EXERCISE 7 IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

DMITRY GOUREVITCH

- (1) (P) Let X, Y be algebraic varieties, where Y is separated, and $U \subset X$ be a open dense subset.
 - (a) Let $f, g: X \to Y$ be morphisms that agree on U. Show that f = g.
 - (b) Let $h:U\to Y$ be a morphism. Show that there exists a maximum open subset $O\subset X$ to which h extends as a morphism.
- (2) (P) Let X be a complete algebraic variety.
 - (a) Show that any closed subvariety $Z \subset X$ is complete.
 - (b) Let $f: X \to Y$ be a morphism of algebraic varieties. Show that the image f(X) is a closed complete subvariety of Y.
 - (c) Show that a quasi-affine complete variety is a finite set.
- (3) Let $f_i(x_0, \ldots, x_n)$, $0 \le i \le N = \binom{n+d}{n} 1$ be the set of all monomials in $k[x_0, \ldots, x_n]$ of degree d, i. e. of the monomials of the form $x_0^{i_0} \cdots x_n^{i_n}$ with $i_0 + \cdots + i_n = d$. Consider the map $F: \mathbb{P}^n \to \mathbb{P}^N$, $(x_0: \cdots: x_n) \mapsto (f_0(x_0, \ldots, x_n): \cdots: f_N(x_0, \ldots, x_n))$. The morphism F is called the degree-d Veronese embedding. Its importance lies in the fact that degree-d polynomials in the coordinates of \mathbb{P}^n are translated into linear polynomials when viewing P^n as a subvariety of \mathbb{P}^N .

Show that F is a closed imbedding, i.e. isomorphism to its closed image.

(4) (P) Let $X \subset \mathbb{P}^n$ be a projective variety, and let $f \in k[x_0, \dots, x_n]$ be a nonconstant homogeneous polynomial. Show that $X \setminus Zeroes(f)$ is an affine variety.

1

Hint. Use the Veronese embedding.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/AlgGeo.html

Date: December 24, 2012.