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Abstract. Dynamical systems, i.e., systems that progress along time
according to fixed rules, exhibit many special phenomena like the emer-
gence of interesting patterns, bifurcation of behavior, the appearance of
chaos despite determinism and boundedness, and sensitive dependence
on initial conditions. Such phenomena are encountered in diverse fields,
such as fluid dynamics, biological population analysis and economic and
financial operations. The study of dynamical systems, their properties,
and the mathematical and computerized tools for dealing with them, are
often designated as part of advanced curricula in physics or mathemat-
ics. Consequently, many computer science students, perhaps the majority
thereof, graduate without ever being exposed to such concepts. We argue
that with the pervasiveness of dynamical systems and manifestation of
their properties in the real world, these concepts should be introduced
early on; in undergraduate studies in computer science and related fields,
and perhaps even in high school. Available introductory courses demon-
strate that only a minimal foundation of knowledge in mathematics is
needed for the basic understanding of the key ideas. Such an introduction
would deepen one’s understanding of the world and highlight important
capabilities and limitations of mathematical and software tools for anal-
ysis, simulation, testing and verification of complex systems. In turn,
this can lead to enhancement and enrichment of languages, tools and
methodologies for dealing with dynamical systems, and of research in
computer science and software engineering in general.

1 Motivation

The concept of emergent entities and emergent properties is central to the study
of complex systems. Examples include a traffic jam, a spinning tornado, a swarm
of bees, the organization and behavior of an ant colony, and the partition of the
unfathomable number of organisms in nature into millions of distinct species.
Depictions of an ant eater befriending an ant colony in Hofstadter’s seminal book
Godel, Escher, Bach [14] are particularly illuminating of the distinction between
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the emergent entity, i.e., the friendly colony, and its constituent components,
namely the poor ants who may be served as food to maintain this friendship
with the anteater.

In our own research on biological evolution and of biological modeling [4, 5],
we have encountered extensive interest by scientists in the emergence of new
patterns and order either from seemingly disordered behavior or, more often,
from well specified and seemingly constrained local behavior [15,22,28]. This, in
turn, led us more deeply into the realm of dynamical systems and chaos, in which
concepts like emergence, bifurcation, sensitivity to initial conditions, fractals,
and never-exactly-repeated behavior (which are explained briefly in Sect. 2) are
dealt with thoroughly using analytical and computational tools [8,11].

This, combined with our interest in computer science (CS) education and in
making deep CS concepts accessible to the general public (see, e.g., [13]), made
us realize that ideas and notions associated with dynamical systems, chaos and
emergence are often absent from the curricula of basic CS and software and sys-
tem engineering (SE). A brief check of curricula in leading universities confirms this
observation. And while dynamical systems and chaos (DS&C) are usually intro-
duced as part of the disciplines of physics or mathematics, they are often considered
to be advanced optional material and are offered as part of an elective or on the
graduate level.

In this paper, we argue that concepts in, or properties of, DS&C are relevant
to CS and software and system engineering students and professionals, and indeed
to people from other areas who are interested in science and the observation of
nature, and in engineering and philosophy. Thus, we claim, these concepts should
be introduced early on, in undergraduate studies and perhaps even in high school.
The scope of such an introduction can range from a single overview lecture, through
a unit in a broader course, to an entire introductory course.

Some courses, books, lectures and papers already address the aim of making
dynamical systems accessible to individuals with only basic mathematical back-
ground. For example, Devaney’s introductory book [6] is targeted at undergradu-
ate students who have had only a one year calculus course, and does not require
knowledge of differential equations. Feldman’s book [8] and his highly accessible
series of videos from the Santa Fe Institute and the College of the Atlantic under
the Complexity Explorer series [7] can also serve as excellent starting points for
students and teachers new to this domain; they do not even require calculus and
the relevant aspects of derivatives and partial differential equations are taught as
an integral part of the DS&C course. Further support for the claim that these seem-
ingly advanced concepts can be understood by students with a more limited math-
ematical background is provided by the research on teaching dynamical system to
high school students [10]. An invaluable, and even less technical introduction to
the history and the beauty of the field is offered in Gleick’s book [11].

The goals of such introductory information include: (i) broadening one’s per-
spective of the world in action, in line with the maxim attributed to Albert Ein-
stein “look deep into nature, and then you will understand everything better”;
(ii) laying a foundation for individuals who will later actually work with common
dynamical systems in academia and industry; (iii) alerting professionals to the
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existence of dynamical-system and chaotic traits and unpredictable behavior in
systems that might not be considered as such at first; (iv) highlighting require-
ments and gaps in techniques for development, analysis, simulation, testing and
verification of complex dynamical systems, thus offering leads into research on
programming languages and abstractions, algorithms, and theory; and, (v) mak-
ing available to students and scientists the theory and tools developed for dynam-
ical systems that have been shown to be of value when working on problems that
are considered to be at the core of computer science.

2 The Subject Matter: Key Phenomena in Dynamical
Systems and Chaos

A dynamical system is defined as a mathematical system that progresses in time
according to fixed rules. These rules can operate in discrete time via iterative
recurrence relations, of the form z,,+1 = f(x,), where x,, and x,,11 are the states
of the system at time n and n + 1, respectively, or continuously, expressed as
differential equations like % = f(z,y,2), % = f(z,vy,2), and % = f(=z,y,2),
where (z,y, z) represents the state of the system (in this case, in a three dimen-
sional space) and the derivatives are rates of change with respect to time of
each component of the state. In both the discrete and continuous cases, the next
state, or the next change in state, are a function of only the current state. All
seemingly external events and conditions are incorporated as internal parame-
ters of the model, and the only role of the passage of time has to do with the
step size in calculating the next system state. The absolute wall-clock time, or
the time that has elapsed since the beginning of a simulation or an observation,
are not essential parts of the model.

In dynamical systems, the functions depicting changes in state are often
nonlinear, that is, the changes in output are not directly proportional to the
changes in input. This non-linearity makes the mathematical analysis more dif-
ficult, which may be one of the reasons for why the topic is not taught earlier
on. However, as in the quote attributed to Stanislaw Ulam [1]: “Using a term
like nonlinear science is like referring to the bulk of zoology as the study of
non-elephant animals.”, the pervasiveness of nonlinear systems mandates that
scientists, students and engineers should be more familiar with them.

Specifically, the main phenomena we deem relevant to this paper’s proposal
are:

1. Emergence: General definitions of emergent entities and properties often
relate to properties of a system, or a set of entities, that are not expressed
by any one of the components of the system or elements of the set (see,
e.g., [4] and references therein). In dynamical systems, one often observes
unexpected patterns, arrangements, and self organization. Salt crystals, ocean
waves, convection rolls in a slowly-heating liquid, flocks of flying birds, and
living cells are examples of such emergent entities. More specifically, consider
an autonomous vehicle (AV) out on the field, at some large distance from
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a designated tree. The AV is programmed to always proceed in a direction
that is close to being perpendicular to its line of sight to that tree, and to
control the direction angle so as to keep the distance more or less constant.
While these instructions are local, external observers would readily see that
the vehicle’s trajectory/orbit/phase-space forms a circle; also, local observers,
like additional AV instrumentation with memory, or a human who is present
in the AV, can also notice the circular nature of the trajectory.

2. Bifurcation: Some dynamical systems exhibit great qualitative differences in
observed behavior when certain parameters are subjected to minute changes.
For example, consider the famous logistic map function z,41 = @, -7+ (1 —x,)
(see, e.g., [6], and Fig.1). It can be viewed as a population z, where 0 < x < 1
(representing, say, the portion of the area of a Petri dish covered by bacteria)
grows by a factor of r every time unit, and is restrained by a factor of 1—x. The
trajectory is computed by starting at some arbitrary initial value 0 < zy < 1,
and iteratively computing the map. For all values of , with r < 3, each of the
trajectories formed by the iterative operation of the map converges to a single
value (with different fixed points for different values of r); for 3 < r <~3.44,
each of the different maps eventually oscillates between two values; for
~3.45 < r <~3.54 the maps long-term behavior is an oscillation with a period
of 4, etc.; and, for » = 4 and other values, the function behavior is chaotic,
visiting in an unpredictable order the entire [0, 1] range.

1.0

0.8
0.6 - — .

04 —

0.0 T T T T T T T 1
24 2.6 2.8 3.0 3.2

Fig. 1. The logistic map xn+1 = zn -7 (1 — z,). The graph shows, for each value of r,
the values that the map converges to after many iterations. For r = 2.6, this is a single
value ~0.61; for r = 3.2, the map oscillates between two values, ~0.8 and ~0.51; for
r = 3.5 the oscillation period is 4: ~0.50, ~0.87, ~0.38, ~0.83; and for r = 4, the map
yields chaotic coverage of the entire range between 0 and 1. See the body of the text
in the bifurcation paragraph for more details. Image source: Wikipedia; under fair-use
licensing.
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The transitions between these behaviors are sudden and occur in very nar-
row ranges of values of . Similar sudden changes in behavior occur in other
dynamical systems like the changes in patterns and periods in the behavior
patterns of a dripping faucet in response to the incoming water flow, or the
number of convection rolls in a heated container as a function of the rate of
change in temperature.

3. Sensitivity to initial conditions: This phenomenon, highlighted by the
discoveries of Lorenz (see Fig.3), and which is often termed “the butterfly
effect”, means that certain functions, even very simple ones, can produce very
different system trajectories when starting at arbitrarily close, yet distinct,
states. These distinct states commonly reflect not a particular choice, or an
uninvited deviation from some desired reality, but merely a measurement
error due to instrument limitations, or constraints imposed by the finite rep-
resentations of numbers in computing. The term butterfly effect alludes to
the difficulty in predicting the long term path of a storm, when the formulas
in the model are sensitive to minute details, such as, figuratively speaking,
whether a far-away butterfly, which might have been included in the model,
did or did not flap its wings at a certain point in time.

4. Unpredictable chaotic behavior: In the study of dynamical nonlinear
systems, behavior is considered to manifest chaos, or be chaotic, when it is
unpredictable, but not because it depends on randomness or pseudo random-
ness; the system’s state changes, and its infinite trajectory through all its
possible states, are governed by deterministic mathematical rules. However,
these rules are such that (i) they never yield the same exact state twice,
despite being bounded within a closed region of R™, and (ii) they are sen-
sitive to initial conditions. The non-repetition of states within a bounded
region causes the behavior to be non-periodic and to require ever-growing
precision in the representation of real numbers (in order to distinguish near
states). The non-periodicity, the sensitivity of the rules to initial conditions
and the inevitable finite precision of any computing facility, then contribute
to making it virtually impossible to predict the state that the system will
be in beyond some near-term horizon. This apparent contradiction between
determinism in intended system behavior, which is the very essence of pro-
gramming, algorithms and computation, and the appearance of long-term
behavior as a seemingly disordered random mess may be settled when con-
sidering a highly tangled thin wire or fishing line, as in Fig. 2. Clearly there
is no one analytic formula that can tell us where in space each molecule or
each segment of the fishing line resides, based on its distance from one of the
ends of the line. Still, if an ant were to walk the length of this line, starting
at one of its ends, the ant’s near-term general direction would be reasonably
well defined for any location on the line. It is also intuitive to think that
if the fishing line can be infinitesimally thin, one can always insert (indeed,
thread) an additional length of it into the tangle without disrupting or cut-
ting through existing line segments. For a more formal example, we return to
the logistic map mentioned earlier, and consider » = 4, where the behavior
is chaotic. Given a fully specified initial value of x, if one wishes to compute
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the map value after n iterations, one must first compute all preceding n — 1
iterations to unbounded precision. One may then ask whether or not such a
process can be considered to be a prediction.

Additional phenomena manifested by DS&C include the following: the for-
mation of fractal structures, i.e., self-similar recursive structures and behaviors;
the existence of strange attractors, i.e., the convergence of behavior towards a
chaotic, sometimes fractal pattern (such as the three dimensional figure-eight
continuous trajectory of Lorenz equations system shown in Fig. 3, or the fractal
boomerang shape formed by the Hénon Map shown in Fig. 4, that is formed
over time by points being drawn one at a time, in different locations); and, the
existence of universal mathematical parameters, like Feigenbaum’s constant(s),
which appear in highly disparate systems, ranging from the logistic map and
other quadratic maps, through a dripping faucet, to the formation of convection
rolls. See, e.g., [9] for more details.

Fig. 2. A single filament fishing line. The “path” of the thread illustrates unpredictable,
yet deterministic and bounded behavior, in which any particular (z,y, z) coordinate in
space is visited at most once; the path is very sensitive to the precision of measurement
and calculation; any misstep by someone following the path of the thread could cause a
transition to a different segment of the thread resulting in a very different trajectory. For
an infinitely thin thread, new paths can always be found without physically intersecting,
i.e., sharing an absolute coordinate, with an already traversed location. Image source:
Wikipedia; under fair-use licensing.
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3 Linking DS&C Tenets to General Education and to CS
and SE

In this section we offer several perspectives on how DS&C is tied to classical
computer science and software development, and why learning DS&C early may
be beneficial to scientists and engineers.

3.1 DS&C Phenomena are Real and Pervasive

Most generally, the phenomena discussed in the previous section are real, both
in nature and in their abstract mathematical manifestations, and there is a
general consensus about them being aesthetic in some sense. Hence there may
not be a need for further justification for including them at some level in general
education and in scientific and engineering curricula, and for having CS and SE
be part of the disciplines offering languages, tools, methodologies and theoretical
foundations for dealing with these phenomena.
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Fig. 3. Lorenz equations and trajectory. For any location of “the tip of the pen” draw-
ing this graph in a three dimensional space, its speed along each of the axes, and thus
its direction, is given by the respective partial derivative equations on the left. The
result is the graph on the right. The equations are simple, and involve only elemen-
tary arithmetic operations over the current coordinates and some constants. Regardless
of the starting point, the orbit is persistently attracted towards this well recognized,
emergent, three dimensional “figure eight” shape. Still, given any current position of
the traveling pen, it is impossible to predict far into the future in which lobe of the
figure eight the pen will be at any particular time. Images sources: [7], under fair use
licensing

3.2 CS and SE Already Deal with DS&C

At the other extreme of the links between DS&C and CS and SE is the fact that
many sub-fields of CS and SE, as well as computer applications in other areas,
already deal directly with dynamical systems. These include fluid/airflow dynam-
ics, weather prediction, we transportation, robotics, manufacturing automation,
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economics and finance, storage/warehousing planning, disease control, livestock
and agriculture management, and a variety of modeling and analysis applica-
tions in the study of biology, chemistry and physics. Therefore, it is only natural
to expect CS and SE to be prepared to step in, attempting to address any tech-
nological, methodological or theoretical gaps or needs that may arise in such
projects.

3.3 DS&C Issues May Emerge in any System

In between the two extremes listed in the preceding two subsections, we now list
considerations related to DS&C concepts that affect requirements in the design
of any system, whether perceived as a dynamic one or not. The bibliographic
references given for each item serve to illustrate the issues via examples of in-
depth treatment of well-scoped problems with relevant algorithms. Formulating
succinct methodological principles that engineers and scientists should bear in
mind, is yet to be done.

Pattern emergence. The emergence of unexpected patterns in images and
other sensor input may cause incorrect classification or identification. This
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Fig. 4. Hénon Map. Starting at any point (z, y) in the two-dimensional plane, and com-
puting the trajectory according to the equations at the top, and using the coefficients
a = 1.4,b = 0.3, consecutive system states, i.e., coordinates of newly drawn points,
may not be close to each other; after many steps, a boomerang-like shape emerges; the
shape is fractal: when enlarging a sub-frame of the trajectory containing multiple lines
(not shown here), one sees that each line is actually comprised of multiple thinner lines
whose distances from each other are in proportions that are similar to the proportions
of line distances in the original frame. Images sources: [9], under fair use licensing.
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emphasizes the importance of redundancy in sensors of environment states and
in the processing and analysis of their inputs (see, e.g., [2]) for causes of mistakes
in image classification). Furthermore, such emergence of unexpected behavioral
patterns may render a system more vulnerable to attacks that take advantage of
the induced predictability, or cause excessive wear and tear in the system or in
its environment (see, e.g., [18] for how repetition of a desired robot’s path may
form ruts in a field’s soil).

Limitations in model-based prediction. Often, systems plan their behavior
using on model-based algorithmic predictions. The development of such models
and algorithms must accommodate the possibility of bifurcations in the behav-
ior of the system and/or their environment throughout the allowable range of
parameters (see, e.g., [12]). Furthermore, when an autonomous system explores
new environments and new operational parameters, where it is not assured of the
absence of bifurcations, it must be prepared for situations in which a very small
change in parameters can cause dramatic and unexpected changes in behavior
patterns.

Sensitivity to initial conditions. In computational/algorithmic models that
affect operational decisions, the design must incorporate the level of sensitivity
to initial conditions and to the finite precision in representing the current state,
and set its prediction horizon accordingly. And, still, confident as the system
may be in its predictions within the safe horizon, it must include mechanisms for
appropriately reacting to unpredicted events and conditions, and, when possible,
adapt its prediction process accordingly (see, e.g., [16,17]).

Chaotic behavior in classical algorithms. Chaotic behavior is observed in
a variety of algorithmic contexts that do not originate in dynamical systems.
One example is the so called “randomness” of digits in the number Pi (7) (more
precisely, 7 is assumed to be normal, a property which refers to the observed uni-
form distribution of the appearance of digits and combinations thereof). Another
example is the chaotic behavior of algorithms carrying out fast gradient descent
in linear systems [24], where there is a non-monotone decrease in the norm of
the residual vector.

3.4 CS and SE Research Can Help Close Gaps in Dealing with
DS&C

There is a certain amount of published work on design principles for developing
dynamical systems. For example [27] focuses on agent based models, [25] focuses
on coding of society models, and [23] proposes principles for environmental and
climate models. However, it appears that this sub-field is not as mature as soft-
ware and system engineering for, say, traditional information processing systems,
or control systems. Developing models of or controllers for dynamical systems
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can benefit from a variety of language idioms, and tools and methodologies, that
are not readily available in existing languages and platforms for dealing with
the various aspects of dynamical systems, such as the Modelica language (and
tools implementing it), MATLAB and Simulink, NetLogo, AnyLogic, or Berkeley
Madonna. To illustrate the need for language idioms and abstractions, we now
list examples of challenges in monitoring a real or modeled dynamical traffic sys-
tem. We focus on the detection, reaction to, and simulation of emergent entities
(both expected and unexpected); languages for describing complex emergent
behavior; dynamic incorporation of emergent entities as active programmable
agents in a system, and more. Note that a human observer can readily handle
the challenges in the examples below, yet programmed solutions require sophis-
ticated procedural code:

— Detecting the existence of a traffic jam, and measuring its properties, such
as its length. Note that the traffic jam entity exists despite its constituents
being transient and dynamic, as vehicles leave its “head” and others join its
“tail”.

— Detecting a group of vehicles, like a truck convoy or a group of motorcyclists,
and determining its relationship to other road users; for example, can others
pass it safely?

— Detecting an unusual pattern in overall flow, as when a slow vehicle in a
middle lane causes other vehicles to have to pass it on the right and left, with
the difficulties and risks of changing lanes and merging.

— Detecting patterns in space and time; for example, whether the presence of
certain kinds of vehicles, or of a certain kind of driver behavior is now more
frequent /common than in the past.

While some such functions are carried out today using standard programming
features, language idioms and development tools that address these directly could
be of great value. And, not only can this be an important direction for computer
scientists, we believe that studying DS&C can help attract undergraduate stu-
dents to pursue graduate studies and research in this domain, further advancing
the field.

3.5 Techniques Developed for DS&C Can Help Tackle Classical CS
and SE Challenges

Approaches from dynamical system theory have been shown to be applicable in
a variety of areas that are traditionally considered to be part of the computer
science discipline. Example of such areas and one problem within each area are
listed below. See the references for more details and examples.

— Dynamical search [19]. Consider the search for a minimum of a continuous
function f in an interval where f is known to have only one such minimum;
the search algorithm samples f(x) at certain points within the current search
interval e,, and then narrows down the search interval e, 1 = ¥(e,) where
1 uses some algorithm-specific rules and the most recently found values of f.
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This iterative computation of the intervals can be viewed as a dynamical sys-
tem, and its behavior and convergence can then be analyzed using dynamical
systems theory.

— Algorithms for NP-hard problems [21]. Consider the problem of par-
titioning a graph into equal size sets while minimizing the weights of cut
edges; this problem arises in a range of settings, including gene networks,
protein sequences, Internet routing algorithms and many more. To balance
the cuts, the problem is often stated as minimizing the ratio between the
inter-connection strength and the size of individual clusters. In this form,
the problem is apparently intractable (NP-complete). An algorithm that uses
dynamical system properties was developed for this task. It propagates waves
in a graph in a completely decentralized setting, and has been shown to be
orders of magnitude faster than existing approaches.

— Machine Learning with Dynamical Systems [3,20,26]. There is a grow-
ing body of work for introducing continuous dynamical system behavior and
analysis into the theory of machine learning (ML) and neural nets. Elements
of ML, like the propagation of information and computation within a neural
net, the iterative training process that modifies the structure of a neural net
based on prior results, and/or the behavior of the data itself in space (e.g.,
the processed image) are treated as continuous dynamical processes described
using ordinary and partial differential equations.

4 Conclusion

Familiarity with the concepts and phenomena associated with nonlinear dynam-
ical systems and chaos can enrich and enhance the work of scientists, engineers
and educators in many fields. In particular, in the context of computer science
and software & system engineering we expect that such broader and deeper
awareness can trigger additional learning followed by valuable development and
enhancement of languages, tools and methodologies. Based on already existing
introductory material that does not require advanced knowledge of mathematics,
we also believe that the first steps of such a shift in computer science education
are in fact possible.
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