Reprinted from INFORMATION AND COMPUTATION Vol. 113, No. 2, September 1994
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Deciding Emptiness for
Stack Automata on Infinite Trees

DaviD HAREL AND DANNY RAZ

Department of Applied Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot 76100, Israel

We show that the emptiness problem for Biichi stack automata on infinite trees
is decidable in elementary time. We first establish the decidability of the emptiness
problem for pushdown automata on infinite trees. This is done using a pumping-like
argument applied to computation trees. We then show how to reduce the emptiness
problem for stack automata to the emptiness problem for pushdown automata.
FElsewhere, we have used the result to establish the decidability of several versions
of nonregular dynamic logic. ~© 1994 Academic Press, Inc.

1. INTRODUCTION

Automata on infinite trees have attracted much interest ever since
the early work of Rabin [R1,R2]. Various acceptance criteria have
been proposed, analogous to those for automata on infinite words
(w-automata), and the relationships between them have been investigated.
Also, certain problems on such automata, such as emptiness, have been
shown to be decidable [R1, R2, HoR].

A particularly interesting direction has been the use of tree automata in
proving decidability of various logics. Following Rabin’s work on weak
S2S [R2], many researchers have used automata-theoretic techniques in
obtaining decidability results for logics of programs. A key ingredient in
such results is the search for an appropriate class of tree-automata on
infinite trees with a decidable emptiness problem. In particular, Vardi and
Wolper [VW] have been able to obtain several improved decision proce-
dures for temporal and dynamic logics by reducing the satisfiability
problem at hand to the emptiness problem for certain classes of tree-
automata, and then finding (efficient) decision procedures for these.

Recently, automata on infinite trees have been generalized to pushdown
automata on infinite trees, and various acceptance criteria have been
investigated [S]. However, decision problems for such extensions do not
seem to have been addressed. For example, it was not known whether the
emptiness problem for such automata is decidable. In this paper we answer

278

0890-5401/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DECIDING EMPTINESS 279

a stronger version of this question, by providing an elementary-time deci-
sion procedure for the emptiness problem for stack automata on infinite
trees. Recall that a stack automaton can travel up and down the stack and
inspect the symbols appearing therein, but it can make changes only at the
top. A good informal description of stack automata can be found in [K]
and more updated results and references can be found in [WW]. A stack
automaton on infinite trees is a generalization of a pushdown automaton
on infinite trees, in the same way as a stack automaton on words is a
generalization of a pushdown automaton on words, i.e., in the ability of the
head to travel in the stack. We limit ourselves to the Biichi acceptance
criterion, namely that a computation is accepting if on every path in it
there are infinitely many accepting states.

In the main part of the paper we show that the emptiness problem for
Biichi pushdown automata on infinite trees is decidable (Section 3). The
proof is elementary in the sense that it does not use any powerful results
such as Rabin’s Theorem [R1], and is established using a pumping-like
argument applied in a novel way to computation trees. We then show how
to reduce the emptiness problem for stack automata on infinite trees to the
one for pushdown automata on infinite trees (Section 4).

Besides the relevance of this result to automata theory, it turns out that
it too has applications in logics of programs, namely to the decidability of
variants of nonregular propositional dynamic logic (PDL); see [HPS, H].
In fact, the present result was obtained during our work on such decision
problems. Specifically, in [HR] we use it to prove that (i) PDL with the
addition of any context-free language accepted by a special kind of input-
oblivious pda, termed “simple-minded” therein, is decidable, and (ii) PDL
with the addition of any language (even non-context-free) accepted by a
deterministic “unique-prefix” stack automaton is decidable.

2. DEFINITIONS

Let [k]1=1{1,2,..,k}. A k-ary tree over a set S is a labeling of the set
[k]* by members of S. The empty word A denotes the root of the tree.
A stack k-ary w-tree automaton (or an STA for short) is a structure

M=<Q,Z,F,(10,Zo’5aF>,

where Q is a (finite) set of states, 2 is the (finite) input alphabet, I" is the
(finite) stack alphabet, g,e Q is the initial state, zoe I' is the initial stack
symbol, and F < Q is the set of designated accepting states.

The transition function J is defined as

5:0x(Zu{e})x(Iu{d})—»2@xB"20xE

280 HAREL AND RAZ

where B is a finite subset of { pop, md, mu, sp} U { push(w) | we I'* }. Here,
md, mu, and sp stand for “move down,” “move up,” and “stay put,” respec-
tively. The transition function reflects the fact that M works on trees with
outdegree k that are labeled by 2. The number of rules in 4 is denoted by
|5]. We use 4 as the empty symbol of the stack, describing the stack
positions beyond the top of the stack. This is useful when one wants to
determine if the head is at the top of the stack.

The size of an automaton is measured by the size of its transition func-
tion. More formally, if M=<Q, Z, T, qo, 2, 0, F) is a stack k-ary w-tree
automaton, and /=max(|w|), where the maximum is taken over all words
we 't appearing in the set B in the definition of J, then the size of M is
k-|6]-L

The set of stack configurations is S =z, I'* 1 I'*, and the initial stack con-
figuration s, is z,1. For a stack configuration s =2,y 172, the depth of s is
d(s)=|y| + |7.| and the head position is h(s) = |y|. A node configuration N
is a pair (g, s)€ Q x S, and the initial node configuration n, is (qq, So)- The
depth of a node configuration is the depth of its stack.

Let # :S—T'u {4} be given by #(z07,217,)=2, where zel' U {4}
and #(zo17y)=2z,. This describes the letter read by the stack head.

In order to define the effect of & on stack configurations, we define the
partial function # : (S x B) - S. This function gives the new content of the
stack and is defined as follows:

o B(zoy21, pop) =zo¥1.
B(2071, push(w)) = zoyw1.
B(20712 172, md) =20y, T 2,.
B(z0711 272, mu) =207,z 17,
B(zoy1, mu)=zoA47.

o B(zoyAT, md)=2zoy1.

o B(s, sp)=s.

An e-path from (q,,s,) to (g, s,) is a sequence ((gy, Sy), - (41, s,
such that for all 1<i<l we have (q;,b,)€d(q;,_;,s #(s;,_,)) and
B(s,_1, b)) =s;. Let N, be the set of e-paths. An g-path signals F if there
is 1< j</ such that g,e F and d(s;) = h(s;).

A computation of M on the infinite tree ¢ over 2 is an extension of ¢,
defined as C: [k]* = (£ x N,), such that, in addition to a symbol from X,
each node is labeled by an e-path. The tree C must satisfy the following
condition:

« If N is some e-path to (g,s), then for all u in [k]* such that
C(u)=(a, N), there exists ((g;,b;), ..., (qx, bx)) €9(q, a, H(s)), such that
for all 1 <j<k, C(y)=(a;, N;), and N, is some e-path from (q;, (s, b;)).

DECIDING EMPTINESS 281

A computation C is said to be Biichi accepting, or just accepting for short,
if C(4)=(a, N), where ae X and N is an ¢-path from (g, 5o), and every
path in C contains infinitely many e-paths that signal F. A tree t is accepted
by M if there exists an accepting computation of M on t.

The emptiness problem is, given an automaton M, to determine if M
accepts some tree.

An automaton M =<Q, 2, T, qo, 2, 6, F) is termed simple if it has no
e-moves, | Z| =1, and for all push(w) in its instructions, {w| = 1.

Let M=40Q, Z, T, qo, 29, 5, F) be an STA such that for all push(w) in
its instructions, |w| = 1. (By adding new states and e-moves, every STA can
be transformed into an STA that accepts the same trees and follows this
condition.) We now define a simple automaton corresponding to M. Let
M =<Q', 2, T, qq, 2y, 8', F), be defined as follows:

« 0'=0u{q.1qeQ}.
o 2'={a}.

o for every ((pi, 1)+ (px> br))€6(q, 0,7)), where o#¢, we have
((Pu bl)"'(pk, bk))66’(q’ a, 'Y) and ((ph bl)"'(pk’ bk))e(sl(qe’ a, 'V)

o for every (P, b)65(% £ V) we have ((Ps’b)(l’eab))€5/(q, a, ')’)
and ((p., b) -~ (p,, b)) €'(q., a, 7). %
e

k

Clearly M’ is simple.

CLAM 1. M accepts some tree t iff M’ has an accepting computation on
its unique input tree.

Proof. The proof is straightforward, based upon the fact that M’
“guesses” simultaneously both the input tree and the computation of M. It
is left to the reader. |J

/ N,

/

/ c
\

\

/

/
E

/

\/

FIGURE 1

282 HAREL AND RAZ

Since M’ has no e-moves, all the nodes in its computations are of the
form (a, (g, 5)), where (g, 5) is a node configuration. The projection of this
computation on the node configurations yields an infinite tree over 0xS,
which we call an S-computation of M.

We say that two node configurations n and m are connected in M if there
is an S-computation C of M such that n, me C and there is a path from n
to m in C. If n and m are connected, and there is a node (g, s) on the path
from n to m in C such that g€ F, we say that the pair n, m signals F.

An STA that uses only the symbol sp from B is simply a Biichi k-ary
w-tree automaton, as defined in [VW]. An STA that uses only the symbols
sp, push(w), and pop from B is a pushdown k-ary o-tree automaton (PTA
for short). This definition is similar to that appearing in [S]. Clearly, if
k =1, the infinite trees become infinite sequences.

ExaMpPLE 1. Let k=2 and M=<Q,2%,T,q,, 20,0, F), where Q=
{qA’ qB’ qC, qX’ qe}’ 2= {a’ b, c, X}, F= {Zo, Z}, F= {qA: QX}a and

8(q.4, a,v) = {(g.4> push(2)), (45, push(z))}
5(‘131 b, Z) = {(qX’ SP), (qBa ’nd)}
5(?5’ &, ZO) = {(qe’ mu)}

(a,<qa,27>)

(b, <qp,2z02T>)

{z,<qx,s>“’] (c,(<gmr20T2>,<q., 207 1>,

< g, 202AT>, < g0, 202 1>))

(a1 <quzOZT>)

(b, < gp,z0227>)

{r, <gx,$ >“’1 F<q07-10T>)l
t.v,<qx,s>w1 Rb’<qB’ZOZTZ>l] {I,<qx75>“1{?<qx,-*>“’j
[‘ra<qu'5>ul (¢,(<qm,20T22>,<qc, 202 T2 >,

<Gy 2022 1>, < g, 2022A 1>, < g0, 202273))

(a,<qa,20221>)

t;. <qx,s>“’1 | (e, <llc,ZoZT>ﬂ

{z,<qx,s>wj Rz,<qc,onﬂ

{z,<qx,s>wj{z,<qx,s>ij

FIGURE 2

DECIDING EMPTINESS 283

3(q., & 2) = {(g,, mu)}

0(qes & 4)={(gc, md)}

8(gc, ¢, 2)={(qx, 5p), (4c. pop)}
8(gcs % 20) = {(qx> 5p), (qx, sp)}

8(qx> X 7) = {(qx> sP); (qx, sp) }-

Denote by x“ the unique tree over {x}, and let 7 be the tree of Fig. 1. Since
M is deterministic, it has only one computation on 7; this computation is
described in Fig. 2. It is not difficult to see that this computation is an
accepting one.

3. EMPTINESS FOR PUSHDOWN AUTOMATA

In this section we prove that the emptiness problem for pushdown w-tree
automata (PTAs) is decidable. The proof uses pumping-like arguments
applied to computation trees, in which the depth of the stack is a crucial
ingredient.

3.1. Definitions
Let M be a PTA, and let n be a node in an S-computation C of M.
Denote by N7 the set of nodes n' = (g, 5') such that:
1. #’ is a descendant of n in C;
2. for each descendant m = (p, t) of n in C, which is also an ancestor
of n', we have pé¢ F.
Denote by IT7 the set of nodes n’ such that:

1. ' is on the path from n to m in C;
2. for all n” #n’ on the path from n’ to m, we have d(n")>d(n’).

Intuitively, N7 contains all the nodes that would have been nodes also if
M were an PTA acting on finite trees. IT7' contains all the nodes on the
path from n to m that have a shorter stack than all their successors along
that path. If d(m) > d(n), the set IT7 is nonempty and |IT}}| = d(m)— d(n).

Cram 2. For any node n in an accepting S-computation C of some
PTA M, the set N is finite.

Proof. Let n be a node in an accepting S-computation C of M and
assume by way of contradiction that N7% is infinite. We have that for each

284 HAREL AND RAZ

k=1 there exists a path n=n,, n,, .., #, of nodes in C such that for all
1<j<k the node n; is a succesor of n,_, and n;¢ F. Hence, by Konig’s
Lemma, there exists an infinite path in C that has only finitely many
appearances of nodes that signal F. This is a contradiction to our assump-
tion that C is an accepting S-computation of M. ||

Denote by S,* the set of nodes n’ such that:

1. n'is a descendant of n in C;

2. d(n')=d(n),

3. for each node n” on the path from » to n’ in C, we have
d(n") > d(n),

4. the pair (n, n') signals F.

Denote by S, the set of nodes »’ such that:

1. n’is a descendant of n in C;

2. d(n')y=d(n);

3. for each node n” on the path from »n to »' in C, we have
d(n")>d(n);

4. the pair (n, n') does not signal F.

Let S =1{q|3s.(g,5)eS,*}, let S;={q|3s.(g,5)€S,”}, and let
S,=(S;F, 87). Clearly, |S}|<|Q|, and |S;|<|QI, so |S,| <|QI* and the
number of different such sets is at most 2/€",

Figure 3 shows part of an S-computation, viewed in terms of stack
depth. The definitions of IT7, S}, S, , and S, are best understood with

the aid of such diagrams. In this figure, II7 has been emphasized,
Str={qp -}, Sy={r,..} and S,,=({y, x, ..}, {w, ..}).

An Il-depth cut S-computation, or DC, for short, is a mapping C: [k]* -
Nu {1} such that:

e C(u)= L iff for all 1 € j<k we have C(wj)=1;

e For all u in [k]* such that C(u)=(q, s), there exists ((gy, b;), ..
(qx> br)) € 8(q, a, #(s)), such that for all 1< j<k, if C(w)# L then
C(wj) = (g:, B(s, b;));

e C(4)# L, and for each u such that C(u)# L and d(C(n)) </, it is
the case that for each 1 <j<k, C(uj)# L.

Intuitively, an /-depth cut S-computation is simply an infinite subtree of an
S-computation, with the same root as that of the S-computation. However,
since we deal with infinite trees we mark all the nodes not in that subtree
with the special symbol L. Note that by the third clause in its definition,
all the “leaves” of an /-cut are guaranteed to be of depth at least . A DC, C

DECIDING EMPTINESS 285

=0 B - »

input

FIGURE 3

is said to be accepting if C(4) is an initial configuration, and every infinite
path in it contains infinitely many node configurations with states in F, or
infinitely many Ls. It is clear that if C is an accepting S-computation of M,
then for every /, C is an accepting /-depth cut S-computation of M.

Let C be a DC, of M for some /, and let n=(q,, s,) and m =(q,,, 5,,) be
nodes in C. We call # and m a nice pair if n# L, m# 1, nell7,
d(m)—d(n)=j>0, S,=S,,, and the same rule of applies to both n and
m in C. As we shall see, a nice pair can be made the subject of a pumping-
like argument, mainly by virtue of the equality of S, and S, which
guarantees that the new tree obtained by pumping is indeed an S-computa-
tion.

3.2. The Main Operators

Let T(x, t, t5, .., 1) be the k-ary tree rooted at x, with the k-ary trees
f,, t5, ., 1, TOOted at its successors. For a node n in a tree 7, let ST(n)
denote the subtree of ¢ rooted at n, let S, (n), for 1 <i<k, denote the i th
offspring of # in ¢, and let ST,(n) denote the subtree rooted at S; (n).

Define ¢ :Q— N, such that @] (q) is some node (g,s)eC with
(g, 5)e S’ *. If no such node exists, ¢, (q) is undefined. Note that by the
definition of S, such a node always exists for any ge S,". In the same

n?

way, define 0 : Q — N, such that 0, (¢) is some node (g,s)e C with

286 HAREL AND RAZ

(g,5)eS,”. If no such node exists, 0, (¢q) is undefined. Again, for all
ge S, this mapping is defined.

For a stack configuration s =zyy, 17,, the function %, (s) is the result of
inserting the word 7 to the right of the symbol that appears at the /th posi-
tion of s. Similarly, the function 2, (s) is the result of deleting from s the
letters in positions /+1, ..., I+ j.

Let n and m be a nice pair in a DC,. We abbreviate d(n) by d,, d(m) by
d,,, d(m)—d(n) by j, and the word in positions d,+ 1, .., d,, in m’s stack
bY V-

The following are efined for u e [k]* by recursion on the structure of the
tree [k]*:

o U, () =T(2,, (u), 11, s L) where for 1<i <k we have:
t;=U, (ST (u)) if d(S;(u))>d,
1,=ST(0;(q.) if d(S,(u))<d,andq,eS;
t;=ST(0(q)) if d(S;(u))<d,andq;¢S,
t;=ST(u) if S;(u)=1

o P, (u)=T(%, . (4, ty, . 1), where for 1 <i<k we have:

t;=P, (ST, (u)) if d(S;(u))>d,
t;=ST(0, (g,) if d(S;(u))<d,andq,eS,
t:=8T(0,, (4:)) if d(S;(u))<d,andq,¢S,
t;=S8T;(u) if S;(u)=1.

Here, g;=state(S,(u)).

U, and P, ,, actually represent pumping arguments, where P stands for
pump, and U stands for unpump. Let n, be the successor of n on the path
from n to m in C, and let m, be the corresponding successor of m (i.e., if
n, is the i th successor of n, then m, is the i th successor of m).

Denote by C,, , and Cp, , the following trees over NuU {1}:

« Cy,, is identical to C except that ST (n;) is replaced by U, ,,(m) as
the successor of n.

e Cp,, is identical to C except that ST(m) is replaced by
T(C(m),t,,.., t;), where for 1<i<k we have t;=P, . (ST;(n)) if
d(S;(n))>d,, and t,= ST,(m) otherwise.

Note that in Cp,,, we replace all offspring of m that have larger stack
depth with the appropriate subtrees, while in Cy;,, we change only one off-
spring. This is done mainly for technical reasons, but the heart of the pump

DECIDING EMPTINESS 287

and unpump operators is essentially the same. We now illustrate these
notions. In the S-computation shown in Fig. 4, the nodes n and m are a
nices pair. Figure 5 demonstrates the action of the unpump operator; in it,
the appropriate successors of m and n have been conjoined, and both ¢ and
rin S, have been replaced by ¢ and r in S;. Note that the node u has not
been changed because it is not in S,. Figure 6 shows the action of the
pump operator; in it, the successors of n have been replaced by the
appropriate successors of m, and both ¢ and r in its subtree have been

replaced by ¢ and r in S,

CrLam 3. If C is an accepting S-computation of M, then so is Cy, .

Proof. 1In order to show that C,,__ is an S-computation of M it suffices
to show that nodes that have been changed or those whose successors
have been changed, still follow the rules of M. Considering n, since in C the
same rule was applied to both m and n, this same rule is applicable to n
in C,, . For every node »' that is a descendant of n in C and has
din')y> d + 1, since the operator Z,, ; does not change the top of its stack,
the same rules as in C will still be apphcable in Cy,

For every node n’ that is a descendant of n in C and has din)=d, + 1
there are two possibilities. If all its successors have d>d,, + 1, the previous
argument is true (ie., &, ; still does not change the top of the stack, hence
the same rules as in C w111 still be applicable in C,,,.) If, however, n" has

s
t
a
c 4
K dooonne PN
R R
4
l'
Mo o NI
I'l
'l
A\
input

FIGURE 4

288 HAREL AND RAZ

= O D - »

input

FIGURE 5

successors of d<d,, then from S,=S,, and from the behavior of Z, ;
on stacks, the same rule as in C will still be applicable in Cy, . The suffix
of every infinite path in Cy;,, is the suffix of an infinite path in C, or is
such a suffix when 9, ; operates on the stack in its node confifurations.
In any case, if in any infinite path in C there are infinitely many
apprarances of states in F, the same will hold for Cy, ,, and the claim
follows. |}

CLamm 4. If Cis a DC, of M, for some I, then so is Cp, .

Proof. Essentially the same as that of Claim 3. [I

3.3. Deciding Emptiness

We now prove that emptiness for pushdown automata on infinite trees
is decidable. To that end, we need a definition for the limit of a sequence
of trees.

Let {¢;}, be a sequence of infinite k-ary trees over some set S. If for
each we [k]* there exist j, and a fixed s,€ S, such that for all i>j, we
have t,(u)=s,, we take the limit of {7,};> to be the tree ¢ defined by

t(u) =s, for each u. We also write lim, , (¢,) =1

DECIDING EMPTINESS 289

O R oM ow

o

input

FiGURE 6

Let n be a node in an accepting S-computation C of M. Let a¢ be the
maximal depth of the set N, defined by:

ag= max (d(n)y—d(n)).
n'e Npof Cu {n}

The set of nodes of maximal depth in N7 is called A%, more formally
A= {n"eN%] d(n')— d(n) = a%}. We also associate a node n’ in A% with
the path from n to it in the following way: Let k= (I |~|Q|)“"C and
d, = d(n); define P =(qqs Vo> - da> Vs where 7, is the letter in position
d,+ i in the stack of n, and g, is the state of the (unique) node in oy of
depth d, +i. We associate with 7 the tuple x7.= (a&, My, . M) where m;
is the number of different nodes n” in A¢ such that P"" is the jth vector
in lexicographic order in the set (OxTI)“'5. Since C is an accepting com-
putation, for every ne C the set N™ is finite; hence x¢ is well defined.

First, we prove two technical claims that deal with the effect of the

operator U, ,, on the set A%.

290 HAREL AND RAZ

CLAIM 5. Let n be a node in an accepting computation C of M. Assume
that for any node n' on the path from n to some node in A% the following
hold: (1) d(n')>d(n); and (2) any node n" on the path from n to n' has a
different stack configuration from the one of n'. Let m be a node in A, such
that P?' is minimal among the nodes of A7, and let ny, my be a nice pair on

the path from n to m. Then x¢, <x¢.
00

Proof. Consider all the nodes m in the subtree rooted by n in C,, m

such that no node on the path from » to m signals F. We say that such a
node m is of type 0 if it is not a descendant of n, (here n, is the appropriate
node from the definition of Cy,). In this case the pair n, m does not signal
Fin C Unm, iff n, m does not signal F in C (by the definition of C Unn.mo)‘ We
say that such a node m is of type 1 if it is a descendant of n,, and each
node m’ on the path from n; to m has d(m’') = d(n,). In this case the pair
n,m does not signal F in C,, . iff there exists a node m” in C, with
d(m")>d(m), such that the palr n, m"” does not signal F in C. This follows
from the fact that d(mg)>d(n,) and from the definitton of U,,,.
Otherwise, such a node m is said to be of type 2. In this case we claim that
if the pair n, m does not signal Fin C, _ then there exists a node m”

C, where P™ in Cis equal to P"in C,, " To verify this, consider the ﬁrst
node s on the path from n, to m w1th d()<d(n,). By the definition of
U,... since n;,s does not signal F, the subtree of CUno,mO rooted at s is

exactly the subtree of C rooted at some node s in S, ; hence the claim
follows.
Now, if A7, contains any node of type 1, then ag, <ac and we are

Ry, My

done. If A'éu,,o,,, does not contain any node of type 2, then either
ac% <al, or there are strictly less nodes in A% Cy with P? than in A%.
We are left with the case that ac _=ag, and Az, - contains some
nodes of type 2. Note that by the condltlons of the Clalm every node m

in A% with P™=P” is not in the subtree rooted by n,, hence in this case
too x¢, <Xxc.]
0770

Cram 6. If for every node configuration n that appears in some
accepting S-computation C' of M, n also appears in some acepting
S-computation C of M in which a’-<|8]-2'°", and M has an accepting
S-computation, then M has an accepting S-computation C,, such that for
every node me C,, we have ag, < || .2ler,

Proof. Using induction on the depth of the stack configuration, it is
easy to prove that if for every node configuration » that appears in some
accepting S-computation C’' of M, » also appears in some accepting S-com-
putation C of M in which a” < || - 2'2", then for every node configuration

DECIDING EMPTINESS 2901

m, that appears in some accepting S-computation C’ of M, m also appears
in some accepting S- computatlon C; of M in which for every node m’ in
N7 we have that a” re < 18] - 2128,

Now, to construct C,, we start with some accepting S-computation C of
M, and, recurswely from the root, replace every node n that has
al>|6]-2'9", with the appropriate subtree of C}. Clearly the resulting
tree is an S-computation of M, since we only replaced identical node con-
figurations. Moreover, this S-computation is accepting because all nodes
that are replaced are accepting node configurations, and possibly one of
them is an initial node configuaration. |

Now we are ready to prove the following:

LeMMA 7. A PTA M has an accepting S-computation C iff it has an
accepting S-computation C', such that for very node neC’, we have
an<|8|-2'e".

Proof. By Claim 6 it is enough to prove that for every node configura-
tion n, if n is in some accepting S-computation C' of M then 7 is in some
accepting S-computation C of M in which az< 14| - 2127 Assume that the
above is not true and choose a counter example m of minimal depth.
Among all accepting S-computations in which m appears choose one with
a minimal x”2 and call this computation C. We can assume that every node
m’ in the path from m to some member of 47 has d(m’) > d(m), because
otherwise we could choose the node configuration of m’ to be our counter
example. (Recall that A7 is finite, and d(m’) >d(m) by the minimality of
d(m).) We can also assume that any two nodes m; and m, on the path
from m to any m’ in A™ have different node configurations, because com-
bining identical nodes ms1dc N7 does not affect the S- computatlon

Now, since the number of dlfferent sets S, is at most 2/”, the number
of different rules in & is at most |8|, and a2 > |d] - 2'Q' we have that for any
node m’ in A7 there exists a nice pair 7o, mye 7. In particular, if we
choose m’ such that P™ is minimal among the nodes of A7, we get by
Claim 5 that xcu <xC, which is a contradiction to the minimality
of xZ. 1

CLamM 8. Let C be an accepting DC, of M such that for every node
neC' we have a’-<|8|-2'9" and let n and m be two connected nodes in C
such that d(m)—d(n) = (10| - 2'9")%. Then there exists a nice pair n', m’ € IT;’
that signals F.

Proof. Let j=|8]-2'9". Assume that C is a DC, of M that satisfies the
properties of the claim, and let n, m be nodes in C with d(m)—d(n)= j2
Define {n,}/_, by:

292 HAREL AND RAZ

e no =A.
e n;. is the first node »’ in IT7 (i.e., the one with minimal depth) such
that »; and »’ form a pair that signals F.

Since af < j, we get that d(n,,) —d(n;) < j; hence {n;}J_, is well defined.
Since all the n, are in IT”, and there are j of them, there are two nodes

among them that satisfy the desired properties (i.e., these node form a nice
pair that signals F). |

We next prove that the above conditions are not only necessary but also
sufficient. To that end, we need to extend the operator P, ,,. Let ¢ be a sub-
tree of some DC, of M, and let C be a (different) DC, of M. The following
is defined for ue [k]* by recursion on the structure of the tree [k]*:

« B (u)=T(u,1t,,..1,), where for 1 <i<k we have

. {c if S;(u)=1c(4)
a ST; (u) otherwise.

Intuitively, %, searches a given DC, for some fixed node configuration.
When a node with such a node configuraton is found, %, replaces it with
the subtree ¢. Note that &, is defined by recursion on the structure of the
tree, hence the search will continue on the nodes of c.

Let n,m be a nice pair in a DC, C of M, and denote by Cps, the
following tree over Nu {1 }:

CP’:m = '%P,,,m(n) (CPn,m)‘

An accepting DC, is termed compacted if every two connected nodes in it
with the same node configuration, signal F. Note that since N7 is finite for
every node n in an accepting DC,, one can get a compacted accepting DC,
from any given accepting DC,, simply by replacing the appropriate
subtrees inside every N7.

CraM 9. Let C be an accepting DC, of M, and let n' be a node of depth
lin C, with P= Pj{', such that there exists a nice pair n, me IT’; that signals
F. If for each m'e C such that m' is a descendant of m with C(m)=C(m’)
we hav that the pazr m, m' szgnals F, then Cp, is an accepting DC, of M,
and in it all nodes n" with P} = P do not have ¢ any 1 successors.

Proof. Tt is not difficult to see that C P is a DC, of M, since all new
node configurations added by the operator P,, m» have a larger stack depth
than the corresponding nodes of C. The condition on the descendants of m
is exactly the one that ensures us that C Pr. is an accepting DC, of M. Note
that in P, ,,(n) a node m with d(m)—l Such that every node m’ on the
path from n to m has d(m’) > d(n), cannot have a L successor, since this
would imply the existent node of depth j </ with a L successor in C. Also

DECIDING EMPTINESS 293

note that any node m’ in C with P7" = P must have a node n,, on [T} with
C(n)= C(n,,). Hence this node will not be in Cps . |

LEMMA 10. If there exists an accepting DC, C of a PTAM with
I> (18] -2'2%)? such that for every node ne C we have a7 < 19| 29", then M
has an accepting S-computation.

Proof. Let C be a compact accepting DC, of M that satisfies the condi-
tions of the lemma. Let n' be a node of depth / in C, with P=P%, and
n(n’), m(n’) be the nice pair existing by the C”laim 8. By Claim 9, C Pt
is a DC, of M in which no nodes n” with P? = P have any L successors.
Since the number of different P? in C is finite, and since for any node in

Chry.\ o, that has a L successor the path IT7" contains only nodes from C,
after a finite number of applications of the operator Cp. we obtain a DC,
of M, called C,, with the following properties: (1) C, is an accepting DC,
of M in which none of the nodes of depth / have a 1 successor, and hence
C, is actually an accepting DC, ., of M; (2) for every node n’ of depth | + 1
in C,, there is a nice pair n(n'), m(n’)e IT}, such that d(n(n'))>2, that
signals F. (This is true because m(n’'), u is a nice pair in Cpy where u

. K R a(n'), min')’
is the node that corresponds to m(n’) in Cpy 1N the same way that

m(n') corresponds to n(n’) in C.) By applying the P} , operator to C; yet
another finite number of times, one obtains C,, and so on.

Note that since for each i the depth of n(n’) in the i th stage is at least
i, nodes of C; with tree depth less than i do not change in C;, for j>.i.
Hence the limit D=1lim,, ., (C;) is well defined. It is not difficult to see
that D is indeed an accepting S-computation of M, since for a given path
in D, if the stack depth on this path is bounded, then this path is a path
in some accepting DC; of M if it is not bounded, then every pair of nodes
on that path with d(m)— d(n)> ! must signal F. Hence the path contains
infinitely many states in F. ||

From the above lemma together with Lemma 7 we have:

COROLLARY 11. A PTA M has an accepting S-computation iff it has an
accepting DC 5, .y00y C such that for any node ne C we have a¢. < |4 2107,

CLaM 12. The question of whether a PTA M has a DC, that satisfies
the conditions of Corollary 11 is decidable in time O(k¢ 'T""1€1),

Proof. In a DC, there are at most Q] - | |’ + 1 different node configura-
tions. Hence it is enough to check all the finite trees of depth |Q| - |17| + L.
(This is the depth of the tree, and is not to be confused with stack depth.)
The number of such trees is k'2'"'7"+ 1 and checking the satisfiability of the
condition for each tree can be carried out in time polynomial in the size of

294 HAREL AND RAZ

the tree. Note that we can assume that in the DC, every pair of connected
nodes with the same node configuration signals F. Thus, although a DC,
may be infinite, we only have to check finite trees. ||

We may now conclude:

PROPOSITION 13. The emptiness problem for PTA’s is decidable in triple-
exponential time.

4. REDUCTION TO PUSHDOWN AUTOMATA

We now turn to reduce the emptiness problem for stack automata on
infinite trees to that of pushdown automata. The technical result is:

PROPOSITION 14. Let M be an STA. Then there is an effectively con-
structible PTA M', of size at most doubly exponential in the size of M, such
that M has an accepting computation iff M’ has one.

Proof. We first prove the result for the case when k=1; ie., for
w-machines.
Let M=<Q, %, T, g, 29, 6, F) be a simple w-stack automaton. Define

M ={Q,2,T,q,, z,, 6, F>, where

e I"={(z,L)|zel and L is a transitively closed subset of 0%}

* 5= (2o, Lo), where (p,)€ L, iff there is a path in M from (p, z,)
to (g, zo), that passes only through node configurations whose stack is
precisely (z,).

* The transition function ¢’ is defined as follows. For any g, 4, z, and
L, take 6'(q, a, (z, L)) to be the least set satisfying:

1. Whenever (p, push(z,))€d(q, a,z), we have (p, push(z,,L’))e
9'(q, a, (z, L)), where (r, u)e L’ iff at least one of the following conditions
holds:

- (pls md) 66(t9 a, Zl)’ (u’ mu)e 5(p25 a, Z) and (p15 p2)e L.
—(u, sp)€d(t, a, z).
— there exists re Q, such that (¢,r)e L and (r, u) e L.

2. Whenever (g, pop)ed(p, a,z), we have (q, pop)ed'(p, a, (z, L))
for all (z, L)e I

3. Whenever (p, q)€ L, we have (g, sp)ed'(p, a, (z, L)) for all ze T,

First, note that |M’| is at most exponential in |M|. Now, the idea behind

this construction is that, given a stack and a state in M, one can determine
which states can be reached via md, mu, and sp moves. This information is

DECIDING EMPTINESS 295

pushed onto the stack of M’, making the simulation possible. We now
prove the technical claim that captures this intuition.
Define L,,: I'* — 22" as follows:

Ly (s)={(p, 9)€ 0”| (g, sT) is connected to (p, 1)

in M using only md, sp, or mu moves }
Define %,,: I't - I''* by
Prulzozy -+ 2,) = (20, Lag(20))N215 Lar(2021)) -+ (245 Lag(2o- -+ 2;)).

CLaM 15. (gq,st) is connected to (q',s'1) in M iff (q, Lu(s)T) is
connected to (q', Ly (s')]) in M.

Proof. Let C be an S-computation of M, in which (g, sT) is connected
to (¢,5'7), and let = be the path from (q,s7) to (¢’,s'T) in C. Let
j=max,_, d(r). The proof proceeds by induction on j.

j=0: by definition, z, = #,,(z,), and since clause 3 in the definition of ¢’
is the only rule allowing sp moves in ¢', we are done.

We assume the claim is true for j, and we prove the claim for j+ 1. Let
s be a stack configuration of depth j. It suffices to show that

1. if (p,sT) is connected to (g,szf) in C then (p, £ (s)T) is
connected to (g, %, (sz)T) in M".

2. if (p,sz1) is connected to (g, szt) in C then (p, £, (s2)7) is
connected to (g, %, (sz)T) in M.

3. if (p,szt) is connected to (g,st) in C then (p, %, (sz)1) is
connected to (g, Fy(s)T) in M".

These follow directly from the inductive hypothesis applied to s and the
definition of §'.

The other direction is proved in exactly the same way by induction on
the depth in the computation of M'. |

This can be seen to prove the Proposition for the case k=1, ie., for
w-strings. To deal with w-trees, we employ a similar construction. The
details, however, are more complicated, and we need some new notations.
Denote the set {md, mu,sp} by in-stack moves, and the set {push(),
pop, sp} by top-stack moves. In the same way, node configurations in which
d(u) = h(u) are called top-stack configurations, and all others are called
in-stack configurations.

The idea is to put more information on the stack, enabling the
pushdown automaton M’ to “known” what connections are possible
through in-stack moves in the stack automaton M. Since accepting con-
figurations have to be top-stack configurations, every in-stack node # in an

296 HAREL AND RAZ

accepting S-computation must be the root of a finite subtree, whose leaves
are top-stack configurations with the same stack as n. Hence our goal in
the following construction is to create a pushdown automaton with the
property that the successors of any node #n are precisely these leaves.

The fact that the number of such leaves may be 2'¢' suggests that M’
should work on wider trees; speifically, we have k' =k -2'2". What makes
the proof rather technical is the need to generate the additional information
we want to put on the stack.

Let M=<Q,2, I, q4,29,5,F» be a simple stack k-ary ow-tree
automaton, and let k' =k -2'9. Define M'=<Q, X, I"’, 4, 2,9, F) as a
pushdown k’-ary w-tree automaton, where:

o« I"=Tx29%2
* 25=(20, @ x {H}).

» The transition function &’ is defined as follows. (Note that the defini-
tion uses the special set of mappings ¥, which are defined below.) For
each ge Q, zeI', and L€ 22, whenever ((¢,, b,), ..., (4x, b4)) € 8(q, @, z),
with b, mu for each i, and such that ((¢}, b), ..., (g, b)) € ¥ (g, b,),
we also have ((q1, b1), ..., (g b3, ., (g%, %)) €6'(q, a, (2, L)).

Given z and L, we now define the special mapping ¥, from Q x B to
(Qx B
((q1s B1)s s (qx, b)) € P75 (p, b) iff one of the following holds:

1. be{sp, pop}, and for all 1 <i<2* we have (g,, b,)=(p, b).

2. b=md and (p, {q,,..,qx})€L, and for all 1 <i<2* we have
b, =sp.

3. b=push(z'), and for all 1<i<2* we have ¢,=p and
b;= push(z', L'), where L'=22** is defined by (q',s)eL’ iff s is the
set of leaves of a finite tree T over Q with root ¢/, which satisfies the fol-
lowing condition: For any internal node p’ in 7T, there is a rule
((41, b1) -+ (qks b)) € 8(p', 4, z), such that the set of successors of p’ in T
is the smallest set s, for which

« if b;=sp then g/€es, is an internal node in T;
o if b;=mu then g;€s, is a leaf in T;
o if b; =md then there exists (g, sy)€ L such thats, cs,.

The intuitive meaning of the information we add is that in any node
n=1(q, (29, Lo)---(z; L)) of a computation of M’, (p,s)eL, iff
(P, zo++-T2,) is the root of a finite subtree of a computation of M, whose
internal nodes are in-stack configurations, and whose leaves are of the form
(9', 2o+~ z,T), where ¢’ es. In order to complete the proof of Proposition 14
we need a few more definitions.

DECIDING EMPTINESS 297

Define L,,: I'* —22%% as follows:

Ly(20)=0x{}

Ly(zo--z;_12)={(p,s)eQ x 22 | there is a subtree T of a computation
C of M rooted at (p, zo---z;_, T z;), such that all the
internal nodes in T are in-stack configurations, all its
leaves are all the top-stack configurations of the form
(g, zo--z;T), where ges.}

Define & :S— S’ by
F(zozy -+ 2,1)
= (29, Ly{z0)), (zys Las(z021))s s (2 Lpglzo- —z)T,

where & is undefined for all in-stack configurations.

CLAM 16. A top-stack configuration (g,) is the root of a finite subtree
T of a computation C of M, all of whose leaves are top-stack configurations
and all of whose internal nodes are in-stack configurations iff we have
(g}, BY), . (g5, B5)) € 6'(g, a, £(5)), and (q,s') is a leaf of T iff there
exists 1 <i<?2* and 1 < j<k, such that ¢’ = q} and B(ZL(s), b))=2L(s').

Proof. By induction on j=d(q, s).

If j=0, we have (g, s) = (g, zo1), and by the definitions of z; and &, we
obtain £(zo1)= (20, @ xF)T=2,T. In this case, whenever d(q,s)=
((g1, b1)s - (qi> bi)), b; must be either sp or push(z'). If b,=sp, then by
clause (1) in the definition of ¥ we are done. If b, = push(z'), then clearly
Ly (zoz') =L/, as defined in clause (3) therein, and the claim follows.

If j>1, the inductive hypothesis implies that (g, s)=1(g,zo---2,1) is a
leaf in a computation of M iff (g, £(s)) is a leaf in a computation of M".
If b,=md, then by clause (2) in the definition of ¥, and by
L;=Ly (20" 2;), which follows from the inductive hypothesis, the claim
is obtained. The case b,=pop is trivial, and the cases in which
b,e { push(z'), sp} are dealt with in thee same way as the base case

j=0. 1

Since in any accepted computation C of M, all the accepting states must
be top-stack configurations, Claim 16 actually proves that M has an
accepting computation iff M’ has one. Moreover, by the construction, the
size of M’ is at most doubly exponential in the size of M, which proves
Proposition 14. |

THEOREM 17. The emptiness problem for STAs is decidable in five-fold
exponential time.

298 HAREL AND RAZ
5. DiscussioN

In Section 3 we showed that the emptiness problem for Biichi PTAs is
decidable. For a discussion on PTAs with different acceptance criteria we
refer the reader to [S]. We believe that our techniques can be used
to establish the decidability of emptiness for PTAs with more general
accepting conditions (like C; of [S]). The details, however, would become
more complicated.

Another interesting direction involves properties of the set of trees
accepted by PTAs. As far as we know, such issues have not been treated
in the literature. Let us point out that it is not difficult to see that many
results about closure properties of w-CFLs can be easily applied to PTAs
too. The main observation is that for any context-free w-language L one
can construct a PTA that accepts all the trees whose leftmost path is in L.
Conversely, for any PTA M, one can construct an w-PDA that accepts all
leftmost paths of trees accepted by M. For results regarding w-CFLs the
reader is refered to [CG].

By defining STAs and proving the decidability of their emptiness
problem, we have barely touched upon this subject. The related power and
various accepting criteria of these machines is yet to be explored.

ACKNOWLEDGMENT

We thank G. Sénizergues for pointing out some inaccuracies in an earlier version of the
paper.

RECEIVED May 1, 1991; FINAL MANUSCRIPT RECEIVED May 8, 1992

REFERENCES

[CG] Couen, R. S., aNp GoLp, A. Y. (1978), w-Computations on deterministic pushdown
machines, J. Comput. System Sci. 16, 257-300.

[(H] Harew, D. (1983), Dynamic logic, in “Handbook of Philosophical Logic” (Gabbay
and Gunthner, Eds.), Vol. II, pp. 497-603, Reidel, Dordrecht.

[HoR] HossLEy, R., AND RaCKOFF, C. W. (1972), The emptiness problem for automata on
infinite trees, in “13th IEEE Symposium on Switching and Automata Theory”,
pp. 121-124.

[HPS] HareL, D., PNUELL A., AND Stavi, J. (1983), Propositional dynamic logice of non-
regular programs, J. Comput. System Sci. 26, 222243,

[(HR] Harer, D, aND Raz, D. (1993), Deciding properties of nonregular programs, SI4M
J. Comput. 22, 857-874,

[K] Kam, R. Y. (1972), “Automata Theory: Machines and Languages,” pp. 195-202,
McGraw-Hill, New York.

[R1] RaBIN, M. O. (1969), Decidability of second order theories and automata on infinite
trees, Trans. AMS 141,1-35.

DECIDING EMPTINESS 299

[R2] RaBiN M. O. (1970), Weakly definable relations and special automata, in
“Proceedings Symposium Mathematical Logic and Foundations of Set Theory”
(Y. Bar-Hillel, Ed.), pp. 1-23, North-Holland, Amsterdam.

[S] Saoupi, A. (1992), Pushdown automata on infinite trees and nondeterministic
context-free programs, Internat. J. Found. Comput. Sci. 3, 21-39.

[VW] Varpl, M., AND WOLPER, P. (1986), Automata-theoretic techniques for modal logics
of programs, J. Comput. System Sci. 32, 183-221.

[WW] Wacner, K., aAND WECHSUNG, G. (1986), “Computational Complexity,” Reidel,
Dordrecht.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

