~f

AR TR I A

79-1959

A UNIVERSAL FLOWCHARTER

B. Harel, P. Norvig, J. Rood, T. To
Hiaher Order Software, Inc.
Cambridne, Massachusetts

Abstract

A software tool has been developed to auto-
matically produce flowcharts and concordances of
user source programs. These flowcharts represent
structured proaramming flow of control constructs,
as opposed to traditional flowcharts which rep-
resent assembly level flow of control.
charter uses a table driven parse technique, so
programs in virtually any language can be processed
by changing tables. These tables consist of BNF
rules for the language, where each rule is aug-
mented by directives indicating what plotting
actions to take, and what tokens to include in the
concordance.

1. Introduction

1t has been shown®*? that structured
*srogramming techniques ana formal documentation
standards can be useful in expediting the software
development process. An automated tool to support
structured program development is the tiniversal
Flowcharter, {UFC} which was developed for NASA's
MUST system®.

Flthough other automatic flowcharting programs
exist, the UFC is unique for several reasons: it
produces structured flowcharts, it is universal,
and it produces concordances of program identifiers.
Of particular interest is that execution flow is
assumed to return in line at the completion of
every control construct, This simplifies the repre-
sentation of programs considerably.
charts are described in Section II,
the UFC as a universal* translator is discussed in
Section IIl. Source programs are also analyzed for

concordance information, as described in Section IV,

Some details of implementation are given in Section
¥, and finally, some directions for future work
appear in Section VI, Additional information*®® is
available from HOS, Inc.

IT. Structured Flowcharts

One approach to Structured Programming pro-
poses that programs should be written using three
major control constructs® sequence, selection,
and iteration**, Figures 1-3 show how these con-
structs are represented in structured flowcharts
and in traditional flowcharts.

Structured flowcharts have a number of con-
straints and conventions which make them easier to
read than traditional flowcharts. For example,
statements in sequence (Fig. 1) are always lined
up in the same column, connected by 1ines going
straight down the page. Similarly, alternate
cases of a selection (Fig. 2} are lined up, inden-
ted one column to the right of the box containing

* Universal means that a program written in any
language can be translated into a common language
of flowcharts.

**In fact, Bohm and Jacopini’ have proven any pro-
gram can be written this way.

Released to AJAA 16 publish in ali forms. 218

The Flow- '

Structured flow-
The operation of

STRUCTURED TRADITIONAL (format varies)

e A=20 \’}w A=0D
B=0 B=20
Fig. 1 SEQUENCE

Fig. 2 SELECTION

Y

|P=NEXT(P)

Fjg. 3 ITERATION

the selection condition. There can be cne, two, or
more cases to select from. The multi-case selec~
tion construct {(e.g., PASCAL case statement) is
neater with structured flowcharting than with the
traditional approach. The iteration construct
shown in Fig. 3 reflects the way loops are usually
written in structured programming, with the loop
body indented to the right.

Ftow of contrel in the program is always rep-
resented by 1ines that flow down the page (sequence),
to the right (iteration) or down and then right

AR W R e i A R T e L s e Srestr i R e e T

(selection), but never up or to the left. There-
fore there is no need for arrows on lines, as the
direction is unambiguous. We have the simple con-
vention "go right when you can, down if you must,
and back when you can't.” When we reach a box with
no lines leading out, control returns to the near-
est box above and to the Teft, and then continues.
This is similar to the idea of returning from a
subroutine, and has no explicit flow line asso-
ciated with it. Traditional flowcharts have no
constraints on the placement of boxes, and lines
may lead in any direction, turn several corners,
merge together, and even cross one another. This
"rats nest" approach makes it hard to follow the
flow of control.

The arguments for adopting structured over
traditional flowcharts are similar to those sup-
porting structured over traditional programming,
and include discipline, clarity, and modularity.
We trust the reader is familiar with these argu-
ments, and agrees that structured flowcharts merit
further exploration.

In Figures 1-3 we have seen distinctly shaped
structured flowchart boxes for iteration and sel-
ection. These shapes are used only in those con-
texts. We have also seen the rectangle, used for
statements not related to flow of control (e.g.,
assignment statements). These are the three most
inportant constructs. In Appendix [we describe
the constructs chosen to correspond to the struc-
tured programming concepts of procedure statements,
block statements, parallel processing, and non-
deterministic processing. There is also a provision
for off page connections in the case of programs
toc big to fit on one page. Constructs that would
be indented over the right margin are labeled and
continued later on a separate page. These eight
constructs were carefully chosen to represent
structured programs in a clear, easily readable
format.

We have presented the argument that those who
code using structured programming conventions would
want to use the UFC. In addition the following
also appears to be true. Hamilton and Zeldin have
observed, "when the automatic structured flowcharter
was first introduced, many programmers were con-
verted to structured programmers over night, since
this tool not only helped to enforce structured
programming, but it also saved the programmers the
work of manually producing a flowchart."®

On this note, let us now turn to a more de-
tailed description of the Flowcharter itself.

III, A Universaﬁ‘Trdn$1ator

The UFC can be compared to a compiler - it
has a high level source program as input, and pro-
duces structured flowcharts instead of machine
instructions as output. However, the UFC can also
be compared to a compiler-compiler, because it is
designed to work on any arbitrary source language.
These two aspects of the UFC will be discussed in
this section, followed by 2 discussion of lexical
problems.

UFC as a Compiler

Producing a flowchart can be seen as a trans-
lation process from source language to "box lan-

guage." In the UFC, this is done as a two pass
compilation. First the input program is translated
jnto what we call the Universal Flowchart Language
{UFL}. Strings in this language are composed of
meta-symbols, which indicate what boxes and lines
to print, interspersed with text from the source
program, which will be printed inside the boxes.

We speak of the constructs as templates, which are
filled in with source text.

For example, if we were presented with the in-
put string:

"If A > B THEN MAX = A ELSE MAX = 8" {4)

we would use the meta-symbol template for a two- -
case selection statement:

(+ /- -/
to produce the UFL string:
fa>8B > /-T-/ MAX = A; /-F-/ MAX = B) (6)

s /- -/ y (8

To specify this translation process, we de-
scribe the source language by a set of rules in
Backus-Naur Form (BNF?, with a corresponding set of
UFL translation rules.
above translation are shown here:

BNF Ruies UFL Rules

stmt: = IF test then stmt else (2 -+ 3 4 5) (7)
stmt: = jdent = expression 123 (8}
test: = ident relop ident 123 (9)
then: = THEN /-T-/ {10}
else: = ELSE stmt s /-F-/ 2 (1)

The numbers in the UFL translation rules are
gaps in the template, to be filled in by the UFL
translation of the corresponding token on the right
hand side of the BNF rule. For example, rule (9
has the UFL translation "1 2 3." This means the
UFL translation will consist of the same three
tokens as the source input. In contrast, rule (7)
adds the meta-symbols "{", "+", and ")" to the .
source statement, or looked at another way, it
places portions of the source into the selection
template, "{~)". -

The process of filling in templates can recurse
to arbitrary depth. For example, the entire UFL
string (6) might be nested inside a DO Toop, which
is nested inside a PROGRAM. The UFL rule for
PROGRAM would return this deeply nested UFL trans-
lation and would mark the end of the translation
process.

when the translation is completed, the next
step is to print the flowchart which the nested
template represents. This is a fairly straight-
forward process. Each template has a particular
construct associated with it. For example, /-%-/
causes the enclosed text (%) to be pletted as a
label, and [= ;)} gives rise to a selection
statement with two alternatives. Thus, UFL tem-
plate (6) would be plotted as shown on the left of
Figure 2. Each level of nesting of UFL templates
corresponds to a level of indentation in the re-
sulting flowcharts. The only exception to this
rule is that each procedure or subroutine is

219

The rutes to effect the &

T

i

hd

plotted on a separate page, even if its definition
15 nested inside another construct.

UFC _as a Compiler-Compiler

~

The translation process as described above is
a straightforward, well understood procedure. It
could be implemented by any of several techniques
described in the literature, and is an easy task -
for one particular source language.

However, the flowcharter was required to be
universal, to accept any reasonable source language.
This puts severe constraints on the spectrum of
possible designs. The UFL must borrow from the de-
sign of Compiler-Compilers.

Compiler-Compilers, or Translator Writing
Systems, have long been in use as software develop-
ment tools. Typically, they allow the user to
write a BNF description of the lanquage to be pro-
cessed, and to associate®a semantic action with
each syntax rule, The semantic action can be ar-
bitrary, and might involve any of various things:
output some machine instructions, make symbol table
-entries, update the location counter, invoke a
macre substitution, etc. This gives the user
powar, but responsibilities as well, 1t is easy to
write actions that introduce obscure but non-trivial
errors.

The UFC makes this process less error prone by
1imiting the semantic action to one possible oper-
ation - outputting translations. There are actu-
ally two translations for each BNF rule, the UFL
translation described above, and the concordance
information which will be described in Section IV.

To satisfy the reguirements of universality,
the UFC simulates an automaton which can process
any language. The algorithm used is LR{1) parsing,®
which means the input is scanned from Left to right,
producing a Rightmost parse, looking at 1 input
token at a time.

Conceptually, the components of the automaton
are a pointer to the input stream, a stack of in-
termediate results, a number indicating the current
state of the system, and a table of actions to
perform. This table can be constructed directly
from the BNF rules and translations.

The action to perform at a given instance de-
pends on the current state and the input token.
There are only two major actions: shifting the
input token onto the stack, and reducing the stack
according to one of the BNF rules. These two ac-
tions are repeated in a loop that is terminated by
one of the two auxilary actions: accepting the
input string, and then passing the stack to the
printing routine, or rejecting the input and print-
ing an error message.

To be more specific, to shift means to take
the input token, push it onto the stack, shift the
pointer to the next token, and enter a new state.

A reduction is the process of replacina the right
hand side of a BNF rule by the corresponding Teft
hand side. 1In our framework, this involves making
the UFL transiation, i.e., filling in the template.
An example should make this clearer. Consider
parsing string {4). The first four actions would
be shifts, leaving the stack Tooking 1ike this:

220

Tdent B (12)
relop >

ident A

keyword] 1F

The next action would be fo reduce by rule (9}.
The UFL translation is "1 2 3," which means con-
catenatc the top three elements of the stack,
yielding:

o test A>B {(13)
e keyword} If
After somé more actions, we reach this state:
else y /-F- = (14)
stmt MAY = A
then [-T-7
test A>B
keywordj IF

Finally, reducing by rule (7) yields:

[Stmt [A > B + j-1-7 MAX = A; /-F-/ MAX = B}] (15)

This is an example of the basic UFL template for a
selection statement, "{ - ;)", with the approp-
riate source text filled in. We also have filled
in the UFL template for a label "/- -/" with the
letters T and F. When the parse is completed, the
accept action will cause this template to be prin-
ted as shown on the left of Figure 2 in Section II.

The important point is the fact that this
table-driven algorithm can accept any input lan-
guage for which LR(1) grammars can be written.
{Fortunately, virtually all languages have an LR(1}
grammar.) To change from one tanguage to another,
we merely change tables, writing new translation
rules. It is easier and less error-prone to
write these rules than it is to write arbitrary
subroutines, as would typically be done ina
compiler-compiler environment. Although preparing
tables is non-trivial, it need be done only once
for each language. After the initial effort, pro-
ducing a flowchart is as simple as compiling a pro-
gram.

UFC as a Lexical Analyzer

The discussion above made the assumption that
the jnput could somehow be broken into tokens,
which were presented to the automaton one at a
time. This process is called lexical analysis, and
while easier than parsing, desfgning a lexical
analyzer is not trivial. Not surprisingly, qe-
signing a universal lexical analyzer is consider-
ably more complex.

For the UFC, it was necessary to make certain
assumptions about the domain of languages to be
processed, and these assumptions place 1imits on
the universe. For example, the analyzer starts
with the basic concepts of blanks, end of file,
end of 1ine, strings of diaits, and strings of
letters. Thus, a language where three blanks has
a different meaning than four, or where "ABC"
should be interpreted as two tokens, could not be
handied by the UFC.

E PRI

b

P T LT

The lexical analyzer is tailored to a partic-
ular language by supplying Tists of keywords,
special symbols, comment delimiters, string delim-
iters, and other constructs. Again, writing Tists
is seen as a less error prone process than writing
actual executable code. :

LT S SR . S
v “‘Eﬁlv. Concordance

R A R

Along with flowcharts, the UFC produces a con-
cordance of identifiers in the program. Although
only mentioned in passing above, this is another
full-fledged translation task, executed along with
the UFL parse described in the last section.

As one might expect, this requires a compliete
set of concordance translations, which are in one-
to-one correspondance with the BNF rules {just as
the UFL translations are). For example:

*. Concordance
BNF Rules Translations
stmt: = IF test then stmt else -0 -U U (16}
stmt: = ident = expression A-U {(17)
test: = ident relop ident I1-1 (18)

Each concordance translation has one symbol for each
element on the right hand side of the BNF rule.
The symbols are:

a syntactic unit containing no identifiers
a syntactic unit of unspecified type -
a variable that is being assigned

an identifier of unspecified type

a local variable

the name of a subroutine

A=t

As the parse is proceeding, identifiers are filled
into concordance templates, just as text is filled
into UFL templates. A concordance template is cre-
ated for each subroutine, and they all share this
form:

NAME LOCAL
VARS
(s) (L}
OTHER ASSIGNED
IDENTI- VARS
FIERS
(1) (A) (1¢)

Because the UFC allows only template construc-
tion as semantic action; there is no symbol table,
and hence there i1s no way of determining the meaning
of certain identifiers. For example, in some lan-
guages "F(x}" could be either a function invocation
or an array reference. In such a case the identi-
fier in question goes into the “"opther identifiers"”
section of the template. When all the templates
have been filled in, we can form the Tist of all
subroutine names, and intersect it with the "other
identifiers” to obtain the 1ist of procedure calls
for each subroutine. Similarly, global variables
can be found by subtracting local variables and
and procedure names form the union of local var-
jables and other identifiers. Other set operatfons
are performed to obtain other interesting classes

2

of identifiers.

V. Specification and Implementation Details

Specification

The UFC was designed using the AXESY specifi-
cation language. AXES is a formal notation for de-
fining systems. With AXES, one can define data types
using abstract algebraic specification, functions
which relate members of these data types, and con-
trol structures which relate functions. The inter-
faces between these objects can be automatically
verified statically.

The purpose of this projectwas to build a
universal flowcharter, but we were asked to apply
AXES whenever possible, throughout all phases of
development. The project was something of an ex-
periment, and we were continuously observing our
performance.

There were a number of factors which made this
experiment a rugged test for AXES. It was a dif-
ficult system to design, because no program like
the UFC had ever been built before, andthe require-
ments were continuously changing. Several different
engineers worked on the project. Some were n- 4
volved throughout, others came on only in the pro-
gramming stage. These programmers were handed AXES
specifications written by someone else, and asked
to come up with working code that would inter-
face correctly with other modules.

As delivery dates approached, some designers
panicked and decided to start impTementing before
certain data types and functions were completely
specified. Others stuck to the formal methodology
and completed the specification process. We found
that any errors in implementation were in those
functions where the specification was not complete
before implementation. Therefore, we judged that
AXES was of considerable help in the design and
specification of the UFC.

Implementation

The UFC has been implemented as a PASCAL pro-
gram of approximately 4000 1ines. The program needs
a partition of at least 100K bytes to run, and .

" plotting a 1000 Tine program will require about

300K bytes, and run in a few seconds. The program
was developed on CDC mainframe machines, {both
SCOPE and NOS operating systems) and was rehosted
on an IBM-370 with less than one day's work. This
is a tribute to the modularity of the program, but
mainly to the portability of PASCAL.

Output can be produced by a CALCOMP plotter,
or by a lineprinter. Because there are two distinct
plotting routines, we chose to translate the UFL .
templates into a common intermedjate form. This is
done by a recursive descent parse. The UFL tem-
plate, which is a linear string, is de-nested into
an internal tree form which represents exactly
what the flowcharter will 1ook like, with two ex-
ceptions: the exact size of each box and connec-
ting line is not specified, and the internal form
does not account for off-page connectors. These
two details depend on the plotting medium and
paper size, and are handled by the routine that
does the actual plotting (either Tineprinter or
Calcomp).

The Flowcharter is currently set up to pro-
cess programs written in either PASCAL or HAL/S
Tanguages. Because it is written in PASCAL, the
Flowcharter is therefore capable of flowcharting
itself, providing automatic documentation.

A sampie input program and resulting flow-
chart are shown in Appendix II.

VI Future Work

Concordance Structures

The concordance information s gathered in a
very simple manner, which does not account for the
great diversity of programming languages. Problem
areas include:

1) Distinguishing variables from procedures,
particularly in languages that allow
procedure-valued variables.

2) Allowing non-standard scope rules, such
as dynamic binding in LISP.

3) Determining what variables are modified,

4) Recognizing compound hames
{1ike P - REC. NAME(I). FIRST).

§) Identifier collision problems.

It is difficult to define a common kernel of,
features to systematically obtain the necessary
concordance information. There are many problem
areas that are handled in a wide variety of ways in
different languages. For example, using the ident-
ifier "F" inside function "F" would refer to a
variable in FORTRAN, but would be a recursive call
in PL/1. 1In PASCAL, it would depend on the context
{e.g., in "F = N * F(N-1}", the first F refers to
the value returned, and the second makes a recur-
sive call).

Unfortunately, it appears that problems like
this can only be handled by ad hoc routines to pro-
cess each case. These routines must be either sup-
ptied by the user, or pre-programned into the UFC,
in which case the user would supply a set of flags
along with the BNF grammar to indicate which way
to handle each problem area.

Note that these problems do not arise in the
syntactic UFL translation. This is probably be-
cause the theory of languages provides a sound
mathematical base upon which all programming lan-
gauges build their syntax. There is no such com-
mon base for the semantics of languages.

texical Analysis

The above discussion assumes we know where in-
dividua) tokens begin and end. This is not always
a good assumption, as programming languages have a
wide variety of lexical rules. For example, HAL/S
is rare in that it allows comments within character

222

at the cost of an increase in execution time.

R E S

strings. Some languages have column oriented for-
mats. FORTRAN allows the pathological case of
blanks within identifiers. The string "+10E+5" is
a valid real number in some languages, but not
others,

This variety of structure cannot be adequately
handled by the few simple Tists currently used as
input to the lexical analyzer. What is really
needed is another set of parse rules, either in
LR{(1) or regular expression form. This would go a
1ong ways toward making the UFC “"more universal,”

Parser Generator

In implementing the UFC it was found that much
of the debugging time was spent changing BNF rules
and translations, not the actual UFC source code.
Although experience is valuable, producing BNF
rules and tables is still a difficult operation.
Even if a BNF specification is available for a
given Tanguage, it probably will have to be altered
for use by the UFC. This is because of the limited
power of the lexical analyzer. Suppose a program-
ming language had these two rules: -

(24)
(25)

array_reference : array-name {(exp-list)

fun_reference : fun-name {exp-1ist)

There would be no ambiguity, because the lexical
analyzer would refer to the symbol table to dis-
tinguish between array-name and fun-name. The UFC
would not be able to differentiate the two types
of names, so rutes {(24) and (25) would cause 2
conflict. They would have to be replaced by a
number of rules to resolve the ambiguity.

The gbility to patch in this manner is con-
sidered something of a mystical art. Perhaps the
most important area for improving the UFC Ties not
in-the Flowcharter itself, but in developing a qood
tool for generating parse tables, such as the
YACC!® program, which could interface with the UFC.
The development of software tools seems to breed a
need for more software tools, which indicates
there is still much work to be done.

Acknowledgement
The Fiowcharter project could not have been com-
pletedwithout the contributions of R, Pankiewicz,
D. Burns, and H. McManus.

References

[17 Dah1, 0.J., E.W. Dijkstra, C.A.R, Hoare,
Structured Programming, Academic Press,
London, 1972,

{21 Wirth, N., Systematic Programming: An Intro-

duction, Prentice Wall, 1973,

[3] Straeter, T., et. al., "MUST - An Integrated
System of Support Tools for Reasearch Flight

Software Engineering." A Collection of Tech-
nical Papers, AIAA/NASA/IEEE/ACM Computers in
Aeraspace Conference, Los Angeles, Nov. 1977,
{4] HOS, Inc., Flowcharter Functional Description,
July, 1979. . oo)

[5] Harel,D. and R. Pankiewicz, "A Universal Flow-
charter,” TR-11, HOS, Inc., November 1976.

(6]

(7]

(8]

(9]

f10]
(11

T T AT L

McGowan, C.L., and J.R. Kelly, Top-Down Struc-
tured Programming Techniques, Mason/Charter
PubTlishers, Brown University, NY, 1975.

Bohm, C. and G. Jacopini, Flow Diagrams, Turing
Machines and Languages With Only Two Formation
Rules, Comm, of the ACM, ¢;5 (1966) 366-371,

Hamilten, M. and S. Zeldin, Higher Order Soft-
ware - A Methodology for Defining Software,
IEEE Transactions on Software Engineering,
March 1976.

Aho, A.V., and J.D. UlTman, The Theory of
Parsing, Translation, and Compiling, éoi. I:
Parsing, Prentice-Hall, 1972.

Hamilton, M. and S. Zeldin, "AXES Syntax

Description," TR-4, HOS, Inc., December 1976.

Johnson, S.C., YACC - Yet Another Compiler-
Compiler. Documents for the PWB/UNIX Time
Sharing System, Bell Laboratories, 1977.

APPENDIX I

The Eight Control Constructs

(n

ELEMENTARY STATEMERT

o
example: x:sx+]
{2) BLOCK STATEMENT
%
%
!
i
o
n

example:

begin
Op3 Gp3.ee O
end

BT

{3) CONDITIONAL STATEMENT

if P then

example:] o
se 8

1]

and similarly

example: case © of
£]: o33 &o% Gn3e.nd zn: %
esac

"(4) ITERATIVE STATEMENT __

S (T

|

while P do g od
e f
o

for x=y to z do § od

L
a

example:

(5) CONCURRENT STATEMENT (parallel processing)

example: cobegin
o

13

a3

()‘.n;

coend

223

(6)

example:

CHOICE STATEMENT (non-deterministic choice)

choose
Ups
& 3
end "

{7) PROCEDURE STATEMENT

p()(’ Y Z) Concordance
u1
Gz
example: Procedure P(x,y,z}
a3
0‘.2 y . R
End P

APPEHDIX I
Sample Input and Qutput

As an example we sketch the flowchart of the
following procedure statement:

Procedure P(x.y); x:=x+1; call Q
Jf x<0 then

gise
if x=1 then
cobegin
x:=x+1;
CyiEv=l;
coend

else x:=1; fi
yi=x+1l; fi ‘

{8) OFF-PAGE CONNECTION

DD Dad

di

o 8

oy then
if &, then
if Bq then
if 341:11__&_!1_3

example: if

while x<0 do x:=x+1 od

224

FALN
end
P(x,y)
x:=x+1
Call Q
T -
while e
x<Q %<0 xor=x*1
F T
x=1 N) x:=x+]
yi=v-1
F
x:=1
yi=x+]
zizy .

