been obtained by combining the
free variables j in the above definition with the bound variables X and writing the
formulas as (Z'.YR') @'. Here the length of Z7, the arity of R’ and the number of free
variables in @’ are equal.

The next theorem shows that such a T exists, and therefore the definition is sound.

THEOREM 4.1. The relation T in the above definition exists, and satisfies
T=;T;, where Ty=1{ } and T; ,={d| ©(T;, d, 8(7)) holds}.

RELATIONAL QUERIES 111

Proof. It is not hard to show that positivity implies monotonicity. Hence, since
{teT, T, = {Jl 2({ 1, d, ()} < {JI (T, d, 6(7))} =T,. By induction on i
T,cT,,,, for every i. Since the domain is finite, there is a j such that U, T;=T,.
Then d € T;,, iff (T;,,, d, 8(7)) holds. Thus 7 is a fixpoint of @ in the sense of
clause (i) of the definition. Now to show that (J; T; =T/ is the least such (clause (ii)),
let T' satisfy the equivalence 7'(d) iff ®(T",d,8(y)). We show that T, =T’ by
induction on i Clearly, T,={ }<T’. Assume 7,cT’. Then T, , = {d|
@(T,,d, 0(7)} < {d| ©(T",d, (7))} = T" (by the monotonicity of @). B

This version of the Knaster—Tarski theorem illustrates the usual way of calculating
least fixpoints by a sequence of approximations from below, which, in this case, is
finite.

Remark. In many cases, the 7 in (£.YR(¥))® will be simply X, but formally we
want to allow identification of variables as, e.g., in ((v, w,v).YR(X))®, without
having to resort to conjunctions with equality terms. Whenever there is no confusion
we shall write (Z.YR(X))¢® simply as (YR)®.

DEFINITION. Let Fixpoint be the language consisting of all expressions of the
form X.R®, where @ is a formula of LY, ¥ is a vector of distinct variables containing
at least those appearing free in @, and R is a vector of distinct predicate symbols
containing at least those appearing free in @. By the previous definition it should be
clear how to associate a query Q, with an expression 4 € Fixpoint. In particular, if
A = (Z.YR(X)) ®(R, %, 7), then Q,(R,,..., R,) = {6(2) | T(6(2)), all 6}.

DerINITION (Fixpoint queries). For I' < Fixpoint, let Qr = {Q,|A4 € I'}. The set
Orixpoint 18 called the set of Fixpoint queries, and is denoted FP.

The definitions of negation (—) and substitution (o) in Section 3 extend from the
set First of first-order expressions to Fixpoint, and Lemmas 3.1, 3.2 hold with
Fixpoint replacing First.

DEFINITION. Let 4 = %.(R, ..., R,) @ be an expression in Fixpoint. Any expression
in Fixpoint of the form 7.(R; ., R;_ ;s Ry y 150ees Rp)-Z(YR,) P is called a fixpoint of A.
The set of fixpoints of 4 is denoted YA. Also, for I' = Fixpoint, let YI' =) ;. YA.
Thus, for any A € Fixpoint, Q,, < FP.

EXAMPLE. Let @ be
xX=) \ (32)(R(X, Z) A R’(Z’ y))

Let A= (x,y).(R,R").® and K = (x, y).R.((x, y).YR'(x, y))® be expressions in
Fixpoint. Then K is a fixpoint of 4, and the set Q,, includes the reflexive transitive
closure query Q, denoted by TC. Since 4 € L,, we have TC € YZ9. Thus the
reflexive transitive closure can be described as a fixpoint of an existential query.

112 CHANDRA AND HAREL

For a set S of queries such as F, E, FP, etc., with which an underlying set I" of
expressions is clearly associated, we shall loosely use the notation YS to stand for
Q,r. For example, YF is the set of queries which are represented by fixpoints of first-

order expressions.
With this convention in mind, FP is the closure of E (and, for that matter, of F)

under o and Y. It is also the closure of C (the set of conjunctive queries) under —, o,

and Y.
We now define the fixpoint hierarchy.

DEerFINITION. Define the collection of sets of expressions of Fixpoint{Z,,, Il }, . .»
as follows:
() Z,={*R.®| D quantifier-free},
(i) Z,,,=ExistolIl,, for any a,
(iii) Z,=Y(UgcaZp) for a limit ordinal @, and
(iv)' n,=-x,, for any a.

DEFINITION. The collection of sets of queries {Z2, 112}, ., where 2 = Q, and
n?= 11, is called the Fixpoint query hierarchy, or Fixpoint hierarchy, for short.

We justify our use of a single application of Y in clause (iii).

LEmMMA 4.2. Foranyi>0, Y22 =22 .
(Note that w - i is i times the ordinal w; i.e., the ith application of a fixpoint.)

Proof. The proof of this lemma is a straightforward generalization of a result
appearing in [8] to the effect that mutual and double fixpoints can be collapsed into
single fixpoints. [

Table I illustrates the X2 classes. The notation in the table is justified by the
following generalization of Theorem 3.7:

THEOREM 4.3. For every k, (J;22.,,,=F o %2 ,.

TABLE I

ﬁ Eg Zgﬂ Zgu "'Zgﬁ AN Ulzgn
0 xg E EcE LI F

YF EoYF EocEoYF - E'o YF ... FoYF

w -1
w-2 Y(FoYF) EoY([FoYF) EoEoY({FoVYF) E'oY(FoYF)-- FoY(FoYF)

RELATIONAL QUERIES 113

Progf. UjZS-k+j=Uj2jQ°Eg.k=(UjEjQ)"Eg.k=F°Eg-k~ |

The following too is straightforward:

THEOREM 4.4. (), ., Z¢=FP.

Since FP is closed under the operations from which the hierarchy is constructed,
and since we know that the union of the hierarchy is FP, it is obvious that an attempt
to extend the definition to ordinals higher than w? does not result in any new queries.

Most of the queries considered in the literature are associated with sets in the Q
hierarchy. The transitive closure query TC is clearly in 2¢ = YF by Example 4.1.
Also, [2] suggested extending Codd’s relational algebra [4] by allowing least
fixpoints to be applied to expressions in the algebra. Since the set of queries
expressible in the relational algebra is precisely F (the set of queries expressible in the
first-order relational calculus), it appears that the language suggested in [2] is F o YF,
i.e. contained in X% _,.

It is possible to view the language of Horn-clause logic programs as a query
language (see e.g., |15, 17, 22]). It can be shown that the queries definable in this
language correspond to YE™*, where E* is the set of queries represented by positive
existential first-order formulae. Thus Horn queries are strictly contained in YF.
See [8].

An interesting question concerns the strictness of the fixpoint hierarchy, or, to be
more precise, the possibility of generalizing Theorems 3.10 and 3.11.

To this end, in response to the appearance of this question in a preliminary version
of this paper [7], Immerman [16] has shown that in fact FP=2x¢, ., ie., that a
single fixpoint suffices to obtain the entire hierarchy. This surprising result is
obtained by first showing how to express negations of fixpoints as fixpoints of wider
degree. Multiple and nested fixpoints are then collapsed into single ones by additional
widening, as in [8]. In particular, Immerman’s result shows how to encode —7C in
YF by a fixpoint of a 7-ary relation.

It is of some interest, expecially in view of [16], to investigate the fixpoint
hierarchies obtained by restricting the width of bound relation symbols.

DEerFINITION. For I' © Fixpoint, let I'V! be those formulas in I' where the fixpoint
operator Y is applied to relations of at most rank j. Qo] is denoted by FPUL,
and the appropriate hierarchies of formulas and queries by ZY!, I}/ and = euy reul,
respectively.

Clearly, the first w steps of each restricted hierarchy are the same, since they
contain no fixpoints. Also, it is easy to see that for each j> 1, YFUI % F, since
TC & F (|2]), but TC € Z2V1. Now, although by [16] —TC € YF, we can show the
following:

THEOREM 4.5. —TC is not in YF'?.

114 CHANDRA AND HAREL

Proof. We show that a contradiction results from assuming that —TC € YF'l,
Let —TC be representable by the expression

A= (x, »).R.(YR") ®(R,R", £),

where @ is a first-order formula, R” is binary and 7 is a sequence of the free
variables in @, which may contain x, y. Consider the data bases B, = (D,,R,), B, =
(D.,R.), where D,={d,,..d,,}, D,=1{d},...ds,}, R,={(d,,d;), (dy,d3)ses
(@yn_15d20)s (d2g>d1)}s and Ry = {(d}, di)seees (15 d7)s (d), A} I {(d) 115 dry2)ores
(ds,_1>d5,)s (dhn»dl, 1)} Essentially, B, consists of a cycle of length 2n, B, consists
of two cycles, each of length n. Now —TC(B,)=0Q,(B,)={ }; hence given any
assignment 6 to the variables Z, using Theorem 4.1, @(R,,, { }, #(Z)) must be false.'
Hence, 3Z®(R, { },Z) is false in B,. We shall show by using Ehrenfeucht—Fraissé
games that, for large enough n, the formula 3Z@(R, { }, Z) cannot distinguish B, from
B}, i.e., it is false in B). But then Q,(B))={ } # —TC(B}), which is the desired con-
tradiction.

Consider an Ehrenfeucht—Fraissé game played on B,, B, where each player
chooses one element at a time. We show that the second player wins a k, move game
if n > 2k,

We first introduce some notation. For e € D, (resp. D)) define e + 1 =e,, where
R(e,e,) (resp. R'(e,e,)). For e,e,€DUD’', define e+0=e, e+ (i+1)=
(e+i)+1,e—i=e, where e, +i=e, e—e,=min{j>0|e+ j=e;} (here min{ }
is o), and dist(e, e;) = min{e —e,, e, — e}. Essentially, e + i denotes the element in
the cycle i steps after e, and dist(e, e;) denotes the distance between e and e,. An m-
chain is a sequence of elements é=e,, e,,..., €, such that for all i, ¢;, , —e; < m, and
> (e;., —e;) <n—m. Two chains e,,..,e,, and fi,..., f, are m-disjoint if for each
e;,f; we have dist(e;, f;) > m, and they are isomorphic if p=q and for all i,
e;,.—e;=f;,,—J;- Essentially, a chain consists of a sequence of elements close
together; chains are disjoint if they are far apart, and they are isomorphic if the
spacings within the chains match. An element e is m-free from a chain e,,..., ¢, if for
all i, dist(e, e;) > m.

The second player wins by the following strategy. Inductively, with k& moves
remaining (the induction will be on k starting from k, and decreasing to 0), the
elements from D (resp. D') chosen by both players can be partitioned into several 2k
chains é,,é,,..,e, (resp. &|,..,&;) that are mutually 2*-disjoint; and ¢&;, & are
isomorphic for each i. Since a p-element 2*-chain has at most 1 + p 2* elements that
are not 2! free from it, it follows from a counting argument that there will be an
element in D (resp. D’) which is 2~ '-free from each ¢&; (resp. /) (note that the total
number of distinct elements in the chains is no more than k, — k, and n > 2% "), The
inductive hypothesis is trivially true in the beginning with no elements chosen, and k,

! Note that this is so only because R” is binary and thus each # for which @(R,,{ }, #(2)) is true
contributes towards the least fixpoint of @, hence towards —TC(B,) which should be empty. If R” were,
say, ternary it might have been possible to have (x,x, y).R.YR"® encode —TC and indeed
@(R, { }, 8(2)) might be true, but contributing no tuples of the form (a. a, b).

RELATIONAL QUERIES 115

moves remaining. Now, with k moves remaining, and the inductive hypothesis
holding, say the first player picks an element d € D (the case when he picks an
element from D' is analogous). It can be checked there are two cases: (i) d is k-1
free from all &,, and (i) d is not 2~ '-free from exactly one &;. In case (i), the second
player picks any element d’ in D’ which is 2k=1free from each &!. Then d and d’
form (trivially isomorphic) 2%~ '-chains, and the e*-chains &;, &/ partition into one or
more 2% !-chains each. The resulting chains all obey the induction hypothesis for
k — 1. In case (ii), let d =e + j, where e is in €; and j < 2k=1 (the case d=e — j is
similar), and e’ be the element in & corresponding to e; then the second player
chooses e’ + j. Again it can be seen that the induction hypothesis is satisfied for
k — 1. Finally, with k = 0, i.e., no move remaining, from the induction hypothesis, the
second player wins the game. |

Remark. Aho and Ullman [2] show that TC is not in F. In fact, Fagin [12]
showed that a problem closely related to TC (that of expressing whether all elements
of the domain are connected by R) is not expressible in second-order predicate
calculus, where the second-order quantifiers are all universal and monadic (formula is
in prenex form and second-order quantifiers precede first-order quantifiers).

Thus, Theorem 4.5, together with Theorem 3.10 yields

COROLLARY 4.6. For a < w, X2+ 212,

We can in fact prove

THEOREM 4.7. For each j> 1, a < w, 2V 19U,

Sketch of proof. For a < w, this is precisely Theorem 3.10. To show the claim
for a = w, consider the j-fold transitive closure query, TCY! of type () — j, defined as
follows:

(X1 s XY SRy s %) V (39) (\Z (SO s Xy 3| /i) A S (ger)] y\i])),

where X[y/i] and X|y\i] stand, respectively, for the vectors obtained from X by
inserting y after or before the ith element of X. As an example, the 3-fold transitive
closure of a ternary relation R is obtained by searching for 4-tuples x, y, z, w with
(x, y,z) and (, z, w) in the closure and adding (x, z, w) and (x, y, w) to the closure.
Since the above definition shows that TCU'e X2V it suffices to show
—TCU1 ¢ £9U), This is established just as in Theorem 4.5 by considering models BY/!
and B/ consisting of one cycle of length 2n and two, each of length n, respectively,
in which each j consecutive elements are related via R. The argument that for
sufficiently large n a first-order formula cannot distinguish between the two models is
almost identical. Details are left to the reader. [

We pose the following questions:

116 CHANDRA AND HAREL

Open Question. Is 22U = M2 for all j> 1, a < w??
Clearly FPY1 c FPU*! for g > 1:
Open Question. 1s FPUl « FPU*+Y for all j> 17
In response to [7], Gaifman [14] has shown the following:
(1) 222« 122 for all i,
(2) FP¥ % FpLl,

The general questions, though, remain open.
Finally, we state the following fact comparing the Fixpoint hierarchy with the
second-order queries:

DEFINITION (Second-order queries). Let SO be the set of queries expressible by
expressions of the form %.R.®, where @ is a second-order formula (second-order
quantifiers are over relations) whose free relation symbols are from R (corresponding
to the relations of a data base) and = (equality), which has no function symbols, and
whose free variables are from .

ProrosITION 4.8. FP = SO.

It is easy to see that FP — SO, since YR.® can be written in SO in the general
form corresponding to R = #(R) AVR’' (R’ = ®(R')— R cR’'). FP # SO is proved
in the next section.

5. CoMPLEXITY CLASSES FOR QUERIES

As mentioned in the introduction, we shall use complexity-theoretic methods to
classify some powerful query languages and their associated sets of queries. We
would like to define, say, the class of queries that can be computed in polynomial
time (i.e., polynomial in the data base), and likewise for queries that can be computed
in polynomial space, exponential time, etc. Recalling that a query is a partial
recursive function from data bases to relations, we may simply restrict attention to
those queries Q for which the set {(B, Q(B))| B is a data base} is a language in the
appropriate complexity class. We chose a slightly different definition.

DEFINITION. Let PTIME (resp. EXPTIME, LOGSPACE, PSPACE) be the class
of languages S such that there is a polynomial P(n) and a deterministic Turing
machine which accepts S in time P(n) (resp. time 27, space log(P(n)), space P(n)).
Here n refers to the length of the input. Let PHIER = (), Z¥ be the polynomial-time
hierarchy [21].

RELATIONAL QUERIES 117

DEerFINITION. If C is a class of sets (e.g., a complexity class like PTIME), then the
class QC of queries in C is defined to be

QC = {Q|Q is a total computable query, and {(B,X)|xX € Q(B)} € C}.

Here we assume some standard encoding of (B, ¥) into strings. This defines the set of
queries computable in polynomial time QPTIME, in polynomial space QPSPACE,
etc.

Note that the above definition ignores queries that are not total. This is reasonable
for all the complexity classes.

We have defined complexity classes for queries by the problem of recognizing if a
tuple is in the output. It may be noted that the space/time complexity of computing
the output is closely related, because if {(B,X)|x € Q(B)} can be recognized in time
T(n), T(n) > n (resp. space S(n), S(n) > log(n)), then Q(B) can be computed in time
n*T(n) for some k (resp. in space S(n)). Thus, for example, if Q € QPTIME, then
given any B, Q(B) can be computed in time polynomial in the length of the standard
encoding of B.

The reader may contrast this definition of the complexity of queries with
Theorem 3.8 (see also [9, Sect. 4]), where the data base is fixed and the input
includes the representation of the query. Following a preliminary version of this
paper [7], these two types of complexities have been further investigated by Vardi
[23] who has shown that in a number of instances these complexities differ by one
exponential.

Enumerating the queries in a complexity class is not immediate from an
enumeration of the Turing machines in that class. The difficulty is with the
consistency criterion (condition (iii) in the definition of computable queries,
Section 2), which requires that queries preserve isomorphisms. This condition is, of
course, not decidable for an arbitrary Turing machine. One can, however, modify
Turing machines so as to satisfy the consistency criterion.

_ DEFINITION. Given a class C = {C,, C,,...} of languages, the set of queries QC
has an effective enumeration S if S < {0, 1,...} is total recursive and

(i) Q{C,|i€S}=0QC, and
(i) Vi€ S IQ € QC such that C,= {(B, ¥)| % € Q(B)).

CONSTRUCTION. Given &, b, and a Turing machine M that halts on all inputs,
construct a Turing machine M’ as follows: On input (B, d), where B = (D, R) is of
type @ and d € D*, M’ computes the least (in some well ordering) B’ isomorphic to
B. Then M’ accepts the input (B, d) iff there is an isomorphism 4 mapping B to B’
(write B "> B’) and M accepts the input (B’, h(d)). Let Q,, be a function from data
bases to relations such that Q,(B)= {d|M accepts (B,d)}. Let Q,, be similarly
defined. With these definitions it is easy to show

118 CHANDRA AND HAREL

LemMA S5.1. (i) Q- is a computable quary, and (ii) if Q, is a computable query
of type @— b, then @y = Q.

This lemma gives us effective enumerations of QPSPACE, QEXPTIME, and
classes with greater space or time resource. This does not, however, give an effective
enumeration of QPTIME, because it is not known whether B’ in the construction can
be computed in polynomial time.

Open Question. Does QPTIME have an effective enumeration?

LEMMA 5.2. For i>2, QXF, QII? have effective enumerations; and so does
QPHIER.

Proof. Given a fixed encoding of data bases into strings, define B < B’ to mean
either that the encoding of B is shorter than that of B, or that they have equal length
and the encoding of B precedes that of B’ in some fixed lexicographic ordering. Let
B < B’ mean that B < B’ or B=B'. Given any formula @(B, ¥) of the form

@y)(¥py) -+ (@) P(B, X, ¥ 15es Ji)

representing a set in IT?, i.e., the quantified variables are polynomially bo_unded in
length, and P is polynomial-time computable, construct the formula @'(B, d),

(3B', h)(B’ < B A B "~ B' A (YB",k)(B <"~ B" > B' <B") N (B, h(X)))

(this is essentially the same construction taking M to M’ above). If i > 2, @' can be
converted to prenex form (Ay)(¥y}) - (@y]) P'(B, % yises y!) and {(B,X)]
@(B, X)) € Zf. A formula ¥Y(B, X) is defined to be consistent if whenever B «"— B,
¥(B, x) iff ¥(B', h(X)). Then it can be seen that @' is consistent, and that whenever
@ is consistent, then @(B, x) iff @'(B, %). Thus the @’ formulas provide an effective
enumeration for QX for i > 2. The case for QIT? is similar, only this time &’ is
constructed as

(YB',h)(B' < BAB "> B’ A (YB",k)B %5 B" - B’ < B")) - ®(B’, h(X))),
and the case of PQHIER follows from either of these constructions. 1

The next theorem states that the complexity classes for queries are ordered in much
the same way as the standard complexity classes.

DEFINITION. We say that a class C is closed under logspace reducibility if
whenever S, is in C and S, is many-one logspace reducible [19, 21] to S,, then S, is
in C, and C& {{ },Z*} for alphabet Z. All the usual complexity classes (such as
LOGSPACE, PTIME, PHIER, PSPACE, etc.) are closed under logspace
reducibility.

TueoreM 5.3. If C,, C, are closed under logspace reducibility, then QC, < QC,
iff C,cC,.

RELATIONAL QUERIES 119

Proof. The if-part is immediate. For the other direction, assume C, & C,. Then
there is a set S < {0, 1}* in C, but not in C,. For any x € {0, 1}*, x =x,x, -+ X,
let B, be a data base of type (2,1) having domain D ={a,,..,q,} and R, =
{(a;,a;,,)|1<i<k} and R,={a;|x;=1}. From logspace reducibility, S € C,
(resp. C,) iff {(B,())|3x € S, h such that B «"> B } € C, (resp. C,). This follows
by observing that an-x such that B «*— B, can be found in log space. Let Q be the
query of type (2, 1)— 0 such that Q(B) = {()} if B «"> B, for some & and some
x€ S, and Q(B)={ } otherwise. Then Q € QC,, but not Q € 0C,. |

We now compare the complexity classes of queries with FP and SO (the set of
second-order definable queries, Section 4).

THEOREM 5.4. FP c# QPTIME < QPHIER = SO <= CQ.

Remark. The question “QPTIME = QPHIER?” is open. From Theorem 5.3, the
answer is “yes” iff PTIME = PHIER which in turn holds iff PTIME = NPTIME (or,
in usual terminology, P = NP) which is an outstanding open problem. Also,
QPHIER < QPSPACE, but QPHIER = QPSPACE iff PHIER = PSPACE, which is
also an open problem of complexity theory.

Proof. (i) FPc QPTIME. We show by induction on the structure of formulae
@ in LY (the language of fixpoint formulae) that

. For every appropriate %, R, the query represented by %.R.® is in QPTIME. (x)

Property (*) holds for the atomic formulae, and if it holds for @, ¥, it is immediately
seen to hold for @ V ¥, —@, and (Ix) @ (because the number of possible values for x
is no more than the size of the data base), and hence for @ A ¥, (Vx)®. Finally, if
(x) holds for @(R, x,), we show that it also holds for (Z.YR(X)) @(R, X, 7). Denote
the latter formula by Y. Given any assignment & mapping the free variables of ¥ into
domain elements, the construction (J; 7; of Theorem 4.1 can be done in polynomial
time. Let n be the number of elements in the domain of the data base and R have
rank a, then given any assignment §’ to variables in X, 7, and relation 7T for R, if it
can be determined whether or not @(7, §'(x,)) holds in time P(|(B, T)||) for some
polynomial P, then given T}, T;,, can be computed in time n*P(|(B, T;)||), and since
tuples are never deleted from 7,, the process stops at T'=T,; hence checking
whether or not W(0(Z, 7)) holds in B takes time polynomial in | B||, thereby proving
that property (*) holds for Y.

(ii) FP = QPTIME. This is shown in the next section by showing that for the
set RQ of ranked queries, FP — RQ, but QPTIME & RQ.

(iii) QPTIME — QPHIER is immediate from Theorem 5.3.

(iv) SO c QPHIER. This is immediate upon observing that second-order
quantifiers can be thought of as polynomially bounded quantifiers.

(v) QPHIER < SO. See |21, pp. 7-8].
(vi) SO <=# CQ follows from (iv), (v), and Theorem 5.3. [

120 CHANDRA AND HAREL
6. AN APPLICATION

In this section we use the classes of queries of Sections 4, 5 to characterize a class
of queries defined in quite a different manner. Other such characterizations can be
fund in [5]. Chandra and Harel [6] demonstrated a query language QL which could
express all the computable queries. The variables of the language take relations as
values, and relational terms can be built up using relational operators. Programs in
QL consist of assignment statements, composed by sequencing and a looping
construct. A key aspect of QL which gives it its power is that variables are not typed;
they can take relations of arbitrary rank as values. The width of a relation can then
be used in unconventional ways, e.g., as a counter to simulate a Turing machine
computation. A" natural question that arises is what happens if all variables are
ranked? We shall examine this question next.

Let the query language RQL be defined to contain the following:

Variables: X3, X0, X3 pes Xbs X erey X sunn.
Terms: E,R;, X7,
and if 1, ¢, ¢, are terms, then so are the following:

t X ty,

1 \Utly,

-ﬂt

Proj,(¢) for integer i > 1
Perm(t) for a permutation &

Programs: X¢ « ¢, where t is a term
and if P, P,, P, are programs, then so are the following:
(P, Py),
while X{ # { } do P.

Variable X¢ has rank a. This superscript will be omitted when no confusion results.
All variables are initialized to { }. All terms are also ranked. Here E has rank 2, and
its value is {(d,d)|d € D}, where B = (D, R) is the given input data base. The term
t, X t, has value {(d,&)|dE¢t,, EE 1,}; t;Ut, is set union if ¢,,t, have the same
rank, and is empty otherwise; —¢ has value D® — ¢, where ¢ has rank a; Proj,(¢) has
value {{d,,rd;_1sdiyyoesdg)| (@yssd,) Et); and, given a permutation 6 on
{1,...,a}, where ¢ has rank a, the value Permgy(t) = {6(d)| d € t}. The semantics of
programs is straightforward (if ¢ is not of rank a, then X7 « ¢ assigns { } to X’ DIt
may be noted that an if-then-else construct can be simulated in RQL, and will be
used in constructions below, as will other constructs which are easily simulated (see
[6]). Given a program, we shall associate with it an output variable X whose value
will contain the output in case the computation terminates.

DErINITION. Given a program P, let Q, denote the corresponding query, and let
RQ denote the set {Q, | P halts for all appropriate B}.

RELATIONAL QUERIES 121

It may be noted that the restriction to total queries is not a serious one. For one
thing, these are generally the queries of interest; for another, programs in RQL cycle
only by repeating values of all their variables after an a priori time bound, and a
clock can be attached to stop the computation if it runs too long. Totality is also
needed to be able to compare the queries with queries defined from complexity
classes.

THEOREM 6.1. FP < RQ —# QPSPACE.

Proof. RQ c QPSPACE is immediate upon noting that the space needed for a
typed relation is bounded by a polynomial, and RQ # QPSPACE follows from
Theorem 6.2 which is proved independently. We now prove that FP < RQ. The proof
is by induction on the formulae in LY. It is easy to see how atomic formulae,
connectives V, —, and quantifier 3 (and hence also A, V) can be represented simply
by terms in RQL. In general, a formula ¥ € LY will be represented by a program
P € RQL with one free variable for each free relation symbol R in ¥. Let ¥ be

(Z.YR(X)) P(R, %,)

and assume for simplicity that all variables in Z are distinct, and none is in j.

Suppose (X4, X, 7) can be represented by a program P(X“) with output variable
X5+ (|%|=a, |5|=b), that &(X°d, &) holds iff (d,&)€X{*® when P(X?)
_terminates, provided its free variables are initialized appropriately. Program P can be
modified to a program P’(X°*?) with output variable X{*?* having the following
property: if X°*? is initialized to

Xt =) xix o},

veDb

where for each v, X?c D“ and if X{/° is the value of X%*? upon completing
execution of P with X initialized to X, then the value of X{**” upon termination of
P is

X7 = xirox (o).

veD?

Essentially P’ executes several computations of P in parallel, one for each v € D’
Let P"(X°*+%) with output variable X2*? be the same as P’(X“*") except that upon
termination

X2+ = {uv | v € D?, v € D®, uvv € X{*).

Then ¥(Z, 7) can be represented (by Theorem 4.1, with simultaneous execution of
T;s there for each possible value of y) by the program

122 CHANDRA AND HAREL

Xa+b4'—{ };

BIT «— {()};

While BIT = { } do
(PII(Xa+b);
I_fXg+b¢Xa+b,

then X% « X310
else BIT~{ }).

The output variable of the program is Xa+% In case Z in ¥ has repetitions or
variables common with 7, that is handled by a post-processing step, restricting X4 *°
to have appropriate columns be equal, and then projecting out the redundant
columns. 1

THEOREM 6.2. QPTIME & RQ.

Proof. Consider the query EVEN which merely checks to see if the domain of the
data base is even. Its type is ()— 0, i.e. B= (D), and

EVEN(B) = {()} if |D| is even,
={} otherwise.

It is immediate that EVEN € QPTIME. We show that EVEN is not in RQ. Suppose
there is a program P in RQL whose corresponding query Qp = EVEN. Without loss
of generality we may let terms in P have at most one operator. Let the maximum
rank of any variable in P be a. Let B, B’ have domains of size a + 1, a + 2, respec- '
tively. We show that the computation paths of P on B and on B’ are identical and so
are the outputs (which is the desired contradiction). Given an equivalence relation
EQV on {1, 2,.., b}, let the query Qgq,y be represented by

(%1 s X)) [\ %= X; (for (i, J) € EQV) A\ x; # x; (for (i, /) € EQV).
Note that if EQV, # EQV,, then Qgoy,(B) N Qrqv,(B)={ }, and

U QEQV(B) =D,.

EQV

Given a set S of equivalence relations on {1,..., b}, let Q5 denote the query

Qs(B)= U QEQV(B)-

EQVeS

Induction is on i, the number of steps of the computation. The inductive hypothesis is
that i steps of the computation paths of P on B and B’ are identical (a step is an
assignment statement or a check X # { } in a while-do), and after i steps, for each
variable X in P there is a set S of equivalence relations on {1,.., b} (where b is the
rank of X) such that the value of X in the computation on B (resp. B") is Qg (B)

RELATIONAL QUERIES 123

(resp. Q4(B’)). This is trivially true for i = 0. Now suppose it holds for i steps. If the
(i + 1)th step is a check X # { }, then it is true for i + 1 steps since for every EQV
on {l,..,b}, b<a, Qpov(B)#{ } and Qpov(B')# { }. If the (i + 1)th step is an
assignment statement whose term has no operator or has any of the five operators,
the induction hypothesis can be seen to hold after i + 1 steps. The result follows since
when B, B’ halt, if X (of rank 0) is the output variable of P, the value of X in B is
{ } iff the value of X in Bis also { }. 1§

THEOREM 6.3. There is a Q€ RQ such that {B,X|X€ Q(B)} is logspace
complete in PSPACE.

Proof. We show how a program in RQL can simulate any linear space bounded
Turing machine. The simulation of a machine computing a language complete in
PSPACE will then produce the desired query.

Assume we are given a one-tape Turing machine with tape symbols X =
{09, 0 ses 0,}, states S = {s,,..,5,} and starting state s,, accepting state s, and
rejecting state s,_,, which never attempts to read a tape square beyond the squares
on which the self delimiting input of length n is written, and which always halts and
does so in state s, or s,_,. We describe the desired program below, after showing the
correspondence between inputs and data bases. For input x = Xg, X,y X,_, X; € X
(the x;’s may be further restricted if desired), the corresponding data base consists of
the following relations (the domain contains exactly all the elements appearing in the

relations):
) for each 6 € X, a unary relation o = {0'},

for each s € S, a unary relation s = {s’},
a binary relation
Suc = {(x(’)’ x;)’ (X; » xé)s'"’ (xrlrfz’ Xpy_ l)}’
a unary relation Head = {x;}
and a binary relation
Tape = {(x}, 0))| X, = 0,}.

The program maintains variables TAPE, HEAD, and STATE whose values
correspond respectively to the tape contents, head position, and the Turing machine
state during the computation. Recalling that D is the domain and can be obtained by
Proj, E, and that Proj; deletes the ith column, the program is:

TAPE « Tape;

HEAD « Head;

STATE « s¢;

While STATE — (s, Us,_,)#{ } do

(SYMBOL « Proj,(HEAD X D " TAPE);

If STATE = s, A SYMBOL =g¢,,, then Action(s,, 6,)
else if STATE = s, A SYMBOL = o, then Action(s,,0,)

else if STATE = s; A SYMBOL = g;, then Action(s;, 0;)...);
OUTPUT « Proj,(STATE N s,).

124 CHANDRA AND HAREL

QPSPACE

QPHIER

QPTIME

Fic. 2. The Hasse diagram relating RQ with other query classes (under the set inclusion ordering)
upon the assumption PTIME s PHIER # PSPACE.

Action(s;, 0;) is as follows. In state s; with the Turing machine head on symbol g;,
the Turing machine may do one of the following:
(i) Write symbol ¢ and change state to s. Then Action is

(TAPE « (TAPE — HEAD x SYMBOL)U HEAD X o;
STATE « s)

(ii) More the head left and change state to s. Then Action is

(HEAD « Proj,(D X HEAD M Suc);
STATE «)

(iii) Move the head right and change state to s. Then Action is

(HEAD « Proj,(HEAD X D M Suc);
STATE « s).

It is easily seen by induction that TAPE, HEAD, and STATE simulate the Turing
machine computation, that the program always halts, and that the output variable
OUTPUT has value { } iff the input is accepted by the Turing machine. |

A consequence of Theorem 6.3 (along with Theorem 6.1) is

CoROLLARY 6.4, (i) RQ < QPTIME jff PTIME = PSPACE,
(ii)) RQ < QPHIER ff PHIER = PSPACE.
It is generally conjectured that PTIME # PHIER = PSPACE. Under this

assumption, RQ is independent (in a set containment ordering) of QPTIME,
QPHIER, see Fig. 2.

7. CONCLUSIONS

The purpose of this paper has been to provide a framework for comparing and
classifying sets of queries and query languages. As such, it is shown that the
conjunctive [9] and tableau queries [1], the first-order queries and the relational

RELATIONAL QUERIES 125

algebra [4], a query language suggested in [2], and the closure of first-order queries
under composition and least fixpoint (i.e., FP) fall naturally onto an w? hierarchy.
The first w levels of the hierarchy characterize the first-order queries, and are shown
to be strict. All the queries in FP can be computed in polynomial time, but there are
simple queries computable in polynomial time which are not in FP. In particular, it
can be shown that queries in FP cannot count the number of tuples in a relation.
Formally it is shown that no query in FP can determine whether the domain of the
data base has an even number of elements. The concept, however, is quite general. It
can be shown, e.g., that given a relation R (student-name, course) which gives the
names of students in various courses, the following query is not in FP: are there two
courses with the same number of students? Neither is the query what is the course
with the maximum attendance? In fact, this limitation is not just of FP, but applies
generally to query languages based on variables of bounded rank. All these queries
can, of course, be computed in polynomial time. Unfortunately, we do not know of an
effective enumeration of the queries computable in polynomial time, although such
enumerations do exist for queries defined on larger complexity classes such as the
polynomial-time hierarchy, polynomial space, etc. In fact, queries defined from the
polynomial-time hierarchy turn out to be precisely the second-order queries. These
classes of queries can be used to characterize the set of queries RQ computable using
only ranked variables. The set of queries RQ turns out to be between FP and the set
of queries computable in polynomial space. It is an open problem as to whether
FP # RQ (though this is implied by PTIME # PSPACE).

Several interesting problems remain to be solved. These include showing the
strictness of the j-fold fixpoint hierarchies, the strictness between these hierarchies for
increasing j’s, and obtaining an enumeration. of the polynomial time queries
(QPTIME).

Of more pragmatic interest is the problem of characterizing the expressive power of
various constructs used in query languages. As we have observed, fixpoints do not
provide the ability to count the size of a relation, and it is, therefore, worth exploring
the limits of their usefulness. The use of ranked variables is another construct, which
has only been explored in a preliminary manner in this paper. Other primitives
suitable for study include the use of the equality relation, counters, and looping
constructs in general. Results in this direction appear in [5].

It is possible that some of the classes of queries in this paper could provide an
appropriate foundation for useable query languages. As such, it is interesting to ask
whether there is a natural query language that can express (exactly?) all the queries
in FP (or in QPTIME, QPSPACE, or some other complexity class).

An area of deep significance is that of obtaining some understanding of the set of
queries computable using resources less than polynomial time. Of particular interest
would be the queries computable in log time since most practical queries on data
bases use indices to search for some record, and thereby take time about the log of
the size of the data base. The primary difficulty in this is the formalization of the
appropriate notions in a robust enough manner.

126

a, b, c
A

B
Bt By
C

CcQ

D

E

Exist

F

First
Fixpoint
FP
FP[J']

L

LY

P
PTIME, etc.
Q

Q.

ocC

QPTIME, etc.

R
RQ
RQL
S

SO
T
TC
TCW
U
YA
YF
Yyr

-

Ir,4

2, 1T,
oI

CHANDRA AND HAREL
APPENDIX

Rank of a relation.

Formula.

Data base.

h isomorphism mapping B to B’.

Complexity class.

Set of computable queries.

Domain of a data base.

Set of existential queries.

Set of existential expressions.

Set of first-order queries.

Set of first-order expressions.

Set of fixpoint expressions.

Set of fixpoint queries.

Restricted fixpoint queries.

Language of first-order formula.

Language of fixpoint formulae.

Set of projection queries.

Languages recognized in polynomial time, etc.

Query.

Query represented by formula 4.

Set of queries in C.

Queries computable in polynomial time, etc.

Relation.

Set of ranked queries.

Ranked query language.

Set of relations.

Set of second-order queries.

Relation.

Transitive closure query.

J-fold Transitive closure query.

Universal domain.

Set of fixpoints of 4.

Fixpoints of first-order queries.

Set of fixpoints of expressions in 1.

Complement of a query/set of queries.
negation of a formula/set of formulae.

Composition of queries/sets of queries.
substitution in a formula/set of formula.

Set of formulae.

Quantifier, either 3 or V.

Hierarchy of expressions.

Polynomial-time hierarchy.

RELATIONAL QUERIES 127

z2 n? First-order, fixpoint hierarchies of queries.
Zoul et Restricted Fixpoint hierarchies.
D, ¥ Formula.

2.

11

12.
13.

14.
I5.
16.

| Number of elements in vector ..., e.g., | ¥|.
I Length of the encoding of ..., e.g., ||(B, ¥)|.

ACKNOWLEDGMENT

We appreciate several helpful comments made by Moshe Vardi.

REFERENCES

. A. V. AHo, Y. SAcGtv, AND J. D. ULLMAN, Equivalences among relational expressions. SIAM J.

Comput. 8 (1979), 218-246.

A. V. AHo aND J. D. ULLMAN, Universality of data retrieval languages, in “Proceedings, 6th ACM

Symp. on Principles of Programming Languages,” San Antonio, Texas, Jan. 1979, pp. 110-117.

. E. F. Copp, A relational model of data for large shared data banks, Comm. ACM 13 (6) (1970),
377-387. :

. E. F. Copp, Relational completeness of data base sublanguages, in “Data Base Systems” (Rustin,

Ed.), Prentice-Hall, Englewood Cliffs, N.J., 1972.

. A. K. CHANDRA, Programming primitives for database languages, in “Proc. 8th ACM Symp. on

POPL,” Williamsburg, Virginia, Jan. 1981, pp. 50-62.

. A. K. CHANDRA AND D. HareL, Computable queries for relational data bases, J. Comp. System
Sci. 21 (1980), 156-178.

. A. K. CHANDRA AND D. HAREL, Structure and complexity of relational queries, in “Proc. 21st
FOCS,” Syracuse, New York, Oct. 1980, pp. 333-347.

- A. K. CuanDRA AND D. HAREL, Horn clauses and the fixpoint query hierarchy, in “Proc. ACM
Symp. on Principles of Database Systems,” March 1982.

. A. K. CHANDRA AND P. M. MERLIN, Optimal Implementation of Conjunctive Queries in Relational
Data Bases in “Proceedings, 9th ACM Symp. on Theory of Computing,” Boulder, Colorado, May
1977.

. A. EHRENFEUCHT, An application of games to the completeness problem for formalized theores,

Fund. Math 49 (1961), 129-141.

R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, Proc. SIAM-AMS

7 (1974), 43-73.

R. FAGIN, Monadic generalized spectra, Z. Math. Logic Grundlag. Math. 21 (1975), 89-96.

R. FRAJSSE, Sur les classifications des systémes de relations, Publications Sc. d I'Université D’Alger

1, no. I, 1954.

H. GAIFMAN, Private Communication. .

H. GALLAIRE AND J. MINKER (Eds.), “Logic and Data Bases,” Plenum, N.Y., 1978.

N. IMMERMAN, Relational queries computable in polynomial time, in “Proc., ACM Symp. on

Theory of Computing,” May 1982.

- R. A. KowavLski, Predicate logic as a programming language, in “Proc., IFIP, pp. 556—574, North-

Holland, Amsterdam, 1974.”

. H. J. KEISLER AND W. WALKOE, JR., The diversity of quantifier prefixes. J. Symbolic Logic 38 (1)

(1973), 79-85.

. J. C. LiND, “Computing in Logarithmic Space,” Tech. Memo. 52, M.I.T., Project MAC, Cambridge,

Mass, 1974,

128 CHANDRA AND HAREL

20. H. RoGeRs, “Theory of Recursive Functions and Effective Computability,” McGraw—Hill, N.Y.,
1967.

21. L. J. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977), 1-22.

22. M. H. van EMDEN, Computation and deductive information retrieval, in “Formal Description of
Programming Concepts” (E. Neuhold, Ed.), pp. 421-439, North-Holland, Amsterdam, 1978.

23. M. Varpi, The complexity of relational query languages, in “Proceedings, 14th ACM Symp. on
Theory of Computing,” San Francisco, May 1982, pp. 137-146.

24. M. ZLooF, Query by example, RC4917, IBM Research, Yorktown Heights, July 1974.

25. M. ZrooF, Query by example, Operations on the transitive closure. RC5526, IBM Research
Yorktown Heights, Oct. 1976.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

